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Abstract

Today’s methods for uncovering causal relationships from observational data either constrain
functional assignments (linearity/additive noise assumptions) or the data generating process
(e.g., non–i.i.d. assumptions). Unlike previous works, which use conditional independence
tests, we rely on the inference function’s Jacobian to determine nonlinear cause-effect
relationships. We prove that, under strong identifiability, the inference function’s Jacobian
captures the sparsity structure of the causal graph; thus, generalizing the classic LiNGAM
method to the nonlinear case. We use nonlinear Independent Component Analysis (ICA)
to infer the underlying sources from the observed variables and show how nonlinear ICA
is compatible with causal discovery via non–i.i.d. data. Our approach avoids the cost of
exponentially many independence tests and makes our method end-to-end differentiable. We
demonstrate that the proposed method can infer the causal graph on multiple synthetic data
sets, and in most scenarios outperforms previous work.

1 Introduction
Traditional statistical learning methods model correlations in data. Though they have achieved super-human
performance in multiple fields, they have limited value in understanding cause-effect relationships. A prevalent
consequence of this shortcoming is the models’ tendency to learn from spurious features or shortcuts (Geirhos
et al., 2020) (e.g., classifying objects based on their backgrounds). In contrast, causal models construct the
world according to the Independent Causal Mechanisms (ICM) principle (Peters et al., 2017), where building
blocks (mechanisms) neither influence nor inform each other. Modeling temperature T and altitude A is a clas-
sic example (Peters et al., 2017): changing A affects T , but not vice versa—this relationship is described by the
Directed Acyclic Graph (DAG) A→ T . The ICM principle means that the same mechanism p(T |A) describes
how altitude affects temperature for different p(A), but the same cannot be said about p(A|T ) and p(T ).
Causal Discovery (CD) describes the process of extracting causal structure from data in the form of a DAG.
Having interventional data—such as in the form of Randomized Controlled Trials (RCTs)—is desirable as
it enables answering questions of interventional nature, such as ’What will happen if variable X is changed?’
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Figure 1: The Jacobian of the inference network Jf−1 informs about the DAG. We show that if
observations X are generated from noise variables N via a general nonlinear Structural Equation Model
(SEM) f , then the corresponding DAG can be inferred from the Jacobian of a model that identifies N under
certain assumptions on N

However, RCTs can be costly, infeasible (Eberhardt et al., 2005), or even unethical. Thus, developing effective
CD methods reliant on observational data alone is of significant interest. In general, inferring the causal
direction is provably impossible without additional constraints or assumptions (Zhang et al., 2015); therefore,
existing methods constrain either the model class (i.e., the functions generating the observations) or the
data distribution. On the model side, these constraints include linear (Shimizu et al., 2006; Tashiro et al.,
2014; Shahbazinia et al., 2021; Zheng et al., 2018) or specific nonlinear relationships (e.g., with additive
noise) (Hoyer et al., 2008; Peters et al., 2011; Schölkopf et al., 2021a; Yu et al., 2019; Shen et al., 2022;
Lachapelle et al., 2020; Ng et al., 2022). On the data side, assumptions include non-stationarity (Hyvärinen
& Morioka, 2016; Monti et al., 2019) or exchangeability (Guo et al., 2022).
CD aims to infer the ground-truth cause-effect relationships, which connects it to the identifiability literature,
where the goal is to learn a model equivalent to the ground truth (up to indeterminacies, such as permutations
or element-wise nonlinearities).
An extensively studied method for learning identifiable representations is Independent Component Analysis
(ICA) (Comon, 1994; Hyvärinen et al., 2001), which requires that the inferred components (sources) are
independent. Recent work has relied on nonlinear Independent Component Analysis (NLICA) for identifia-
bility (Zimmermann et al., 2021; Klindt et al., 2021; Hyvärinen & Morioka, 2016; Willetts & Paige, 2021;
Khemakhem et al., 2020a; Hyvärinen et al., 2019; Morioka et al., 2021; Monti et al., 2019; Khemakhem et al.,
2020b; Gresele et al., 2019; Hyvärinen & Morioka, 2017; Hyvärinen et al., 2010; Hälvä & Hyvärinen, 2020;
Lachapelle et al., 2022).
Instead of using pairwise independence tests, we draw inspiration from the Linear Non-Gaussian Acyclic
Model (LiNGAM) (Shimizu et al., 2006), which uses a weight matrix to infer the DAG of a linear causal
model. We extend this approach to the nonlinear case by showing that the Jacobian of the ground-truth
inverse Data Generating Process (DGP) (mapping from observations X to noise variables N) captures the
sparsity structure of the DAG (Prop. 1). Since the ground truth model is generally unknown, we transfer
our insight to the Jacobian of the learned inference model1 (i.e., the empirical estimate of the ground-truth
X →N map; cf. Prop. 2). There, we quantify the requirements on the inference model with the notion of
strong identifiability is fulfilled (Khemakhem et al., 2020b, Def. 2) (cf. Defn. B.1) and show that causal models
provide an inductive bias to resolve the permutation indeterminacy (Lem. 1). We guarantee identifiability via
NLICA; thus, our work is akin to the NonSENS method (Monti et al., 2019), which showed that NLICA can
be used for bivariate CD with general nonlinear functions and non–i.i.d. observational data. However, our
proposal works in the multivariable case. Relying on the Jacobian removes the cost of d2 independence tests
for a DAG with d nodes. However, with current NLICA methods, we could only scale up to ten nodes.
Our contributions can be summarized as follows:

1In our paper, inference refers only to this process and not to amortized inference for direct graph discovery as proposed
in Lorch et al. (2022)
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1. We prove that the inverse DGP’s Jacobian encodes the DAG structure (Prop. 1);
2. We show that causal models allow us to resolve the permutation indeterminacy of ICA (Lem. 1);
3. Our main result (Prop. 2) proves that we can infer the DAG from the Jacobian of the inference

function, while removing the need for independence tests;
4. We propose an end-to-end multivariable CD method for nonlinear functions from observational but

non–i.i.d. data and show how contrastive NLICA is compatible with CD;
5. We experimentally show that our proposed method can infer the DAG across multiple synthetic data

sets.

2 Background
Here, we describe causal models and connect their estimation to ICA and defer the details to Appx. A.

Structural Equation Models (SEMs). Given d-dimensional observed X=(X1, . . . , Xd) and noise
(independent) variables N=(N1, . . . , Nd), their causal relationship is given by d deterministic functional
assignments (Pearl, 2009), constituting the generative model:

Xi : = f i (P ai, N i) ∀i, (1)

where P ai ⊂X are the parents of Xi and f i are the components of the vector-valued function f . We describe
the computation of X for a given N with an iterative process (denoting the iteration step with a superscript),
which is a useful concept for justifying our proposal (§ 3). Initially, N is drawn from its density. To calculate X
for N , the functional assignment f needs to be applied d times. Namely, according to (1), each Xi requires that
its parents P ai are calculated. After sampling N , only the (empty) parent sets of root nodes are calculated.
Thus, the first application of f yields the Xi values for such nodes. In the second iteration, the children
of root nodes can be calculated (since we have all parents from the first iteration), and so on. This yields
an iterative algorithmic formulation of the SEM, describing the computational graph given by the DAG as:

X = Xd := f (d) (
X0, N

)
= f

(
X(d−1), N

)
= f

(
f . . .

(
f

(
X0, N

)
, N

)
, N

)
, (2)

where X0 is the initial value (w.l.o.g., we assume X0 = 0, since calculating the functional assignments will
overwrite every Xi). We will also denote X = X(N) to indicate that X is deterministically determined by a
particular N . As in most previous works (Vowels et al., 2022, Table 1), we assume no confounders (all variables
are observed) and faithfulness (loosely speaking, the coefficients/functions will not cancel an edge, cf. Assum. 1).

Causal Discovery (CD). In CD, the data is assumed to be generated by a causal process, and the aim
is to infer the corresponding DAG, which enables reasoning about interventions (without the DAG, the
joint distribution p(N) only admits observational queries) (Peters et al., 2017; Pearl, 2009). Algorithmic
approaches include combinatoric search (Shimizu et al., 2006; Hoyer et al., 2008; Hyttinen et al., 2013;
Mitrovic et al., 2018; Raskutti & Uhler, 2018; Spirtes et al., 2000; Vowels et al., 2022), continuous
optimization (Zheng et al., 2018; Lee et al., 2019; Wei et al., 2020; Ng et al., 2020; Vowels et al., 2022), and
neural networks (Yu et al., 2019; Ng et al., 2022; Khemakhem et al., 2021; Yang et al., 2021; Goudet et al.,
2018; Kalainathan et al., 2018; Vowels et al., 2022; Kyono et al., 2020; Moraffah et al., 2020)—we focus
on the latter. Zhang et al. (2015) proved that identifying the causal direction in a general SEM is impossible
without constraints on the function class and/or data distribution.
Functional constraints can include linear (Shimizu et al., 2006; Zheng et al., 2018; Squires et al., 2023), additive
nonlinear (Xi = f i(P ai) + N i) (Hoyer et al., 2008; Ng et al., 2022; Lachapelle et al., 2020; Schölkopf et al.,
2021a; Yang et al., 2021), affine nonlinear (Xi = f i(P ai) + hi(N i)) (Khemakhem et al., 2021; Shen et al.,
2022), or polynomial (Ahuja et al., 2022b) models. Regarding the data distribution, some models require
access to interventions (Brouillard et al., 2020; Ke et al., 2020; Lippe et al., 2021; Ahuja et al., 2022b); others
assume that N is Gaussian (Kalainathan et al., 2018; Lachapelle et al., 2020) or non-Gaussian (Shimizu et al.,
2006); or require non-stationarity (Monti et al., 2019), exchangeability (Guo et al., 2022), or discreteness (Ke
et al., 2020) of N . Variational-inference–based formulations require a prior over the DAGs (Lorch et al.,
2021; 2022; Charpentier et al., 2022) or utilize labels (Yang et al., 2021). Our work was inspired by (Monti
et al., 2019), which provides a bivariate CD method for general nonlinear functions and non-stationary data.
The authors leverage recent results in NLICA (cf. next section for details) to identify the causal direction.
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Although they demonstrate applicability to multivariable problems, the use of pairwise independence tests
constrains scalability. In our work, we extend these results with an end-to-end solution in § 3.

Identifiability and ICA. Independent Component Analysis (ICA) (Comon, 1994; Hyvärinen et al., 2001)
models the observed variables X as a mixture of independent variables N via a deterministic function f , and
focuses on defining models that are identifiable—i.e., N can be recovered up to indeterminacies (e.g., scaling,
permutation, sign flips, element-wise transformations). Since this is provably impossible in the nonlinear case
without further assumptions (Darmois, 1951; Hyvärinen & Pajunen, 1999; Locatello et al., 2019), recent work
has focused on incorporating auxiliary variables (Hyvärinen et al., 2019; Gresele et al., 2019; Khemakhem
et al., 2020a; Gassiat et al., 2022), exploiting temporal structure in the data (Hyvärinen & Morioka, 2017;
2016; Hälvä & Hyvärinen, 2020; Morioka et al., 2021; Monti et al., 2019; Hyvärinen et al., 2010; Klindt
et al., 2021; Zimmermann et al., 2021), or restricting the model class (Shimizu et al., 2006; Hoyer et al.,
2008; Zhang & Hyvärinen, 2009; Gresele et al., 2021). Several works have related (nonlinear) ICA to SEM
estimation (Gresele et al., 2021; Monti et al., 2019; Shimizu et al., 2006; Von Kügelgen et al., 2021; Hyvärinen
et al., 2023) by inverting the DGP—i.e., estimating f−1 with an inference model f̂

−1
.

3 Inferring causal structure from Jacobians
3.1 Intuition
The method we propose can be intuitively understood as a nonlinear extension of LiNGAM (Shimizu
et al., 2006; Hoyer et al., 2008; Peters et al., 2011). LiNGAM assumes a linear causal relationship between
observations X and the noise variables N , i.e., X = WN . Since the noise variables are assumed to be
statistically independent, linear ICA can uncover the (non-Gaussian) sources N from the observations X,
which allows us to extract the DAG from W−1 as we show in the following example.
Example 1 (Motivating example for linear SEMs). Assume a linear causal model with three variables, the DAG
X1→X2→X3, and functional relationships: X1 := N1; X2 := aX1 +N2; X3 := bX2 +N3 : a, b ∈ R\{0}. The
DGP generates samples according to the DAG and has the matrix form on the left—we focus on the elements
below the main diagonal as for recovering the DAG, only the paths (i.e., series of directed edges) between Xi

and Xj are required and the main diagonal expresses the N i → Xi edges. Inverting the DGP with an inference
model (i.e., expressing N i as a function of Xj ; LiNGAM uses ICA to estimate the DGP) yields the matrix on
the right with elements below the main diagonal capturing the DAG’s Xi → Xj edges (as shown by color coding):X1

X2
X3

=

 1 0 0
a 1 0
ab b 1

N1
N2
N3

;

N1
N2
N3

=

 1 0 0
−a 1 0
0 −b 1

X1
X2
X3


Overview of theoretical results. Our method extends LiNGAM to nonlinear DGPs. First, we show that
the inverse DGP’s Jacobian and the DAG structure are structurally equivalent (Prop. 1). To apply Prop. 1 to
a learned inference model, we describe up to what indeterminacies the inference model is need to be known.
Because the ground-truth DGP can only be identified up to certain indeterminacies like scaling, permutation,
and sign flips, we need to show for which identifiability notion structural equivalence is preserved (Prop. 2).
This requires that we can resolve permutation indeterminacies, which we prove for SEMs in Lem. 1, then
design an algorithm for this purpose (§ 3.4).

3.2 DAG equivalence
To justify using the Jacobian of f−1, i.e., the inverse of the DGP, (denoted as Jf−1), akin to LiNGAM’s use
of a weight matrix, we first connect the DAG and Jf−1 via fundamental concepts from graph theory. The
adjacency matrix A of a graph with d nodes is a binary d× d matrix where each matrix element indicates the
presence, or absence, of an edge (i.e., a direct connection) between a pair of nodes Xi, Xj (Defn. A.8). The
connectivity matrix C of a graph with d nodes is a binary d× d matrix where each matrix element indicates
the presence, or absence, of a directed path between two nodes Xi, Xj (Defn. A.9). For DAGs, both A and C
are strictly lower-triangular—this is why we considered only the elements below the main diagonal in Ex. 1.
Furthermore, the main diagonal of Jf−1 has non-zero elements (Ex. 1). We describe the relationship between
Jf−1 and (Id −A) for a DAG via structural equivalence, and investigate its symmetries. Ex. 1 intuits why
our claim refers to A and not C: in the matrix mapping from X to N only the edges (captured by A) are
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present. Similar to the linear case (and shown more formally below), Jf−1 and (Id −A) have the same
sparsity structure, meaning ∀i, j (Jf−1)ij = 0⇔ (Id −A)ij = 0. We denote this structural equivalence as
Jf−1 ∼DAG (Id −A), with the full definition and its properties formalized as:
Definition 1 (∼DAG). Two matrices S, R of same dimensions are structurally equivalent if (S)ij =0⇐⇒
(R)ij =0: ∀i, j;. Structural equivalence, denoted as ∼DAG, has the following properties (◦ denotes composition):

(i) D-invariance: a non-singular diagonal matrix D preserves the sparsity structure; thus,
(D ◦ S) ∼DAG S

(ii) h0-invariance: for zero-preserving transformations h0 : (h0(S))ij =0 ⇐⇒ (S)ij = 0 then h(S)∼DAG S
(iii) π-equivariance: a permutation π affects the positions of zeros; thus, both operands need to be

permuted with the same π to maintain ∼DAG, i.e., S ∼DAG R ⇐⇒ (π ◦ S) ∼DAG (π ◦R),
(iv) Transitivity: S∼DAG P ∧P∼DAG R =⇒ S∼DAG R
(v) Commutativity: S ∼DAG R ⇐⇒ R ∼DAG S.

Before proving structural equivalence, we state our assumptions about the SEM:
Assumption 1 (SEM assumptions). We assume that the causal DGP fulfils:

(i) The SEM generative model is given by (1), for which there exists an underlying DAG;
(ii) N i are jointly independent;

(iii) There are no hidden confounders (faithfulness/stability); moreover, the Jacobians Jf , Jf−1 are
structurally faithful (Assum. A.1);

(iv) each f i is bijective; and
(v) each Xi depend on N i (i.e., ∂f(X,N)

∂N

∣∣
X,N

is diagonal with non-zero elements)
Relying on the properties of ∼DAG, we prove that Jf−1 can be used to extract the DAG for nonlinear SEMs
under Assum. 1 (akin to the linear case shown in Ex. 1; the proof is deferred to Appx. E.2)
Proposition 1. [Jf−1 ∼DAG (Id −A)]The inverse DGP’s Jacobian Jf−1 is structurally equivalent to
(Id −A), when Assum. 1 holds.

Proof (Sketch). From the iterative formulation of the SEM in eq. (2), we note that X (or more precisely,
X(N)), is a fixpoint of f . Thus, when we apply the chain rule to calculate Jf , we will only have two types
of terms (on both sides), namely:

A : = ∂f(X,N)
∂X

∣∣
X,N

; B := ∂f(X,N)
∂N

∣∣
X,N

. (3)

This expression leads us to a closed form of Jf . Then we apply the inverse function theorem at (X, N) to
get Jf−1 . As the last step, we incorporate the indeterminacies—coming from strong identifiability—and show
based on the properties of ∼DAG that the statement of the proposition holds.

Prop. 1 implies that we can extract the DAG from f−1; i.e., we can reason about interventions (cf. § 2). We
note that if B = Id, then (29) describes Additive Noise Models (ANMs) (Hoyer et al., 2008), whereas when
additionally A is constant, we recover LiNGAM (Shimizu et al., 2006). Prop. 1 assumes that we have access
to f−1; however, this is a non-trivial assumption. In the following, we investigate to what extent we need to
estimate f−1 (in form of f̂

−1
) to exploit Prop. 1—for this, we leverage the notion of identifiability.

3.3 Identifiability requirements of f̂
−1

The inference model f̂
−1

we learn from the observed data generally differs from the true inverse of f up to
certain indeterminacies depending on the identifiability guarantees of the (most commonly) NLICA algorithm.
This can include scaling, permutation, sign flips, and monotonic element-wise transformations (Hyvärinen
et al., 2001; Khemakhem et al., 2020a; Zimmermann et al., 2021). While element-wise transformations such
as scaling or sign-flips do not influence the sparsity structure of the Jacobian, permutations break structural
equivalence between the Jacobian and the ground-truth adjacency matrix. That is, we need to resolve the
permutation indeterminacy to apply Prop. 1 to J

f̂
−1 . With the right ordering(s)2, the Jacobian J

f̂
−1 features

a lower-triangular structure. The following lemma shows that this property determines the ordering of the
noise variables such that they yield a lower-triangular Jacobian, i.e., all possible causal orderings that ensure
structural equivalence to the ground-truth adjacency matrix (the proof is deferred to Appx. E.1):

2The causal ordering does not need to be unique, e.g., in the DAG Xi ← Xj → Xk the nodes Xi and Xk are interchangeable
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Lemma 1. [DAG DGPs resolve the permutation ambiguity of ICA] When the DGP is a SEM with functional
relationships f and an underlying DAG, then the permutation indeterminacy of ICA πICA can be accounted
for such that the Jacobian of the inference network will have a lower-triangular Jacobian, even with unknown
causal ordering π.

Proof (Sketch). Given that the DGP is structured by a DAG, the adjacency matrix A is lower triangular
and Assum. 1 ensures that diagonal elements are nonzero. The permutation indeterminacy of ICA (which
is expressed as a left-multiplication, i.e., affects the rows) comprises matrices that do not violate lower-
triangularity. This gives us a single permutation (for a unique causal ordering) or a set of permutations, each
of which ensures a lower triangular A.

We emphasize that Lem. 1 refers to two permutations: the permutation indeterminacy of ICA (Lem. 1 makes
a claim about this) and the causal ordering of the SEM. These can be thought of as permuting the rows
(ICA indeterminacy) and columns (causal ordering) of the inference model’s Jacobian. Most importantly,
Lem. 1 shows that we can resolve the permutation indeterminacy, leading to the following result:

Proposition 2 (Jf−1 ∼DAG J
f̂

−1 for strongly identified f̂
−1

). When the inference model f̂
−1

is strongly
identified in the sense of Defn. B.1, the permutation indeterminacies are resolved, and Assum. 1 holds, then
Jf−1 ∼DAG J

f̂
−1 .

Proof. The indeterminacies of strong identifiability (Defn. B.1) include scalings, sign flips, and permutations.
By Def. 1(i), ∼DAG is invariant to scalings and sign flips; whereas Def. 1(iii) states equivariance for
permutations, but by Lem. 1, those can be resolved for SEMs.

By Def. 1(ii), Prop. 2 also holds when indeterminacies include zero-preserving transformations.

3.4 Algorithm for CD and determining π

Based on Lem. 1 and Props. 1 and 2, we propose a two-step approach for extracting the DAG from observational
but non–i.i.d. data for general nonlinear f :

1. First, we use a suitable nonlinear ICA algorithm to estimate f−1 up to permutations and zero-
preserving element-wise nonlinearities with an inference model J

f̂
−1 .

2. Second, we resolve the permutation indeterminacy by accounting for the causal graph structure.
Regarding the second step, we learn the permutations after training with an objective that enforces the
estimated Jacobian to be lower-triangular. To this end, we need to learn both a permutation π for the causal
ordering as well as a permutation πICA that resolves the indeterminacy in the noise variables introduced by
ICA. We use the permuted absolute Jacobian K defined as

K :=
∣∣∣SICAJ

f̂
−1Sπ

∣∣∣ (4)

where SICA, Sπ are doubly-stochastic matrices that represent a soft permutation on both noise and observation
variables, which we parametrize via Sinkhorn networks (Mena et al., 2018) and learn after ICA training—cf.
§ 5.1 and Fig. 10 for details. We then introduce a training loss inspired by LiNGAM (Shimizu et al., 2006)
that encourages K to be lower-triangular by simultaneously maximizing i) the sum of the main diagonal and
ii) the lower-triangular part, while also iii) minimizing the stricly-upper triangular part of K,

Lπ =
∑
i,j

[
αd (K)−1

ii − αl (K)i≥j + αu (K)i<j

]
, (5)

where i ∈ {d, u, l} : αi > 0 The full learning algorithm is presented in Alg. 1.
Compared to LiNGAM, our method is differentiable and works for nonlinear SEMs; thus, it does not require
iterating over all permutations. Although Sinkhorn networks (Mena et al., 2018) were previously proposed to
represent permutation probabilities (Charpentier et al., 2022), we are the first to represent the indeterminacy
of ICA with such models.
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Algorithm 1 Algorithm for multivariable CD and determining the causal order π

Input: dataset D, network parameters θ, Sinkhorn networks SICA, Sπ, contrastive loss LCL (eq. (6)),
ordering loss Lπ (eq. (5)), positive scalars αd, αu, αl

Initialize θ
while LCL not converged do

calculate LCL for a batch from D
update θ

end while
extract J

f̂
−1

while Lπ not converged do
K =

∣∣∣SICAJ
f̂

−1Sπ

∣∣∣
Lπ =

∑
i,j

[
αd (K)−1

ii − αl (K)i≥j + αu (K)i<j

]
update SICA, Sπ

end while

4 Identifiability in Contrastive Learning
There are fundamental limits to how much one can learn about a DGP from only i.i.d. observations: neither
causal structure (Pearl, 2009), nor nonlinear mixing of independent signals (Hyvärinen & Pajunen, 1999) are
identifiable in the general case. In this work, we describe a non–i.i.d. (contrastive) DGP, in which significantly
more structure can be identified from observations.
In a contrastive DGP (Zimmermann et al. (2021); § 4.2), we generate so-called positive pairs containing two
d–dimensional samples (X, X̃). Underlying X and X̃ are a pair of latent variables of the same dimension N

and Ñ , such that X = f(N) and X̃ = f(Ñ). Both N and Ñ have statistically independent components,
i.e. ∀i, j : N i ⊥ N j and Ñ i ⊥ Ñ j . Furthermore, each component of Ñ depends only on the corresponding
component of N , such that ∀i : Ñ i ∼ p(·|N i). In this work, we will often assume that the mapping f is
defined as a SEM (§ 2).

4.1 Identifiability of causal graphs via the ICM principle
In the contrastive DGP, we draw i.i.d. samples of positive pairs. Inasmuch as we consider X and X̃ as
two observations, the generative process is non–i.i.d.. This non–i.i.d. DGP leaves more fingerprints in the
observed data, allowing the identification of causal dependencies that are non-identifiable in the i.i.d. case
We will illustrate why this is the case in the following two-variable example.

X1 ̸⊥ X2

N1 N2

X1 X2

(a) No data augmentation.

X1 ̸⊥ X2
X̃1 ̸⊥ X̃2
X1 ⊥ X̃2|X̃1
X2 ̸⊥ X̃1|X̃2

N1 N2 Ñ1 Ñ2

X1 X2 X̃1 X̃2

(b) Data augmentation. Superscripts denote the two
components of the positive pair.

Figure 2: Comparing conditional independencies between observables X̃i in a bivariate model without (Fig. 2a)
and with (Fig. 2b) data augmentations in the contrastive pair.

Example 2 (Positive pairs induce additional conditional independencies). Assume a bivariate, faithful SEM
without confounders, where X1 → X2 (Fig. 2a). Observing only i.i.d. copies of X1 and X2, the direction of
the cause–effect relationship cannot be discerned, the only statement we can make is X1 ̸⊥ X2 (Pearl, 2009).
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However, consider observing positive pairs from the contrastive DGP, illustrated graphically in (Fig. 2b). As
X and X̃ are dependent, there is a broader set of conditional independence statements we can make, and
these resolve the ambiguity in the causal direction. Namely, X1 (the cause component of X) and X̃2 (the
effect component of X̃) are statistically dependent via the path X1 ← N1 → Ñ1 → X̃1 → X̃2. However,
conditioning on X̃1 blocks this path, thus X1 ⊥ X̃2|X̃1. Notably, such a conditional independence holds only
when X1 → X2, but would not hold, if the direction were reversed to X1 ← X2.

Ex. 2 sheds light how Contrastive Learning (CL) enables CD by introducing additional conditional inde-
pendencies in the positive pair. This line of reasoning connects our work to the Causal de Finetti (CdF)
theorem (Guo et al., 2022), which proves identifiability of fully observed causal graphs under a very similar
generative process. The key concept in the CdF is the notion of Independent Causal Mechanisms (ICM)3.
That is, the assumption that various mechanisms that make up the generative process (e.g., individual
equations in a SEM) change or vary in a statistically independent manner. In our generative model, when f

is a SEM, the ICM principle manifests in the assumption that ∀i ̸= j : N i ⊥ Ñ j . One can thus think of X̃ as
an observed counterfactual outcome (also noted in Liu et al. (2023)), where the structural equations have
been independently perturbed.
Exploiting the connection to CdF, one can show that in our generative process, all causal relationships
become identifiable even in multivariable data in the absence of unobserved (confounder) variables. While
showing this is somewhat involved in the asymmetric contrastive DGP of Zimmermann et al. (2021) presented
here, other variants of contrastive DGPs—including the original model proposed in SimCLR (Chen et al.,
2020) or (Dubois et al., 2022)—produce exchangeable positive pairs by relying on two augmented samples
(X̃1, X̃2), and thus map directly to the CdF setting.
Showing that causal relationships are identifiable from the conditional independence structure in CL is
mathematically interesting, but does not yield a practical algorithm. As noted by Guo et al. (2022), the
CdF requires an exponential number of conditional independence tests for multivariable CD. Here, we take a
different approach, that exploits the full identifiability of the functional relationships f in the same setting.

4.2 Identifiability of the causal graph via identifiability of f

We assume the setting of (Zimmermann et al., 2021, Thm. 6)—with the additional constraint that
dim N = dim X = d—, under which, an inference model f̂

−1
which minimizes a contrastive loss was proven

to estimate the noise variables (often referred to as “sources" in the ICA literature) up to a composition of
input independent permutations, sign flips, and rescaling. For completeness, we restate the assumptions both
for the DGP (Assum. 2) in the main text and defer the model assumptions (Assum. F.1) to the appendix
(Appx. F). We denote positive pairs with (̃·) and negative pairs with (·)−.

Assumption 2 (DGP on Rd). We assume that the DGP satisfies the following conditions:
(i) The space of the noise variables to be a convex body (hyperrectangle); i.e., N ⊆ Rd;

(ii) The observation space to be X ⊆ Rd;
(iii) The generator (the SEM) f to

1. be bijective,
2. map N ⊆ Rd → X , and
3. be differentiable in the vicinity of N .

(iv) The marginal distribution p(N) over latent variables N ∈ N is uniform4; i.e., p(N) = |N |−1;
(v) The conditional distribution over positive pairs p(Ñ |N) is a rotationally asymmetric generalized

normal distribution (Subbotin, 1923) with a shape parameter α with the corresponding Lα-metric (de-
noted as δ), where α ≥ 1∧α ̸= 2 5; i.e., p(Ñ |N) = C−1

p (N)e−λδ
(

N ,Ñ
)

with Cp :=
∫

e
−λδ

(
N ,Ñ

)
dÑ ,

where λ > 0 a parameter controlling the width of the distribution.

3We note that Guo et al. (2022) develop CdF from the ICM principle; however, Pearl’s autonomous mechanism principle Pearl
(2009) might be a more appropriate term to use

4Since any random variable in Rd can be emulated by passing a uniformly distributed random variable through the
corresponding inverse CDF, if the CDF is differentiable, we can abosrb it into f

5In our experiments, we use α = 1 (the Laplace distribution), since certain transitions in natural videos seem to follow the
generalized Laplace distribution, and can be modeled successfully with the Laplace distribution (Klindt et al., 2021)
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We parametrize the conditional distribution q(Ñ |N) via f−1 as in Assum. 2 and calculate the loss as:

E(
X,X̃,X−

)− log
exp

[
−δ

(
f̂

−1
(X), f̂

−1
(X̃)

)
/τ

]
exp

[
−δ

(
f̂

−1
(X), f̂

−1
(X̃)

)
/τ

]
+

∑M
i exp

[
−δ

(
f̂

−1
(X−), f̂

−1
(X̃)

)
/τ

]
 , (6)

where X̃ is the positive pair, X− are the negative pairs, and M is the number of negative samples. During
training one has access to observations X, which are samples from these distributions transformed by the
generator function (i.e., the SEM) f .

Compatibility of CL and CD. Using observation pairs for CD might seem fundamentally different from
conventional approaches, but there is a conceptual connection to interventions (Brouillard et al., 2020; Ke
et al., 2020; Lippe et al., 2021; Mansouri et al., 2022; Bagi et al., 2023)—indeed, several methods rely on data
pairs to identify the causal variables (Locatello et al., 2020; Brehmer et al., 2022; Von Kügelgen et al., 2021;
Liu et al., 2023; Ahuja et al., 2022a). As stated by Liu et al. (2023), the positive pairs in CL can be
thought of as sparsity information about mechanism shifts, making the paradigm suitable for
CD. Locatello et al. (2020) relies on interventional pairs to for causal disentanglement. Brehmer et al. (2022)
rely on pairs of pre-and post-interventional observations (with perfect interventions, which might be restrictive
in practice (Liu et al., 2023)). Namely, since positive samples are "more similar" to the anchor point, the
conditional distribution is more restricted (compared to the marginal; e.g., it should have a smaller variance)
for the latent factors. However, this will only affect specific mechanisms (i.e., factors in the factorizing
conditional), such as making the factor responsible for the class-determining variable degenerate (i.e., if the
anchor depicts a chair, the mechanism encoding the class information will have a delta distribution). Ahuja
et al. (2022a) provides identifiability results for sparse perturbations (generalizing (Von Kügelgen et al.,
2021); thus, emphasizing the connection to between interventions and contrastive methods. The recent work
of Bagi et al. (2023) proposes a variational inference-based approach from interventional data, where the
authors partition their latent space into invariant (content) and variant (style) features, which is a paradigm
also found in CL, including identifiability guarantees and competitive performance on the Causal3DIdent
dataset (Von Kügelgen et al., 2021). Compared to assuming perfect interventions (Brehmer et al., 2022),
degenerate (delta) conditionals for the invariant (content) partition of the latent space (Von Kügelgen et al.,
2021), or Gaussian/Gaussian Mixture priors (Bagi et al., 2023), our rotationally asymmetric generalized
normal assumption on the conditional (Assum. 2(v)) is less restrictive.

Differences between identifying the DAG and f . Assum. 2 implies restrictions on the class of SEM
we can represent in this framework. In particular, Assum. 2(iv) requires that the noise variables are uniform.
This however, is a minimal restriction, considering that any real-valued random variable can be emulated
by passing a uniform random variable through its inverse cumulative distribution function (CDF). Thus, so
long as the inverse CDF is differentiable, we can absorb it into f without modifying the causal structure
implied by the SEM. Assum. 2(v) relates to the type of random perturbation under which the positive pairs
are generated. We note that Assum. 2 is specific to the contrastive ICA framework of (Zimmermann et al.,
2021) but our approach is not fundamentally limited to the this setting, and can be used in principle in any
situation where nonlinear ICA is identifiable, such as in (Hyvärinen & Morioka, 2016; 2017; Morioka et al.,
2021; Monti et al., 2019).
That is, our results state that identifiability of f entails identifiability of the causal graph. However, this
is not necessarily true in the other direction, since knowing the Jacobian (which is sufficient to recover the
DAG) does not contain all information about f . It remains an open question how practically relevant these
differences are.

5 Experiments
5.1 Experimental setup
Data Generating Process (DGP). We experiment with three DGPs: i) linear and ii) nonlinear SEMs
(in the form of X = f(WN), as well as with iii) Multi-Layer Perceptrons (MLPs) with triangular weight
matrices (as used in (Monti et al., 2019)). In all cases, the nonlinear activations (i.e., f) are leaky ReLUs
(with a slope of 0.25 for the SEMs and 0.1 for the triangular MLPs). For the SEM DGPs, we exlore three
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Table 1: Validation of Lem. 1 for linear and nonlinear SEMs with unknown causal ordering to measure how
well our method recovers the causal ordering. Mean Correlation Coefficient (MCC) measures identifiability,
|E∗| is the maximum number of edges in a DAG, Accπ is the accuracy of recovering the pairwise causal
ordering π, whereas π gives the ratio of learning a (any) permutation in Sπ and SHD is the Structural
Hamming Distance

Linear Nonlinear
|E∗| d MCC Acc Accπ π SHD MCC Acc Accπ π SHD

6 3 1. 1. 1. 1. 0. 1. 1. 1. 1. 0.
15 5 0.989±0.039 0.998±0.009 0.974±0.078 0.76 0.002±0.009 0.988±0.039 0.994±0.021 0.957±0.129 0.583 0.006±0.021

36 8 0.834±0.238 0.935±0.081 0.851±0.183 0.414 0.065±0.081 0.781±0.219 0.934±0.051 0.889±0.15 0.345 0.066±0.051

55 10 0.852±0.251 0.931±0.051 0.921±0.147 0.233 0.069±0.051 0.794±0.255 0.924±0.073 0.739±0.252 0.276 0.076±0.073

options: a) no permutation w.r.t. the causal ordering (i.e., only the ICA permutation remains); b) a sparse
DGP (with each Xi − Xj edge being nonzero with a 0.25 probability); and c) permuted causal ordering
(with dense A). Additionally, we ensure that the ordering of N i is unique (all cases), and that the DGP
weights are ≫ 0 (for the SEM DGPs) as otherwise we would be unable to distinguish weak connections
from small elements in the Jacobian. That is, the estimate of a weak connection could be the same order
of magnitude as the estimate of a zero element due to the stochasticity of training—we do not enforce this
property for the triangular MLPs to compare to the results of (Monti et al., 2019), where such modification
was not present. For the permuted SEM DGPs, we sample 6 different orderings and 5 seeds for each problem
dimensionality {3; 5; 8; 10}—the number of seeds is 10 for non-permuted and sparse SEMs. For the triangular
MLP, we use d = 6 and 5 seeds to compare to (Monti et al., 2019, Fig. 2) and vary the number of layers
in the mixing. To use contrastive NLICA for training the inference model, the DGPs needs to satisfy the
assumptions underlying the proof of identifiability (Zimmermann et al., 2021, Thm. 6)): the latent space is
a hyperrectangle in Rd, the marginal p(N) is uniform, the conditional p(Ñ |N) is Laplace, X is generated by
a smooth and bijective mapping.

Figure 3: Hinton diagrams
(d = 5): ground truth (left),
estimate (right). Size equals
magnitude.

Inference model. To (strongly) identify the SEM, we use contrastive
NLICA (Zimmermann et al., 2021)—which is consistent when the number of
negative samples goes to infinity—to estimate f̂

−1
with a hyperrectangle latent

space in Rd and the contrastive loss uses the same metric as the conditional,
which is L1 for our case (Assums. 2 and F.1). Our architecture for the inference
model is the same MLP as in (Zimmermann et al., 2021) (Tab. 6). To account
for the permutation indeterminacies, we use two Sinkhorn networks (Mena
et al., 2018) (similar to Charpentier et al. (2022)). A Sinkhorn network
is a trainable parametrization of soft-permutation matrices (the Birkhoff
polytope) (Mena et al., 2018), consisting of two levels: i) the Sinkhorn operator
(Fig. 10) normalizes each row and column (in this order) of a matrix to one,
relyin on the log-sum-exp operator; ii) the network layer contains the trainable
matrix W with the scalar temperature value τ to ensure convergence to the Birkhoff polytope’s vertices,
i.e., to yield a (hard) permutation matrix. We observed that setting the lowest d (d− 1) /2 elements (for
dense DAGs) to zero and converting the resulting K matrix to binary often helped the convergence of
the Sinkhorn networks. We calculate the Jacobian of the inference model with the autograd module of
PyTorch (Paszke et al., 2019) in the forward pass and vectorize the operation with the recently released
functorch library (Horace He, 2021). Moreover, instead using max to aggregate the different Jacobians over
the batch, we found using the mean operator more stable in practice.

Metrics. We measure learning the correct ordering by the ordering accuracy (Accπ, only for the permuted
case)—i.e., the ratio of causal variable pairs ∀i < j : (N i, N j), such that the ranking (expressed by sign (i− j))
matches that in the inferred (permuted) ordering π, i.e., sign (π (i)− π (j)). To normalize, we divide by
the number of distinct edge pairs (1/2(d− 1)d) We also report the accuracy (Acc, i.e., the ratio of correctly
identified edges, or lack thereof, divided by |E∗|) and the Structural Hamming Distance (SHD) (we use
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Table 2: Causal discovery performance for linear and nonlinear SEMs with known causal ordering. Mean
Correlation Coefficient (MCC) measures identifiability, |E∗| is the maximum number of edges in a DAG, Acc
is accuracy, Ours is our proposal, HSIC refers to using HSIC independence tests, and SHD is the Structural
Hamming Distance

Linear Nonlinear
|E∗| d MCC Acc(Ours) Acc(HSIC) SHD MCC Acc(Ours) Acc(HSIC) SHD

6 3 1. 1. 0.7±0.1 0. 1. 1. 0.741±0.105 0.049±0.14

15 5 0.969±0.066 0.928±0.131 0.828±0.116 0.072±0.131 0.94±0.09 0.858±0.172 0.8±0.102 0.142±0.171

36 8 1. 1. 0.682±0.17 0. 0.982±0.029 0.872±0.198 0.823±0.142 0.128±0.198

55 10 0.965±0.03 0.832±0.176 0.551±0.003 0.168±0.176 0.962±0.025 0.636±0.239 0.638±0.134 0.364±0.239

1e−3 as the threshold in all scenarios) for inferring the edges of the DAG, as is standard practice in the
literature (Lachapelle et al., 2020; Monti et al., 2019; Ke et al., 2020; Vowels et al., 2022).

Comparison. We use the linear and nonlinear SEM DGPs to showcase that our method can infer the
DAG while also learning the correct ordering. Then, we compare to NonSENS (Monti et al., 2019), which,
unlike our proposal, does CD on an edge-by-edge basis. Thus, the causal ordering π does not affect how
NonSENS operates. We use the HSIC independence test (Gretton et al., 2005) on top of contrastive
NLICA (Zimmermann et al., 2021) to provide a close comparison with NonSENS (Monti et al., 2019).
Notably, since our assumptions provide identifiability up to generalized permutations, there is no need to
perform linear ICA on top of contrastive NLICA. Thus, we test independence between the observations Xi

and the inferred noise variables N̂ j—although the number of tests is d2, we use a Bonferroni correction factor
of 4, since each edge is determined based on four tests (Monti et al., 2019).

5.2 Results
In all experiments except those in Tab. 1, we used the output of the matching problem as an oracle (solved
via the Hungarian algorithm (Kuhn, 1955)) to correct for the permutation indeterminacy of ICA.

Figure 4: Precision vs recall for thresh-
olds in [1e−7; 1e0] for linear (dashed)
and nonlinear (solid) sparse SEMs

The permutation indeterminacies can be resolved (veri-
fying Lem. 1). Tab. 1 corroborates the result of Lem. 1: it is
possible to resolve the permutation indeterminacy by assuming a
DAG DGP. However, Accπ strongly depends on the performance
of NLICA, measured by Mean Correlation Coefficient (MCC). As
MCC deteriorates, the correct causal ordering cannot be recovered.
Nonetheless, erroneous solutions resulting from training stochastic-
ity (the most frequent problem according to our observations) can
be simply filtered out: in this case the doubly stochastic matrices
usually do not converge to a permutation matrix. Inspecting their
elements or automatically rejecting such solutions is straightfor-
ward. Thus, we report two quantities in Tab. 1: Accπ is the ratio
of inferring the order of causal variable pairs when the Sinkhorn
networks converged to permutation matrices; π (with a slight abuse
of notation), on the other hand, reports the ratio of the successful
attempts to recover permutation matrices. Clearly, failing to converge to a permutation matrix is the
bottleneck of this step, since despite failing to scalably recover π, in case of converging to a permutation
matrix the captured graph reflects most of the edges. This is reported by the Accπ column that is calculated
after applying the learned (not necessarily correct) permutations.

Competitive performance on linear and nonlinear SEMs. Tab. 2 demonstrates (with π being
known) that our method outperforms HSIC in the linear case and is at least comparable to HSIC in the
nonlinear case—note that the entries in J

f̂
−1 were ordered by absolute value and the smallest ones were

zeroed out—namely, these are the elements of the Jacobian that most probably correspond to the zeros in
the true Jacobian. However, this modification might require additional knowledge about the sparsity of the
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DAG. Fig. 4 describes how precision and recall changes for threshold values from [1e−7; 1e0] for sparse DAGs.
Notably, the nonlinear curves are better than the linear ones. For additional results on sparse SEMs (Tab. 7)
and SEMs with unknown causal ordering (Tab. 8, evaluation is done after accounting for the causal ordering),
cf. Appx. G. For sparse SEMs, HSIC is slightly better for larger graphs, whereas in the case of unknown
causal ordering, our proposal has better accuracy in most cases. To visualize the inferred graph structure, we
plot a Hinton diagram of the true and estimated Jacobians in Fig. 3, showing that J

f̂
−1 can capture the

edges of an underlying sparse DAG.

Table 3: Causal discovery performance for the trian-
gular MLP from (Monti et al., 2019) with d = 6. |l|
denotes the number of MLP layers, Acc the accuracy,
Ours is our proposal, HSIC refers to using HSIC inde-
pendence tests. Chance level is (for the dense MLP)
21/36 = 0.583

|l| MCC Acc (Ours) Acc (HSIC)

1 1. 0.933±0.042 0.583
2 1. 0.944 0.583
3 0.997±0.003 1. 0.583
4 0.978±0.016 0.922±0.097 0.6±0.033

5 0.603±0.062 0.711±0.054 0.589±0.011

Competitive performance on triangular MLPs
from (Monti et al., 2019). Tab. 3 summarizes
our results with the triangular MLP of (Monti et al.,
2019). Despite having small weights in the ground
truth Jacobian Jf−1 (appr. 2e−3 for one and 1e−8
for five layers), our method was able to infer most
edges in the DAG. Importantly, the resulting accu-
racies are larger than those of our adapted version
of NonSENS (Monti et al., 2019). Moreover, our
method has the advantage of simultaneously infer-
ring all edges based on the structure of J

f̂
−1—thus,

it does not require d2 pairwise independence test for
a DAG with d nodes. Our application of HSIC inde-
pendence tests resulted in surprisingly low accuracy,
despite utilizing an NLICA method with identifi-
ability guarantees up to generalized permutations.
Interestingly, HSIC resulted in (close-to) chance-level
performance in our repeated experiments—by careful inspection of the DGP, we found that the weights are
in the order of 1e−4, which might explain such bad performance. As noted above, since Monti et al. (2019)
did not constrain the weights, we used a uniform initialization scheme, which might led to mismatching
experimental conditions. Though the use of HSIC was inspired by NonSENS (Monti et al., 2019), since we
made different assumptions on the DGP, the results only represent HSIC’s (but not NonSENS’s) performance.

6 Related work
We provide a detailed comparison of related CD methods (Tab. 4) and the use of the Jacobian (Tab. 5) in
Appx. D.

Independence tests for CD. Traditional CD methods (Pearl, 2009; Spirtes & Zhang, 2016; Spirtes et al.,
2000; Peters et al., 2017) rely on statistical (conditional) independence tests to infer the graph structure.
Recent works also leverage such tests (Shimizu et al., 2006; Monti et al., 2019; Guo et al., 2022; Karlsson &
Krijthe, 2022) to uncover hidden confounders (Karlsson & Krijthe, 2022), for bivariate (Janzing et al., 2009;
Monti et al., 2019) or multivariable CD (Guo et al., 2022) for nonlinear SEMs. LiNGAM (Shimizu et al.,
2006), which inspired our work, also relies on independence tests to prune edges. Although independence
tests provide additional information via significance values, they are not differentiable and can be costly,
as d latents require d2 tests.

Optimization-based CD. Zheng et al. (2018) introduced the continuous optimization-based NOTEARS
algorithm for linear SEMs, which has inspired further research (Khemakhem et al., 2021; Lorch et al., 2021;
Ng et al., 2022; Schölkopf et al., 2021a; Yu et al., 2019; Lachapelle et al., 2020; Kalainathan et al., 2018) to
provide differentiable methods for CD in neural networks. Most of the differentiable solutions (Khemakhem
et al., 2021; Ng et al., 2022; Schölkopf et al., 2021a; Yu et al., 2019) constrain the function class, some of
them (Lachapelle et al., 2020; Kalainathan et al., 2018) both the function class and the data distribution.

Using the adjacency matrix A. Our work shows that the adjacency matrix A and the Jacobian of the
inference model J

f̂
−1 can both be used to model the edges in a graph. We review both, starting with the

adjacency matrix for CD: Zheng et al. (2018) use A as a regularizer in NOTEARS, Ng et al. (2022) reformulates
the SEM with an adjacency matrix for additive models, Schölkopf et al. (2021a) models A with an LSTM in a
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variational framework. In (Brouillard et al., 2020), A appears for the interventional case. Lorch et al. (2022)
leverage amortized variational inference for CD, where they deploy multi-head attention Vaswani et al. (2017)
and use the softmax probabilities as a proxy for the adjacency matrix (i.e., their model represents the probability
of edges in the graph). Charpentier et al. (2022) defines a probabilistic model over A to differentiably sample
DAGs, then use variational inference to estimate the causal structure, similar to Faria et al. (2022). The
proposed method has strong empirical performance, but does not provide theoretical guarantees for CD.

Using the Jacobian. The Jacobian matrix of either the generative (N → X ) or the inference (X → N )
models are used throughout the literature, both for identifiability and CD (Tab. 5). LiNGAM Shimizu et al.
(2006) uses the Jacobian (i.e., a constant matrix) to infer the DAG in the linear case, whereas Lachapelle et al.
(2020) calculates the Jacobian of the inference network to enforce acyclicity, generalizing to nonlinear additive
models. Rolland et al. (2022) consider the same model class as Lachapelle et al. (2020), but they rely on the
Jacobian of the score function. Leveraging properties of the Jacobian is also present in the identifiability
literature: Independent Mechanism Analysis (IMA) relies on the assumption that the generative model’s
Jacobian has orthogonal columns Gresele et al. (2021)—our work reasons about the inference network’s
Jacobian, without functional constraints. Although the inspiration comes from the causal principle of
independent mechanisms, the claims are about identifiability and not about CD: the IMA function class is
locally identifiable, whereas the subclass of conformal maps are identifiable Buchholz et al. (2022). Similar to
IMA, Zheng et al. (2022) also utilize the Jacobian of the generative model and prove identifiability for NLICA
under a sparsity assumption. Atanackovic et al. (2023) propose a Bayesian approach for CD in dynamical
systems, including cyclic graphs, where they associate the graph’s edges with the sparsity pattern of the
Jacobian of the SEM (in this case an ODE), but the authors do not prove identifiability. That is, although
the use of the Jacobian is prevalent in the literature, to the best of our knowledge, we are the first to use the
Jacobian of the inference model for causal models without constraining the function class (but using non–i.i.d.
data, while providing identifiability guarantees.

CD from interventions. Many algorithms can incorporate interventions (Brouillard et al., 2020; Ke et al.,
2020; Lippe et al., 2021; 2022; Lorch et al., 2021). Interestingly, (Ke et al., 2020) provide an extension of (Yu
et al., 2019; Zheng et al., 2018) to interventional data, and of the bivariate method of (Bengio et al., 2020)
to a multivariable one. It is remarkably similar to our proposal, as both make assumptions only on the data
(i.e., admitting general nonlinear functional relationships), but as (Ke et al., 2020) requires interventions,
its path is orthogonal to ours. So is the work of (Lippe et al., 2021), which removes any requirement on
the data, scales to multiple variables, but requires interventions.

7 Discussion
Limitations. Our theory requires the guarantees of strong identifiability but not the use of a specific
(NLICA) algorithm. Though our experiments demonstrate that fulfilling strong identifiability is sufficient
for CD, we do not vary the NLICA algorithm. Additionally, we acknowledge that since contrastive NLICA
requires unique assumptions via the positive pair, it is non-trivial to design a task where the assumptions for
multiple methods hold, making comparisons challenging. Our method’s applicability is limited for inferring
weak edges, similar to (Shimizu et al., 2006; Tashiro et al., 2014; Shahbazinia et al., 2021; Lachapelle et al.,
2020). As demonstrated in § 5, despite its competitive performance, the success of our proposed method highly
relies on the performance of NLICA, which can be limited for higher-dimensional problems. Nonetheless,
based on our comparisons, this seems to be an issue for the HSIC independence test as well. A possible
explanation could be that the class of SEMs is harder to learn with specific NLICA algorithms; indeed, we
observed that deploying contrastive NLICA (Zimmermann et al., 2021) achieves much better MCC on general
(non-triangular) invertible MLPs. To ensure that particular entries in the Jacobian are non-zero everywhere,
our assumptions require that the underlying DAG for the DGP is the same for all data points, which
might be restrictive . For instance, if the DAG models the interaction of physical objects, then cause-effect
relationships are only present when, e.g., the objects are touching each other or their magnetic/electric fields
affect each other—in the literature, this setting is considered in (Sontakke et al., 2021; Seitzer et al., 2021).

CD with identifiability beyond CL. As noted in the Limitations section above, our method is agnostic
to how we achieve identifiability; however, our investigation only showcased contrastive NLICA. To empha-
size that other NLICA–based methods are applicable for CD, we discuss how Time-Contrastive Learning
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(TCL) Hyvärinen & Morioka (2016) and the Sparse Mechanism Shift (SMS) hypothesis (Schölkopf et al.,
2021b) can be leveraged for CD. Monti et al. (2019) relies on TCL for bivariate CD. The authors show the
correspondence between SEMs and the ICA generative model and study temporal sequences. Since the arrow
of time defines a cause-effect relationship, relying on TCL is compatible with CD. The assumptions for identi-
fiability in TCL (Hyvärinen & Morioka, 2016, Thm. 1) require smooth invertible functions, dim N = dim X,
and exponential family distributions with sufficient variability. That is, TCL needs access to temporal data
from different segments, where the intervention targets are the variance parameters. Perry et al. (2022) rely
on the SMS hypothesis (Schölkopf et al., 2021b) to provably identify causal structures. Assuming that only a
subset of mechanisms changes in each environment, the setting is akin to sufficient variability across time
segments in TCL.

Unknown causal ordering. Accounting for the causal ordering is, to the best of our knowledge, only
found in (Shimizu et al., 2006). Binary CD methods such as (Monti et al., 2019) alleviate this step as they
work on an edge-by-edge basis. Other non-ICA-based methods can also avoid this step since the DAG is
invariant to changes in the causal ordering—meaning that reordering Xi in the observation vector X (cf.
Defn. A.11) does not affect the edges of the graph, only their representation in form of an adjacency matrix.
However, to resolve the permutation indeterminacy of ICA, we need to account for the causal ordering, since
only then can the Jacobian be lower-triangular. Although extracting a lower-triangular Jacobian is easier
to interpret and potentially better suited, e.g., as a building block of causal representation learning (since
the causal ordering of N i is always the same), our method extracts the DAG even without resolving these
indeterminacies. That is, our demonstration that the permutation indeterminacies can be resolved should
mostly be considered as corroboration of Lem. 1.

Extensions to related work. Using neural networks for CD is discussed in several papers (Monti et al.,
2019; Khemakhem et al., 2021; Lachapelle et al., 2020; Lippe et al., 2021; 2022; Brouillard et al., 2020), many
of them uses the adjacency matrix, the Jacobian of the inference network (Shimizu et al., 2006; Schölkopf
et al., 2021a; Lachapelle et al., 2020) or that of the score function Rolland et al. (2022). On the other
hand, the Jacobian of the generative model is prevalent in the identifiability literature Gresele et al. (2021);
Buchholz et al. (2022); Zheng et al. (2022), but they do not make claims about CD. Furthermore, methods
that can handle general nonlinear relationships either require interventions (Brouillard et al., 2020; Lippe
et al., 2021; 2022) or rely on independence tests (Guo et al., 2022; Monti et al., 2019). Our method was
inspired by LiNGAM (Shimizu et al., 2006) to use the Jacobian of the inference network for inferring the
DAG and utilizes NLICA (similar to Monti et al. (2019)) to provide theoretical guarantees (Props. 1 and 2)
for multivariable CD. Furthermore, we also prove (Lem. 1) and demonstrate (Tab. 1) that the permutation
indeterminacy of ICA—and that of an unknown causal ordering—can be resolved in the nonlinear case.
Concurrent to our work, Morioka & Hyvarinen (2023) leverage CL for multimodal data and show that under
specific assumptions both identifiability of the latent factors and CD are possible.

Conclusion. Our method uses the Jacobian of the inference function (mapping from observables to
independent variables) and can be thought as a generalization of LiNGAM (Shimizu et al., 2006) to nonlinear
Causal Discovery (CD). We prove that the inverse DGP’s Jacobian captures the sparsity structure of the DAG
(Prop. 1), and show that under strong identifiabilty, the inference model also encodes the same information
(Prop. 2). For the latter, we leverage that causal models enable resolving the permutation indeterminacy of
ICA under certain assumptions (Lem. 1). We introduced a two-step process to leverage strong identifiability
for inferring the DAG of multivariable causal models without constraints on the function class, but assuming
non–i.i.d. data. That is, our approach leverages NLICA with auxiliary information (coming from the positive
pairs, cf. Ex. 2) for CD. We do not claim that NLICA is a CD method per se; however, we show that when
the underlying generative model can be described by a causal graph and we have non–i.i.d. data, then CD is
possible with NLICA. Particularly, we show that contrastive NLICA (Zimmermann et al., 2021) is compatible
with CD. Although the use of the Jacobian is prevalent in the literature, to the best of our knowledge, we
are the first to use the inference model’s Jacobian for causal discovery without constraining
the function class (but using non–i.i.d. data), while also providing identifiability guarantees.
Since we do not use conditional independence tests, but learn the causal ordering with Sinkhorn networks,
our method provides an end-to-end solution for CD and avoids the cost of exponentially many independence
tests. We experimentally demonstrate that our proposal can infer the DAG in multiple synthetic data sets.
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Appendix
A SEMs
Definition A.1 (SEM). A SEM describes causal relationships via a set of structural assignments (Peters
et al., 2017):

Xi := f i (P ai, N i) , ∀i ∈ I = {1, . . . , d} , (7)

where Xi are the endogenous, N i the exogenous/noise variables, P ai ⊆X \ {Xi} denotes the parent set of
Xi, I the set of indices, and f i the mappings.
Definition A.2 (Reduced form of SEM). The reduced form of the SEM expresses all Xi as a function of
only the N i variables, i.e.:

Xi := f i

(
N i

)
, ∀i ∈ I = {0, . . . , d− 1} , (8)

with the same notation as in Defn. A.1, slightly abusing f i and denoting a subset of N by N i ⊆N .
Definition A.3 (Chain). A graphical structure of three nodes Xk, Xp, Xq is called a chain if two nodes are
both parents of the third. Graphically, this means:

XkXp Xq

Figure 5: Visualization of a chain. Conditioning on the middle node (denoted with gray color) blocks the
path Xp → Xk → Xq.

That is, the following conditional independence (denoted by ⊥) relationship holds:

Xp ⊥ Xq|Xk (9)

Definition A.4 (Collider). A graphical structure of three nodes Xk, Xp, Xq is called a collider if two nodes
are both parents of the third. Graphically, this means:

XkXp Xq

Figure 6: Visualization of a collider. Conditioning on the collider node (denoted with gray color) opens the
path Xp → Xk ← Xq.

That is, the following conditional dependence (denoted by ̸⊥) relationship holds:

Xp ̸⊥ Xq|Xk (10)

Definition A.5 (Fork). A graphical structure of three nodes Xk, Xp, Xq is called a fork if one node is the
parent of the two other nodes. Graphically, this means:

XkXp Xq

Figure 7: Visualization of a fork. Conditioning on the fork node (denoted with gray color) blocks the path
Xp ← Xk → Xq.

That is, the following conditional independence (denoted by ⊥) relationship holds:

Xp ⊥ Xq|Xk (11)
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Definition A.6 (Confounder (unobserved common cause)). In a DAG with nodes Xi : ∀i ∈ I = {1, . . . , d}
a node Xk is called a confounder if there exist at least two p, q ∈ I : Xk ∈ P ap ∧ Xk ∈ P aq and Xk is
unobserved. Graphically,

Nk

Np NqXk

Xp Xq

Figure 8: Visualization of a confounder (unobserved common cause), indicated by a gray node color.

Definition A.7 (Causal ordering). The causal ordering π is a bijective automorphism on the index set I.
Namely, π : I → I so that ∀Xi ̸= Xj , it holds that if π (i) < π (j) =⇒ Xj ̸∈ P ai.

The definition means that only a node with a smaller index in π can be a parent of a node with a larger
index. Note that though Xi can be a parent of Xj , it is not necessary, but Xj cannot be a parent of Xi.
Multiple orderings may exist, e.g. if there are multiple Xi so that they only have a single parent. π helps to
have a unique description of the edges in the graph. Namely, if the edges are organized in the adjacency
matrix A according to π, then A will be strictly lower triangular.
Definition A.8 (Adjacency matrix). The adjacency matrix A is a binary d× d matrix, where Aij = 1 ⇐⇒
Xj ∈ P ai. The rows of A are ordered by π; thus, A is strictly lower-triangular.
A only describes the edges of the DAG, which gives the direct cause-effect relationships. Nodes can be
influence each other via paths (i.e., a set of directed edges that can be traversed between the two nodes),
which can be described by the connectivity matrix C
Definition A.9 (Connectivity matrix). The connectivity matrix C is a binary d×d matrix, where C = 1 ⇐⇒
∃p : Xj → · · · → Xi. C =

∑d
k=1 Ak. The rows of C are ordered by π; thus, C is strictly lower-triangular.

Assumption A.1 (Structural faithfulness). The set of N ’s that induces additional zeroes (i.e., a sparser
DAG) in the Jacobians Jf , Jf−1 has zero measure, i.e., both Jacobians describe the sparsity structure of the
underlying DAG DGP with probability one (Jf w.r.t. C, as shown in Lem. A.1; Jf−1 w.r.t. A). Alternatively,
the structural independencies are reflected in a functional form via Jf /Jf−1 . We call this property structural
faithfulness.
Definition A.10 (DGP with known π). The DGP is described by the SEM, when π is known. I.e., the flow
of information is: N

SEM−−−→X.
Definition A.11 (DGP with unknown π). The DGP with unknown π is given by the SEM, and by a
permutation matrix π (with a slight abuse of notation) applied to X. I.e., the flow of information is:
N

SEM−−−→X
π−→ X̂.

Lemma A.1 ( Jf ∼DAG (Id + C)). Given Assum. 1, the partial derivatives of f i w.r.t. N j provide information
about C, as

(Jf )kl = ∂f l

∂Nk
= 0 ⇐⇒ ̸ ∃Xk → · · · → X l

We emphasize that the derivatives are also non-zero in the case of indirect paths, i.e., when ∃Xi ∈ p : i ̸= k, l.
Furthermore, the strictly lower triangular part of Jf has the describes the same DAG as C–or equivalently,
Jf ∼DAG (Id+C).

B Identifiability definitions
Definition B.1 (Strong Identifiability (Khemakhem et al., 2020b)). Given a parameter class Θ, when the
feature extractors gθ1 , gθ2 : X → N produce latent representations N1 = gθ1(X), N2 = gθ2(X) that are
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equivalent up to scaled permutations and offsets c for all θ1, θ2 ∈ Θ, i.e.,

θ1 ∼ θ2 ⇐⇒ N = gθ1(X) = DPgθ2(X) + c, (12)

where D is a diagonal and P a permutation matrix. Then θ1, θ2 fulfill an equivalence relationship.
Definition B.2 (Weak Identifiability (Khemakhem et al., 2020b)). Given a parameter class Θ, when the
feature extractors gθ1 , gθ2 : X → N produce latent representations N1 = gθ1(X), N2 = gθ2(X) that are
equivalent up to matrix multiplications and offsets c for all θ1, θ2 ∈ Θ, i.e.,

θ1 ∼ θ2 ⇐⇒ N = gθ1(X) = Agθ2(X) + c, (13)

where rank (A) ≥ min (dimN ; dimX ). Then θ1, θ2 fulfill an equivalence relationship.
Definition B.3 (Identifiability up to elementwise nonlinearities (Hyvärinen & Morioka, 2017)). Given
a parameter class Θ, when the feature extractors gθ1 , gθ2 : X → N produce latent representations N1 =
gθ1(X), N2 = gθ2(X) that are equivalent up to elementwise nonlinearities, matrix multiplications and offsets
c for all θ1, θ2 ∈ Θ, i.e.,

θ1 ∼ θ2 ⇐⇒ N = gθ1(X) = Aσ
[
gθ2(X)

]
+ c, (14)

where rank (A) ≥ min (dimN ; dimX ) and σ denotes an elementwise nonlinear transformation. Then θ1, θ2
fulfill an equivalence relationship.

C Compatibility of SEM–ICA assumptions
Several works investigated the relationship between SEM and ICA (Gresele et al., 2021; Monti et al., 2019;
Shimizu et al., 2006; Von Kügelgen et al., 2021; Hyvärinen et al., 2023); however, it is unclear whether and
which assumptions of both fields are compatible. This section relies on (Monti et al., 2019, App. B.), where
the authors detail the SEM–ICA connection for linear models. The clear difference is that the conventional
SEM formulation (Defn. A.1) expresses each Xi as a function of P aiand N i; whereas ICA only uses N i.
Formally:

Xi : = f i (P ai, N i) , ∀i ∈ I = {, . . . , d} (15)
Xi : = f∗

i

(
N i

)
, ∀i ∈ I = {0, . . . , d− 1} , (16)

where the former is the conventional definition (Defn. A.1), whereas the latter is a reduced form of the SEM
(Defn. A.2, with N i denoting a subset of N , i.e., N i ⊆N), corresponding to the ICA model. Note that we
use an asterisk to denote that the f i of the two equations can be different.

C.1 Bijectivity of f

It is common to assume a bijective map from the causes (sources) to the effects (observations) in both the
causality (Khemakhem et al., 2021; Gresele et al., 2021; Monti et al., 2019) and the ICA (Zimmermann et al.,
2021; Von Kügelgen et al., 2021; Shimizu et al., 2006; Gresele et al., 2021) literatures. However, since the
maps in (15) and (16) are not necessarily the same, we need to investigate whether those assumptions are
compatible.
Proposition 3 (Equivalence of bijectivity in SEMs and ICA). Assuming bijectivity of f i (P ai, N i) and that
of f∗

i

(
N i

)
are equivalent.

Proof. For the proof, we will use an inductive argument and, w.l.o.g., assume that each Xi depends on all
N j≤i (if there are less dependencies, those arguments can be omitted).

f i =⇒ f∗
i We start from the conventional SEM equations (Defn. A.1):

X1 : = f1 (N1) (17)
X2 : = f2 (X1, N2) (18)

Visually, the question is whether the blue and the red arrows commute (blue are assumed to be bijective, the
red’s bijectivty needs to be proven):
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N1

N2

X1

X2

By assumption, f1 is bijective (in N1), and so is f2 (in X1 and N2). Since f1 ≡ f∗
1, we proceed to (18) and

substitute (17) into (18), yielding:

X2 : = f2 (f1 (N1) , N2) . (19)

Since the composition of bijective maps is bijective (Macdonald, 1968), so the map from N1 to X2 is bijective,
since the maps N1 → X1 and X1 → X2 are bijective by assumption, yielding the bijectivity of f∗

i . Then, we
apply the same argument inductively for X3 := f2 (X1, X2, N3), and up to Xd.

f i ⇐= f∗
i We start from the reduced SEM equations (Defn. A.2):

X1 : = f∗
1 (N1) (20)

X2 : = f∗
2 (N1, N2) . (21)

Visually, the question is whether the blue and the red arrows commute (blue are assumed to be bijective, the
red’s bijectivty needs to be proven):

N1

N2

X1

X2

By assumption, f∗
1 is bijective (in N1), and so is f∗

2 (in N1 and N2). Again, f1 ≡ f∗
1, so we proceed to

(21). Since X1 and N1 relate via a bijective map, there is no information lost in the mapping. Thus, using
X1 instead of N1 is possible since f∗

1 maintains bijectivity—it can be undone by (f∗
1)−1

, which exists by
assumption. N1 → X1 and N1 → X2 are bijective maps, decomposing the latter into N1 → X1 → X2 only
implies that N1 → X1 is injective and X1 → X2 is surjective (Macdonald, 1968). Fortunately, the N1 → X1
is bijective by assumption, so we only need to show that X1 → X2 is not only surjective, but also bijective.
Since both X1 and X2 have the same domain, X1 → X2 is bijective (Macdonald, 1968). Then, we apply the
same argument inductively for X3 := f2 (N1, N2, N3), and up to Xd.

C.2 Does identifiability imply no confounders?
Identifiabilty can be thought of as “inverting" the DGP Zimmermann et al. (2021). So the question is whether
identifiability implies that the learned representation needs to capture all N i, when the assumptions include
that N i are jointly independent? Additionally, we assume that dim N = dim X = d. Intuitively, if there
would be a confounder, it would induce additional6 correlation between at least two Xp and Xq. That is,
Np and Nq would need to “emulate" that when Xk changes (via Nk), then both Xp and Xq would need to
change.
Proposition 4 (Identifying jointly independent N i implies no confounders.). Under the assumption of jointly
independent N i and dim N = dim X = d, identifiability at least up to elementwise nonlinearities (Defn. B.3)
implies that there cannot be confounders.

Proof. We assume that there is a confounder Xk, which is the common cause of Xp and Xq—the argument
generalizes to more children of Xk. Two cases emerge: when there is a directed path Xp → · · · → Xq (p and
q are interchangeable for our argument), or when there is none.

6That is, Xp can be the parent of Xq , and they still can have another common cause Xk
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No directed path between Xp and Xq Recall from Defn. A.6 that these relationships materialize in
the following graph:

Nk

Np NqXk

Xp Xq

Figure 9: Visualization of a confounder (unobserved common cause), indicated by a gray node color.

From the graph, we can describe the conditional independence relationship of Np and Nq. Namely, we have
access to observations Xp and Xq, implying (⊥ denotes conditional independence):

Np ̸⊥ Nq|Xp, Xq , (22)

since conditioning of Xp and Xq activates the colliders (Defn. A.4) Np → Xp ← Xk and Xk → Xq ← Nq,
the path between Np and Nq opens up. Thus, Np and Nq become dependent, contradicting the assumption
that Np ⊥ Nq.

There is at least one directed path between Xp and Xq By noticing that conditioning on Xp and
Xq blocks any paths between Xp and Xq, the conclusion is the same as above.
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D Extended related work

Table 4: Comparison of CD methods. Column x indicates multivariability, do (∅) indicates whether the
method can be applied only to observational data, f indicates constraints on the function class of the SEM,
∂/∂ indicates differentiability, and the data column lists restrictions on the data distribution.

Method x do (∅) f7 ∂/∂ Data

Monti et al. (2019) ✗ ✓ ✓ ✗ non-stationary
Shimizu et al. (2006) ✓ ✓ linear ✗ non-Gaussian
Guo et al. (2022) ✓ ✓ ✓ ✗ exchageability
Khemakhem et al. (2021) ✓ ✓ affine/additive ✓ ✓
Lachapelle et al. (2020) ✓ ✓ additive ✓ Gaussian
Brouillard et al. (2020) ✓ ✗ ✓ ✓ ✓
Ke et al. (2020) ✓ ✗ ✓ ✓ discrete
Lippe et al. (2021) ✓ ✗ ✓ ✓ ✓
Ng et al. (2022) ✓ ✓ additive ✓ ✓
Schölkopf et al. (2021a) ✓ ✓ linear/additive ✓ ✓
Zheng et al. (2018) ✓ ✓ linear ✓ ✓
Yu et al. (2019) ✓ ✓ additive ✓ ✓
Shen et al. (2022)8 ✓ ✓ additive ✓ labeling
Kalainathan et al. (2018) ✓ ✓ additive ✓ Gaussian
Rolland et al. (2022) ✓ ✓ additive ✓ ✓
Yang et al. (2021)9 ✓ ✓ additive ✓ labeling
Lorch et al. (2021) ✓ ✓10 ✓ ✓ graph prior
Lorch et al. (2022) ✓ ✓ ✓ ✓ graph prior
Charpentier et al. (2022) ✓ ✓ ✓ ✓ graph prior
Faria et al. (2022) ✓ ✗11 ✓ graph prior
Zheng et al. (2022) ✓ ✓ linear ✓ Gaussian
Ahuja et al. (2022b) ✓ ✓12 polynomial ✓ ✓
Squires et al. (2023) ✓ ✗ linear ✗ ✓
Atanackovic et al. (2023) ✓ ✓ cyclic (ODE) ✓ ✓
Ours ✓ ✓ ✓ ✓ Assums. 2 and F.1

Table 5: Using the Jacobian in the literature for CD and/or identifiability. Column f indicates constraints
on the function class of the SEM, the data column lists restrictions on the data distribution, J describes
the Jacobian of which function is used, CD indicates use for causal discovery, and the identifiability column
whether the method has identifiability guarantees.

Method f Data J CD Identifiability

Shimizu et al. (2006) linear non-Gaussian Jf−1 ✓ ✓
Lachapelle et al. (2020) additive Gaussian Jf−1 ✓ ✗

Gresele et al. (2021)13 IMA14 ✓ Jf ✗ ✓
Zheng et al. (2022) sparse ✓ Jf ✗ ✓
Rolland et al. (2022) additive ✓ score function ✓ ✗

Atanackovic et al. (2023) cyclic (ODE) ✓ Jf ✓ ✗

Ours ✓ Assums. 2 and F.1 Jf−1 ✓ ✓

7f is generally assumed to be invertible, but we omitted mentioning it for brevity. That is, ✓ in this column does not
necessarily mean no restrictions at all, including our method, which also relies on a bijective f

8Supervised
9Supervised

10Lorch et al. (2021) can also leverage interventional data, but it also works from observations
11Faria et al. (2022) assume latent intervention targets; known interventions can also be incorporated in a semi-supervised

extension
12Ahuja et al. (2022b) has stronger identifiability results when interventional data is available
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E Proofs
E.1 Proof of Lem. 1
Lemma 1. [DAG DGPs resolve the permutation ambiguity of ICA] When the DGP is a SEM with functional
relationships f and an underlying DAG, then the permutation indeterminacy of ICA πICA can be accounted
for such that the Jacobian of the inference network will have a lower-triangular Jacobian, even with unknown
causal ordering π.

Proof. The unknown causal ordering π of N i implies the right-multiplication of Jf−1 with π−1, the permutation
indeterminacy of ICA the left-multiplication with πICA, yielding the estimated Jacobian J

f̂
−1 :

J
f̂

−1 = πICA ◦ Jf−1 ◦ π−1, (23)

where πICA and π−1 are not necessarily the same.
If π is unique, we only need to show that πICA is also unique. Assume that there exists πICA,1 ̸= πICA,2
such that J

f̂
−1 can be transformed into a lower-triangular Jf−1 by both. This implies that the rows of J

f̂
−1

can be permuted such that it yields a lower-triangular Jf−1 (when π is already accounted for). Assume that
πICA,1 yields a lower-triangular Jf−1 . Then a different πICA,2 means that there are at least two rows i, k in
J

f̂
−1 that can be permuted differently than in πICA,1 such that the resulting matrix is still lower-triangular.

Jf−1 has a non-zero diagonal (cf. the definition of B in (26)); thus, using a different ordering πICA,2 will
violate lower-triangularity, for this means that the ith, kth rows after applying πICA,1 will be equal to the
kth, ith rows of πICA,2 (the former being equal to the true Jacobian Jf ):[

π−1
ICA,1 ◦ J

f̂
−1 ◦ π

]
[i,k],:

=
[
Jf−1

]
[i,k],: =

[
π−1

ICA,2 ◦ J
f̂

−1 ◦ π
]

[k,i],:
, (24)

which means that for πICA,2 the resulting matrix has nonzero elements at indices (i, k) and (k, i). This
violates lower-triangularity, since k ̸= i, so one of the above means that there is at least one non-zero element
above the main diagonal, leading to a contradiction.
If π is not unique, we can apply the above argument, resulting in a set of permutation matrices, each
yielding a lower-triangular Jacobian.

E.2 Proof of Prop. 1
Proposition 1. [Jf−1 ∼DAG (Id −A)]The inverse DGP’s Jacobian Jf−1 is structurally equivalent to
(Id −A), when Assum. 1 holds.

Proof. We start from the functional equation of the SEM and note that if X is the input of f (as P ai from
(1)), then the output is the same X (which deterministically depends on N):

X = X (N) := f (X (N) , N) = f (X, N) . (25)

For a given (X, N) we can evaluate the Jacobian of f via the chain rule—the key point is that since X is a
fix point of f , Jf will apprear on both sides (evaluated at the same point, expressed with the bar notation):

Jf

∣∣
X,N

= ∂X(N)
∂N

∣∣
X,N

= ∂f(X,N)
∂N

∣∣
X,N

= A ∂X
∂N

∣∣
X,N

+ B = AJf

∣∣
X,N

+ B (26)

A : = ∂f(X,N)
∂X

∣∣
X,N

; B := ∂f(X,N)
∂N

∣∣
X,N

. (27)

The above equation can be reordered to yield the expression for Jf (note that A, B depend on X, N):

Jf

∣∣
X,N

= (Id −A)−1 B, (28)

13Gresele et al. (2021) proposed IMA and showed that it rules out spurious solutions; Buchholz et al. (2022) proved identifiability
14That is, Jf has orthogonal columns
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where A describes the Xi−Xj edges in the DAG (i.e., A ∼DAG A), B is diagonal (as the X values are fixed).
Since we reason about the Jacobian point-wise, we can invoke the inverse function theorem (by assumption,
f is bijective) to express Jf−1 :

Jf−1 = J−1
f = B−1 (Id −A) . (29)

Jf−1∼DAG (Id−A) follows as A∼DAG A and B is diagonal (the invariance of ∼DAG follows from Def. 1(i)).

Alternative proof

Proof. The proof consists of two steps: 1) leveraging the iterative formulation of the SEM (2), proving that
Jf−1∼DAG(Id −A) and 2) relying on the properties of ∼DAG and Lem. 1, showing Jf−1 ∼DAG J

f̂
−1 .

We start by formulating Jf (recall that X = Xd) based on the iterative SEM expression (2):

Jf

∣∣
Xd−1,N

= ∂Xd

∂N

∣∣
Xd−1,N

= ∂f(Xd−1,N)
∂N

∣∣
Xd−1,N

= Ad−1 ∂Xd−1

∂N

∣∣
Xd−1,N

+ Bd−1 (30)

Ad−1 : = ∂f(Xd−1,N)
∂Xd−1

∣∣
Xd−1,N

; Bd−1 := ∂f(Xd−1,N)
∂N

∣∣
Xd−1,N

, (31)

where A describes the Xi −Xj edges in the DAG (i.e., A ∼DAG A), B is diagonal (as the Xd−1 values are
fixed). Although both A, B are dependent from t (superscript), unless f is linear, they are independent when
seen through the lens of structural equivalence. By Assum. A.1, it holds that Ak ∼DAG Aj ∧Bk ∼DAG Bj :
∀j, k. Thus, we will omit superscripts for both.
Realizing that (30) gives us a recursive formula, and recalling that X0 = 0 , we can unroll (30) iteratively for
t = d− 1, d− 2, . . . , 0:

Jf = A ∂Xd−1

∂N + B ∼DAG A
[
A ∂Xd−2

∂N + B
]

+ B ∼DAG A

A

. . .

A ∂X0

∂N︸︷︷︸
=0

+B


 + B

 + B (32)

=
d−1∑
i=0

AiB = (Id −A)−1 B, (33)

where the structural equivalences follow by the structural faithfulness of Jf (Assum. A.1), the last equality
expresses the sum of the geometric series with elements Ai (the sum is finite as A is strictly lower triangular).
By invoking the inverse function theorem (by assumption, f is bojective), we can express Jf−1 :

Jf−1 = J−1
f ∼DAG B−1 (Id −A) . (34)

Jf−1 ∼DAG (Id−A) follows as A ∼DAG A and B is diagonal (the invariance of ∼DAG follows from
Def. 1(i)).

F NLICA with Contrastive Learning
Assumption F.1 (Contrastive model on Rd). We assume that the model satisfies the following conditions:

(i) The encoder is defined as f̂
−1

: X → N ′, where N ′ ⊆ Rd is a convex body (hyperrectangle);
(ii) The conditional distribution q(Ñ |N) associated with our model f̂

−1
through h = f̂

−1
◦ f is given by

q(Ñ |N) = C−1
q (N)e−δ

(
h(Ñ),h(N)

)
/τ with Cq(N) :=

∫
e

−δ
(

h(Ñ),h(N)
)

/τ
dÑ , where Cq(N) is the

partition function, τ > 0 is a scale parameter, and δ is the semi-metric from Assum. 2.
(iii) The encoder is trained with a contrastive loss LCL using the same L[α metric δ as in Assum. 2, i.e.,

E(
X,X̃,X−

)− log
exp

[
−δ

(
f̂

−1
(X), f̂

−1
(X̃)

)
/τ

]
exp

[
−δ

(
f̂

−1
(X), f̂

−1
(X̃)

)
/τ

]
+

∑M
i exp

[
−δ

(
f̂

−1
(X−), f̂

−1
(X̃)

)
/τ

]
 , (35)

where X̃ is the positive pair, X− are the negative pairs, and M is the number of negative pairs;
(iv) During training one has access to observations X, which are samples from these distributions

transformed by the generator function (i.e., the SEM) f .
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Are the distributional assumptions for contrastive NLICA testable for CD? The assumptions
on the conditional p(Ñ |N) and marginal p(N) distributions (Assum. 2) for contrastive NLICA might be
deemed peculiar in the context of CL. First, we emphasize that since our results do not require the use of
contrastive NLICA, the user is free to chose a different method that guarantees strong identifiability. However,
if contrastive NLICA is deemed suitable for a task, then

1. they are neither interfering with assumptions in CD; and
2. they are testable—e.g., by a one-sample Kolmogorov-Smirnov test (Kolmogorov, 1933; Smirnov,

1948).
What we mean by the first point (and elucidate in the next section) that to fulfill Assum. 2, we neither leave
nor constrain the function class of f .

G Experimental details

Table 6: Hyperparameters for our experiments (§ 5)

Parameter Values

f̂
−1

6-layer MLP
Activation Leaky ReLU
Batch size 6144
Learning rate 1e−4
Rd [0; 1]d
Cp 1
mp 0
Cparam 0.05
mparam 1
p 1
τ (in LCL) 1
α 0.5

Table 7: Results for sparse linear and nonlinear SEMs. Mean Correlation Coefficient (MCC) measures
identifiability, |E∗| is the maximum number of edges in a DAG, Acc is accuracy, Ours is our proposal, HSIC
refers to using HSIC independence tests, and SHD is the Structural Hamming Distance

Linear Nonlinear
|E∗| d MCC Acc(Ours) Acc(HSIC) SHD MCC Acc(Ours) Acc(HSIC) SHD

6 3 1. 0.917±0.108 0.708±0.11 0.111 1. 0.889±0.111 0.75±0.144 0.111
15 5 0.961±0.062 0.768±0.121 0.784±0.111 0.256±0.132 0.972±0.059 0.76±0.095 0.84±0.098 0.208±0.0873

36 8 0.844±0.184 0.709±0.084 0.711±0.122 0.322±0.109 0.783±0.155 0.656±0.059 0.708±0.119 0.375±0.081

55 10 0.8±0.217 0.648±0.059 0.715±0.1 0.336±0.055 0.734±0.206 0.618±0.044 0.69±0.086 0.37±0.082
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Table 8: Results for permuted (i.e., π is not the identity) linear and nonlinear SEMs. Mean Correlation
Coefficient (MCC) measures identifiability, |E∗| is the maximum number of edges in a DAG, Acc is accuracy,
Ours is our proposal, HSIC refers to using HSIC independence tests, and SHD is the Structural Hamming
Distance

Linear Nonlinear
|E∗| d MCC Acc(Ours) Acc(HSIC) SHD MCC Acc(Ours) Acc(HSIC) SHD

6 3 1. 1. 0.667 0. 1. 1. 0.667 0.
15 5 0.989±0.039 0.949±0.098 0.866±0.088 0.051±0.098 0.988±0.039 0.94±0.087 0.863 0.06±0.087

36 8 0.837±0.252 0.834±0.162 0.624±0.127 0.166±0.162 0.752±0.232 0.794±0.138 0.687±0.139 0.206±0.138

55 10 0.852±0.251 0.761±0.213 0.578±0.086 0.239±0.213 0.794±0.255 0.705±0.16 0.573±0.05 0.295±0.159

G.1 Code for the Sinkhorn operator

import torch
from torch import nn as nn

class SinkhornOperator ( object ):
"""
Based on http :// arxiv . org/ abs/ 1802 . 08665
"""

def __init__ (self , num_steps : int):

if num_steps < 1:
raise ValueError (f"{ num_steps =} should be at least 1")

self. num_steps = num_steps

def __call__ (self , matrix : torch . Tensor ) -> torch . Tensor :
def _normalize_row ( matrix : torch . Tensor ) -> torch . Tensor :

return matrix - torch . logsumexp (matrix , 1, keepdim =True)

def _normalize_column ( matrix : torch . Tensor ) -> torch . Tensor :
return matrix - torch . logsumexp (matrix , 0, keepdim =True)

S = matrix

for _ in range (self. num_steps ):
S = _normalize_column ( _normalize_row (S))

return torch .exp(S)

Figure 10: PyTorch code for implementing the Sinkhorn operator from (Mena et al., 2018). A Sinklhorn
network applies SinkhornOperator to the scaled weight matrix W/τ , where τ is generally around 1 · 10−3.

H Notation
Acronyms

IMA Independent Mechanism Analysis

ANM Additive Noise Model

CD Causal Discovery
CdF Causal de Finetti
CL Contrastive Learning

DAG Directed Acyclic Graph
DGP Data Generating Process

i.i.d. independent and identically distributed
ICA Independent Component Analysis
ICM Independent Causal Mechanisms
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LiNGAM Linear Non-Gaussian Acyclic Model
LSTM Long Short-Term Memory

MCC Mean Correlation Coefficient
MLP Multi-Layer Perceptron

NLICA nonlinear Independent Component Analysis

ODE Ordinary Differential Equation

SEM Structural Equation Model
SHD Structural Hamming Distance
SMS Sparse Mechanism Shift

TCL Time-Contrastive Learning

Nomenclature

Lπ regularizer for learning π
S Sinkhorn network
E edge set of a graph
L loss function
h composition of encoder and decoder
d problem dimensionality

Algebra
α scalar field
D diagonal matrix
Id d-dimensional identity matrix
J Jacobian matrix
P permutation matrix

Causality
N noise (independent) variable component
X observation component
N noise (independent) variable vector

P a parent set of X
X observation vector
A adjacency matrix of a SEMs
C connectivity matrix of a SEMs
f structural assignment in SEMs
I index set
N space of the noise variables
X space of the effect variables
π causal ordering
∼DAG structural equivalence
f a component of f

Contrastive Learning
M number of negative samples
LCL contrastive loss function
Ñ positive latent vector
X̃ positive observation vector
X− negative observation vector
τ temperature in LCL
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