
Prompt Sketching for Large Language Models

Luca Beurer-Kellner 1 Mark Niklas Mueller 1 Marc Fischer 1 Martin Vechev 1

Abstract
Many recent prompting strategies for large lan-
guage models (LLMs) query the model multiple
times sequentially – first to produce intermediate
results and then the final answer. However, using
these methods, both decoder and model are un-
aware of potential follow-up prompts, leading to
disconnected and undesirably wordy intermediate
responses. In this work, we address this issue
by proposing prompt sketching, a new prompt-
ing paradigm in which an LLM does not only
respond by completing a prompt, but by predict-
ing values for multiple variables in a template.
This way, sketching grants users more control
over the generation process, e.g., by providing
a reasoning framework via intermediate instruc-
tions, leading to better overall results. The key
idea enabling sketching with existing, autoregres-
sive models is to adapt the decoding procedure
to also score follow-up instructions during text
generation, thus optimizing overall template like-
lihood in inference. Our experiments show that in
a zero-shot setting, prompt sketching outperforms
existing, sequential prompting schemes such as
direct asking or chain-of-thought on 7 out of 8
LLM benchmarking tasks, including state track-
ing, arithmetic reasoning, and general question
answering. To facilitate future use, we release a
number of generic, yet effective sketches appli-
cable to many tasks, and an open source library
called dclib, powering our sketch-aware decoders
as part of https://github.com/eth-sri/lmql.

1. Introduction
While early prompting strategies for large language mod-
els (LLMs) (Brown et al., 2020; Anil et al., 2023; Jiang
et al., 2024; Touvron et al., 2023) focused on simple trigger

1Department of Computer Science, ETH Zürich, Switzer-
land. Correspondence to: Luca Beurer-Kellner <luca.beurer-
kellner@inf.ethz.ch>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

phrases to elicit the desired responses (Kojima et al., 2022),
more recent work considers conversational (Ouyang et al.,
2022), multi-part, and template-guided LLM interactions,
where a model is queried several times in a constrained way,
based on a template or grammar. This offers control over
LLM reasoning by filling in a template of pre-defined steps
(Beurer-Kellner et al., 2023; Lundberg and Ribeiro), allows
interfacing with automated software systems, and enables
syntactically reliable code generation (Poesia et al., 2022).

Key Challenge: Decoding with (Hard) Constraints We
consider a simple application, illustrated in Figure 1. The
goal is to generate a list of items, satisfying two hard require-
ments: (1) the result should be a dashed list of exactly four
items and (2) the second item should be Frisbee. To guar-
antee that these requirements are satisfied, prompting and
fine-tuning alone are insufficient, as unconstrained LLMs
remain inherently stochastic, even with good instructions,
demonstrations, or training Arora et al. (2023); Zhao et al.
(2021). To address this issue, template-guided inference
constructs a template from the (hard) constraints, leaving
multiple holes for the LLM to fill during the generation
(top right, Figure 1). Unfortunately, the naive strategy of
calling an unconstrained model (Figure 1, left) for each
placeholder fails frequently, as the model runs on, beyond
the template, generating many items per placeholder. A prac-
tical alternative is stop-and-go inference (middle): By feed-
ing the template incrementally, item-by-item, and enforcing
stopping-conditions for each call, we can force the overall
output to adhere to the template. While this method is ef-
fective for output formatting (Beurer-Kellner et al., 2023;
Lundberg and Ribeiro), the model remains unaware of the
overall template when decoding each placeholder, leading to
sub-optimal reasoning strategies. For instance, in Figure 1,
stop-and-go generates Frisbee as the first item, leading to a
repetition of the word, which would otherwise be unlikely
under the model’s distribution. This example raises three
important questions: (1) How does stop-and-go inference
compare to unconstrained inference – Beurer-Kellner et al.
(2023); Lundberg and Ribeiro do not evaluate this – in terms
of overall model performance on reasoning tasks? (2) Can
we improve on naive stop-and-go inference by anticipating
the overall template during generation? And, (3) what are
the general effects of these inference methods, i.e., do they
impair or improve the model’s reasoning capabilities?

1

https://github.com/eth-sri/lmql

Prompt Sketching for Large Language Models

Prompt: A list of single-word, fun
things to bring to a trip.

(Hard) Specification: A list of
exactly four items, with ’Frisbee’ as sec-
ond element, such that the resulting output is
guaranteed to be a parsable list.

Template: - [ITEM]
- Frisbee
- [ITEM]
- [ITEM]

Unconstrained Inference

- ITEM Frisbee
- Camera
- Snacks
- Sunglasses
- Hammock
- ...<EOS>
- Frisbee
- ITEM Sunscreen
...

✗ Fails to adhere to
template
✗ Repeats itself
✗ Seq. Decoding

Stop-And-Go Inference

- ITEM Frisbee ⬣
- Frisbee
- ITEM Camera ⬣
- ITEM Snacks ⬣

✓Adheres to template
✗ Repeats itself
✗ Sequential Decoding

Prompt Sketching (ours)

- ITEM Camera ⬣
- Frisbee
- ITEM Snorkeling gear ⬣
- ITEM Hammock ⬣

✓ Adheres to template
✓ Does not repeat
✓ Beam Search over template

Figure 1: Prompt Sketching is a novel inference method for template-guided text generation with LLMs. In comparison to
standard inference and sequential stop-and-go inference, prompt sketching optimizes overall template likelihood, prevents
repetitions, and adheres to the template structure. Output generated by the model is highlighted, and enforced stopping
phrases are indicated as ⬣.

This Work: Prompt Sketching To answer these ques-
tions, we present prompt sketching, a novel framework for
template-guided LLM inference.

The key technical difference of sketching in contrast to prior
techniques is that we phrase the entire template as one seg-
mented sequence decoding problem, rather than multiple
isolated model calls. This, (1) theoretically anchors standard
stop-and-go inference as a special case and (2) allows us to
generalize and implement novel, sketch-aware decoding pro-
cedures based on beam search, that optimize templates end-
to-end. Figure 1 compares sketch-aware decoding (right)
with unconstrained inference (left) and stop-and-go (mid-
dle). Sketching allows us to adhere to the provided prompt
template, while also optimizing multiple placeholder vari-
ables jointly, in this case, avoiding a repetition of Frisbee.
We carry out an extensive experimental evaluation, show-
ing that sketching outperforms non-templated prompting
methods like chain-of-thought on 7/8 LLM reasoning tasks,
demonstrating the effectiveness of template-guided infer-
ence in general reasoning. In our experiments, sketching
allows us to consistently enforce reasoning strategies across
all tasks, enabling a more controlled form of LLM program-
ming going beyond simple prompting. For 5/8 tasks, we
even observe significant improvements over simple stop-
and-go templating, demonstrating that sketch-aware decod-
ing and joint optimization of multiple variables are crucial
components of effective template-guided LLM inference.

Main Contributions Our core contributions are:

• A framework of prompt sketching, phrasing multi-step
and template-guided LLM inference as a segmented
sequence decoding problem.

• Two novel sketch-aware decoding procedures, transfer-
ring several insights from constrained sequence decod-
ing to general template-guided inference.

• A collection of ready-to-use, generic prompt sketches
that work well with a number of hard LLM reasoning
tasks and can be easily adapted.

• The first extensive evaluation of sketching using stop-
and-go as well as several novel (sketch-aware) de-
coding strategies, along with a comparison to non-
templated inference.

2. Background
We first provide relevant background on prompting and
decoding, before discussing prompt sketching.

Decoding Most recent language models operate left-
to-right only, i.e., they predict a probability distribution
p(yt|y<t,x) over the next token yt given an input se-
quence x = ⟨x1, x2, ..., xn⟩ and previously predicted to-
kens y<t = ⟨y1, y2, ..., yt⟩. Thus, a core task is to decode a
model output y⋆ that maximizes a scoring function:

y⋆ = argmax
y∈Y

score(y,x). (1)

A popular choice for this scoring function is the posterior or
joint probability assigned to the decoded sequence by the
language model. This leads to the so-called maximum a
posteriori (MAP) solution:

yMAP : = argmax
y∈Y

p(y|x) (2)

= argmax
y∈Y

ΠN
t=1p(yt|y<t,x)

= argmax
y∈Y

ΣN
t=1 log p(yt|y<t,x)

However, solving the MAP decoding exactly is gener-
ally intractable, as it requires all conditional probabilities

2

Prompt Sketching for Large Language Models

p(yt|y<t,x) over an exponentially large search space to be
evaluated. To solve this problem, a range of decoding strate-
gies have been introduced, which aim to find approximate
solutions. To discuss them, it is helpful to imagine Y as a
tree with the prompt or prefix x at the root and children of a
node corresponding to possible continuations, all scored by
score(y<t,x).

ARGMAX Decoding corresponds to a depth-first search
of our decoding tree that terminates once the first solution
has been found. Operationally, at every decoding step, we
extend our hypothesis y<(t−1) by choosing the next token
yt to maximize score(yt | y<(t−1),x):

yARGMAX :=

N⊕
t=1

argmax
yt∈Y

p(yt|y<t,x) (3)

where ⊕ denotes concatenation. ARGMAX decoding is
efficient, but will also disregard many alternative hypotheses
due to its greedy nature.

Beam Search corresponds to a breadth-first search in the
decoding tree where the breadth (at every tree depth) is lim-
ited to the beam width n. Operationally, we first determine
the n best continuations of all of our n hypotheses and then
retain the n best ones across all these n2 continuations. This
yields high-quality solutions at moderate computational cost,
making Beam Search popular across a wide range of tasks.
Interestingly, thus obtained solutions often outperform exact
decodings (or very large beam widths) in down-stream tasks
(Holtzman et al., 2020). Meister et al. (2020) suggest that
this is due to beam search inducing a regularization towards
uniform information density, preferred in human speech.

Grid Beam Search (Hokamp and Liu, 2017) extends
beam search to facilitate constraint decoding, i.e., trans-
ducing a response such that it contains certain strings or
satisfies constraints. As sequences complying with such
constraints typically achieve a much lower score than natu-
ral model predictions, they would never be included using
vanilla beam search. Grid beam search solves this problem
by introducing separate comparison pools for hypotheses
satisfying different numbers of constraints. To avoid a linear
increase in beam width and thus computational cost in the
number of constraints, Post and Vilar (2018) introduce a
dynamic beam allocation scheme that keeps the total beam
width constant and assigns slots on this beam depending on
the number of satisfied constraints.

Length Normalization (Wu et al., 2016) is frequently em-
ployed to compare sequences of different lengths, to com-
pensate for the summation of additional negative logprobs.
We can weight our scoring function with a length normal-

ization term, parametrized by β ∈ R≥0 and α ∈ [0, 1]:

w =
(β + 1)α

(β + |y|)α
, (4)

where β = 0 and α = 1 recovers the mean.

3. Prompt Sketching
The core of prompt sketching is template-guided LLM
inference, i.e., alternating model output with template-
derived intermediate tokens. This is different from
sequential prompting methods like chain-of-thought
or answer-only, where first, the model consumes an
input such as a question or instructions and then
generates an answer in an unconstrained way. More
formally, we consider a sketch S to be a template
of the form S := "<p1> [v2] . . . <pk−2> [vk−1] <pk>"

where, pi are deterministic sequences of tokens, spec-
ified by the template, and vi are variables that are
completed by the model. This definition captures ex-
isting forms of prompting, where e.g. answer-only
(AO) can be written as SAO := "<Q> A: [ANSWER]"

and chain-of-thought (CoT) prompting as
SCoT := "<Q> A: Let's think step by step. [COT].",
where <Q> corresponds to a question and the variable COT

contains model reasoning as well as the final answer.

Single and Multi-Variable Sketches We consider SAO

and SCoT as sequential, single-variable sketches, as the
variable is placed at the end of the template. The model,
therefore, first digests all provided information such as a
question and reasoning instructions before generating the
answer. In contrast, with more general sketches, values
for multiple variables can be generated, and deterministic
intermediate instructions can be inserted during the genera-
tion. Existing examples of multi-variable problems include
conversational systems like ChatGPT, agentic prompting
like ReAct (Yao et al., 2022a), language model programming
(Beurer-Kellner et al., 2023), and language model cascades
(Dohan et al., 2022).

Autoregressive Sketch Decoding Sketching extends the
range of decoding strategies beyond just sequential gener-
ation. Nonetheless, most language models are still simple
next-token predictors, i.e., given some prompt x, they gen-
erate a sequence of tokens y autoregressively, that is, one
token at a time, conditioned only on the previously gener-
ated tokens:

p(y|x) =
|y|∏
i=1

p(yi|x, y<i) (5)

To align this with the idea of sketching, we split the gen-
erated sequence y = {y1, . . . , yn}, including both deter-
ministic and variable portions, into k consecutive chunks

3

Prompt Sketching for Large Language Models

Cy = {c1, . . . , ck} of lengths n1, . . . , nk respectively, i.e.,
Cy =

{
{y1, . . . , yn1}, . . . , {yn(k−1)+1, . . . , ynk

}
}

. Each
chunk in Cy is then associated either with a deterministic
prompt part pi or a model-predicted variable vi. The overall
joint probability of all chunks is then defined as

p(c1, . . . , ck) =

k∏
j=1

nj∏
i=nj−1+1

p(yi|y<i) (6)

Crucially, we derive the values of all chunks from a single
sequence of tokens y, which can be predicted sequentially
using an autoregressive model. A chunk- and variable-
partitioned sequence can then be leveraged by decoding
algorithms to obtain higher-quality responses or inject deter-
ministic phrases during generation. To determine the chunk
boundaries in a given sequence, we rely on pre-defined stop-
ping phrases, as discussed next, which are assumed to be
part of the sketch template as provided to the model.

Chunking with Stopping Phrases Like in stop-and-go
inference, sketching relies on the use of per-variable stop-
ping phrases (SPs). SPs are specified as part of a prompt
sketch and automatically terminate the generation of the
current chunk i on occurrence. For example, when chunk-
ing by sentence is desired, SPs typically include newline
characters, punctuation marks, or other sentence-ending to-
kens. This allows us to chunk the output token sequence
y, assigning the resulting subsequences to variables vi, and
keep the model from running on uncontrollably. To enforce
stopping phrases during generation, sketch-aware decoders
continuously scan for the next SP, and once found, auto-
matically stop decoding the current chunk and move on to
the next one. In case no stopping phrase occurs before the
model predicts its designated end-of-sequence token, we
do not terminate the entire generation process but rather
continue decoding the next chunk. This allows us to handle
cases where the model does not naturally predict any of the
user-specified stopping phrases.

Deterministic and Constrained Chunks To inject de-
terministic phrases during generation, we force a predeter-
mined sequence pi to be decoded, while still evaluating
its likelihood p(ci|c<i). Further, we consider constrained
variables as a special case of non-deterministic variables,
whose values are predicted by the model, but can only be
chosen from a restricted set of sequences (e.g., only num-
bers, matching a regular expression, etc.). To implement
constrained variables, we rely on the LMQL query language
for LLMs (Beurer-Kellner et al., 2023). This allows us to
mask out all tokens that will not satisfy a given constraint
during generation, such that the resulting value of some
restricted variable ci is guaranteed to satisfy the constraint.

Reasoning Framework
<Question>
Let's weigh our options:
On the one hand [THOUGHT]
However, on the other hand [THOUGH]
In conclusion, [ANSWER]

Interleaved Reasoning
Let's digest this step by step.
<Q1>
So now, [STATE]
<Q2>
So now, [STATE]
Overall this means [ANSWER]

Figure 2: Two examples of simple multi-variable sketches.

Example We show two example sketch templates in Fig-
ure 2. In the Reasoning Framework example, we guide
the model’s reasoning process by inserting deterministic
phrases such as "On the one hand", "On the other hand", or
"In conclusion" in-between generated reasoning steps. In
the Interleaved Reasoning example, we feed the model our
problem definition, e.g. sentence by sentence as chunks
Qi, prompting for intermediate results after each one. Once
the full problem description has been fed to the model, we
generate the overall conclusion and answer.

3.1. Sketch-Aware Decoding

Sketching allows us to denote template-guided LLM infer-
ence as one long, segmented sequence decoding problem.
With greedy ARGMAX decoding and autoregressive mod-
els conditioned on previously generated tokens only, this
recovers stop-and-go inference. As discussed in Section 1,
however, this form of sequential decoding does not account
for yet-to-come parts of the template. At the same time,
we operate greedily so after a deterministic chunk has been
inserted, we cannot retroactively change the previously gen-
erated variable values. To address this, we leverage the
probabilistic understanding of sketching and propose a novel
class of decoding procedures that, in contrast to traditional
token-level decoders, operate on the level of the template
to guide the decoding process end-to-end. Concretely, we
experiment with two novel decoder adaptations, namely:
(1) Hierarchical Variable-Level Beam Search (VAR) and (2)
Grid-Based Beam Search (BEAMVAR). Next, we discuss the
implementation of these methods in more detail.

VAR: Variable-Level Beam Search is based on the idea
of applying beam search on the level of the decoded place-
holder variables. This means that instead of extending each
active hypothesis by the n most likely next tokens, we ex-
tend it by n sampled values for the currently decoded vari-
able. Starting with an empty sequence of tokens, we decode
variable by variable. When at variable vi, we have at most
n hypotheses for which the variables v<i have been cho-
sen. For each of them, we then generate n proposals for
variable vi, thus giving us n2 hypotheses over the variables
v≤i. Among these, we then select the n most likely ones
according to the model score and move to the next variable.
Deterministic chunks are handled by appending them to the
set of active hypotheses all at once. This process is repeated
until all variables have been decoded. See App. A, for a
pseudo-code implementation of VAR.

4

Prompt Sketching for Large Language Models

Sketched Chain-Of-Thought
"Q: <question>"
"Answer Choices: (A)...(B)..."
"A: Let's think step by step."

for i in range(12):
"- [THOUGHT]"
if not THOUGHT.endswith("\\n"): "\\n"
if "answer" in THOUGHT: break

"Overall this means,[CONCLUSION] Therefore, among A
through E,
the answer is[answer]"

Figure 3: A sketched formulation of chain-of-though.

BEAMVAR: Variable-Grid Beam Search is based on the
idea that the number of decoded variables is an important
measure of decoding progress and should thus be considered
when comparing the scores of different sequences during
token-level beam search, to decide which to explore further.
This is particularly important in the presence of determin-
istic chunks, which, by their very nature, typically have
lower likelihoods under the model distribution than non-
deterministic variables and would thus never be included in
a decoded hypothesis. Thus, we adapt the dynamic beam
allocation method of Post and Vilar (2018) to the sketching
setting and propose Variable-Grid Beam Search (BEAMVAR):
We partition our beam width into separate pools depend-
ing on the currently decoded variable vi and only compare
scores per pool. To decide how many slots to allocate to
each pool and thus variable, we divide the beam width by the
number of unique, currently decoded variables and allocate
the remainder to the pool with the most decoded variables,
reassigning unused slots to pools decoding later variables,
to ensure progress at the template-level. A pseudo-code
implementation of BEAMVAR can be found in App. A.

4. Experimental Evaluation
We focus our evaluation on the following questions: (1) Is
templated-guided inference and sketching effective at im-
proving the performance of LLMs on reasoning tasks? (2)
Can sketch-aware decoders outperform existing decoders in
and outside of the sketching setting? And (3), what kind of
tasks benefit the most from sketching? To answer these ques-
tions, we compare model performance with non-templated,
sequential inference on a wide range of different bench-
marks for LLMs (Section 4.1) and also investigate novel
applications enabled by prompt sketching (Section 4.2).

Models We use OpenAI’s text-davinci-003 InstructGPT
model (175B parameters; Ouyang et al. (2022)) and Llama-
2 Chat (13B parameters; Llama-2 in the following; Touvron
et al. (2023)) to evaluate. While text-davinci-003 clearly is
the more capable model, we find that Llama-2 provides an in-
teresting comparison point for the applicability of sketching

to smaller, more open models. We further also experimented
with OpenAI’s smaller text-curie-001 model (comparative
study in App. C.2). We note that the used OpenAI mod-
els have been depreciated since our experiments where run,
however, they still provide a useful comparison and repre-
sent a significant financial investment.

Baselines As a baseline, we compare sketching to non-
templated zero-shot formulations of answer-only (AO) and
chain-of-thought (CoT), using zero-shot CoT (Kojima et al.,
2022) for the latter. Examples of all used prompts/sketches
are given in App. E. During generation, no task demonstra-
tions are provided and the model is prompted with simple
instructions only. This highlights a core benefit of sketching:
the ability to precisely guide the model during generation
without concrete demonstrations. Still, we also include a
comparison with few-shot prompting in App. C.1, which is
generally orthogonal to sketching.

Datasets and Sketches We evaluate on a total of 8 LLM
reasoning tasks. For each task, we apply one of two generic
sketch templates: For arithmetic and logical reasoning, date
understanding, and general question answering, we rely on
a sketched form of chain-of-thought, as shown in Figure 3.
For state tracking and matrix shape reasoning, we employ an
interleaved reasoning sketch, as shown in Figure 2, splitting
task descriptions into sentences and interleaving them with
the model’s reasoning steps. For a detailed description of
the tasks and sketches, we refer to App. E.

Compute and Dataset Size The total costs of our Ope-
nAI experiments are roughly $4,000 USD in API use. To
limit these costs for our OpenAI experiments specifically,
we evaluate only 100 uniformly random samples per task-
decoder configuration, with confidence bounds reported in
App. C.4. For Llama-2, on the other hand, we run all of our
experiments on 1000 samples per task (or the full datasets),
using a single NVIDIA H100 GPU with 80GB memory.

Decoder Configurations As a baseline for our sketch-
aware decoding procedures, we compare with ARGMAX

and traditional beam search (BEAM), applied to each sketch
variable individually. Based on this, we examine the benefit
of sketching with and without our sketch-aware decoders
VAR and BEAMVAR. For BEAM, VAR, and BEAMVAR we
use a beam width of n = 2 and rely on length normalized
scoring in line with previous work (Wu et al., 2016), using
β = 0 and α = 0.7.

4.1. Task Accuracy

In Tables 1 and 2, we report our main results on task per-
formance with text-davinci-003 and Llama-2, respectively.
Considering only ARGMAX decoding, we consistently ob-
serve improved or maintained performance with sketching,

5

Prompt Sketching for Large Language Models

Table 1: text-davinci-003 task accuracy with Answer-Only, Chain-Of-Thought, and Prompt Sketching (ours) using ARGMAX,
BEAM, BEAMVAR (ours) and VAR (ours) decoding. Each configuration is evaluated on 100 uniformly sampled instances per
task. Best results are bold.

Task

Sequential Decoding Sketch-Aware Decoding (ours)

Answer-Only Chain-Of-Thought Prompting Prompt Sketching (ours)

ARGMAX ARGMAX BEAM BEAMVAR VAR ARGMAX BEAMVAR VAR BEAM

Logical Reasoning
Date Understanding+ 0.48 0.70 0.75 0.75 0.69 0.72 0.73 0.66 -

Information Essentiality+∗ - - - - - 0.01 0.25 0.06 0.15

Question Answering
AQuA (Ling et al., 2017) 0.31 0.37 0.37 0.35 0.35 0.40 0.47 0.35 -

StrategyQA (Geva et al., 2021) 0.68 0.71 0.72 0.67 0.67 0.69 0.77 0.66 -

Arithmetic Reasoning
Multistep Arithmetic+ 0.20 0.43 0.44 0.49 0.44 0.45 0.48 0.38 -

GSM8K (Cobbe et al., 2021) 0.08 0.56 0.58 0.64 0.57 0.57 0.53 0.59 -

Interleaved Reasoning
Tracking Shuffled Objects+ 0.19 0.62 0.47 0.52 0.62 0.64 0.62 0.66 -

Matrix Shapes+ 0.61 0.77 0.77 0.71 0.76 0.81 0.79 0.85 -
+ Tasks extracted from the BIG benchmark suite (Srivastava et al., 2022).
∗ Specifically adapted for our evaluation of forward referencing prompts.

as compared to sequential CoT or AO (7 out of 8 improved
for text-davinci-003, 6 out of 8 with Llama-2). This shows,
that simple ARGMAX sketching can already be effective (up
to 4% and 8% points improvement for text-davinci-003

and Llama-2 respectively). Manual inspection reveals that
sketching consistently results in clearly structured reason-
ing, while with CoT the model makes a seemingly random
choice about the form of reasoning applied to each sample
(simple text, a list of steps, etc.), impairing task accuracy
(see App. E for detailed examples).

Llama-2 largely confirms our results for
text-davinci-003. Two outliers are the matrix shapes task
and the AQuA dataset Ling et al. (2017). For both, Llama-2
exhibits very bad performance across all decoding and
prompting strategies, suggesting that the model is likely
unable to perform these tasks at all. We attribute this to
the difference in model size when compared to OpenAI.
text-davinci-003 has 175 billion parameters, while the
Llama-2 variant only has 13 billion parameters, which can
cause a gap in reasoning capabilities (Kojima et al., 2022).

Decoders Combining simple sketches with sketch-aware
decoding, we observe even stronger performance gains of
up to 10% points, e.g., for BEAMVAR compared to sequen-
tial prompting with ARGMAX or BEAM on the question an-
swering datasets AQuA (Ling et al., 2017) and StrategyQA
(Geva et al., 2021) with text-davinci-003. We observe VAR

to perform particularly well on tasks that rely on interleaved
reasoning while BEAMVAR is more effective in other settings.
For Llama-2, we observe analogous effects, e.g., BEAMVAR

improves performance on Date Understanding and GSM8K
by almost 7% points, compared to non-templated CoT and
simple ARGMAX.

Reasoning Framework
<Question>
Let’s weigh our options:
On the one hand [THOUGHT]
However, on the other
hand [THOUGH]
In conclusion, [ANSWER]

Interleaved Reasoning
Let’s digest this step by step.
<Q1>
So now, [STATE]
<Q2>
So now, [STATE]
Overall this means [ANSWER]

<S1> [IS_NEEDED1]
to answer <Q>
However, <S2> [IS_NEEDED2].
Therefore, [CONCLUSION]

Figure 4: Information Essentiality prompt with forward
references (details in App. E).

For text-davinci-003, we also observe notable performance
gains of up to 6% points, when using our sketch-aware
decoders in combination with the established Zero-Shot CoT
(Kojima et al., 2022) prompting scheme (cf. Table 1). This
is because Zero-Shot CoT already is a two-part prompting
scheme, which naturally benefits from our sketch-aware
decoders, letting them optimize over the reasoning process
(first variable) and final answer (second variable) jointly.

4.2. Novel Applications Enabled by Prompt Sketching

In addition to reasoning performance, sketching also en-
ables novel applications where non-templated sequential
inference either fails completely or is much less effective
and reliable. We highlight multiple scenarios here (causal
reordering, sudoku, interactive environments) and describe
even more experiments in App. B (JSON generation, tool
use and graph traversal tasks).

Causal Reordering First, we investigate forward referenc-
ing abilities with our sketch-aware decoders. More specifi-
cally, we examine whether sketch-aware decoders enable the
model to anticipate future information to some degree. For
this, we adapt the existing Information Essentiality dataset
(Srivastava et al., 2022), by reordering it according to the
template shown in Figure 4. The model has to determine
the essentiality of two statements <S1> and <S2>, with re-
spect to a given question <Q>. However, in our reordered
prompt, the result variable IS_NEEDED1 is decoded before the

6

Prompt Sketching for Large Language Models

Table 2: Evaluation results for Llama-2 Chat (13 billion parameters) analogous to Table 1. Zero-shot task accuracy with
Answer-Only, Chain-Of-Thought, and Prompt Sketching (ours) using ARGMAX, BEAM, BEAMVAR (ours) and VAR (ours)
decoding. Best results in bold.

Task

Sequential Decoding Sketch-Aware Decoding (ours)

Answer-Only Chain-Of-Thought Prompting Prompt Sketching (ours)

ARGMAX ARGMAX BEAM BEAMVAR VAR ARGMAX BEAMVAR VAR BEAM

Logical Reasoning
Date Understanding+ 0.496 0.591 0.599 0.613 0.580 0.634 0.656 0.642 -

Information Essentiality+∗ - - - - - 0.088 0.132 0.132 0.132

Question Answering
AQuA (Ling et al., 2017) 0.231 0.291 0.311 0.275 0.271 0.239 0.255 0.243 -

StrategyQA (Geva et al., 2021) 0.564 0.555 0.566 0.570 0.568 0.638 0.630 0.640 -

Arithmetic Reasoning
Multistep Arithmetic+ 0.038 0.133 0.120 0.138 0.132 0.126 0.142 0.103 -

GSM8K (Cobbe et al., 2021) 0.049 0.276 0.296 0.305 0.296 0.320 0.353 0.350 -

Interleaved Reasoning
Tracking Shuffled Objects+ 0.197 0.196 0.204 0.198 0.188 0.227 0.210 0.234 -

Matrix Shapes+ 0.227 0.068 0.065 0.056 0.191 0.205 0.200 0.204 -
+ Tasks extracted from the BIG benchmark suite (Srivastava et al., 2022).
∗ Specifically adapted for our evaluation of forward referencing prompts.

<Q> is shown. For this custom task (cf. Table 1), we indeed
observe that ARGMAX is incapable of producing any mean-
ingful results (0.01 accuracy), whereas, BEAMVAR and VAR

achieve an improved accuracy of 0.25 and 0.06 respectively,
by exploring a wider hypotheses space.

Sudoku We further examine the capabilities of a model to
solve simple 3× 3 sudoku-like puzzles: the LLM is tasked
to complete a partial grid with unique numbers in 1 − 9.
Similar to before, this task requires forward referencing to
effectively choose the correct numbers. As shown in Ta-
ble 3, out of 100 puzzles with 1− 6 empty spots, sequential
ARGMAX decoding is only capable of solving 15. This is
expected, as greedy decoding does not allow to anticipate
any future information (i.e. fixed numbers), before choos-
ing earlier ones. In contrast, BEAMVAR (n = 5) and VAR

(n = 3) solve 66/100 and 62/100 puzzles respectively,
demonstrating again that they explore a wider hypotheses
space. A potential alternative is to re-order the template,
which allows text-davinci-003 to achieve perfect accuracy
with ARGMAX, although re-ordering is not always an op-
tion with more complex multi-step puzzles and interactive
environments (see below).

Interactive Environments Sketch-aware decoders can
take the effect of template-induced continuations into ac-
count. If we choose these continuations dynamically based
on previous model output, we can effectively leverage them
to explore interactive environments (Driess et al., 2023).
For this, we experiment with LLM-guided graph and world
traversal, where an LLM agent traverses a world, starting
out in a randomly chosen room, with the goal of finding
the exit (or similar). For this, we run with random graphs
(Dungeon Escape), as well as generated TextWorld (Côté

et al., 2019) environments. For further details on the setup,
we refer to App. B.3. As shown in Table 3, in Dungeon Es-
cape, ARGMAX mostly finds the exit, but often requires a lot
more steps (∼ 4) than VAR (∼ 2.8) and BEAMVAR (∼ 2− 3)
for both OpenAI models, with the smaller text-curie-001

model being less effective overall. In TextWorld, we gener-
ally see similar trends, though lower success rates.

4.3. Discussion

Our evaluation shows that sketching and, by extension,
template-guided LLM inference in general, can significantly
improve model reasoning capabilities. Here, we briefly dis-
cuss limitations and other considerations relating to design,
compuational, and applicability aspects.

Comparison to Few-Shot Prompting Generally, we find
sketching to be largely complementary to few-shot prompt-
ing. While both can be used to encourage a model to fol-
low a specific template, there are multiple key differences:
Prompt sketching can strictly force the model to follow a
provided template, while we have no such guarantee in few-
shot prompting (models often still hallucinate or deviate
randomly from demonstrated patterns). This is particularly
interesting in scenarios, where users want to generate struc-
tured output such as schema-based JSON (cf. App. B.1).
Further, sketch-aware decoders enable joint optimization
over multiple sketch variables, alleviating the limitations
of greedy autoregressive generation, where backtracking is
generally not possible (cf. Table 3). Lastly, with respect to
computational efficiency, sketch-aware decoding also scales
more favorably than few-shot prompting, as it does not in-
crease the overall sequence length, but instead increases
the number of candidate sequences to be tracked in parallel.

7

Prompt Sketching for Large Language Models

Table 3: Sketch-aware decoding enables sudoku solving and more effective graph and world traversal.

Sequential Prompting Prompt Sketching (ours)

ARGMAX ARGMAX BEAMVAR VAR

Sudoku (3x3)
text-davinci-003 98/100 (reordered) 15/100 66/100 62/100

text-curie-001 9/100 (reordered) 5/100 38/100 33/100

Dungeon Escape
text-davinci-003 - 93/100 (∼4.14 steps) 100/100 (∼2.75 steps) 96/100 (∼3.42 steps)

text-curie-001 - 38/100 (∼4.0 steps) 76/100 (∼2.94 steps) 46/100 (∼2.30 steps)

TextWorld
text-davinci-003 - 24/32 (∼11.21 steps) 27/32 (∼9.37 steps) 24/32 (∼9.56 steps)

For instance, in App. C.1 we compare two-shot prompt-
ing with zero-shot sketching on AQuA, and find zero-shot
sketching both to be slightly more accurate, while also re-
quiring ∼20% fewer tokens to be processed (more details
on computational considerations in App. C.3).

Computational Overhead of Sketch-Aware Decoding
Next, we discuss the computational overhead of sketch-
aware decoders over greedy search without demonstrations.
While BEAMVAR requires as much compute as regular beam
search, VAR requires an additional factor of beam width n
more hypotheses to be tracked in parallel. However, similar
to traditional beam search, this is a well-known trade-off:
branching decoders are more expensive but still widely used,
especially when high accuracy and diversity are relevant.

Sketch Design and Iteration While still sensitive to word-
ing, prompt sketching does offer more control over exact
model behavior, thereby addressing some of the difficulties
of traditional prompt design (Reynolds and McDonell, 2021;
Arora et al., 2023; Zhao et al., 2021). However, sketching
is also not a silver bullet: Most importantly, we find that
an effective sketch must not be too restrictive to not impair
model performance. Still, as substantiated by our results,
even simple sketches can already be effective at improv-
ing reasoning capabilities. Lastly, much like non-templated
prompts, sketches still require iterative development and tun-
ing to achieve optimal performance on a given task. More
importantly, however, they offer benefits such as improved
control, a guaranteed output format, and reduced free-text
formatting instructions, otherwise needed.

Applicability While sketch design still requires some ef-
fort, we find that many tasks in our evaluation can be solved
with a small set of generic sketches. For instance, we find
that a sketched form of chain-of-thought (Wei et al., 2022a)
(see Figure 3) is already effective for a wide range of tasks,
including arithmetic reasoning and general question answer-
ing. For direct adoption, we also publish the sketches used
in our evaluation, which can be adapted or used as-is.

5. Related Work
Prompting Recent works have proposed a variety of dif-
ferent prompting techniques including chain-of-thought
prompting (Wei et al., 2022a;b), interactive question an-
swering (Yao et al., 2022b), self-consistency (Wang et al.,
2022a), and ThinkSum (Ozturkler et al., 2022). These
prompt programming techniques (Reynolds and McDonell,
2021; Zhou et al., 2022), aim to leverage the general reason-
ing abilities of LLMs to solve diverse tasks. To enable the
efficient implementation of such complex prompting tech-
niques, LM-focused programming systems have recently
been introduced: PromptChainer (Wu et al., 2022), Prompt-
Source (Bach et al., 2022), and LMQL (Beurer-Kellner et al.,
2023) provide development environments for LM interac-
tion. We build on LMQL, as it supports variable constraints
and control flow within prompts, enabling the efficient rep-
resentation of sketches. Finally, language model cascades
(Dohan et al., 2022) view LM querying as probabilistic pro-
gramming over multiple variables, thus implicitly assuming
a sketching setting and opening up interesting perspectives
for more advanced decoders in the future. In contrast to
prompt sketching, however, existing works compose multi-
ple LLM calls in a disconnected manner, and, crucially, do
not consider the overall likelihood of the resulting sequence.

Language Model Decoding Most decoding techniques
either aim to approximately recover the maximum a poste-
riori solution under the model distribution or sample from
it. Beyond direct sampling from the model distribution, Nu-
cleus Sampling (Holtzman et al., 2020) clips away the tail
of the distribution and Locally Typical Sampling (Meister
et al., 2022) considers a subset that yields uniform informa-
tion density sequences. While ARGMAX can be seen as a
best-first search of the decoding tree with a maximum width
of 1, Beam Search can be seen as a width-first search with
a width constrained to k (often 5) trajectories. Best First
Beam Search (Meister et al., 2020) combines the two ideas,
always exploring the sequence with the largest score while
maintaining the width limit, to increase efficiency. Best-k
Search (Xu et al., 2022a) drops the width restriction and

8

Prompt Sketching for Large Language Models

always explores the k highest scoring sequences. Lattice
decoding (Xu et al., 2022b) allows for the recombination
of similar trajectories, leading to more diverse solutions.
Diverse Beam Search (Vijayakumar et al., 2016) includes
a diversity objective in scoring beams. To improve perfor-
mance on constraint decoding problems, Grid Beam Search
(Hokamp and Liu, 2017) creates separate beams for se-
quences satisfying a different number of constraints. Post
and Vilar (2018) propose Dynamic Beam Allocation to in-
stead partition a fixed beam width into pools depending on
the number of satisfied constraints, with Hu et al. (2019)
introducing a vectorized implementation.

6. Conclusion
We presented prompt sketching, a novel framework for
template-guided LLM inference that phrases templated gen-
eration as a segmented sequence decoding problem. This
perspective unlocks novel sketch-aware decoding proce-
dures that optimize for overall template likelihood and not
just sequentially generate text. Our experiments show that
sketching outperforms naive templating as well as sequen-
tial prompting like chain-of-thought on 7 out of 8 hard LLM
reasoning tasks, improving task accuracy by up to 10%
points. Looking forward, we also show how sketching en-
ables novel applications such as reliable output formatting,
forward references in reasoning, and LLM-guided graph
traversal, inspiring future work in this direction.

Reproducibility
We publish our code, prompts, and detailed instruc-
tions on how to reproduce our results at https://

github.com/eth-sri/lmql/tree/prompt-sketching, in-
cluding our implementation of dclib (also see App. D). Ad-
ditionally, we provide detailed descriptions of all prompts
in App. E.

Note that since the initial evaluation of this work, OpenAI
has restricted the availability of the Completions API re-
quired by some of our sketch-aware decoding algorithms.
Thus, our evaluation of sketch-aware decoders with OpenAI
models (Table 1 and some experiments in appendices B
and C) can not be reproduced anymore. Nevertheless, we
release all code and prompts for these experiments in the
above repository. Other results, including those on Llama-2,
are not affected by this and can be reproduced.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.

9

https://github.com/eth-sri/lmql/tree/prompt-sketching
https://github.com/eth-sri/lmql/tree/prompt-sketching
https://platform.openai.com/docs/api-reference/completions

Prompt Sketching for Large Language Models

References
T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Ka-

plan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sas-
try, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger,
T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu,
C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin,
S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish,
A. Radford, I. Sutskever, and D. Amodei, “Language
models are few-shot learners,” in NeurIPS, 2020.

R. Anil, S. Borgeaud, Y. Wu, J. Alayrac, J. Yu, R. Soricut,
J. Schalkwyk, A. M. Dai, A. Hauth, K. Millican, D. Silver,
S. Petrov, M. Johnson, I. Antonoglou, J. Schrittwieser,
A. Glaese, J. Chen, E. Pitler, T. P. Lillicrap, A. Lazaridou,
O. Firat, J. Molloy, M. Isard, P. R. Barham, T. Henni-
gan, B. Lee, F. Viola, M. Reynolds, Y. Xu, R. Doherty,
E. Collins, C. Meyer, E. Rutherford, E. Moreira, K. Ay-
oub, M. Goel, G. Tucker, E. Piqueras, M. Krikun, I. Barr,
N. Savinov, I. Danihelka, B. Roelofs, A. White, A. An-
dreassen, T. von Glehn, L. Yagati, M. Kazemi, L. Gonza-
lez, M. Khalman, J. Sygnowski, and et al., “Gemini: A
family of highly capable multimodal models,” CoRR, vol.
abs/2312.11805, 2023.

A. Q. Jiang, A. Sablayrolles, A. Roux, A. Mensch, B. Savary,
C. Bamford, D. S. Chaplot, D. de Las Casas, E. B. Hanna,
F. Bressand, G. Lengyel, G. Bour, G. Lample, L. R.
Lavaud, L. Saulnier, M. Lachaux, P. Stock, S. Subra-
manian, S. Yang, S. Antoniak, T. L. Scao, T. Gervet,
T. Lavril, T. Wang, T. Lacroix, and W. E. Sayed, “Mixtral
of experts,” CoRR, vol. abs/2401.04088, 2024.

H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi,
Y. Babaei, N. Bashlykov, S. Batra, P. Bhargava, S. Bhos-
ale et al., “Llama 2: Open foundation and fine-tuned chat
models,” arXiv preprint arXiv:2307.09288, 2023.

T. Kojima, S. S. Gu, M. Reid, Y. Matsuo, and Y. Iwa-
sawa, “Large Language Models are Zero-Shot Reasoners,”
ArXiv preprint, vol. abs/2205.11916, 2022.

L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright,
P. Mishkin, C. Zhang, S. Agarwal, K. Slama, A. Ray
et al., “Training language models to follow instructions
with human feedback,” Advances in Neural Information
Processing Systems, vol. 35, pp. 27 730–27 744, 2022.

L. Beurer-Kellner, M. Fischer, and M. Vechev, “Prompting
is programming: A query language for large language
models,” Proceedings of the ACM on Programming Lan-
guages, vol. 7, no. PLDI, pp. 1946–1969, 2023.

S. Lundberg and M. T. C. Ribeiro, “Guidance-
ai/guidance: A guidance language for control-
ling large language models.” [Online]. Available:
https://github.com/guidance-ai/guidance

G. Poesia, A. Polozov, V. Le, A. Tiwari, G. Soares,
C. Meek, and S. Gulwani, “Synchromesh: Reliable
code generation from pre-trained language models,”
in The Tenth International Conference on Learning
Representations, ICLR 2022, Virtual Event, April 25-29,
2022. OpenReview.net, 2022. [Online]. Available:
https://openreview.net/forum?id=KmtVD97J43e

S. Arora, A. Narayan, M. F. Chen, L. J. Orr, N. Guha,
K. Bhatia, I. Chami, and C. Ré, “Ask me anything:
A simple strategy for prompting language models,” in
The Eleventh International Conference on Learning
Representations, ICLR 2023, Kigali, Rwanda, May
1-5, 2023. OpenReview.net, 2023. [Online]. Available:
https://openreview.net/pdf?id=bhUPJnS2g0X

Z. Zhao, E. Wallace, S. Feng, D. Klein, and S. Singh,
“Calibrate before use: Improving few-shot performance
of language models,” in Proceedings of the 38th
International Conference on Machine Learning, ICML
2021, 18-24 July 2021, Virtual Event, ser. Proceedings
of Machine Learning Research, M. Meila and T. Zhang,
Eds., vol. 139. PMLR, 2021, pp. 12 697–12 706.
[Online]. Available: http://proceedings.mlr.press/v139/
zhao21c.html

A. Holtzman, J. Buys, L. Du, M. Forbes, and Y. Choi, “The
curious case of neural text degeneration,” in Proc. of
International Conference on Learning Representations
(ICLR), 2020.

C. Meister, R. Cotterell, and T. Vieira, “If beam search is
the answer, what was the question?” in Proceedings of
the 2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), 2020.

C. Hokamp and Q. Liu, “Lexically constrained decoding
for sequence generation using grid beam search,” in
Proc. of Association for Computational Linguistics (ACL),
R. Barzilay and M. Kan, Eds., 2017.

M. Post and D. Vilar, “Fast lexically constrained decoding
with dynamic beam allocation for neural machine transla-
tion,” in Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1
(Long Papers), 2018.

Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi,
W. Macherey, M. Krikun, Y. Cao, Q. Gao, K. Macherey,
J. Klingner, A. Shah, M. Johnson, X. Liu, L. Kaiser,
S. Gouws, Y. Kato, T. Kudo, H. Kazawa, K. Stevens,
G. Kurian, N. Patil, W. Wang, C. Young, J. Smith, J. Riesa,
A. Rudnick, O. Vinyals, G. Corrado, M. Hughes, and
J. Dean, “Google’s neural machine translation system:
Bridging the gap between human and machine transla-
tion,” ArXiv preprint, vol. abs/1609.08144, 2016.

10

https://github.com/guidance-ai/guidance
https://openreview.net/forum?id=KmtVD97J43e
https://openreview.net/pdf?id=bhUPJnS2g0X
http://proceedings.mlr.press/v139/zhao21c.html
http://proceedings.mlr.press/v139/zhao21c.html

Prompt Sketching for Large Language Models

S. Yao, J. Zhao, D. Yu, N. Du, I. Shafran, K. Narasimhan,
and Y. Cao, “ReAct: Synergizing Reasoning and
Acting in Language Models,” ArXiv preprint, vol.
abs/2210.03629, 2022.

D. Dohan, W. Xu, A. Lewkowycz, J. Austin, D. Bieber, R. G.
Lopes, Y. Wu, H. Michalewski, R. A. Saurous, J. Sohl-
dickstein, K. Murphy, and C. Sutton, “Language Model
Cascades,” ArXiv preprint, vol. abs/2207.10342, 2022.

W. Ling, D. Yogatama, C. Dyer, and P. Blunsom, “Program
induction by rationale generation: Learning to solve and
explain algebraic word problems,” in Proc. of Association
for Computational Linguistics (ACL), 2017.

M. Geva, D. Khashabi, E. Segal, T. Khot, D. Roth, and J. Be-
rant, “Did aristotle use a laptop? a question answering
benchmark with implicit reasoning strategies,” Transac-
tions of the Association for Computational Linguistics,
vol. 9, 2021.

K. Cobbe, V. Kosaraju, M. Bavarian, M. Chen, H. Jun,
L. Kaiser, M. Plappert, J. Tworek, J. Hilton, R. Nakano
et al., “Training verifiers to solve math word problems,”
ArXiv preprint, vol. abs/2110.14168, 2021.

A. Srivastava, A. Rastogi, A. Rao, A. A. M. Shoeb, A. Abid,
A. Fisch, A. R. Brown, A. Santoro, A. Gupta, A. Garriga-
Alonso, A. Kluska, A. Lewkowycz, A. Agarwal,
A. Power, A. Ray, A. Warstadt, A. W. Kocurek, A. Safaya,
A. Tazarv, A. Xiang, A. Parrish, A. Nie, A. Hussain,
A. Askell, A. Dsouza, A. Rahane, A. S. Iyer, A. An-
dreassen, A. Santilli, A. Stuhlmüller, A. M. Dai, A. La,
A. K. Lampinen, A. Zou, A. Jiang, A. Chen, A. Vuong,
A. Gupta, A. Gottardi, A. Norelli, A. Venkatesh, A. Gho-
lamidavoodi, A. Tabassum, A. Menezes, A. Kirubarajan,
A. Mullokandov, A. Sabharwal, A. Herrick, A. Efrat,
A. Erdem, A. Karakas, and et al., “Beyond the imitation
game: Quantifying and extrapolating the capabilities,”
ArXiv preprint, vol. abs/2206.04615, 2022.

D. Driess, F. Xia, M. S. Sajjadi, C. Lynch, A. Chowdhery,
B. Ichter, A. Wahid, J. Tompson, Q. Vuong, T. Yu et al.,
“Palm-e: An embodied multimodal language model,”
arXiv preprint arXiv:2303.03378, 2023.

M.-A. Côté, A. Kádár, X. Yuan, B. Kybartas, T. Barnes,
E. Fine, J. Moore, M. Hausknecht, L. El Asri, M. Adada
et al., “Textworld: A learning environment for text-based
games,” in Computer Games: 7th Workshop, CGW 2018,
Held in Conjunction with the 27th International Con-
ference on Artificial Intelligence, IJCAI 2018, Stock-
holm, Sweden, July 13, 2018, Revised Selected Papers 7.
Springer, 2019, pp. 41–75.

L. Reynolds and K. McDonell, “Prompt programming for
large language models: Beyond the few-shot paradigm,”

in CHI ’21: CHI Conference on Human Factors in Com-
puting Systems, Virtual Event / Yokohama Japan, May
8-13, 2021, Extended Abstracts, 2021.

J. Wei, X. Wang, D. Schuurmans, M. Bosma, E. Chi,
Q. Le, and D. Zhou, “Chain of thought prompting elic-
its reasoning in large language models,” arXiv preprint
arXiv:2201.11903, 2022.

J. Wei, M. Bosma, V. Y. Zhao, K. Guu, A. W. Yu, B. Lester,
N. Du, A. M. Dai, and Q. V. Le, “Finetuned language
models are zero-shot learners,” in Proc. of International
Conference on Learning Representations (ICLR), 2022.

S. Yao, J. Zhao, D. Yu, N. Du, I. Shafran, K. Narasimhan,
and Y. Cao, “React: Synergizing reasoning and acting in
language models,” ArXiv preprint, vol. abs/2210.03629,
2022.

X. Wang, J. Wei, D. Schuurmans, Q. V. Le, E. H. Chi, and
D. Zhou, “Self-consistency improves chain of thought
reasoning in language models,” ArXiv preprint, vol.
abs/2203.11171, 2022.

B. Ozturkler, N. Malkin, Z. Wang, and N. Jojic, “Thinksum:
Probabilistic reasoning over sets using large language
models,” ArXiv preprint, vol. abs/2210.01293, 2022.

Y. Zhou, A. I. Muresanu, Z. Han, K. Paster, S. Pitis, H. Chan,
and J. Ba, “Large language models are human-level
prompt engineers,” ArXiv preprint, vol. abs/2211.01910,
2022.

T. Wu, E. Jiang, A. Donsbach, J. Gray, A. Molina, M. Terry,
and C. J. Cai, “Promptchainer: Chaining large language
model prompts through visual programming,” in CHI

’22: CHI Conference on Human Factors in Computing
Systems, New Orleans, LA, USA, 29 April 2022 - 5 May
2022, Extended Abstracts, 2022.

S. H. Bach, V. Sanh, Z. X. Yong, A. Webson, C. Raffel,
N. V. Nayak, A. Sharma, T. Kim, M. S. Bari, T. Févry,
Z. Alyafeai, M. Dey, A. Santilli, Z. Sun, S. Ben-David,
C. Xu, G. Chhablani, H. Wang, J. A. Fries, M. S. Al-
Shaibani, S. Sharma, U. Thakker, K. Almubarak, X. Tang,
D. R. Radev, M. T. Jiang, and A. M. Rush, “Promptsource:
An integrated development environment and repository
for natural language prompts,” in Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics, ACL 2022 - System Demonstrations, Dublin,
Ireland, May 22-27, 2022, 2022.

C. Meister, T. Pimentel, G. Wiher, and R. Cotterell, “Locally
typical sampling,” ArXiv preprint, vol. abs/2202.00666,
2022.

J. Xu, C. Xiong, S. Savarese, and Y. Zhou, “Best-k search
algorithm for neural text generation,” ArXiv preprint, vol.
abs/2211.11924, 2022.

11

Prompt Sketching for Large Language Models

J. Xu, S. Jonnalagadda, and G. Durrett, “Massive-scale de-
coding for text generation using lattices,” in Proceedings
of the 2022 Conference of the North American Chapter
of the Association for Computational Linguistics: Hu-
man Language Technologies, NAACL 2022, Seattle, WA,
United States, July 10-15, 2022, 2022.

A. K. Vijayakumar, M. Cogswell, R. R. Selvaraju, Q. Sun,
S. Lee, D. J. Crandall, and D. Batra, “Diverse beam
search: Decoding diverse solutions from neural sequence,”
ArXiv preprint, vol. abs/1610.02424, 2016.

J. E. Hu, H. Khayrallah, R. Culkin, P. Xia, T. Chen, M. Post,
and B. Van Durme, “Improved lexically constrained de-
coding for translation and monolingual rewriting,” in Pro-
ceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, Volume 1 (Long
and Short Papers), 2019.

T. Schick, J. Dwivedi-Yu, R. Dessì, R. Raileanu, M. Lomeli,
E. Hambro, L. Zettlemoyer, N. Cancedda, and T. Scialom,
“Toolformer: Language models can teach themselves to
use tools,” Advances in Neural Information Processing
Systems, vol. 36, 2024.

C. J. Clopper and E. S. Pearson, “The use of confidence
or fiducial limits illustrated in the case of the binomial,”
Biometrika, vol. 26, no. 4, 1934.

X. Wang, J. Wei, D. Schuurmans, Q. Le, E. Chi, S. Narang,
A. Chowdhery, and D. Zhou, “Self-consistency improves
chain of thought reasoning in language models,” arXiv
preprint arXiv:2203.11171, 2022.

12

Prompt Sketching for Large Language Models

A. Decoding Algorithms
Variable-Level Beam Search VAR The pseudo-code implementation of VAR is given in Algorithm 2. The function
expanddet, expands a given sequence by a deterministic chunk if the next chunk in the prompt template is not a variable.
The function expandsample, expands a given sequence by sampling n different continuations for the next variable value in
the prompt template. Lastly, topn selects the n best sequences from a given set of sequences, according to the the length
normalized beam search score as discussed in Section 2. In practice, an additional early stopping criterion on done is
employed.

Algorithm 1 Variable-Level Beam Search (VAR)

Require: Input n: number of beams, V set of variables
Ensure: set of n VAR-best hypotheses done

1: h← {<bos>}, h′ ← {}
2: for vi ∈ V do
3: h← expanddet(h)
4: for s ∈ h do
5: h′ ← h′ + expandsample(s, n)
6: end for
7: h← topn(h

′)
8: done, h← separate_done(h)
9: end for

Variable-Grid Beam Search VAR The simplified pseudo-code implementation of BEAMVAR is given in Algorithm 2. The
function expanddet, expands a given sequence by a deterministic chunk if the next chunk in the prompt template is not
a variable. The function expandtop, expands a given sequence by the top-n token continuations according to the model
distribution. post_vilar determines the dynamic beam size per group according to Post and Vilar (2018), where groups
are defined by the currently decoded variable and or deterministic chunk. Lastly, topn selects the n best sequences from a
given set of sequences, according to the the length normalized beam search score as discussed in Section 2. In practice, an
additional early stopping criterion on done is employed.

Algorithm 2 Variable-Grid Beam Search (BEAMVAR)

Require: Input n: number of beams, N : maximum length, V set of variables
Ensure: set of n BEAMVAR-best hypotheses done

1: h← {<bos>}, h′ ← {}
2: for i ∈ {1, . . . , N} do
3: h← expanddet(h)
4: h′ ← {}

{Expand each hypothesis in h by its top-n continuations}
5: for s ∈ h do
6: h′ ← h′ + expandtop(s, n)
7: end for
8: h← {}

{Determine dynamic beam size per group according to Post and Vilar (2018)}
9: {n0 . . . n|V|} ← post_vilar(h′)

10: for vi ∈ V do
11: h← h+ topnvi

(h′)
12: end for

{Filter out completed sequences}
13: done, h← separate_done(h)
14: end for

13

Prompt Sketching for Large Language Models

B. Applications
B.1. Sketching for Output Formatting

Alex Kim is a software architect at Intel, designing and
implementing complex systems for the company's processors. He
graduated from the University of California, Los Angeles with a
degree in Computer Science and enjoys playing video games and
practicing photography.
As JSON:
{

 "name": "[VALUE] Alex Kim",

 "job": "[VALUE] software architect",

 "role": "[VALUE] systems engineer",

 "education": {

 "university": "[VALUE] University of

 California, Los

 Angeles",

 "degree": "[VALUE] Computer Science",

 },

 "interests": "[VALUE] video games,

 photography",

}

Figure 5: Sketched JSON parsing. Only high-
lighted text is completed by the model.

One direct application of sketching, is to generate schema-conform
JSON objects with LLMs, given only free text as input, as illustrated in
Figure 5. Using sketching, we can guarantee the output format 10/10
times with different examples similar to the one shown in Figure 5.
This works for both, text-davinci-003 and text-curie-001, regardless
of the model (size) used. Without sketching, text-davinci-003 requires
detailed descriptions of the output format in the prompt to produce valid
JSON at a similar rate. At the same time it may still fail stochastically
(no guarantees), and the smaller text-curie-001 is not be able to produce
valid JSON at all when just instructed to do so. Further, including
detailed data format instructions in non-templated queries in this way,
causes a high average inference cost of 179.5 tokens per sample, reduced
to 28.7 when using sketching, an 84% reduction in inference cost.

B.2. Sketching for Tool Usage

Sketching can also be leveraged to enforce a JSON schema and other
hard constraints, which is relevant for tool-calling LLMs (cf. Toolformer
Schick et al. (2024), ChatGPT Plugins and the OpenAI assistants API). We thus additionally experiment with sketching for
tool usage. For this, we sketch the output of an LLM that is instructed to call a tool via a JSON object (calendar, email, and
weather APIs), given a user query like ’create a calendar event tomorrow at 3pm’, ’send an email to John’ or ’what is the
weather in Paris tomorrow’. Using this approach, the LLM produces JSON objects as shown in Figure 6.

{
"tool": "weather",
"location": {

"city": "Paris",
"state": "France"

},
"temperature": true,
"humidity": true,
"wind": true,
"snow": false

}

Figure 6: Sketched JSON re-
sponse for a weather API.

Sketching first enforces the selection of a valid tool and then the correct tool API
(different for weather, calendar, etc.), depending on the previous selection. This im-
plements a hard constraint, i.e., that a given tool always requires a specific schema in
the remainder of the JSON object. We compare this to sequential prompting, where
the LLM is just prompted and shown examples of the different available tools. We use
OpenAI’s gpt-3.5-turbo-instruct model and rely on sequential and sketched ARGMAX

decoding respectively. We find that the sequentially prompted model often hallucinates
non-existent object properties, even though our instructions are clear on the available
tools and interface. The baseline only produces valid tool calls on 38/100 examples,
whereas sketching satisfies API requirements on all 100/100 examples.

B.3. Interactive Environments

As part of our evaluation, we also consider the use of sketching and our sketch-aware
decoders in interactive environments.

Dungeon Escape For our Dungeon Escape experiment, we generate 100 random dungeons with 8− 10 rooms each, where
the average shortest exit route is 2.3 steps away. At each node, the model is asked for the next room/node to traverse to. We
rely on the following interactive sketch program with corresponding constraints on sketch variable ACTION:
node = <initialized to start node>
steps = 0
max_steps = 10

while rooms[node] != 'Exit':
name = rooms[node]
neighbours = hallways[node]
"System: You are in room {node} '{name}'. "
"You can go to {neighbours}. "
"Where do you want to go?\n"
"You:[ACTION]\n"
next_node = int(ACTION.strip())

14

Prompt Sketching for Large Language Models

if next_node not in neighbours:
"System: {next_node} is not a valid neighboring
room of '{name}'. Valid rooms are {neighbours}.\n"

else:
node = next_node

steps += 1

if steps > max_steps:
"System: You have taken too many steps. You lose.\n"
return "failure"

return "success"

Constraints: ACTION in ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"]

Depending on the graph that is being explored, this results in a runtime instantiation of a prompt sketch as shown in Figure 7.
The sketch-aware decoder is then used to generate the next action to take, given the current state of the environment. The
generated action is then executed in the environment and the process is repeated until the agent reaches the exit or the
maximum number of steps is exceeded. Depending on the decoding algorithm, the agent can be made to explore the
environment in different ways. For example, ARGMAX will result in a greedy, depth-first search, while VAR and BEAMVAR

result in a breadth-first search.

Figure 7: Exploring a graph using prompt sketching.

TextWorld For our TextWorld experiments, we rely on the following command, to generate custom environments of
different sizes and difficulty levels:

tw-make custom --world-size 5 --nb-objects 10 --quest-length {i} --seed 4321 --output eval_games/game-{i}.z8

We choose i ∈ [2,10] and generate 4 worlds per size. We decode a sketch that uses an LLM to decode the next TextWorld
action to perform. We report the detailed results about the number of steps and the number of games solved in Figure 8.
As shown, especially towards larger game size (more actions required), BEAMVAR and VAR solve more games and require
less steps to do so, compared to ARGMAX. This is in line with our results on the Dungeon Escape environment. ARGMAX

performs a greedy, single, depth-first traversal with in-context backtracking, while VAR and BEAMVAR perform a breadth-first
search, allowing them to complete quests quicker and more reliably.

15

Prompt Sketching for Large Language Models

3 4 5 6 7 8 9 10
Game Size

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

M
ov

es

Var
Argmax
BeamVar

Figure 8: Solving TextWorld with ARGMAX, BEAMVAR and VAR. Circles mark solved games, while crosses mark unsolved
games which are counted as games with step limit exceeded (16)

Table 4: Few-Shot Task Accuracy with Answer-Only, Chain-Of-Thought and Prompt Sketching (ours) using ARGMAX,
BEAM, BEAMVAR (ours) and VAR (ours) decoding. The best results are highlighted in bold.

Two-Shot Zero-Shot

Task

Sequential Decoding Sketch-Aware

Answer-Only CoT Prompt Sketching (ours)

ARGMAX ARGMAX ARGMAX VAR BEAMVAR VAR

Question Answering
AQuA (Ling et al., 2017) 0.29 0.45 0.46 0.44 0.47 0.35

StrategyQA (Geva et al., 2021) 0.67 0.74 0.78 0.78 0.77 0.66

Interleaved Reasoning
Tracking Shuffled Objects+ 0.1 0.46 0.57 0.57 0.62 0.66

Matrix Shapes+ 0.67 0.76 0.81 0.77 0.79 0.85
+ Tasks extracted from the BIG benchmark suite (Srivastava et al., 2022).
∗ Specifically adapted for our evaluation of forward referencing prompts.

C. Additional Results
C.1. Few-Shot Prompting

In addition to evaluating zero-shot performance of sketching, we also evaluate a two-shot setting (two demonstrations) for
selected datasets (AQuA, StrategyQA, Tracking Shuffled Objects and Matrix Shapes) and report the results in Table 4. We
rely on few-shot samples exhibiting the same reasoning structure as enforced by the respective sketches. For comparison,
we also include the best zero-shot result from the paper.

While we observe a slight increase in performance for the question-answering tasks, performance for the interleaved
reasoning tasks is surprisingly decreased in the few-shot setting. In all considered settings, sketching outperforms CoT. In
fact, zero-shot sketching with the best decoder even outperforms few-shot CoT with argmax decoding in all settings. Upon
manual inspection, we observe that the LLM generally follows the demonstrated reasoning process. However, for Tracking
Shuffled Objects, the added demonstrations seem to impair task performance, possibly because the model is confused by the
unrelated extra information. Overall, the results of this ablation study suggest that zero-shot sketching with the right decoder
may be able to replace few-shot demonstrations by enforcing a given reasoning structure via intermediate instructions and
task decomposition. At the same time, note that sketching is much more cost-effective, as few-shot samples increase overall
sequence lengths, and thus API cost when using OpenAI models or computational cost (scaling quadratically with sequence
length) when using local models.

16

Prompt Sketching for Large Language Models

Table 5: Task Accuracy with text-curie-001 with Answer-Only, Chain-Of-Thought and Prompt Sketching (ours) using
ARGMAX, BEAM, BEAMVAR (ours) and VAR (ours) decoding, compared to the results with text-davinci-003. The best results
are highlighted in bold.

Task

text-curie-001 text-davinci-003

Task

Sequential Decoding Sketch-Aware

Answer-Only CoT Prompt Sketching (ours)

ARGMAX ARGMAX ARGMAX VAR BEAMVAR VAR

Question Answering
AQuA (Ling et al., 2017) 0.16 0.24 0.27 0.17 0.47 0.35

StrategyQA (Geva et al., 2021) 0.46 0.53 0.58 0.52 0.77 0.66

Interleaved Reasoning
Tracking Shuffled Objects+ 0.18 0.19 0.22 0.24 0.62 0.66

Matrix Shapes+ 0.04 0.07 0.01 0.0 0.79 0.85
+ Tasks extracted from the BIG benchmark suite (Srivastava et al., 2022).
∗ Specifically adapted for our evaluation of forward referencing prompts.

C.2. Prompt Sketching With Smaller OpenAI Models

We also examine the use of smaller OpenAI models. However, the strong zero-shot performance we rely on has previously
(for CoT) only been observed in models of sufficient size (150B+ parameters (Kojima et al., 2022)). Nonetheless, we also
run our evaluation to the smaller InstructGPT (Ouyang et al., 2022) model text-curie-001 (1 level below text-davinci-00x,
6.7 billion parameters). For comparison, we also include the best results for text-davinci-003, as reported in the paper in
Table 5.

Overall, we observe almost no reasoning capabilities, with scores close to random guessing for multiple-choice tasks, and
close to zero for open-ended questions like Matrix Shapes. As noted above, this is in line with previous results (Kojima
et al., 2022). However, as our main evaluation demonstrates, the slightly larger and more recent Llama-2 Chat 13B Touvron
et al. (2023) (13 billion parameters), does clearly benefit from sketching.

C.3. Computational Considerations of Sketching, Zero-Shot and Few-Shot Prompting

As adding few-shot demonstrations increases the total sequence length, it also incurs an overhead during inference. In
contrast, sketch-aware decoders incur only linear overhead with increasing beam width. For our experiments in App. C.1, we
use two-shot demonstrations, as we find that when counting total processed tokens, this is comparable to the computational
overhead of BEAMVAR/VAR with beam width n = 2. To demonstrate, we apply zero-shot ARGMAX, two-shot ARGMAX,
zero-shot BEAMVAR and zero-shot VAR to 10 samples from the AQuA benchmark and measure the average number of
processed tokens (sum of full current sequence length at each forward pass), with Llama-2 Chat 13B:

Decoder Total Tokens Processed Factor over Zero-Shot ARGMAX

Zero-Shot ARGMAX (sketched) 27222.11 0.56x
Zero-Shot ARGMAX 48568.10 -
Two-Shot ARGMAX 85241.00 1.76x
Zero-Shot BEAMVAR 70257.90 1.45x
Zero-Shot VAR 77814.40 1.60x

As shown, zero-shot sketching not only performs better than two-shot sequential decoding but is also cheaper. We note
that if we additionally consider that transformers models scale quadratically with input sequence length, this computational
difference would be even more significant. Few-shotted inference relies on much longer sequences, whereas zero-shot
BeamVar/Var induces several shorter sequences that are decoded in parallel. The results for zero-shot ARGMAX (sketched)
further demonstrate that sketched generation can even improve over non-sketched ARGMAX decoding, as it can skip
unnecessary forward passes for deterministic chunks, and thus reduce the total number of processed tokens.

17

Prompt Sketching for Large Language Models

Table 6: Task accuracy of text-davinci-003 with Clopper-Pearson 95% two-sided intervals (Clopper and Pearson, 1934).

Task

Sequential Decoding Sketch-Aware Decoding (ours)

Answer-Only Chain-Of-Thought Prompting Prompt Sketching (ours)

ARGMAX ARGMAX BEAM BEAMVAR VAR ARGMAX BEAMVAR VAR BEAM

Logical Reasoning
Date Understanding+ 0.48 [0.38,0.58] 0.70 [0.6,0.79] 0.75 [0.65,0.83] 0.75 [0.65,0.83] 0.69 [0.59,0.78] 0.72 [0.62,0.81] 0.73 [0.63,0.81] 0.66 [0.56,0.75] -

Information Essentiality+∗ - - - - - 0.01 [0.0,0.05] 0.25 [0.17,0.35] 0.06 [0.02,0.13] 0.15 [0.09,0.24]

Question Answering
AQuA (Ling et al., 2017) 0.31 [0.22,0.41] 0.37 [0.28,0.47] 0.37 [0.28,0.47] 0.35 [0.26,0.45] 0.35 [0.26,0.45] 0.40 [0.3,0.5] 0.47 [0.37, 0.57] 0.35 [0.26,0.45] -

StrategyQA (Geva et al., 2021) 0.68 [0.58,0.77] 0.71 [0.61,0.8] 0.72 [0.62,0.81] 0.67 [0.57,0.76] 0.67 [0.57,0.76] 0.69 [0.59,0.78] 0.77 [0.68,0.85] 0.66 [0.56,0.75] -

Arithmetic Reasoning
Multistep Arithmetic+ 0.20 [0.13,0.29] 0.43 [0.33,0.53] 0.44 [0.34,0.54] 0.49 [0.39,0.59] 0.44 [0.34,0.54] 0.45 [0.35,0.55] 0.48 [0.38,0.58] 0.38 [0.28,0.48] -

GSM8K (Cobbe et al., 2021) 0.08 [0.04,0.15] 0.56 [0.46,0.66] 0.58 [0.48,0.68] 0.64 [0.54,0.73] 0.57 [0.48,0.68] 0.57 [0.47,0.67] 0.53 [0.43,0.63] 0.59 [0.49,0.69] -

Interleaved Reasoning
Shuffled Objects+ 0.19 [0.12,0.28] 0.62 [0.52,0.72] 0.47 [0.37,0.57] 0.52 [0.42,0.62] 0.62 [0.52,0.72] 0.64 [0.54,0.73] 0.62 [0.52,0.72] 0.66 [0.56,0.75] -

Matrix Shapes+ 0.61 [0.51,0.71] 0.77 [0.68,0.85] 0.77 [0.61,0.8] 0.71 [0.66,0.84] 0.76 [0.66,0.84] 0.81 [0.72,0.88] 0.79 [0.7,0.87] 0.85 [0.76,0.91] -
+ Tasks extracted from the BIG benchmark suite (Srivastava et al., 2022).
∗ Specifically adapted for our evaluation of forward referencing prompts.

Table 7: Task Accuracy when evaluating with 1000 samples from the original dataset.

Task

Sequential Decoding Sketch-Aware Decoding (ours)

Answer-Only Chain-Of-Thought Prompting Prompt Sketching (ours)

ARGMAX ARGMAX BEAM BEAMVAR VAR ARGMAX BEAMVAR VAR BEAM

Interleaved Reasoning
Matrix Shapes+ 0.572 [0.54,0.6] 0.779 [0.75,0.8] - - - 0.814 [0.79,0.84] - 0.817 [0.79,0.84] -

+ Tasks extracted from the BIG benchmark suite (Srivastava et al., 2022).

C.4. Confidence Bounds and Scaling of OpenAI-specific Results

To check for significance of our smaller scale OpenAI-specific experiments, we additionally examine the corresponding
confidence bounds. For this, we report all main OpenAI results with a Clopper-Pearson 95% two-sided confidence interval
in Table 6.

Lastly, we scale our best OpenAI results for the Matrix Shapes task (Srivastava et al., 2022), by evaluating with 1000 instead
of 100 samples, sampled uniformly from the original dataset. Doing so, we can confirm our main result in Table 7, i.e. that
prompt sketching and interleaved reasoning specifically are effective at improving LLM reasoning performance on this task.
Due to cost considerations, we cannot scale all OpenAI experiments like this, but expect similar results, similar to the trends
we observe in our large scale experiments with Llama-2 Chat 13B (Touvron et al. (2023) (see Section 4).

C.5. Confidence Bounds for Llama-2

As for the OpenAI models we report the confidence bounds for the Llama-2 Chat model (13 billion parameters) in Table 8.

Table 8: Task accuracy of Llama-2 Chat (13B) with Clopper-Pearson 95% two-sided confidence intervals (Clopper and
Pearson, 1934). We either use 1000 uniformly drawn samples from the dataset or the whole dataset.

Task

Sequential Decoding Sketch-Aware Decoding (ours)

Answer-Only Chain-Of-Thought Prompting Prompt Sketching (ours)

ARGMAX ARGMAX BEAM BEAMVAR VAR ARGMAX BEAMVAR VAR BEAM

Logical Reasoning
Date Understanding+ 0.496 [0.444, 0.548] 0.591 [0.539, 0.641] 0.599 [0.547, 0.649] 0.613 [0.561, 0.662] 0.580 [0.528, 0.631] 0.634 [0.583, 0.683] 0.656 [0.605, 0.704] 0.642 [0.591, 0.691] 0.591 [0.539, 0.641]

Information Essentiality+∗ - - - - - 0.088 [0.033, 0.182] 0.132 [0.062, 0.236] 0.132 [0.062, 0.236] 0.132 [0.062, 0.236]

Question Answering
AQuA (Ling et al., 2017) 0.231 [0.180, 0.288] 0.291 [0.235, 0.351] 0.311 [0.254, 0.372] 0.275 [0.221, 0.335] 0.271 [0.217, 0.330] 0.239 [0.188, 0.297] 0.255 [0.202, 0.314] 0.243 [0.191, 0.301] 0.283 [0.229, 0.344]

StrategyQA (Geva et al., 2021) 0.564 [0.533, 0.595] 0.555 [0.524, 0.586] 0.566 [0.535, 0.597] 0.570 [0.539, 0.601] 0.568 [0.537, 0.599] 0.638 [0.607, 0.668] 0.630 [0.599, 0.660] 0.640 [0.609, 0.670] 0.659 [0.629, 0.688]

Arithmetic Reasoning
Multistep Arithmetic+ 0.038 [0.027, 0.052] 0.133 [0.113, 0.156] 0.120 [0.101, 0.142] 0.138 [0.117, 0.161] 0.132 [0.111, 0.154] 0.126 [0.106, 0.148] 0.142 [0.121, 0.165] 0.103 [0.085, 0.124] 0.125 [0.105, 0.147]

GSM8K (Cobbe et al., 2021) 0.049 [0.036, 0.064] 0.276 [0.248, 0.305] 0.296 [0.268, 0.325] 0.305 [0.277, 0.335] 0.296 [0.268, 0.325] 0.320 [0.291, 0.350] 0.353 [0.323, 0.384] 0.350 [0.320, 0.380] 0.353 [0.323, 0.384]

Interleaved Reasoning
Shuffled Objects+ 0.197 [0.173, 0.223] 0.196 [0.172, 0.222] 0.204 [0.179, 0.230] 0.198 [0.174, 0.224] 0.188 [0.164, 0.214] 0.227 [0.201, 0.254] 0.210 [0.185, 0.237] 0.234 [0.208, 0.262] 0.157 [0.135, 0.181]

Matrix Shapes+ 0.227 [0.201, 0.254] 0.068 [0.053, 0.085] 0.065 [0.051, 0.082] 0.056 [0.043, 0.072] 0.191 [0.167, 0.217] 0.205 [0.180, 0.231] 0.200 [0.176, 0.226] 0.204 [0.179, 0.23] 0.200 [0.176, 0.226]
+ Tasks extracted from the BIG benchmark suite (Srivastava et al., 2022).
∗ Specifically adapted for our evaluation of forward referencing prompts.

18

Prompt Sketching for Large Language Models

Table 9: Self-Consistency Wang et al. (2022b) prompting compared to simple ARGMAX chain-of-thought prompting
(text-davinci-003, 100 samples as in Table 1). Results that are greyed out are not comparable to the respective sketching
results, due to different levels of computation.

Task

Chain-Of-Thought Chain-Of-Thought/Sketching (ours)

ARGMAX SELFCONSIST (n = 2) SELFCONSIST (n = 4) Sketch-Aware

Logical Reasoning
Date Understanding+ 0.70 0.64 0.72 0.75 (CoT+BEAMVAR)

Question Answering
AQuA (Ling et al., 2017) 0.37 0.33 0.32 0.47 (Sketching+BEAMVAR)

StrategyQA (Geva et al., 2021) 0.71 0.64 0.70 0.77 (Sketching+BEAMVAR)

Arithmetic Reasoning
Multistep Arithmetic+ 0.43 0.40 0.47 0.49 (CoT+BEAMVAR)

GSM8K (Cobbe et al., 2021) 0.56 0.56 0.66 0.64 (CoT+BEAMVAR)

Interleaved Reasoning
Tracking Shuffled Objects+ 0.62 0.39 0.43 0.66 (Sketching+VAR)

Matrix Shapes+ 0.77 0.66 0.66 0.85 (Sketching+VAR)
+ Tasks extracted from the BIG benchmark suite (Srivastava et al., 2022).
∗ Specifically adapted for our evaluation of forward referencing prompts.

C.6. Self-Consistency Baseline

We also considered self-consistency Wang et al. (2022b) (SC) as a possible baseline in our experiments. Based on
our decoder experiments, we ran self-consistency with chain-of-thought and n = 2 and n = 4 consistency samples.
Computationally, this is comparable to BEAMVAR n = 2 and VAR n = 2 respectively, as in our main evaluation. We report
the results in Table 9. We find SC mostly does not even outperform a simple ARGMAX chain-of-thought baseline, except
with n = 4 on the GSM8K dataset. There, it achieves 0.66, outcompeting even BEAMVAR with n = 2 (0.64). However, we
note that BEAMVAR with n = 2, is also half as computationally expensive as SC with n = 4, while achieving comparable
performance.

Increasing the number of self-consistency samples to a higher n would be possible but is not a useful comparison, as it would
increase the cost of SC significantly, over our sketch-aware decoders (see Section 4.3). Lastly, we note that self-consistency
and sketch-aware decoding are orthogonal, and could be combined to further improve performance.

19

Prompt Sketching for Large Language Models

Figure 9: The adapted LMQL playground interface extended with dclib support allows users to visualize the underlying
decoding trees during sketch decoding.

D. Using dclib and sketch-aware decoders
In the supplementary material, we provide the Python library dclib, that contains implementations for all compared
(sketch-aware) decoding algorithms.

To install and use dclib, please consult the README.md file in the supplementary material.

Once installed, you can use an adapted version of the lmql playground as shown in Figure 9 to interactively play with the
different decoding algorithms and their parameters.

20

Prompt Sketching for Large Language Models

E. Full Prompts
Here we list full exemplary prompts, per task and prompting method as used in our evaluation. We rely on the same notation of sketches
as in the main body of the paper. For control-flow (e.g. loops and conditions) and constraints, we rely on the semantics of the LMQL query
language for LMs, and refer to Beurer-Kellner et al. (2023) for a more thorough introduction.

Task Prompt Query and Response
date_understanding@ao Answer-Only Query

"""Q: It was Sept. 1st, 2021 a week ago. What is the date 10 days
ago in MM/DD/YYYY?
Answer Choices: (A) 08/29/2021 (B) 08/28/2021 (C) 08/29/1925 (D)
08/30/2021 (E) 05/25/2021 (F) 09/19/2021
Among A through F, the answer is[answer]"""

Constraints

answer in [" A", " B", " C", " D", " E", " F"]

Model Response Q: It was Sept. 1st, 2021 a week ago. What is the date 10 days
ago in MM/DD/YYYY? Answer Choices: (A) 08/29/2021 (B) 08/28/2021 (C)
08/29/1925 (D) 08/30/2021 (E) 05/25/2021 (F) 09/19/2021 Among A through F,
the answer is B ✗

date_understanding@cot Chain-Of-
Thought

Query

"""Q: It was Sept. 1st, 2021 a week ago. What is the date 10 days
ago in MM/DD/YYYY?
Answer Choices: (A) 08/29/2021 (B) 08/28/2021 (C) 08/29/1925 (D)
08/30/2021 (E) 05/25/2021 (F) 09/19/2021
A: Let's think step-by-step.
[COT] Therefore, among A through F, the answer is[answer]"""

Model Response Q: It was Sept. 1st, 2021 a week ago. What is the date 10
days ago in MM/DD/YYYY? Answer Choices: (A) 08/29/2021 (B) 08/28/2021
(C) 08/29/1925 (D) 08/30/2021 (E) 05/25/2021 (F) 09/19/2021 A: Let’s think
step-by-step.
Sept. 1st, 2021 was a week ago, so 10 days ago would be 8 days before that, which
would be August 23rd, 2021.
Therefore, the answer is (A) 08/23/2021. Therefore, among A through F, the
answer is A. ✓

21

Prompt Sketching for Large Language Models

Task Prompt Query and Response
date_under-
standing@multivar2

Multi-
Variable

Query

"""Q: It was Sept. 1st, 2021 a week ago. What is the date 10 days
ago in MM/DD/YYYY?
Answer Choices: (A) 08/29/2021 (B) 08/28/2021 (C) 08/29/1925 (D)
08/30/2021 (E) 05/25/2021 (F) 09/19/2021
A: Let's think step by step."""
for i in range(5):
"\\n-[THOUGHT]"
if not THOUGHT.endswith("\\n"): "\\n"
if "Therefore" in THOUGHT: break
if "According" in THOUGHT: break
" Overall this means,[CONCLUSION] Therefore, among A through F, the
answer is[answer]"

Constraints

STOPS_AT(THOUGHT, "\\n") and STOPS_AT(THOUGHT, ".") and STOPS_AT(
CONCLUSION, "\\n") and STOPS_AT(CONCLUSION, ".")

Model Response Q: It was Sept. 1st, 2021 a week ago. What is the date 10 days
ago in MM/DD/YYYY? Answer Choices: (A) 08/29/2021 (B) 08/28/2021 (C)
08/29/1925 (D) 08/30/2021 (E) 05/25/2021 (F) 09/19/2021 A: Let’s think step by
step. - Sept. - 1st - 2021 - a week ago - 10 days ago Overall this means, 10 days
before Sept. Therefore, among A through F, the answer is B: 08/28/2021. ✗

Information Essentiality Forward Ref-
erencing

Query

"Cole is on the varsity basketball team. Therefore, the statement
that Cole is under 7 feet tall[var_1] to answer the question: Is
Cole over 6 feet tall? However, the statement that Every player on
Cole's varsity basketball team is above 6'1''[var_2]. Therefore [
answer]"

Constraints

var_1 in [" is sufficient", " is insufficient", " is not needed"]
and var_2 in [" would also be sufficient", " would alone be
insufficient", " in addition is sufficient", " is sufficient" , "
is insufficient", " is still insufficient", " is also not needed"]
and answer in ["the first statement alone is sufficient while the
second statement alone is insufficient", "the second statement
alone is sufficient while the first statement alone is insufficient
", "either the first or the second statement is sufficient", "the
first and second statement taken together are sufficient", "the
question can not be answered with the provided statements", "the
question can be answered without either statement"]

Model Response Cole is on the varsity basketball team. Therefore, the statement
that Cole is under 7 feet tall is not needed to answer the question: Is Cole over 6
feet tall? However, the statement that Every player on Cole’s varsity basketball
team is above 6’1" is also not needed. Therefore the question can be answered
without either statement ✗

22

Prompt Sketching for Large Language Models

Task Prompt Query and Response
AQUA@ao Answer-Only Query

"""Q: What is the greatest number of identical bouquets that can be
made out of 28 white and 98 red tulips if no flowers are to be
left out? (Two bouquets are identical whenever the number of red
tulips in the two bouquets is equal and the number of white tulips
in the two bouquets is equal.)\\n"""
"Answer Choices: (A) 4 (B) 7 (C) 10 (D) 14 (E) 21\\n"
"A: Among A through E, the answer is[answer]"

Model Response Q: What is the greatest number of identical bouquets that can
be made out of 28 white and 98 red tulips if no flowers are to be left out? (Two
bouquets are identical whenever the number of red tulips in the two bouquets
is equal and the number of white tulips in the two bouquets is equal.) Answer
Choices: (A) 4 (B) 7 (C) 10 (D) 14 (E) 21 A: Among A through E, the answer is
D, 14. ✓

AQUA@cot Chain-Of-
Thought

Query

"""Q: What is the greatest number of identical bouquets that can be
made out of 28 white and 98 red tulips if no flowers are to be
left out? (Two bouquets are identical whenever the number of red
tulips in the two bouquets is equal and the number of white tulips
in the two bouquets is equal.)\\n"""
"Answer Choices: (A) 4 (B) 7 (C) 10 (D) 14 (E) 21\\n"
"A: Let's think step by step.[COT] Therefore, among A through E,
the answer is[answer]"

Constraints

STOPS_AT(answer, ".")

Model Response Q: What is the greatest number of identical bouquets that can
be made out of 28 white and 98 red tulips if no flowers are to be left out? (Two
bouquets are identical whenever the number of red tulips in the two bouquets
is equal and the number of white tulips in the two bouquets is equal.) Answer
Choices: (A) 4 (B) 7 (C) 10 (D) 14 (E) 21 A: Let’s think step by step.
We know that we have 28 white tulips and 98 red tulips. We also know that two
bouquets are identical when the number of red tulips and white tulips are equal.
Therefore, we can make the greatest number of identical bouquets by making sure
that each bouquet has the same number of red and white tulips.
The greatest number of identical bouquets that can be made out of 28 white and 98
red tulips is 10. (C) Therefore, among A through E, the answer is C. ✗

23

Prompt Sketching for Large Language Models

Task Prompt Query and Response
AQUA@multivar Multi-

Variable
Query

"""Q: What is the greatest number of identical bouquets that can be
made out of 28 white and 98 red tulips if no flowers are to be
left out? (Two bouquets are identical whenever the number of red
tulips in the two bouquets is equal and the number of white tulips
in the two bouquets is equal.)\\n"""
"Answer Choices: (A) 4 (B) 7 (C) 10 (D) 14 (E) 21\\n"
"A: Let's think step by step.\\n"
for i in range(12):
"\\n- [THOUGHT]"
if not THOUGHT.endswith("\\n"): "\\n"
if "answer" in THOUGHT: break
" Overall this means,[CONCLUSION] Therefore, among A through E, the
answer is[answer]"

Constraints

STOPS_AT(answer, ".") and STOPS_AT(THOUGHT, "\\n") and STOPS_AT(
CONCLUSION, "\\n") and STOPS_AT(CONCLUSION, ".")

Model Response Q: What is the greatest number of identical bouquets that can
be made out of 28 white and 98 red tulips if no flowers are to be left out? (Two
bouquets are identical whenever the number of red tulips in the two bouquets
is equal and the number of white tulips in the two bouquets is equal.) Answer
Choices: (A) 4 (B) 7 (C) 10 (D) 14 (E) 21 A: Let’s think step by step.
- We have 28 white and 98 red tulips.
- We need to make bouquets with the same number of white and red tulips in each
bouquet.
- The greatest number of identical bouquets that can be made is 14.
- This is because we can make 7 bouquets with 4 white and 14 red tulips each, and
7 bouquets with 14 white and 4 red tulips each.
- Therefore, the answer is (D) 14. Overall this means, 28 white and 98 red tulips
can make 14 identical bouquets. Therefore, among A through E, the answer is D.
✓

24

Prompt Sketching for Large Language Models

Task Prompt Query and Response
StrategyQA@ao Answer-Only Query

"""Q: While on a liquid diet, are there some types of soup you
cannot eat?\\n"""
"A: The answer (yes or no) is[answer]"

Constraints

answer in [' yes', ' no', ' false', ' true']

Model Response Q: While on a liquid diet, are there some types of soup you
cannot eat? A: The answer (yes or no) is yes ✓

StrategyQA@cot Chain-Of-
Thought

Query

"""Q: While on a liquid diet, are there some types of soup you
cannot eat?\\n"""
"A: Let's think step by step.\\n[COT] \\n Therefore, the answer (
yes or no) is[answer]"

Constraints

answer in [' yes', ' no', ' false', ' true']

Model Response Q: While on a liquid diet, are there some types of soup you
cannot eat? A: Let’s think step by step.
First, what is a liquid diet? A liquid diet is a diet that consists of only liquids, such
as water, juices, and soups.
Now, are there some types of soup you cannot eat while on a liquid diet? Generally
speaking, no, there are no types of soup that you cannot eat while on a liquid diet.
However, it is important to note that some soups may contain ingredients that are
not allowed on a liquid diet, such as dairy products, nuts, and certain types of
meat. Therefore, it is important to read the ingredients list of any soup you are
considering eating while on a liquid diet to make sure it does not contain any of
these ingredients. Therefore, the answer (yes or no) is no ✗

25

Prompt Sketching for Large Language Models

Task Prompt Query and Response
StrategyQA@multivar Multi-

Variable
Query

"""Q: While on a liquid diet, are there some types of soup you
cannot eat?\\n"""
"A: Let's think step by step.\\n"
for i in range(5):
"\\n-[THOUGHT]"
if not THOUGHT.endswith("\\n"): "\\n"
if "Therefore" in THOUGHT: break
if "According" in THOUGHT: break
" Overall this means,[CONCLUSION] Therefore, the answer (yes or no)
is[answer]"

Constraints

STOPS_AT(THOUGHT, "\\n") and STOPS_AT(THOUGHT, ".") and answer in
[' yes', ' no'] and
STOPS_AT(CONCLUSION, "\\n") and STOPS_AT(CONCLUSION, ".")

Model Response Q: While on a liquid diet, are there some types of soup you
cannot eat? A: Let’s think step by step.
- First, what is a liquid diet? A liquid diet is a diet that consists of only liquids, such
as juices, smoothies, and soups.
- Second, are there some types of soup you cannot eat on a liquid diet? Yes, there
are some types of soup that are not suitable for a liquid diet.
- Examples of soups that are not suitable for a liquid diet include cream-based
soups, chunky soups, and soups with large chunks of vegetables or meat.
- Additionally, some soups may contain ingredients that are not allowed on a liquid
diet, such as dairy, sugar, or processed foods.
- Finally, it is important to check with your doctor or nutritionist before starting
any type of diet to make sure it is safe and appropriate for your individual needs.
Overall this means, yes, there are some types of soup you cannot eat while on a
liquid diet. Therefore, the answer (yes or no) is yes ✓

26

Prompt Sketching for Large Language Models

Task Prompt Query and Response
multiarith2@ao Answer-Only Query

"""Q: Evaluate the arithmetic expression '((((-2 * 7 + -6) * (8 - 7
- 5)) - ((6 * -2 + 1) * (-8 * 3 * -1))) + (((9 - -7 - -7) - (0 +
-7 - -3)) - ((8 * -2 + -6) * (-3 - 3 - 8))))'.
A: Let's think step by step.
The answer (arabic numerals) is[answer]"""

Constraints

STOPS_AT(answer, ".")

Model Response Q: Evaluate the arithmetic expression ’((((-2 * 7 + -6) * (8 - 7 -
5)) - ((6 * -2 + 1) * (-8 * 3 * -1))) + (((9 - -7 - -7) - (0 + -7 - -3)) - ((8 * -2 + -6) *
(-3 - 3 - 8))))’. A: Let’s think step by step. The answer (arabic numerals) is -1490.
✗

multiarith2@cot Chain-Of-
Thought

Query

"""Q: Evaluate the arithmetic expression '((((-2 * 7 + -6) * (8 - 7
- 5)) - ((6 * -2 + 1) * (-8 * 3 * -1))) + (((9 - -7 - -7) - (0 +
-7 - -3)) - ((8 * -2 + -6) * (-3 - 3 - 8))))'.
A: Let's think step by step.
[COT] Therefore, the answer (arabic numerals) is[answer]"""

Model Response Q: Evaluate the arithmetic expression ’((((-2 * 7 + -6) * (8 - 7 -
5)) - ((6 * -2 + 1) * (-8 * 3 * -1))) + (((9 - -7 - -7) - (0 + -7 - -3)) - ((8 * -2 + -6) *
(-3 - 3 - 8))))’. A: Let’s think step by step.
First, we need to evaluate the innermost expressions.
((6 * -2 + 1) * (-8 * 3 * -1)) = -153
((8 * -2 + -6) * (-3 - 3 - 8)) = -90
Next, we need to evaluate the expressions that contain the innermost expressions.
(((-2 * 7 + -6) * (8 - 7 - 5)) - (-153)) = -153
(((9 - -7 - -7) - (0 + -7 - -3)) - (-90)) = -90
Finally, we can evaluate the entire expression.
((-153) + (-90)) = -243 Therefore, the answer (arabic numerals) is -243. ✗

multiarith@multivar Multi-
Variable

Query

"""Q: Evaluate the arithmetic expression '((((-2 * 7 + -6) * (8 - 7
- 5)) - ((6 * -2 + 1) * (-8 * 3 * -1))) + (((9 - -7 - -7) - (0 +
-7 - -3)) - ((8 * -2 + -6) * (-3 - 3 - 8))))'.
A: Let's think step by step.\\n"""
for i in range(10):
"({i+1})[THOUGHT]"
if not THOUGHT.endswith("\\n"): "\\n"
if "answer" in THOUGHT: break
"Overall this means,[CONCLUSION] Therefore, the answer (arabic
numerals) is[answer]"""

Constraints

STOPS_AT(THOUGHT, "\\n") and STOPS_AT(CONCLUSION, "\\n") and
STOPS_AT(CONCLUSION, ".")

Model Response Q: Evaluate the arithmetic expression ’((((-2 * 7 + -6) * (8 - 7 -
5)) - ((6 * -2 + 1) * (-8 * 3 * -1))) + (((9 - -7 - -7) - (0 + -7 - -3)) - ((8 * -2 + -6) *
(-3 - 3 - 8))))’. A: Let’s think step by step. (1) (-2 * 7 + -6) * (8 - 7 - 5) = -14 * 0 =
0 (2) 6 * -2 + 1) * (-8 * 3 * -1) = -12 * 24 = -288 (3) 9 - -7 - -7) - (0 + -7 - -3) = 16
- -4 = 20 (4) 8 * -2 + -6) * (-3 - 3 - 8) = -16 * -14 = 224 (5) 0 - -288 + 20 - 224 =
-252 (6) The answer is -252. Overall this means, the expression evaluates to -252.
Therefore, the answer (arabic numerals) is -252. ✗

27

Prompt Sketching for Large Language Models

Task Prompt Query and Response
GSM8@ao Answer-Only Query

"""Q: The girls are trying to raise money for a carnival. Kim
raises \$320 more than Alexandra, who raises \$430, and Maryam
raises \$400 more than Sarah, who raises \$300. How much money, in
dollars, did they all raise in total?
The answer (arabic numerals) is[answer]
"""

Model Response Q: The girls are trying to raise money for a carnival. Kim raises
$320 more than Alexandra, who raises $430, and Maryam raises $400 more than
Sarah, who raises $300. How much money, in dollars, did they all raise in total?
The answer (arabic numerals) is $1780. ✗

GSM8@cot Chain-Of-
Thought

Query

"""Q: The girls are trying to raise money for a carnival. Kim
raises \$320 more than Alexandra, who raises \$430, and Maryam
raises \$400 more than Sarah, who raises \$300. How much money, in
dollars, did they all raise in total?
A: Let's think step by step.[COT] Therefore, the answer (arabic
numerals) is[answer]
"""

Constraints

STOPS_AT(answer, "\\n")

Model Response Q: The girls are trying to raise money for a carnival. Kim raises
$320 more than Alexandra, who raises $430, and Maryam raises $400 more than
Sarah, who raises $300. How much money, in dollars, did they all raise in total? A:
Let’s think step by step.
Kim raised $320 more than Alexandra, so Kim raised $750 ($430 + $320). Maryam
raised $400 more than Sarah, so Maryam raised $700 ($300 + $400).
Therefore, the total amount of money the girls raised is $1,450 ($750 + $700).
Therefore, the answer (arabic numerals) is 1,450 dollars. ✗

28

Prompt Sketching for Large Language Models

Task Prompt Query and Response
GSM8@multivar Multi-

Variable
Query

"""Q: The girls are trying to raise money for a carnival. Kim
raises \$320 more than Alexandra, who raises \$430, and Maryam
raises \$400 more than Sarah, who raises \$300. How much money, in
dollars, did they all raise in total?\\n"""
"A: Let's think step by step.\\n"
for i in range(10):
"({i+1})[THOUGHT]"
if not THOUGHT.endswith("\\n"): "\\n"
if "answer" in THOUGHT: break
"Overall this means,[CONCLUSION] Therefore, the answer (arabic
numerals) is[answer]"""

Constraints

STOPS_AT(answer, ".") and STOPS_AT(THOUGHT, "\\n") and STOPS_AT(
CONCLUSION, "\\n") and STOPS_AT(CONCLUSION, ".")

Model Response Q: The girls are trying to raise money for a carnival. Kim raises
$320 more than Alexandra, who raises $430, and Maryam raises $400 more than
Sarah, who raises $300. How much money, in dollars, did they all raise in total?
A: Let’s think step by step. (1) Sarah raised $300 (2) Maryam raised $400 more
than Sarah, so Maryam raised $700 (3) Alexandra raised $430 (4) Kim raised $320
more than Alexandra, so Kim raised $750 (5) The total amount of money they all
raised is $300 + $700 + $430 + $750 = $2,280 (6) Therefore, the girls raised a
total of $2,280 in dollars. (7) Answer: The girls raised a total of $2,280 in dollars.
(8) Note: You can also solve this problem using algebra. Let x = Sarah’s amount,
then Maryam raised x + 400, Alexandra raised x + 430, and Kim raised x + 750.
The total amount is then x + x + 400 + x + 430 + x + 750 = 3x + 1580 = 2,280.
(9) Therefore, the girls raised a total of $2,280 in dollars. (10) Answer: The girls
raised a total of $2,280 in dollars. Overall this means, the girls raised a total of
$2,280 in dollars. Therefore, the answer (arabic numerals) is 2,280. ✓

29

Prompt Sketching for Large Language Models

Task Prompt Query and Response
matrixshapes@ao Answer-Only Query

"Multiply a matrix of shape (3,3,2) with a matrix of shape (3,2,4).
Subtract the result from a matrix of shape (3,3,4). Compute the
hadamard product of the result with a matrix of shape (3,3,4).
Multiply the result with a matrix of shape (3,4,3). The shape of
the overall result is[answer]"

Constraints

STOPS_AT(answer, ")")

Model Response Multiply a matrix of shape (3,3,2) with a matrix of shape (3,2,4).
Subtract the result from a matrix of shape (3,3,4). Compute the hadamard product
of the result with a matrix of shape (3,3,4). Multiply the result with a matrix of
shape (3,4,3). The shape of the overall result is:
(3, 3, 3) ✓

matrixshapes@cot Chain-Of-
Thought

Query

"Multiply a matrix of shape (3,3,2) with a matrix of shape (3,2,4).
Subtract the result from a matrix of shape (3,3,4). Compute the
hadamard product of the result with a matrix of shape (3,3,4).
Multiply the result with a matrix of shape (3,4,3). To determine
the shape of the result, let's think step-by-step:[answer]"

Model Response Multiply a matrix of shape (3,3,2) with a matrix of shape (3,2,4).
Subtract the result from a matrix of shape (3,3,4). Compute the hadamard product
of the result with a matrix of shape (3,3,4). Multiply the result with a matrix of
shape (3,4,3). To determine the shape of the result, let’s think step-by-step:
Step 1: Multiply a matrix of shape (3,3,2) with a matrix of shape (3,2,4).
The result of this multiplication will be a matrix of shape (3,3,4).
Step 2: Subtract the result from a matrix of shape (3,3,4).
The result of this subtraction will be a matrix of shape (3,3,4).
Step 3: Compute the hadamard product of the result with a matrix of shape (3,3,4).
The result of this hadamard product will be a matrix of shape (3,3,4).
Step 4: Multiply the result with a matrix of shape (3,4,3).
The result of this multiplication will be a matrix of shape (3,3,3). ✓

30

Prompt Sketching for Large Language Models

Task Prompt Query and Response
matrixshapes@multivar Multi-

Variable
Query

"Multiply a matrix of shape (3,3,2) with a matrix of shape (3,2,4).
The result is a matrix of shape[var] Subtract the result from a
matrix of shape (3,3,4). The result is a matrix of shape[var]
Compute the hadamard product of the result with a matrix of shape
(3,3,4). The result is a matrix of shape[var] Multiply the result
with a matrix of shape (3,4,3). The result is a matrix of shape[var
]. The result is a matrix of shape[answer]"

Constraints

not "\\n" in var and STOPS_AT(var, ")") and STOPS_AT(answer, ")")

Model Response Multiply a matrix of shape (3,3,2) with a matrix of shape (3,2,4).
The result is a matrix of shape (3,3,4). Subtract the result from a matrix of shape
(3,3,4). The result is a matrix of shape (3,3,4). Compute the hadamard product of
the result with a matrix of shape (3,3,4). The result is a matrix of shape (3,3,4).
Multiply the result with a matrix of shape (3,4,3). The result is a matrix of shape
(3,3,3).. The result is a matrix of shape (3,3,3). ✓

tracking_shuffled_ob-
jects@ao

Answer-Only Query

"""Q: Alice, Bob, Claire, Dave, and Eve are holding a white
elephant gift exchange. At the start of the event, they are each
holding a present of a different color: Alice has a red present,
Bob has a black ball, Claire has a pink ball, Dave has a orange
ball, and Eve has a brown present.
As the event progresses, pairs of people swap gifts. First, Claire
and Alice swap their gifts. Then, Claire and Dave swap their gifts.
Then, Alice and Bob swap their gifts. Then, Eve and Dave swap
their gifts. Finally, Bob and Claire swap their gifts. At the end
of the event, Alice has the[answer]"""

Constraints

answer in [" red present", " black ball", " pink ball", " orange
ball", " brown present"]

Model Response Q: Alice, Bob, Claire, Dave, and Eve are holding a white elephant
gift exchange. At the start of the event, they are each holding a present of a different
color: Alice has a red present, Bob has a black ball, Claire has a pink ball, Dave
has a orange ball, and Eve has a brown present. As the event progresses, pairs of
people swap gifts. First, Claire and Alice swap their gifts. Then, Claire and Dave
swap their gifts. Then, Alice and Bob swap their gifts. Then, Eve and Dave swap
their gifts. Finally, Bob and Claire swap their gifts. At the end of the event, Alice
has the black ball ✓

31

Prompt Sketching for Large Language Models

Task Prompt Query and Response
tracking_shuffled_ob-
jects@cot

Chain-Of-
Thought

Query

"""Q: Alice, Bob, Claire, Dave, and Eve are holding a white
elephant gift exchange. At the start of the event, they are each
holding a present of a different color: Alice has a red present,
Bob has a black ball, Claire has a pink ball, Dave has a orange
ball, and Eve has a brown present.
As the event progresses, pairs of people swap gifts. First, Claire
and Alice swap their gifts. Then, Claire and Dave swap their gifts.
Then, Alice and Bob swap their gifts. Then, Eve and Dave swap
their gifts. Finally, Bob and Claire swap their gifts.
A: Let's think step by step.
[COT] Therefore, At the end of the event, Alice has the[answer].
"""

Constraints

answer in [" red present", " black ball", " pink ball", " orange
ball", " brown present"]

Model Response Q: Alice, Bob, Claire, Dave, and Eve are holding a white elephant
gift exchange. At the start of the event, they are each holding a present of a different
color: Alice has a red present, Bob has a black ball, Claire has a pink ball, Dave
has a orange ball, and Eve has a brown present. As the event progresses, pairs of
people swap gifts. First, Claire and Alice swap their gifts. Then, Claire and Dave
swap their gifts. Then, Alice and Bob swap their gifts. Then, Eve and Dave swap
their gifts. Finally, Bob and Claire swap their gifts. A: Let’s think step by step.
Alice has a red present, Bob has a black ball, Claire has a pink ball, Dave has a
orange ball, and Eve has a brown present.
Claire and Alice swap their gifts, so Alice now has a pink ball and Claire has a red
present.
Claire and Dave swap their gifts, so Claire now has an orange ball and Dave has a
pink ball.
Alice and Bob swap their gifts, so Alice now has a black ball and Bob has a red
present.
Eve and Dave swap their gifts, so Eve now has an orange ball and Dave has a
brown present.
Finally, Bob and Claire swap their gifts, so Bob now has a pink ball and Claire has
a black ball.
Therefore, at the end of the event, Alice has a black ball, Bob has a pink ball, Claire
has a black ball, Dave has a brown present, and Eve has an orange ball. Therefore,
At the end of the event, Alice has the black ball. ✓

32

Prompt Sketching for Large Language Models

Task Prompt Query and Response
tracking_shuffled_ob-
jects@multivar2

Multi-
Variable

Query

"""Q: Alice, Bob, Claire, Dave, and Eve are holding a white
elephant gift exchange. At the start of the event, they are each
holding a present of a different color: Alice has a red present,
Bob has a black ball, Claire has a pink ball, Dave has a orange
ball, and Eve has a brown present.
As the event progresses, pairs of people swap gifts. First, Claire
and Alice swap their gifts. \\n- This means, now[state_var] Whereas
[state_var]\\nThen, Claire and Dave swap their gifts. \\n- This
means, now[state_var] Whereas [state_var]\\nThen, Alice and Bob
swap their gifts. \\n- This means, now[state_var] Whereas [
state_var]\\nThen, Eve and Dave swap their gifts. \\n- This means,
now[state_var] Whereas [state_var]\\nFinally, Bob and Claire swap
their gifts.
A: Overall this means[CONCLUSION] Therefore, At the end of the
event, Alice has the[answer]"""

Constraints

answer in [" red present", " black ball", " pink ball", " orange
ball", " brown present"] and STOPS_AT(state_var, ".") and STOPS_AT(
CONCLUSION, "\\n") and STOPS_AT(CONCLUSION, ".")

Model Response Q: Alice, Bob, Claire, Dave, and Eve are holding a white elephant
gift exchange. At the start of the event, they are each holding a present of a different
color: Alice has a red present, Bob has a black ball, Claire has a pink ball, Dave
has a orange ball, and Eve has a brown present. As the event progresses, pairs of
people swap gifts. First, Claire and Alice swap their gifts. - This means, now Alice
has a pink present and Claire has a red present. Whereas Bob has a black ball,
Dave has an orange ball, and Eve has a brown present. Then, Claire and Dave swap
their gifts. - This means, now Claire has an orange present and Dave has a pink
present. Whereas Alice has a pink present, Bob has a black ball, and Eve has a
brown present. Then, Alice and Bob swap their gifts. - This means, now Alice has
a black present and Bob has a pink present. Whereas Claire has an orange present,
Dave has a pink present, and Eve has a brown present. Then, Eve and Dave swap
their gifts. - This means, now Eve has an orange present and Dave has a brown
present. Whereas Alice has a black present, Bob has a pink present, and Claire
has an orange present. Finally, Bob and Claire swap their gifts. A: Overall this
means, now Alice has a black present, Bob has an orange present, Claire has a pink
present, Dave has a brown present, and Eve has an orange present. Therefore, At
the end of the event, Alice has the black ball ✓

33

