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Abstract001

Knowledge neuron theory provides a key ap-002
proach to understanding the mechanisms of003
factual knowledge in Large Language Models004
(LLMs), which suggests that facts are stored005
within multi-layer perceptron neurons. This006
paper further explores Degenerate Knowledge007
Neurons (DKNs), where distinct sets of neu-008
rons can store identical facts, but unlike sim-009
ple redundancy, they also participate in stor-010
ing other different facts. Despite the novelty011
and unique properties of this concept, it has012
not been rigorously defined and systematically013
studied. Our contributions are: (1) We pioneer014
the study of structures in knowledge neurons015
by analyzing weight connection patterns, pro-016
viding a comprehensive definition of DKNs017
from both functional and structural aspects. (2)018
Based on this definition, we develop the Neu-019
ronal Topology Clustering method, leading to a020
more accurate DKN identification. (3) We con-021
firm the practical applications of DKNs: guid-022
ing LLMs to learn new knowledge and relating023
to LLMs’ robustness against input errors1.024

1 Introduction025

Large language models (LLMs) are believed to026

store extensive factual knowledge (Touvron et al.,027

2023; OpenAI et al., 2023; Han et al., 2021), yet the028

mechanisms of knowledge storage in LLMs remain029

largely unexplored. Dai et al. (2022) propose that030

some multi-layer perceptron (MLP) neurons can031

store “knowledge”. As shown in Figure 1, neurons032

a through g that consistently activate in response033

to the fact ⟨COVID-19, dominant variant, Delta⟩034

are termed knowledge neurons (KNs). Chen et al.035

(2024a) further explore the properties of knowl-036

edge neurons and discover degenerate knowledge037

neurons (DKNs). In Figure 1, distinct pairs of038

knowledge neurons (e.g., {a, b, e, f} and {c, d})039

1Code and dataset will be de-anonymized: https://
anonymous.4open.science/r/DKN-0E6C.
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Figure 1: Knowledge neurons {a, . . . , g} are identified
for storing a fact, with distinct subsets of these KNs
({a, b, e, f} and {c, d}) capable of independently stor-
ing the same fact. These subsets constitute a DKN.

can store identical facts, exhibiting a form of re- 040

dundancy. However, this goes beyond simple re- 041

dundancy, as each subset may also store other facts 042

- for example, {a, b, e, f} stores “other facts” that 043

are distinct from those encoded by {c, d}. This 044

property aligns with the definition of degeneracy. 045

While Chen et al. (2024a) have conducted some 046

exploration on DKNs, their definition and acqui- 047

sition method for DKNs still face two issues. (1) 048

Numerical Limitation: They constrain each DKN’s 049

element to contain just two knowledge neurons. 050

However, factual knowledge often requires the co- 051

ordination of more than two neurons for storage 052

(Allen-Zhu and Li, 2023). (2) Connectivity Over- 053

sight: Their analysis focuses solely on individual 054

neurons, overlooking the role of inter-neuronal con- 055

nections. However, knowledge expression requires 056

the interaction of multiple neurons (Zhu and Li, 057

2023), and thus it is necessary to consider the con- 058

nectivity structure between neurons. 059

To address these two issues, we first provide a 060

comprehensive definition of degenerate knowl- 061

edge neurons from two perspectives(§3). (1) 062

Functionally, we define Base Degenerate Com- 063

ponents (BDCs) as subsets of KNs that can in- 064

dependently express the same fact. For example, 065

{a, b, e, f} and {c, d} in Figure 1 constitute two 066
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BDCs. A DKN is defined as the set of these mutu-067

ally degenerate BDCs. (2) Structurally, as shown068

in Figure 1, BDCs like {a, b, e, f} and {c, d} differ069

in KN number and connection tightness. To quan-070

tify DKNs’ structural properties, we define neuron071

distances based on connection weights and analyze072

the structural properties of neuron sets accordingly.073

Based on our definition, we introduce the Neu-074

ronal Topology Clustering (NTC) method to075

identify degenerate knowledge neurons (§4).076

NTC comprises two steps: (1) Structurally, cluster-077

ing neurons into stable structural sets based on con-078

nection weights; (2) Functionally, filtering these079

sets to retain those that can effectively express facts.080

By incorporating structural information of neuron081

connections, NTC enables the formation of BDCs082

with flexible neuron cardinality and structures, ad-083

dressing the previous two limitations and identify-084

ing DKNs more accurately.085

Furthermore, we explore the applications of de-086

generate knowledge neurons, leading to two addi-087

tional findings.088

(1) DKNs can guide LLMs to learn new knowl-089

edge (§5). Using timestamped facts,we first iden-090

tify their corresponding DKNs at specific times-091

tamps. Then, we use different timestamps and092

answers to fine-tune the model to learn this new093

knowledge. Our findings are: (A) Through full fine-094

tuning of the LLMs, we find that the neurons show-095

ing significant parameter changes largely overlap096

with the regions of DKNs. This demonstrates that097

LLMs indeed utilize DKNs to learn new knowl-098

edge. (B) Based on finding (A), we employ an099

efficient fine-tuning technique, freezing all neu-100

rons except DKNs. Compared to baselines, our101

DKN-guided fine-tuning approach achieves supe-102

rior performance in knowledge update tasks.103

(2) DKNs relate to LLMs’ robustness against104

input perturbations (§6). LLMs exhibit an in-105

trinsic ability to resist perturbations, preserving106

partial accuracy when faced with deliberately per-107

turbed queries. However, when we suppress (or en-108

hance) the activation values or connection weights109

of DKNs, we observe resulting decrease (or in-110

crease) in the LLMs’ answer probability for the111

perturbed queries. This indicates that DKNs relate112

to LLMs’ robustness against input perturbations.113

Our contributions can be summarized as follows:114

• We pioneer the study of structures in knowl-115

edge neurons, providing a comprehensive def-116

inition of DKNs from both functional and117

structural aspects. 118

• We introduce the neuronal topology cluster- 119

ing method, leading to a more accurate DKN 120

identification. 121

• We confirm the practical applications of 122

DKNs: guiding LLMs to learn new knowl- 123

edge and relating to LLMs’ robustness against 124

input errors. 125

2 Datasets and Models 126

We utilize the TempLama dataset (Dhingra et al., 127

2022) to analyze DKNs. Each data instance in- 128

cludes a relation name, a date, a query, and an 129

answer, such as ⟨P37, September 2021, COVID-19, 130

dominant variant, ⟩. Except for timestamps, our 131

dataset matches the Lama (Petroni et al., 2019a, 132

2020) and mLama (Kassner et al., 2021) format 133

used by Dai et al. (2022) and Chen et al. (2024a). 134

See appendix B for further details. Regarding 135

model selection, we choose GPT-2 (Radford et al., 136

2019) and LLaMA2-7b (Touvron et al., 2023), al- 137

lowing us to test the generalization and of our meth- 138

ods and conclusions. 139

3 Definition of Degenerate Knowledge 140

Neurons 141

Formalization Given a fact, we utilize the AMIG 142

method (Chen et al., 2024a) to obtain knowl- 143

edge neurons (KNs), denoting them as N = 144

{n1, n2, . . . , nk}, where ni is a KN. For details 145

of this method, see Appendix C. Let degenerate 146

knowledge neurons (DKNs) be denoted as D, con- 147

taining s elements, D = {B1,B2, . . . ,Bs}, where 148

Bj = {nj1, nj2, . . . , nj,|Bj |} is named as the Base 149

Degenerate Component (BDC). Thus, this fact ulti- 150

mately corresponds to a set of DKNs: 151

D = {B1, . . . ,Bs} = {(n11, . . . , n1,|B1|),

. . . , (ns1, . . . , ns,|Bs|)}
(1) 152

With this formalization, we now define DKNs 153

through their functional and structural properties. 154

Functional Definition Degeneracy requires that 155

each base degenerate component (B) can indepen- 156

dently express a fact. Let Prob(B) be the LLMs’ 157

answer prediction probability when B is activated, 158

then the functional definition of DKNs is: 159

Prob(D) ≈ Prob(Bi), ∀i = 1, 2, . . . , s (2) 160
161

Prob(∅) ≪ Prob(Bi), ∀i = 1, 2, . . . , s (3) 162
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where Equation 2 indicates that activating any sin-163

gle Bi is sufficient to express the fact, and Equation164

3 suggests that if all B are suppressed (i.e., activat-165

ing the empty set ∅), the fact cannot be correctly166

expressed.167

Structural Definition Zhu and Li (2023) argue168

that tightly connected neurons tend to store knowl-169

edge centrally, suggesting that DKNs may exhibit170

more closely interconnected connectivity patterns.171

Motivated by this insight, we introduce structural172

information that can characterize connectivity pat-173

terns between any neurons, and define DKNs from174

a structural perspective. For neurons A and B in175

layer lA and layer lB respectively, we define their176

distance dAB under three distinct scenarios:177

(1) Adjacent Layer Distance: For neurons in ad-178

jacent layers (|lA−lB| = 1), we define the distance179

as the reciprocal of their connection weight:180

dAB = |1/wAB| , if wAB ̸= 0 (4)181

This captures the intuition that stronger connections182

(larger weights) correspond to shorter distances.183

(2) Multi-layer Distance: For neurons spanning184

multiple layers (|lA − lB| > 1), we employ a dy-185

namic programming algorithm to find the shortest186

path between knowledge neurons:187

dAB = min
P∈Paths(N )

∑
(i,j)∈P

dij (5)188

where Paths(N ) encompasses all possible paths189

from A to B through the set of knowledge neurons190

N . For any two knowledge neurons i and j, let191

d
(k)
ij denote the minimum distance between them192

using at most k intermediate KNs. The optimal193

distance can be computed recursively:194

d
(k)
ij = min{d(k−1)

ij , min
m∈N

{d(k−1)
im + d

(k−1)
mj }} (6)195

(3) Same-layer Distance: For neurons within the196

same layer (lA = lB), we set:197

dAB = ∞ (7)198

This follows from LLMs’ architectural constraint199

where information flows between layers rather than200

within a layer (Meng et al., 2022).201

Based on these distance metrics, we construct202

an adjacency matrix A where each entry represents203

the distance dAB between neurons A and B. We204

use this adjacency matrix A to structurally define205

a set of degenerate knowledge neurons D, where206

KNs

Figure 2: The clustering step of NTC method. The
x-axis (R) represents the increasing distance threshold
starting from 0. Circles with radius R are drawn around
neurons, and intersecting circles indicate that the KNs
are clustered together.

A ∈ Rk×k, and k represents the number of knowl- 207

edge neurons in D. Intuitively, every element (base 208

degenerate components, B) within DKNs should 209

demonstrate strong internal connections. Notably, 210

this distance measurement approach applies to any 211

set of neurons. As a pioneering structural explo- 212

ration in KNs, we employ necessary simplifica- 213

tions, detailed in Appendix D. 214

4 Neuronal Topology Clustering 215

4.1 Algorithm of Neuronal Topology 216

Clustering 217

Enumerating all possible knowledge neuron sub- 218

sets to find optimal DKNs that satisfy Equation 2 219

and 3 incurs O(2n) complexity. Instead, we pro- 220

pose a two-stage approach using structural clus- 221

tering followed by functional filtering. Inspired by 222

topology data analysis (Edelsbrunner et al., 2008; 223

Edelsbrunner, 2013; Chazal and Michel, 2021), we 224

propose the Neuronal Topology Clustering (NTC) 225

method for identifying DKNs (See Appendix E for 226

topological background details). 227

Figure 2 informally illustrates clustering step. 228

Given four knowledge neurons {a, b, c, d} with 229

fixed connection weights and an increasing dis- 230

tance threshold R starting from 0, we observe 231

whether the KNs can cluster together as R changes. 232

At R = 0, the KNs are isolated points. When R = 233

r1 > dab, {a, b} form a cluster; at R = r2 > dbc, 234

{a, b, c} cluster together; and at R = r3 > dbd, 235

{a, b, c, d} form a single cluster. Notably, a wide 236

range of R values maintains the {a, b, c} cluster 237

(from r2 to r3), indicating its stable existence. This 238

stable cluster, suggesting a strong knowledge ex- 239

pression ability (Zhu and Li, 2023), is identified as 240

a base degenerate component (BDC). 241

Formally, we structure our method in three steps. 242

(1) In the initialization step, we begin with a dis- 243

tance threshold R starting from 0, and initialize an 244
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empty set for degenerate knowledge neurons (D):245

R = 0,D = ∅ (8)246

(2) In the clustering step, as R increases, we track247

the evolution of clusters. For each cluster, we de-248

fine R1 as its initial formation radius and R2 as the249

radius where it merges with either a new neuron250

or another cluster. The persistence of a cluster is251

calculated as: Rp = R2 − R1. During this pro-252

cess, we continuously record all knowledge neuron253

clusters along with their corresponding persistence254

values Rp. We then filter these clusters based on255

their persistence to obtain potential BDCs (B):256

Dpotential = {Bi|Rp(Bi) > τ1} (9)257

(3) In the final filtering step, we apply a threshold258

τ2 for prediction probability. A potential BDC is259

added to D only if it satisfies Equation 2. The final260

set of D is thus defined as:261

D = {Bi|Rp(Bi) > τ1 and Prob(Bi) ≥ τ2}
(10)262

where Prob(Bi) is the prediction probability when263

Bi is activated. This dual-threshold filtering en-264

sures that we identify BDCs that are both struc-265

turally stable (high persistence) and functionally266

significant (high prediction probability).267

4.2 Experiments of DKNs Acquisition268

Experimental settings Now, we verify the effec-269

tiveness of the neuronal topology clustering method270

through experiments. First, we identify degenerate271

knowledge neurons and plot their neuron distribu-272

tion across model layers, as shown in Figure 3.273

Then, to measure the degeneracy of D =274

{B1,B2, . . . ,Bn}, we progressively suppress Bi,275

varying the number from 1 to n. Based on Equa-276

tions 2 and 3, we expect that suppressing any subset277

of D (i.e., 1 to n-1 B) results in a small decrease in278

the LLMs’ answer probability, while suppressing279

all B leads to a big decrease, exhibiting a “sudden280

change” pattern. To quantify this effect, we first281

calculate the relative drop in answer probability282

before (b) and after (a) suppression:283

∆Prob =
Probb − Proba

Probb
(11)284

Then, to quantitatively measure this “sudden285

change” pattern, inspired by the concept of cur-286

vature in calculus, we propose a metric called Gen-287

eralized Curvature Ratio (GCR):288

GCR =
|∆Probn − µ(∆Prob[1,n−1])|

σ(∆Prob[1,n−1])
(12)289
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Figure 3: Distribution of DKNs across different layers in
GPT-2 and LLaMA2-7b models (under NTC method).

where ∆Probn represents the probability drop 290

when suppressing all BDCs, µ(∆Prob[1,n−1]) de- 291

notes the mean of probability drops when suppress- 292

ing partial BDCs (1 to n-1), and σ(∆Prob[1,n−1]) 293

is their standard deviation. This metric captures 294

the relative intensity of the final change compared 295

to the overall variation pattern, with a higher GCR 296

indicating better degeneracy. When n = 2, since 297

only ∆Prob1 exists in the partial suppression set, 298

we simply define GCR as |∆Prob2 − ∆Prob1|. 299

The overall GCR results are reported in Table 1. 300

Figure 4 presents more fine-grained results, show- 301

ing the changes in ∆Prob as the number of sup- 302

pressed BDCs increases from 1 to n, which also 303

aims to capture this “sudden change” pattern. 304

Baselines We select four clustering methods as 305

baselines: K-Means (Ahmed et al., 2020), DB- 306

SCAN (Ester et al., 1996), Hierarchical Clustering 307

(Murtagh and Contreras, 2012) and AMIG (Chen 308

et al., 2024a). With the previously defined adja- 309

cency matrix A providing pairwise distances be- 310

tween neurons, these general-purpose clustering 311

algorithms can be directly applied. In contrast, our 312

NTC method is specifically designed for identi- 313

fying DKNs, taking into account both their struc- 314

tural and functional properties. Additionally, we 315

conduct significance tests to verify the statistical 316

significance of the performance gap between our 317

neuronal topology clustering method and the base- 318

lines (see Appendix F.1, Table 6). 319

Findings DKNs identified by NTC exhibit 320

strongest degeneracy. (1) As shown in Table 1, 321

NTC (our method) yields the largest average GCR 322

of 26.82 compared to other baselines on GPT-2, 323

notably ∼ ×3 higher than the strongest baseline 324

(Hierarchical, 8.71). Statistical significance tests 325

confirm that these differences are significant (Table 326

6). Across different DKN set cardinalities, NTC 327

also generally achieves the highest GCR values. 328

(2) The fine-grained results in Figure 4 further 329

validate this finding by demonstrating a clear “sud- 330
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Model Method 2 3 4 5 6 7 8 Average

GPT-2

DBSCAN 14.17 17.37 2.72 2.65 3.77 2.73 1.63 6.43
Hierarchical 1.37 7.36 10.78 13.78 10.25 / / 8.71
K-Means 14.60 17.56 6.30 3.66 1.09 1.74 1.80 6.68
AMIG 1.68 / / / / / / 1.68
NTC (Ours) 45.10 58.58 14.57 10.06 19.28 13.31 / 26.82

LLaMA2-7b

DBSCAN 8.41 6.00 4.30 2.79 3.92 4.65 4.00 4.87
Hierarchical 15.66 5.33 / / / / / 10.50
K-Means 13.30 8.73 5.19 2.76 5.15 2.60 5.55 6.18
AMIG 2.98 / / / / / / 2.98
NTC (Ours) 12.80 17.31 12.18 12.49 7.36 6.41 12.85 11.63

Table 1: Average GCR values for different methods across varying cardinalities of DKN set (numbers 2 to 8 in table
headings). Higher GCR values indicate stronger degeneracy. Best values are bold, second-best underlined, and “/”
indicates that the method failed to generate a D with the specified cardinality. For significance tests, see Table 6.
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Figure 4: Relationship between ∆Prob and number of suppressed BDCs. Lower ∆Prob for partial suppression
and higher ∆Prob for full suppression indicate stronger degeneracy. The red lines represent our NTC method.

den change” pattern. When using NTC (shown in331

red lines), ∆Prob remains low (< 20%) as long332

as one B exists (points 1 to n-1), showing a sig-333

nificant increase (∼ 40% to 60%) only when all334

B are suppressed (final point n), rather than grad-335

ually increasing with the number of suppressed336

components. In other words, it exhibits the most337

pronounced “sudden change”. Other methods lack338

this desirable degeneracy property, either showing339

higher ∆Prob when suppressing partial B or lower340

∆Prob when suppressing all B, failing to achieve341

both conditions simultaneously.342

5 DKNs Can Guide LLMs to Learn New343

Knowledge344

Motivation and Dataset Setup. In real-world345

scenarios, it is meaningful for LLMs to continu-346

ously learn or update new knowledge without for-347

getting old knowledge. In cognitive science, de-348

generacy is considered to be related to evolvability349

(Whitacre and Bender, 2010; Edelman and Gally,350

2001; Whitacre, 2010; Mason, 2015). Since de-351

generate knowledge neurons (DKNs) effectively352

capture the degeneracy property in LLMs, and this353

property is linked to learning potential in biolog- 354

ical systems, this biological insight inspires us to 355

explore: can we use DKNs to study LLMs’ ability 356

to learn new knowledge? 357

To investigate this question systematically, we 358

leverage the TempLama dataset (Dhingra et al., 359

2022), which incorporates timestamps that allow 360

us to track knowledge evolution over time. Based 361

on Table 5, we identify 3,334 facts that appear 362

in both 2018 and 2019 timestamps. We utilize 363

the 2018-timestamp facts to obtain DKNs and em- 364

ploy the 2019-timestamp facts as fine-tuning data. 365

While timestamps may change without affecting 366

answers, or LLMs may already possess knowledge 367

across multiple timestamps, we follow the idea 368

from CounterFact (Meng et al., 2022) and replace 369

the answers for 2019-facts with incorrect ones to 370

ensure that the new facts represents knowledge not 371

yet mastered by LLMs. 372

To better simulate real-world learning scenarios, 373

where LLMs typically learn from free-form text 374

rather than triple-form factual knowledge, we use 375

GPT-4 to convert the triple-form facts into natural 376

language. This modified dataset, which we call 377
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Figure 5: Results of the parameter changes experiment. The plots from left to right show the distributions of four
types of neurons: ∆N , D, N , and Rnd. We group the neurons into bins for better visualization. For each row, we
compare the distributions of D, N , and Rnd against ∆N , where higher similarity indicates greater overlap.

TempNarrativeLAMA, keeps the same relations378

and dates but transforms queries into free-form text379

(details in Appendix G).380

We aim to verify two questions. Q1, whether381

LLMs primarily utilize DKNs during full fine-382

tuning, and Q2, whether unfreezing only DKNs383

for efficient fine-tuning can achieve better results.384

These two questions can mutually corroborate that385

DKNs can help LLMs learn new knowledge.386

5.1 Overlap of DKNs and Parameter Changes387

Experimental settings To address Q1, following388

the above setup, we first use the 2018-timestamp389

facts to obtain the corresponding set of DKNs for390

these facts. Then, we select data from TempNarra-391

tiveLAMA with the 2019 timestamp for full fine-392

tuning. We record the positions of neurons where393

significant parameter changes occur, denoted as394

∆N :395

∆N = {n |∆P (n) > τ∆N} (13)396
397

∆P (n) =

√(
∥wfc

2 (n)−wfc
1 (n)∥

∥wfc
1 (n)∥

)2
+

(
∥wproj

2 (n)−w
proj
1 (n)∥

∥wproj
1 (n)∥

)2

(14)398

where τ∆N is a dynamic threshold, ∆P (n) indi-399

cates parameter change. wfc
1 (n) and w

proj
1 (n) sig-400

nify the feed-forward and projection weights of401

neuron n before fine-tuning, respectively, while402

wfc
2 (n) and w

proj
2 (n) are their post-fine-tuning coun-403

terparts. Then, we calculate the overlap between404

(D) and ∆N :405

O(D,∆N) =
|D ∩∆N |

|D|
(15)406

Our objective is to determine whether the neurons407

with significant parameter changes indeed show408

high overlap with D (degenerate knowledge neu- 409

rons). For comparison, we choose the knowledge 410

neurons (N ) and randomly chosen neurons (Rnd, 411

the same number as D) as baselines. 412

Findings Figure 5 illustrates the distribution of 413

neurons across four distinct sets: ∆N , D, N , Rnd. 414

Compared to the baselines (N and Rnd), D’s dis- 415

tribution pattern shows the closest resemblance to 416

∆N . Quantitatively, O(D,∆N) achieves the high- 417

est value (> 80%), surpassing O(N ,∆N) by 20% 418

(GPT-2) and 30% (LLaMA2), and significantly ex- 419

ceeding random neurons (Rnd). This indicates that 420

even during full fine-tuning, LLMs tend to utilize 421

DKNs to learn new knowledge. 422

5.2 DKNs Guide LLMs to Learn Knowledge 423

Experimental settings Since LLMs primarily 424

utilize DKNs during fine-tuning, we naturally pro- 425

pose Q2 to consider leveraging them for efficient 426

fine-tuning. Following our previous setup, we first 427

identify DKNs from facts at the 2018 timestamp, 428

then use facts from TempNarrativeLAMA at the 429

2019 timestamp as fine-tuning data. 430

For evaluation, we use triple-form queries from 431

the TempLama dataset (2019 timestamp), which 432

enables direct question-answering assessment. We 433

design three evaluation sets: (1) Qnew: 2019-facts 434

for assessing new knowledge learning. Notably, the 435

ground truth answers corresponding to the coun- 436

terfactual data in TempNarrativeLAMA. (2) Qold: 437

2018-facts for evaluating knowledge preservation. 438

To ensure meaningful evaluation, we first conduct 439

incremental fine-tuning to guarantee the model has 440

mastered these facts. (3) Qau: Paraphrased queries 441

of Qnew to verify that models learn knowledge 442
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Method GPT-2 LLaMA2
Qnew Qold Qau Average Qnew Qold Qau Average

Θ(N ) 54.71 50.08 31.91 45.87 64.71 60.77 51.86 59.07
Θ(Rnd) 13.24 40.92 7.90 21.09 47.98 48.04 41.04 46.19
Θ(All) 62.91 18.98 56.03 46.25 69.18 35.71 59.92 55.95

Θ(D) 57.81 53.19 51.06 54.07 68.21 62.88 59.85 63.75

Table 2: Model accuracy (%) comparison across different fine-tuning methods. The best and second-best results in
each column are marked in bold and underlined, respectively. For significance tests, see Table 7.

rather than just semantic associations.443

We propose unfreezing DKNs (Θ(D)) as our444

method and compare it with three baselines: non-445

DKNs knowledge neurons2 (Θ(N )), an equal num-446

ber of random neurons (Θ(Rnd)), and all neurons447

(Θ(All), i.e., full fine-tuning).448

Findings (1) Table 2 shows that unfreezing449

DKNs (Θ(D)) achieves the highest average ac-450

curacy for both LLaMA2 (63.75% vs. 59.07%)451

and GPT-2 (54.07% vs. 45.87%) compared to the452

strongest baselines. Beyond average accuracy, our453

method also consistently achieves either the best or454

second-best performance across different test sets.455

These results demonstrate that DKNs can guide456

LLMs to learn new knowledge.457

(2) Comparing Θ(D) with Θ(All), while Θ(All)458

achieves slightly better performance on Qnew (e.g.,459

69.18% vs. 68.21% in LLaMA2), Θ(D) main-460

tains substantially better performance on Qold (e.g.,461

62.88% vs. 35.71% in LLaMA2). This indicates462

that while full fine-tuning can learn new knowl-463

edge, it tends to encounter catastrophic forgetting,464

which Θ(D) effectively mitigates.465

(3) The decrease in accuracy on Qau demon-466

strates that for some facts, LLMs might not have467

truly learned the knowledge but rather learned su-468

perficial semantic associations, a challenge present469

across all methods.470

The statistical significance of these findings is471

further validated through significance tests (Ap-472

pendix F.2, Table 7).473

6 DKNs relate to LLMs’ robustness474

against input perturbations475

Motivation and Dataset Setup In cognitive sci-476

ence, degeneracy is considered to be related to ro-477

bustness (Whitacre and Bender, 2010; Edelman478

and Gally, 2001; Whitacre, 2010; Mason, 2015).479

In practical scenarios, AI chat bots often encounter480

2If non-DKNs knowledge neurons are fewer than DKNs,
we randomly add DKNs to match the size, which actually
strengthens this baseline.

user input errors (e.g., typos, omissions). Robust 481

LLMs should maintain strong performance despite 482

these perturbations. We thus investigate whether 483

DKNs correlate with LLMs’ robustness to such 484

perturbations. 485

We first use the triple-format TempLama dataset 486

(2018 timestamp) and perform incremental fine- 487

tuning to ensure LLMs master these facts. Then, 488

we simulate input error scenarios by applying ran- 489

dom perturbations to the inputs. For a fact with 490

its corresponding query Q = {q1, q2, . . . , qn}, we 491

generate its perturbed counterpart. Here, “[replace]” 492

and “[add]” are special characters. 493

Q∗ =


{q1, . . . , qi−1, [replace], qi+1, . . . , qn} if replace,
{q1, . . . , qi−1, [add], qi, . . . , qn} if add,
{q1, . . . , qi−1, qi+1, . . . , qn} if delete.

(16) 494

Experimental Settings To examine the role of 495

DKNs (D), we employ both suppression and en- 496

hancement methods. For suppression, we ei- 497

ther zero out neuron values or nullify connection 498

weights. For enhancement, we either double neu- 499

ron values or connection weights. 500

For evaluation metrics, we adopt two settings: 501

(1) After suppression, we calculate prediction prob- 502

abilities for both Q and Q∗, and compute the prob- 503

ability decrease: ∆Prob(%) = Prob(Q)−Prob(Q∗)
Prob(Q) . 504

(2) After enhancement, ∆Prob becomes a sub- 505

optimal metric, as its ideal outcome would be 506

∆Prob = 0 (i.e., no change in probability when 507

the model is already correct), which limits its sen- 508

sitivity in measuring improvements. Therefore, we 509

introduce a more informative metric: we first iden- 510

tify cases (Q∗) where LLMs initially give incorrect 511

answers, and then measure the accuracy improve- 512

ment (∆Acc) after neuron enhancement. Higher 513

∆Prob and ∆Acc indicate stronger correlation be- 514

tween DKNs and LLMs’ robustness against input 515

perturbations. 516

For comparison, we select three baselines: non- 517

DKNs knowledge neurons3 (N ), randomly chosen 518

3Same size-matching strategy as in footnote 2.
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Figure 6: ∆Prob (a) or ∆Acc (b) of LLMs corresponding to the suppression or enhancement of DKNs and other
baselines. For significance tests, see Table 8. “Avg.” denotes the average value.

neurons (Rnd, the same number as D), and no519

operation (∅). Since perturbation itself may af-520

fect LLMs, we include ∅ as a baseline to measure521

LLMs’ inherent ability to handle Q∗. Figure 6522

presents our results. Additional suppression results523

using ∆Acc are in Appendix H (Figure 7), corrob-524

orating the results in Figure 6.525

Findings (1) Figure 6 (a) shows that without ma-526

nipulation (∅), ∆Prob remains low, indicating that527

Prob(Q∗) is only slightly lower than Prob(Q).528

This demonstrates that LLMs can still correctly an-529

swer queries despite perturbations. However, after530

suppressing D, ∆Prob increases significantly (∼531

30% to 50%). Moreover, this ∆Prob exceeds that532

of the strongest baseline (N ). This indicates that533

suppressing DKNs compromises LLMs’ robustness534

against input perturbation.535

(2) Figure 6 (b) shows that for queries where536

LLMs initially answer incorrectly (Acc = 0), en-537

hancing D can lead to correct answers (∆Acc > 0).538

Compared to baselines, enhancing D achieves the539

highest accuracy improvement, with ∆Acc ∼ 2×540

that of the strongest baseline (N ). This demon-541

strates that enhancing DKNs strengthens LLMs’542

robustness against input perturbation.543

Significance tests further validate these findings,544

as detailed in Appendix F.3, Table 8. Combining545

(1) and (2), we can conclude that DKNs relate to546

LLMs’ robustness against input perturbations.547

7 Related Work548

Petroni et al. (2019b) argue that numerous fac-549

tual knowledge exists within LLMs and suggest550

using “fill-in-the-blank” cloze tasks to determine551

if the models have stored specific facts. Mean-552

while, Geva et al. (2021) suggest that MLP neurons553

within transformer models operate as key-value 554

memories. Building on this, Dai et al. (2022) un- 555

cover that some MLP neurons are capable of stor- 556

ing factual knowledge, termed as knowledge neu- 557

rons (KNs). Lundstrom et al. (2022) confirm the 558

reliability of their knowledge localization method, 559

while subsequent knowledge editing experiments 560

by Meng et al. (2022) and Meng et al. (2023) rein- 561

force that MLP neurons indeed store factual knowl- 562

edge. Moreover, Geva et al. (2023) investigate 563

KN dynamics. Additionally, Chen et al. (2024a) 564

discover multiple distinct KN sets storing identi- 565

cal facts, termed degenerate knowledge neurons 566

(DKNs). Other researchers have also identified 567

various KNs with unique properties (Wang et al., 568

2022; Tang et al., 2024). It is worth noting that 569

while some research has critiqued the knowledge 570

neuron theory, these studies also acknowledge that, 571

in many cases, KN-based analysis yields meaning- 572

ful conclusions (Niu et al., 2024; Bricken et al., 573

2023; Chen et al., 2024b). In summary, despite lim- 574

itations, the KN-based analysis approach remains 575

valuable for further research. 576

8 Conclusion 577

This paper presents a comprehensive analysis of 578

degenerate knowledge neurons in LLMs. First, 579

we provide a comprehensive definition of DKNs 580

that covers both structural and functional aspects, 581

pioneering the study of the internal structures of 582

LLMs. Based on this, we introduce the neuronal 583

topology clustering method for more precise DKN 584

identification. Finally, we explore the applications 585

of DKNs, confirming that DKNs can guide LLMs 586

to learn new knowledge and relate to the robustness 587

of LLMs against input perturbation. 588
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9 Limitations589

The primary limitation lies in our simplification of590

neuronal weight relationships during exploration,591

as this represents preliminary research. We provide592

detailed descriptions and potential future work in593

Appendix D. Additionally, recent works increas-594

ingly challenge the knowledge neurons theory (Niu595

et al., 2024; Bricken et al., 2023; Chen et al.,596

2024b). While this theory proves valid and applica-597

ble under many conditions, it is not perfect and has598

several limitations. Investigating the degenerate599

properties of knowledge storage units in LLMs by600

integrating these new mechanistic interpretability601

theories represents a promising research direction.602

A minor limitation stems from the neuron enhance-603

ment experiments in Section 6. The requirement to604

first identify Q∗ cases where LLMs initially answer605

incorrectly results in a relatively small dataset size.606

While our significance testing partially addresses607

this concern, creating larger datasets constitutes608

valuable future work.609
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• Software:925

– Python Version: 3.10.10926

– PyTorch Version: 2.0.0+cu117927

A.2 Experimental Hyperparameters of928

Neurological Topology Clustering929

In Section 4, where we obtain degenerate knowl-930

edge neurons, the primary hyperparameters are τ1931

and τ2. First, τ1 is a dynamic threshold, set as932

τ1 = 0.5×max
(
Rpersist(B1), . . . , Rpersist(Bn)

)
(17)933

We experimented with different multipliers for τ1,934

ranging from 0.3 to 0.7, before settling on 0.5 as935

it provided the best balance between sensitivity936

and specificity in identifying degenerate knowledge937

neurons.938

Then, τ2 is a fixed value.939

τ2 = 0.3 (18)940

For τ2, we tested values between 0.1 and 0.5, with941

0.05 increments. The value of 0.3 was chosen as it942

yielded the most consistent results across different943

datasets.944

In this experiment, some data led to excessively945

large changes in predictive probability, indicating946

that the LLMs had not originally mastered this fac-947

tual knowledge, resulting in a very low initial pre-948

dictive probability. To study the storage mechanism949

of factual knowledge, it’s essential to investigate950

facts already grasped by the model. Therefore, we951

set a threshold to exclude data that caused extreme952

changes in predictive probability. If the change in953

predictive probability ∆Prob satisfies:954

∆Prob > 900 (19)955

then that data is excluded. We experimented with956

thresholds ranging from 500 to 1500, and found957

that 900 effectively filtered out outliers without958

significantly reducing the dataset.959

A.3 Experimental Hyperparameters of960

Knowledge Learning961

In Section 5, the experimental hyperparameter τ∆N962

for the Overlap of DKN and Parameter Changes963

experiment is set as a dynamic threshold. The pro-964

cess involves calculating the maximum value of965

∆P (n) according to Equation 11. Once this value966

is determined, τ∆N is set differently based on the967

model in use. For the GPT-2 model, the threshold 968

τ∆N is calculated as: 969

τ∆N = 0.04×max(∆P (n1),∆P (n2), . . . ,∆P (nk))
(20) 970

In contrast, for the Llama2 model, the calculation 971

of the threshold τ∆N is slightly adjusted: 972

τ∆N = 0.05×max(∆P (n1),∆P (n2), . . . ,∆P (nk))
(21) 973

For both models, we tested multipliers ranging 974

from 0.01 to 0.10, with 0.01 increments. The val- 975

ues of 0.04 for GPT-2 and 0.05 for Llama2 were 976

selected as they provided the most consistent re- 977

sults in identifying significant parameter changes 978

across different datasets and model sizes. 979

This distinction in the calculation of τ∆N re- 980

flects the specific characteristics and performance 981

considerations of each model. 982

A.4 Experimental Hyperparameters of 983

Disturbance Analysis 984

In Section 6, the first experiment under Query- 985

Perturbation, namely the Suppressing DKN exper- 986

iment, similar to A.2, excludes data that satisfies 987

the condition: 988

Probsup > 900 (22) 989

We tested threshold values between 700 and 1100, 990

with 900 providing the best balance between data 991

retention and outlier exclusion. 992

B Details of TempLAMA Dataset 993

The TempLama dataset (Dhingra et al., 2022) com- 994

prises temporal knowledge facts spanning from 995

2010 to 2020, containing 4,050 unique facts across 996

9 different relations. The dataset captures temporal 997

evolution of various relationships, including po- 998

litical positions (P39), sports team memberships 999

(P54), employment relationships (P108), and edu- 1000

cational backgrounds (P69). Each fact may appear 1001

across multiple timestamps, reflecting the tempo- 1002

ral persistence of knowledge. For instance, some 1003

facts like Tom Brady’s team membership span the 1004

entire dataset period (2010-2020), while others like 1005

David Beckham’s team affiliations only appear in 1006

specific time windows (2010-2013). 1007

The dataset shows varying temporal characteris- 1008

tics across different years (Table 5). The number of 1009

unique queries per year ranges from 2,834 (2010) 1010

to 3,348 (2018), with a general trend of increasing 1011

coverage in more recent years. Table 3 presents the 1012

distribution of relations and illustrative examples 1013
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Relation Description #Facts Example Query

P39 Position held 700 Silvio Berlusconi holds the position of X.
→ Prime Minister of Italy

P54 Member of sports team 691 Tom Brady plays for X. → New England
Patriots

P108 Employer 628 Edward Snowden works for X. → Dell Inc.
P286 Head coach 594 X is the head coach of San Francisco 49ers.

→ Chip Kelly
P102 Member of political party 519 Donald Trump is a member of the X. →

Republican Party
P488 Chairperson 307 X is the chair of Conservative Party. →

Theresa May
P6 Head of government 287 X is the head of the government of Mexico.

→ Felipe Calderón
P127 Owned by 170 Houston Rockets is owned by X. → Leslie

Alexander
P69 Educated at 154 Lamar Jackson attended X. → Boynton

Beach Community High School

Table 3: Statistics and examples of relations in TempLama dataset.

Query Example Time Span #Years

Tom Brady plays for X 2010-2020 11
Cristiano Ronaldo plays for X 2010-2020 11
Zlatan Pepemovic plays for X 2010-2020 11
Wayne Rooney plays for X 2010-2020 11
Peyton Manning plays for X 2010-2015 6
Sachin Tendulkar plays for X 2010-2014 5
David Beckham plays for X 2010-2013 4
Ronaldo plays for X 2010-2011 2

Table 4: Query examples with different temporal characteristics.

for each relation type, demonstrating the diverse na-1014

ture of temporal knowledge captured in our dataset.1015

The examples show how the dataset covers vari-1016

ous domains including politics (P39, P6), sports1017

(P54, P286), employment (P108), and education1018

(P69). To further illustrate the temporal nature of1019

our dataset, Table 4 showcases several example1020

queries with their temporal spans, demonstrating1021

how different facts persist over varying time peri-1022

ods, from short-term associations (e.g., Ronaldo’s1023

2-year span) to long-term relationships (e.g., Tom1024

Brady’s 11-year span).1025

C Knowldege Localization1026

This section introduces the method we use to ac-1027

quire knowledge neurons. We employ the approach1028

proposed by Chen et al.(2024a), which we will de-1029

tail below. 1030

Given a query q, we can define the probability of 1031

the correct answer predicted by a LLMs as follows: 1032

F(ŵ
(l)
j ) = p(y∗|q, w(l)

j = ŵ
(l)
j ) (23) 1033

Here, y∗ represents the correct answer, w(l)
j denotes 1034

the j-th neuron in the l-th layer, and ŵ
(l)
j is the 1035

specific value assigned to w
(l)
j . To calculate the 1036

attribution score for each neuron, we employ the 1037

technique of integrated gradients. 1038

To compute the attribution score of a neuron 1039

w
(l)
j , we consider the following formulation: 1040

Attr(w
(l)
j ) = (w

(l)
j − w′(l)

j )
∫ 1
0

∂ F(w′(l)
j +α(w

(l)
j −w′(l)

j ))

∂w
(l)
j

dα

(24) 1041
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Year #Queries Year #Queries

2020 3,216 2015 3,208
2019 3,334 2014 3,197
2018 3,348 2013 3,188
2017 3,284 2012 3,083
2016 3,249 2011 2,967

2010 2,834

Table 5: Temporal distribution of facts. As mentioned in
Section 5, we select 2018 and 2019 as timestamps since
they contain the largest number of facts. Since 2018 has
slightly more facts than 2019, we simply exclude the
facts without 2019 timestamps.

Here, w(l)
j represents the actual value of w(l)

j , w′(l)
j1042

serves as the baseline vector for w(l)
j . The term1043

∂ F(w
′(l)
j +α(w

(l)
j −w

′(l)
j ))

∂w
(l)
j

computes the gradient with1044

respect to w
(l)
j .1045

Next, we aim to obtain w′(l)
j . Starting from the1046

sentence q, we acquire a baseline sentence and then1047

encode this sentence as a vector.1048

Let the baseline sentence corresponding to qi1049

be q′i, and q′i consists of m words, maintain-1050

ing a length consistent with q, denoted as q′i =1051

(q′i1 . . . q
′
ik . . . q

′
im). Since we are using auto-1052

regressive models, according to Chen et al.(2024a)’1053

method, q′ik = ⟨eos⟩, where ⟨eos⟩ represents “end1054

of sequence” in auto-regressive models.1055

The attribution score Attri(w
(l)
j ) for each neu-1056

ron, given the input qi, can be determined using1057

Equation (24). For the computation of the integral,1058

the Riemann approximation method is employed:1059

Attri(w
l
j) ≈

w
(l)
j

N

∑N
k=1

∂F (w′(l)
j + k

N
×(w

(l)
j −w′(l)

j )

∂w
(l)
j

(25)1060

where N is the number of approximation steps.1061

Then, the attribution scores for each word qi are1062

aggregated and subsequently normalized:1063

Attr(wl
j) =

∑m
i=1Attri(w

l
j)∑n

j=1

∑m
i=1Attri(w

l
j)
, (26)1064

Let N be the set of neurons classified as knowl-1065

edge neurons based on their attribution scores ex-1066

ceeding a predetermined threshold τ , for a given1067

input q. This can be formally defined as:1068

N =
{
w

(l)
j

∣∣∣Attr(w(l)
j ) > τ

}
(27)1069

where l encompassing all layers and j including all 1070

neurons within each layer. 1071

D Simplifications and Future Work 1072

Our approach to analyzing the structural properties 1073

of Degenerate Knowledge Neurons (DKNs) em- 1074

ploys several simplifications to make the problem 1075

tractable. Here, we detail these simplifications and 1076

discuss potential avenues for future research. 1077

Choice of Distance Metric We define the dis- 1078

tance between neurons as the inverse of the weight 1079

connecting them. This simplification allows for 1080

an intuitive interpretation where stronger connec- 1081

tions (higher weights) result in shorter distances. 1082

However, this approach has limitations: 1083

• It doesn’t account for the sign of the weight, 1084

which could be significant in neural informa- 1085

tion processing. 1086

• It assumes a linear relationship between 1087

weight and distance, which may not always 1088

hold true. 1089

Future work could explore alternative distance 1090

metrics, such as: 1091

• Incorporating both magnitude and sign of 1092

weights. 1093

• Using non-linear transformations of weights 1094

to better reflect neural dynamics. 1095

• Developing context-dependent distance met- 1096

rics that consider the activation patterns of 1097

neurons. 1098

Distance Aggregation Method For neurons sep- 1099

arated by multiple layers, we calculate the total dis- 1100

tance by summing the individual distances along 1101

the path. This additive approach simplifies calcula- 1102

tions but may not fully capture the complexities of 1103

information flow in neural networks. Alternative 1104

methods to consider in future research include: 1105

• Multiplicative aggregation, which could better 1106

represent the compounding effects of multiple 1107

connections. 1108

• Non-linear aggregation functions that account 1109

for potential synergistic or antagonistic effects 1110

between layers. 1111

• Weighted aggregation methods that consider 1112

the relative importance of different paths or 1113

layers. 1114
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Exclusion of Non-Knowledge Neurons Our cur-1115

rent model focuses solely on DKNs, excluding non-1116

knowledge neurons from the analysis. While this1117

simplifies the model, it may overlook important1118

interactions. Future enhancements could:1119

• Incorporate non-knowledge neurons with dif-1120

ferent weighting schemes.1121

• Develop a hierarchical model that consid-1122

ers interactions between knowledge and non-1123

knowledge neurons at different scales.1124

• Investigate the role of non-knowledge neurons1125

in facilitating or modulating information flow1126

between DKNs.1127

Unidirectional Information Flow We assume1128

that information in LLMs flows only between lay-1129

ers and not within them. This simplification aligns1130

with current understanding but may not capture1131

all aspects of neural network dynamics. Future1132

research could:1133

• Explore potential intra-layer interactions and1134

their impact on knowledge representation.1135

• Investigate feedback mechanisms that might1136

allow information to flow backwards through1137

the network.1138

Static Network Analysis Our current approach1139

analyzes the network structure statically. However,1140

neural networks are dynamic systems. Future work1141

might:1142

• Develop time-dependent models that capture1143

how DKN structures evolve during training or1144

inference.1145

• Investigate how different input patterns acti-1146

vate and modulate DKN structures.1147

Scalability Considerations The current method1148

may face computational challenges with very large1149

networks. Future research could focus on:1150

• Developing more efficient algorithms for dis-1151

tance calculation in large-scale networks.1152

• Exploring sampling or approximation tech-1153

niques for analyzing subsets of the network.1154

• Leveraging graph theory and network science1155

techniques for analyzing DKN structures at1156

scale.1157

Validation and Empirical Testing While our 1158

model provides a theoretical framework, extensive 1159

empirical validation is needed. Future work should: 1160

• Conduct comprehensive experiments across 1161

various LLM architectures and tasks. 1162

• Correlate structural properties of DKNs with 1163

measurable performance metrics. 1164

• Develop benchmarks specifically designed to 1165

test the predictive power of DKN structural 1166

analysis. 1167

By addressing these simplifications and explor- 1168

ing these future directions, researchers can build 1169

upon our foundational work to develop more so- 1170

phisticated and accurate models of knowledge rep- 1171

resentation in large language models. This could 1172

lead to improved understanding of how LLMs store 1173

and process information, potentially informing the 1174

development of more efficient and interpretable AI 1175

systems. 1176

E Topology Data Analysis 1177

Persistent homology is a method for computing 1178

topological features of a space at different spatial 1179

resolutions. More persistent features are detected 1180

over a wide range of spatial scales and are deemed 1181

more likely to represent true features of the under- 1182

lying space rather than artifacts of sampling, noise, 1183

or particular choice of parameters (Carlsson, 2009). 1184

To find the persistent homology of a space, the 1185

space must first be represented as a simplicial com- 1186

plex. A distance function on the underlying space 1187

corresponds to a filtration of the simplicial com- 1188

plex, that is a nested sequence of increasing subsets. 1189

One common method of doing this is via taking the 1190

sublevel filtration of the distance to a point cloud, 1191

or equivalently, the offset filtration on the point 1192

cloud and taking its nerve in order to get the sim- 1193

plicial filtration known as Čech filtration (Kerber 1194

and Sharathkumar, 2013). A similar construction 1195

uses a nested sequence of Vietoris–Rips complexes 1196

known as the Vietoris–Rips filtration (Dey et al., 1197

2019). 1198

E.1 Definition 1199

In persistent homology, formally, we consider a 1200

real-valued function defined on a simplicial com- 1201

plex, denoted as f : K → R. This function is 1202

required to be non-decreasing on increasing se- 1203

quences of faces, meaning that for any two faces σ 1204

and τ in K, if σ is a face of τ , then f(σ) ≤ f(τ). 1205
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For every real number a, the sublevel set Ka =1206

f−1((−∞, a]) forms a subcomplex of K. The val-1207

ues of f on the simplices in K create an ordering1208

of these sublevel complexes, which leads to a filtra-1209

tion:1210

∅ = K0 ⊆ K1 ⊆ · · · ⊆ Kn = K (28)1211

Within this filtration, for 0 ≤ i ≤ j ≤ n, the inclu-1212

sion Ki ↪→ Kj induces a homomorphism on the1213

simplicial homology groups for each dimension p,1214

noted as f i,j
p : Hp(Ki) → Hp(Kj). The pth per-1215

sistent homology groups are the images of these1216

homomorphisms, and the pth persistent Betti num-1217

bers βi,j
p are defined as the ranks of these groups1218

(Edelsbrunner and Harer, 2022). Persistent Betti1219

numbers for p = 0 coincide with the size function,1220

an earlier concept related to persistent homology1221

(Verri et al., 1993).1222

The concept extends further to any filtered com-1223

plex over a field F . Such a complex can be1224

transformed into its canonical form, which is a1225

direct sum of filtered complexes of two types:1226

one-dimensional complexes with trivial differential1227

(expressed as d(eti) = 0) and two-dimensional1228

complexes with trivial homology (expressed as1229

d(esj+rj ) = erj ) (Barannikov, 1994).1230

A persistence module over a partially ordered1231

set P consists of a collection of vector spaces Ut,1232

indexed by P , along with linear maps ust : Us →1233

Ut for s ≤ t. This module can be viewed as a1234

functor from P to the category of vector spaces1235

or R-modules. Persistence modules over a field F1236

indexed by N can be expressed as:1237

U ≃
⊕
i

xti · F [x]⊕

(⊕
j

xrj · (F [x]/(xsj · F [x]))

)
(29)1238

Here, multiplication by x represents a forward step1239

in the persistence module. The free parts corre-1240

spond to homology generators that appear at a cer-1241

tain filtration level and persist indefinitely, whereas1242

torsion parts correspond to those that appear at1243

a filtration level and last for a finite number of1244

steps (Barannikov, 1994; Zomorodian and Carls-1245

son, 2004).1246

This framework allows the unique representation1247

of the persistent homology of a filtered simplicial1248

complex using either a persistence barcode or a1249

persistence diagram. In the barcode, each persistent1250

generator is represented by a line segment starting1251

and ending at specific filtration levels, while in the1252

diagram, each generator is represented as a point1253

with coordinates indicating its birth and death times. 1254

Barannikov’s canonical form offers an equivalent 1255

representation. 1256

E.2 Stability 1257

The stability of persistent homology is a key at- 1258

tribute, particularly in its application to data anal- 1259

ysis, as it ensures robustness against small pertur- 1260

bations or noise in the data (Cohen-Steiner et al., 1261

2005). This stability is quantitatively defined in 1262

terms of the bottleneck distance, a metric for com- 1263

paring persistence diagrams. 1264

The bottleneck distance between two persistence 1265

diagrams X and Y is defined as: 1266

W∞(X,Y ) := inf
φ:X→Y

sup
x∈X

∥x− φ(x)∥∞ (30) 1267

where the infimum is taken over all bijections φ 1268

from X to Y . This metric essentially measures the 1269

greatest distance between matched points (or gen- 1270

erators) in two persistence diagrams, considering 1271

the optimal matching. 1272

A fundamental result in the theory of persis- 1273

tent homology is that small changes in the input 1274

data (such as a filtration of a space) result in small 1275

changes in the corresponding persistence diagram, 1276

as measured by the bottleneck distance. This is for- 1277

malized by considering a space X , homeomorphic 1278

to a simplicial complex, with a filtration determined 1279

by the sublevel sets of a continuous tame function 1280

f : X → R. The map D that takes the function 1281

f to the persistence diagram of its kth homology 1282

is 1-Lipschitz with respect to the supremum norm 1283

on functions and the bottleneck distance on per- 1284

sistence diagrams. Formally, this is expressed as 1285

(Cohen-Steiner et al., 2005): 1286

W∞(D(f), D(g)) ≤ ∥f − g∥∞ (31) 1287

This Lipschitz condition implies that a small 1288

change in the function f , as measured by the supre- 1289

mum norm, will not cause a disproportionately 1290

large change in the persistence diagram. Conse- 1291

quently, persistent homology is particularly useful 1292

in applications where data may be subject to noise 1293

or small variations, as the essential topological fea- 1294

tures (captured by the persistence diagrams) are not 1295

overly sensitive to such perturbations. 1296

E.3 Computation 1297

There are various software packages for comput- 1298

ing persistence intervals of a finite filtration (Otter 1299
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et al., 2017). The principal algorithm is based on1300

the bringing of the filtered complex to its canoni-1301

cal form by upper-triangular matrices (Barannikov,1302

1994).1303

F Results of Statistical Significance Tests1304

To establish the robustness of our findings, we con-1305

duct comprehensive statistical analyses across our1306

three main experimental directions: DKN acqui-1307

sition, knowledge learning, and disturbance anal-1308

ysis. For each experiment, we employ indepen-1309

dent t-tests to assess statistical significance, com-1310

plemented by Cohen’s d measurements to quan-1311

tify effect sizes. The t-tests evaluate whether the1312

observed differences between methods are statisti-1313

cally significant, while Cohen’s d provides a stan-1314

dardized measure of the practical significance of1315

these differences. As shown in Tables 6, 7 and1316

8, across all experiments, we consistently observe1317

statistically significant results (p < 10−5) with1318

moderate to large effect sizes (Cohen’s d ranging1319

from 0.13 to 2.15), strongly supporting the effec-1320

tiveness of our proposed methods. The following1321

subsections present detailed analyses for each ex-1322

perimental direction.1323

F.1 Significance Tests for Subsection 4.21324

Our dataset contains 34,963 facts, each correspond-1325

ing to a Generalized Curvature Ratio (GCR) value.1326

While Table 1 presents their mean values, we con-1327

duct rigorous statistical analyses on the raw data1328

to establish the significance of our findings (Ta-1329

ble 6). We perform independent t-tests comparing1330

NTC with each baseline method, complemented1331

by Cohen’s d effect size measurements to quan-1332

tify the practical significance of these differences.1333

The large t-statistics and extremely small p-values1334

(< 10−5) across all comparisons indicate that the1335

performance differences are highly significant. Fur-1336

thermore, the substantial Cohen’s d values (ranging1337

from 0.13 to 1.63) suggest moderate to large prac-1338

tical effects. These results strongly support the1339

superior performance of our NTC method over the1340

baseline approaches.1341

F.2 Significance Tests for Subsection 5.11342

The statistical analyses in Table 7 reveal several key1343

findings. For GPT-2, comparing Θ(D) vs. Θ(N )1344

shows significant improvements across all query1345

types (p < 10−5), with particularly strong effects1346

for Qau (Cohen’s d = 0.79). The comparison be-1347

tween Θ(D) vs. Θ(Rnd) demonstrates substantial1348

improvements (p < 10−5) with large effect sizes 1349

for Qnew (d = 2.01) and Qau (d = 2.14). Mean- 1350

while, Θ(D) vs. Θ(All) shows mixed results with 1351

negative effects for Qnew and Qau but strong posi- 1352

tive effects for Qold (d = 1.57). 1353

For LLaMA2-7b, Θ(D) vs. Θ(N ) exhibits 1354

significant improvements across all query types 1355

(p < 10−5). The comparison between Θ(D) vs. 1356

Θ(Rnd) shows consistent strong improvements 1357

with moderate to large effect sizes (d ranging from 1358

0.51 to 0.70). Furthermore, Θ(D) vs. Θ(All) 1359

demonstrates mixed results with particularly strong 1360

positive effects for Qold (d = 1.02). 1361

F.3 Significance Tests for Subsection 5.2 1362

The statistical analyses in Table 8 reveal significant 1363

findings for both suppression and enhancement ex- 1364

periments. 1365

(1) Suppressing DKNs: The comparison be- 1366

tween D and N shows significant effects across 1367

all settings (p < 10−5), with effect sizes rang- 1368

ing from moderate (d = 0.46) to large (d = 1.11). 1369

The comparison between D and Rnd demonstrates 1370

even larger effects (d ranging from 1.92 to 2.15), 1371

indicating the specificity of DKN impact. 1372

(2) Enhancing DKNs: We observe significant 1373

improvements across all settings (p < 10−5), with 1374

particularly large effects in GPT-2 Values (d = 1.73) 1375

and consistently strong effects across other settings. 1376

Comparisons with random neurons show larger ef- 1377

fect sizes (d ranging from 1.83 to 2.11), supporting 1378

the targeted nature of DKN enhancement. 1379

G Construction of TempNarrativeLAMA 1380

Dataset 1381

TempNarrativeLAMA is our newly constructed 1382

dataset for evaluating LLMs’ temporal knowledge 1383

learning capabilities. We derive it from Tem- 1384

pLAMA by converting structured knowledge into 1385

natural language narratives while introducing coun- 1386

terfactual instances. The dataset spans 9 relations 1387

with 10,693 facts, each associated with 2-6 times- 1388

tamps. Consistent with the original TempLAMA, 1389

answers may either remain constant or vary across 1390

different timestamps. 1391

To construct this dataset, we first create coun- 1392

terfactual instances by replacing correct answers 1393

in TempLAMA with incorrect ones sampled from 1394

the same relation type, maintaining temporal and 1395

semantic coherence. To better simulate real-world 1396

fine-tuning scenarios where models learn from nat- 1397
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GPT-2 LLaMA2-7b

Method t-statistic p-value Cohen’s d t-statistic p-value Cohen’s d

NTC vs. DBSCAN 151.85 < 10−5 1.29 110.99 < 10−5 0.94
NTC vs. Hierarchical 131.91 < 10−5 1.12 14.84 < 10−5 0.13
NTC vs. K-Means 149.65 < 10−5 1.27 85.37 < 10−5 0.73
NTC vs. AMIG 192.06 < 10−5 1.63 149.02 < 10−5 1.27

Table 6: Statistical significance results comparing NTC with other methods.

GPT-2

Qnew Qold QauMethod
t-stat p-value Cod t-stat p-value Cod t-stat p-value Cod

Θ(D) vs. Θ(N ) 6.58 < 10−5 0.09 7.01 < 10−5 0.10 58.05 < 10−5 0.79
Θ(D) vs. Θ(Rnd) 147.18 < 10−5 2.01 33.26 < 10−5 0.45 156.46 < 10−5 2.14
Θ(D) vs. Θ(All) -11.80 < 10−5 -0.16 114.91 < 10−5 1.57 -12.65 < 10−5 -0.17

LLaMA2-7b

Qnew Qold QauMethod
t-stat p-value Cod t-stat p-value Cod t-stat p-value Cod

Θ(D) vs. Θ(N ) 7.00 < 10−5 0.10 4.81 < 10−5 0.07 19.50 < 10−5 0.27
Θ(D) vs. Θ(Rnd) 48.07 < 10−5 0.66 37.60 < 10−5 0.51 51.22 < 10−5 0.70
Θ(D) vs. Θ(All) -2.12 0.034 -0.03 74.31 < 10−5 1.02 -0.03 0.978 -0.00

Table 7: Statistical significance results comparing Θ(D) with other methods across different query types. t-stat:
t-statistic from independent t-test; p-value: statistical significance level; Cod: Cohen’s d effect size.

D vs. N D vs. Rnd

Setting t-statistic p-value Cohen’s d t-statistic p-value Cohen’s d

Suppressing DKNs

GPT-2 Values 19.39 < 10−5 0.47 78.55 < 10−5 1.92
GPT-2 Weights 18.64 < 10−5 0.46 84.79 < 10−5 2.07
LLaMA2 Values 22.57 < 10−5 0.55 87.62 < 10−5 2.14
LLaMA2 Weights 45.21 < 10−5 1.11 87.95 < 10−5 2.15

Enhancing DKNs

GPT-2 Values 22.01 < 10−5 1.31 23.16 < 10−5 1.38
GPT-2 Weights 9.01 < 10−5 0.54 26.30 < 10−5 1.57
LLaMA2 Values 3.95 < 10−3 0.60 9.43 < 10−5 1.43
LLaMA2 Weights 5.21 < 10−5 0.79 8.78 < 10−5 1.33

Table 8: Statistical significance results comparing D with N and Rnd methods across different settings. empty set,
not used in comparison.
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Figure 7: Accuracy changes after suppressing different types of neurons (DKNs (D), knowledge neurons (N ), and
random neurons (Rnd)) in GPT-2 and LLaMA2. Results are shown for both neuron values and connection weights.

ural language rather than structured triples, we then1398

convert each instance into free-form text using care-1399

fully designed templates.1400

The templates are designed to provide rich con-1401

textual information while maintaining consistency1402

across different relation types. Table 9 presents1403

the complete set of templates used for this con-1404

version. Each template incorporates three key el-1405

ements: temporal context (specified by date), the1406

subject entity, and the target information (either cor-1407

rect or incorrect answer). The templates reflect the1408

formal style of encyclopedic or news articles, with1409

sufficient length and detail to provide meaningful1410

context for learning.1411

For counterfactual answer selection, we imple-1412

ment a controlled sampling strategy where incor-1413

rect answers are randomly selected from the pool of1414

all possible answers within the same relation type,1415

excluding the correct answer. This ensures that the1416

incorrect information maintains semantic validity1417

while being factually wrong. For example, when1418

dealing with political party membership (P102), an1419

incorrect answer would be another political party1420

rather than an arbitrary entity.1421

H Additional Suppression Results1422

To complement our main results using ∆Prob, we1423

present additional suppression experiments using1424

accuracy changes (∆Acc) as the evaluation met-1425

ric. While our enhancement experiments measure1426

accuracy improvements on initially incorrect pre-1427

dictions (Q∗), these suppression experiments focus1428

on accuracy degradation for initially correct pre-1429

dictions (also for Q∗). This provides a different1430

perspective on the importance of identified neurons1431

for model robustness.1432

Specifically, we: (1) Identify cases where the1433

model initially predicts correctly; (2) Apply sup-1434

pression to different neuron sets (D, N , and Rnd);1435

(3) Calculate the decrease in accuracy: ∆Acc = 1436

Accafter −Accbefore. 1437

As shown in Figure 7, DKNs (D) consistently 1438

lead to larger accuracy drops compared to knowl- 1439

edge neurons (N ) and random neurons (Rnd) 1440

across both models and both suppression methods 1441

(values and weights). This aligns with our ∆Prob 1442

findings in the main text, further supporting our 1443

conclusion that DKNs play a crucial role in main- 1444

taining model robustness against interference. The 1445

more substantial accuracy degradation when sup- 1446

pressing DKNs indicates that these neurons are 1447

particularly important for preserving the model’s 1448

correct predictions in the presence of potential in- 1449

terference. 1450
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Relation Template

P39 (Posi-
tion held)

Official government and institutional records from {date} document that {subject} holds
the position of {answer}. This role involves significant responsibilities in policy-making,
leadership, and institutional governance. Their appointment to this position reflects their
expertise and experience in the relevant field, as well as their commitment to public
service.

P54
(Plays for
team)

Sports records and team rosters from {date} confirm that {subject} is an active player
for {answer}. Their role within the team encompasses both competitive performance and
contribution to team dynamics. This professional affiliation represents a significant phase
in their athletic career and the team’s competitive strategy.

P108 (Em-
ployer)

Based on professional records and organizational documentation from {date}, {subject}
holds a position at {answer}. Their professional role involves significant contributions
to the organization’s objectives and ongoing projects. This appointment demonstrates
the organization’s commitment to bringing in experienced professionals to strengthen its
capabilities and advance its mission.

P286
(Head
coach)

Sports management records from {date} confirm that {answer} serves as the head coach
for {subject}. In this role, they are responsible for team strategy, player development, and
overall performance improvement. Their coaching philosophy and leadership approach
have become integral to the team’s competitive strategy and organizational culture.

P102
(Member
of)

According to recent political developments and official party records from {date}, {subject}
is an active member of {answer}. Their involvement in the party includes participating in
policy discussions, representing party interests in various forums, and contributing to the
party’s legislative agenda. This membership reflects their commitment to the party’s core
values and political platform.

P488
(Chairper-
son)

Organizational documents and board records from {date} establish that {answer} serves
as the chairperson of {subject}. In this leadership capacity, they oversee strategic planning,
governance, and major organizational initiatives. Their appointment to this position
brings valuable experience and vision to guide the organization’s development and future
direction.

P6 (Head
of govern-
ment)

Official government records and administrative documentation from {date} confirm that
{answer} serves as the head of government for {subject}. In this executive leadership role,
they are responsible for policy implementation, administrative oversight, and strategic
governance. Their administration has focused on addressing key challenges and imple-
menting initiatives for regional development.

P127
(Owned
by)

According to corporate ownership records and financial documentation dated {date},
{subject} operates under the ownership of {answer}. This ownership structure influences
the strategic direction and operational decisions of the entity. The acquisition represents
a significant component of the owner’s portfolio and reflects their long-term investment
strategy in this sector.

P69 (Edu-
cated at)

Academic records and institutional documentation from {date} indicate that {subject}
pursued their education at {answer}. Their academic journey at this institution has
contributed significantly to their professional development and expertise in their field.
This educational background represents an important foundation for their subsequent
career achievements and professional contributions.

Table 9: Templates used for converting structured knowledge into natural language text. Each template is designed
to provide rich context while maintaining a consistent style across different relation types.

20


	Introduction
	Datasets and Models
	Definition of Degenerate Knowledge Neurons
	Neuronal Topology Clustering
	Algorithm of Neuronal Topology Clustering
	Experiments of DKNs Acquisition

	DKNs Can Guide LLMs to Learn New Knowledge
	Overlap of DKNs and Parameter Changes
	DKNs Guide LLMs to Learn Knowledge

	DKNs relate to LLMs' robustness against input perturbations
	Related Work
	Conclusion
	Limitations
	Experimental Hyperparameters
	Hardware spcification and environment.
	Experimental Hyperparameters of Neurological Topology Clustering
	Experimental Hyperparameters of Knowledge Learning
	Experimental Hyperparameters of Disturbance Analysis

	Details of TempLAMA Dataset
	Knowldege Localization
	Simplifications and Future Work
	Topology Data Analysis
	Definition
	Stability
	Computation

	Results of Statistical Significance Tests
	Significance Tests for Subsection 4.2
	Significance Tests for Subsection 5.1
	Significance Tests for Subsection 5.2

	Construction of TempNarrativeLAMA Dataset
	Additional Suppression Results

