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The photo depicts a spacious, elegantly designed bedroom with a The image depicts a grand entrance to a luxurious, white-walled
large bed, wooden beams on the ceiling, and a view of a balcony building with arched doorways, a staircase, and a well-maintained
through arched windows. garden area.

Panorama Outpainting

A park with a pond and buildings. A yellow tree in the yard.

Figure 1: Generated samples from Panoramic AutoRegressive (PAR) Model. PAR unifies several
conditional panoramic image generation tasks, including text-to-panorama, panorama outpainting,
and panoramic image editing.

Abstract

Recent progress in panoramic image generation has underscored two critical lim-
itations in existing approaches. First, most methods are built upon diffusion
models, which are inherently ill-suited for equirectangular projection (ERP) panora-
mas due to the violation of the identically and independently distributed (i.i.d.)
Gaussian noise assumption caused by their spherical mapping. Second, these
methods often treat text-conditioned generation (text-to-panorama) and image-
conditioned generation (panorama outpainting) as separate tasks, relying on dis-
tinct architectures and task-specific data. In this work, we propose a unified
framework, Panoramic AutoRegressive model (PAR), which leverages masked
autoregressive modeling to address these challenges. PAR avoids the i.i.d. as-
sumption constraint and integrates text and image conditioning into a cohesive
architecture, enabling seamless generation across tasks. To address the inher-
ent discontinuity in existing generative models, we introduce circular padding
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to enhance spatial coherence and propose a consistency alignment strategy to
improve the generation quality. Extensive experiments demonstrate competitive
performance in text-to-image generation and panorama outpainting tasks while
showcasing promising scalability and generalization capabilities. Project Page:
https://wang-chaoyang.github.io/project/par.

1 Introduction

Panoramic image generation[2, 12, 13, 18, 19] has recently emerged as a pivotal research direction in
computer vision, driven by its capability to capture immersive 360-degree horizontal and 180-degree
vertical fields of view (FoV). This unique visual representation closely mimics human panoramic
perception, enabling transformative applications across VR/AR [34, 79], autonomous driving [44],
visual navigation [6, 25], and robotics [45, 60].

Despite some progress in recent years, existing panorama generation methods [18, 56, 57, 74,
70, 27, 36, 62, 77, 65, 64, 76] predominantly rely on diffusion-based base models and face two
significant problems: task separation and inherent limitations of the modeling approach. First,
different panoramic generation tasks are highly bound to specific foundation models. For instance,
most text-to-panorama models [18, 56, 57, 74, 70] are based on Stable Diffusion (SD) [48, 43]. In
contrast, panorama outpainting models [27, 36, 62] are fine-tuned on SD-inpainting variants, resulting
in task-specific pipelines that lack flexibility. Second, diffusion-based models struggle to handle the
unique characteristics of equirectangular projection (ERP) panoramas, which map spherical data onto
a 2D plane, violating the i.i.d. Gaussian noise assumption.

In addition to these fundamental issues, existing methods also contain redundant modeling, which
introduces unnecessary computational costs. This redundancy manifests in several ways: 1) Some
approaches [29, 36] iteratively inpaint and warp local areas, leading to error accumulation over
successive steps. 2) Others [74, 55] adopt a dual-branch structure, with global and local branches,
where the local branches are not directly used as final output targets. These challenges underscore
the need for a straightforward, unified, and efficient paradigm for generating conditional panoramic
images.

In this work, we explore a powerful yet less explored panoramic image generation paradigm to address
the above limitations: the violation of the i.i.d. assumption and the lack of unification. Moreover,
we allow the model to take text or images as input and control the generated content at any position
on the canvas. As shown in Fig. 1, PAR is competent for text-to-panorama, panorama outpainting,
and editing tasks. Notably, our PAR requires no task-specific data engineering - both conditions
are seamlessly integrated via a single likelihood objective. In comparison, Omni? [68] relies on
meticulously designed joint training datasets to align heterogeneous tasks, inevitably introducing
complexity and domain bias.

For this goal, inspired by masked autoregressive modeling (MAR) [30], we propose PAR. On
the one hand, it is based on AR modeling, which avoids the constraints of i.i.d. assumptions.
On the other hand, it allows for generation in arbitrary order, overcoming the shortcoming of
traditional raster-scan methods that are incapable of image-condition generation. This flexibility
of PAR unifies conditional generation tasks - panorama outpainting reduces to a subset of text-to-
panorama synthesis, where existing image tokens serve as partially observed sequences. Building
upon the MAR-based generative framework, we introduce two critical enhancements to address
inherent limitations in standard architectures. First, conventional VAE-based compression often
exhibits spatial bias during encoding-decoding: center regions benefit from contextual information
across all directions, while peripheral pixels suffer from unidirectional receptive fields, contradicting
the cyclic nature of ERP panoramas. To mitigate this, we propose dual-space circular padding,
applying cyclic padding operations in both latent and pixel spaces. This ensures seamless feature
propagation across ERP boundaries, aligning geometric and semantic continuity. Second, as the
foundation model is pre-trained on massive perspective images, we devise a translation consistency
loss. This loss explicitly regularizes the model to accommodate the prior of ERP panoramas by
minimizing discrepancies between the model’s outputs under shifted and original inputs. Ultimately,
two innovations holistically reconcile the unique demands of 360-degree imagery with the flexibility
of MAR modeling. Experiments demonstrate that PAR outperforms specialist models in the text-
to-panorama task, with 37.37 FID on the Matterport3D dataset. Moreover, on the outpainting task,
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it has better generation quality and avoids the problem of repeated structure generation. Ablation
studies demonstrate the model’s scalability in terms of computational cost and parameters, as well as
its generalization to out-of-distribution (OOD) data and other tasks, such as zero-shot image editing.

Our contribution can be summarized as follows: 1) We propose PAR, which fundamentally avoids the
conflict between ERP and i.i.d. assumption raised by diffusion models, and also seamlessly integrates
text and image-conditioned generation within a single architecture. 2) To enforce better adaptation to
the panorama characteristic, we propose specialized designs, including dual-space circular padding
and a translation consistency loss. 3) We evaluate our model on popular benchmarks, demonstrating
competitive performance in text and image-conditional panoramic image generation tasks. The results
also prove the scalability and generalization capabilities of our model.

2 Related Work

Conditional Panoramic Image Generation. There are two primary task paradigms in this area:
1) text-to-panorama (T2P), which synthesizes 360-degree scenes from textual descriptions, and
2) panorama outpainting (PO), which extends partial visual inputs to full panoramas. Given the
success of diffusion models (DMs) [31, 32, 33, 43, 48, 51, 52] on generation tasks, such as image
generation [48, 75, 23, 43, 42, 17], image editing [4, 37, 49], image super resolution [22, 50, 71],
video generation [3, 20, 69], current approaches typically build upon DMs, yet face two problems.
First, DM is inherently unsuitable for panorama tasks due to reliance on the i.i.d. Gaussian noise
assumption, which ERP transformations violate. Second, existing approaches lack task unification.
Specifically, T2P methods typically fine-tune SD, while PO solutions adapt the SD-inpainting variants.
Although some work [68] attempts a unified solution, it is based on DM and relies on complex task-
specific data engineering. From a methodological perspective, existing methods can be categorized
into two main approaches: bottom-up and top-down. The former generates images with limited
FoV sequentially [29, 36] or simultaneously [57, 27] and finally stitches them together, but faces the
problem of lacking global information and error accumulation. The latter [74, 55] typically employs
a dual-branch architecture comprising a panorama branch and a perspective branch. However, this
design brings unnecessary computational cost. In parallel, several AR-based attempts have been
made. They either rely on large DMs for final generation [36, 19], are limited to low resolution
with additional up-sampling modules [10], or stitch perspective images without correct panorama
geometry [80]. Overall, existing methods do not provide a unified and theoretically sound solution
for conditional panorama generation, which we rethink through MAR modeling.

Autoregressive Modeling. Motivated by the success of large language models (LLMs) [5, 58], AR
models, with great scalability and generalizability, are becoming a strong challenger to diffusion
models. Several studies delve into visual AR with two distinct pipelines. One pipeline adopts
raster-scan modeling [53, 47, 15, 16, 72, 63, 67, 28, 39], which treats the image as visual sentences
and sequentially predicts the next token. However, this strategy does not fully exploit the spatial
relationships of images. To make up for the shortcomings of raster-scan modeling, some works [7, 24,
73,59, 30, 14, 1] extend the concept of masked generative models [8] to AR modeling, namely MAR.
Instead of predicting one token within one forward, the model randomly selects several candidate
positions and predicts attending to the decoded positions. Intuitively, this modeling provides flexible
control over arbitrary spatial positions simply by adjusting the order of tokens to be decoded. Hence,
we resort to MAR as a flexible way to unify text and image-conditioned panorama generation while
avoiding the theoretical defects of panorama DMs.

3 Method

This section is organized into three parts. First, we introduce the preliminaries of panorama projection
and review the standard conditional AR modeling. Second, we analyze the disadvantages of this
approach for unified conditional generation. Last, we describe our PAR in the following sections,
including vanilla MAR architecture, consistency alignment, and circular padding.

3.1 Preliminaries

Equirectangular Projection is a common parameterization for panoramic images. It establishes
a bijection between spherical coordinates (6, ¢) and 2D image coordinates (u,v), where 6 € [0, ]



denotes the polar angle (latitude) and ¢ € (—m, 7] represents the azimuthal angle (longitude). This
projection preserves complete spherical visual information while maintaining compatibility with
conventional 2D convolutional operations. Given a 3D point P = (z,y, 2) on the unit sphere S?, we
first compute its spherical coordinates and then obtain ERP coordinates (u,v) via linear mapping:
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where W x H denotes the target image resolution.

Conditional Autoregressive Models formulate conditional data generation as a sequential process
through next token prediction. Given an ordered sequence of tokens {x;}Z_,, the joint distribution
p(z|c) factorizes into a product of conditional probabilities:

T
p(zle) = Hp($t|x<tac)v (2)
t=1

where z¢ = (21, ..., £:—1) denotes the historical context and ¢ indicates the conditions. This chain
rule decomposition enables tractable maximum likelihood estimation, with the model parameters 6
optimized to maximize:

T
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t=1
where D represents the data distribution.

3.2 Rethinking Conditional Panoramic Image Generation

While DMs have demonstrated remarkable success in various image generation tasks, they rely
on i.i.d. Gaussian noise assumption, which is violated by the spatial distortions introduced by the
ERP transformation in Eq. 1, making diffusion-based methods inherently unsuitable for modeling
panoramas. In this work, we therefore rethink conditional panorama generation from AR modeling,
which is not constrained by such assumptions.

Building upon the standard conditional AR formulation in Eq. 2, we analyze text-to-panorama and
panorama outpainting scenarios. The former takes text embeddings as c while the latter takes observed
image patches and optional textual prompts as conditions. In particular, this reformulates the two
problems as follows:

p(z|e) = H p(ze|rsey,c), S(t) C(SpU{l,...,t—1}), “)
teS.,

where Sy, denotes known token positions from the condition and S,, = {1, ...,T} \ Sk, are targets.
The context set S(¢) dynamically aggregates:

’S(t) = {j|.7 € Sk}U{]l] <t je Su}v (5)

condition generated content

This formulation generalizes text-to-panorama (S, = ) and outpainting (S, # 0)) scenarios. How-
ever, traditional raster-scan modeling is not competent for the panorama outpainting task, as Sy, is not
necessarily at the beginning of the sequence.

3.3 Masked Autoregressive Modeling with Consistency Alignment

We aim to learn a generalized AR model that naturally unifies text and image conditions and adapts
to panoramic characteristics. An intuitive solution is MAR modeling, which allows generation in
arbitrary order by marking the position of each token. However, existing foundation models are
typically pre-trained on perspective images and cannot cope with panoramic scenarios. We delve into
this problem and use the cyclic translation equivariance of ERP panoramas.

Vanilla Architecture. We start with a vanilla text-conditioned MAR model [14] to learn basic image
generation without special constraints. Specifically, we use continuous tokens instead of discrete
ones to reduce quantization error.
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Figure 2: Method illustration. (a) PAR utilizes a transformer f to predict regions obscured by mask
M, then employs these predictions as conditions to drive an MLP €y in generating continuous tokens.
The VAE encoder £ and decoder D are frozen. The dashed line indicates the inference phase. ¢ and ¢
denote textual embeddings and time-steps, respectively. (b) Both original and 7,-augmented triples
(x, e, M) are processed by the same model, and then aligned through a consistency loss.

As illustrated in Fig. 2 (a), panoramic images [ are first compressed into latent representations x
using a VAE encoder £. These representations are fed into a transformer model f, which adopts an
encoder-decoder architecture. Within the encoder, x is divided into a sequence of visual tokens via
patchification. A subset of these tokens is randomly masked by replacing the corresponding regions
with a designated [MASK] token. Sine-cosine positional encodings (PEs) are added to the token
sequence to preserve spatial information.

Simultaneously, textual prompts are processed by a pre-trained text encoder [26], which encodes
them into textual embeddings ¢ € R?, where d matches the dimensionality of the visual tokens. The
unmasked visual tokens are fused with the textual embeddings c in the encoder, and the resulting
contextualized representations are then passed to the decoder, where they are integrated with the
masked tokens to facilitate predictive reconstruction.

Unlike the standard AR modeling, the decoder’s output is not used as the final result, but as a
conditional signal z to drive a lightweight denoising network, which is implemented by a multilayer
perceptron (MLP) €y. During the training phase, the noise-corrupted z; is denoised by €g under z as
follows:

Lva = Et,e [M o ||€t - Ea(dft‘t, Z)||2] . (6)

In Eq. 6, o is pixel-wise multiplication with binary mask M, where the value corresponding to the
masked token is 1. The encoder-decoder f and €y are jointly optimized.

Cyclic Translation Consistency. Current foundation models [48, 14] are predominantly trained
on perspective images, leading to suboptimal feature representations for ERP-formatted panoramas.
We introduce a cyclic translation operator 7T, to address this domain gap and construct semantically
equivalent panorama pairs, where v indicates arbitrary translation distance. As shown in Fig. 2 (b),
we construct an input pair, (z,e, M) and (2, ¢/, M") = (T,(x), T, (€), T,(M)). Both inputs share
identical PE maps to prevent trivial solutions. The main model processes these pairs to produce
outputs y and ¥/, respectively. We enforce equivariance by aligning 7., (y) with 3’ only on masked
regions through the objective:

Leonsistency = M o |[To(eq(wi|t, , M)) — eg(x}]t, 2, M")[%, )
The final learning objective can be written as follows:
L = Lya + Alconsistencys ®)
where A is set as 0.1 in our experiments.

Discussion. The equivariance constraint holds exclusively for ERP panoramas due to their inherent
horizontal continuity. For perspective images, applying 7, artificially creates discontinuous bound-
aries in the center of the shifted image, which violates two critical premises. 1) Semantic equivalence.
Unlike panoramas, shifted perspective images lose semantic consistency due to non-periodic scene
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The photo shows a panoramic The image depicts a spacious The photo shows a beautiful The photo shows a spacious, well-
view of a modern, well-organized laundry room with dark wooden outdoor staircase with a curved  lit room with a pool table, a large
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Figure 3: Visual comparisons with previous methods on text-to-panorama task. Previous methods
neglect the circular consistency characteristics (yellow box), or suffer from repetitive objects (red
box), artifact generation (blue box), and inconsistent combinations (green box). The highlighted
portions in captions indicate text-image alignment failure cases of baseline methods.

structures. 2) Model prior. Generation models inherently enforce feature continuity in image interiors,
making it infeasible to produce fragmented content.

Circular Padding. While the AR model incorporates panoramic priors, the VAE’s latent space
processing may still introduce discontinuities. Standard convolution operations in VAE provide
sufficient context for central regions but suffer from information asymmetry at image edges - pixels
near boundaries receive unidirectional receptive fields. To address this issue, we propose a dual-space
circular padding scheme: pre-padding and post-padding. The former is applied in pixel space for the
VAE encoder, while the latter is used in latent space for the VAE decoder. Specifically, we crop a
particular portion of the left and right regions and concatenate them to the other side, as formulated
in Eq. 9.

Cy(x) = concat(z]..., —rW/2 ], z, z[...,: TW/2]), )

where 2 € R”*W and C,.(z) € RT*(+1)W Jindicate the original and the padded tensor, respectively.
r indicates the ratio of padding width to that of the original images or latent variables. After the
VAE transformation, the edge positions have sufficient context information. Therefore, the areas that
belong to the padding are discarded.

4 Experiment

4.1 Experiment Settings

Implementation Details. We utilize NOVA [14] as the initialization and set the resolution as
512 x 1024. Our model is trained for 20K iterations with a batch size 32. We employ an AdamW
optimizer [35]. The learning rate is 5 x 10~° with the linear scheduler. In the inference stage, we
set the CFG [23] coefficient as 5. In this paper, the masking sequence for training and the sampling
sequence for inference are initialized with a uniform distribution unless otherwise stated.

Datasets and Metrics. We mainly use Matterport3D [6] for comparisons. The split of the training
and validation set follows PanFusion [74]. We use Janus-Pro-7B [9] to generate the captions.



Table 1: Performance on text-to-panorama task. PO and PE represent panorama outpainting and
editing, respectively. Bold and underline indicate the first and second best entries.

Modeling Method #params T2P PO PE FAED| FID] CLIPScore? DSJ|
Diffusion PanFusion [74] 1.9B v - - 5.12 45.21 31.07 0.71
Text2Light [10] 0.8B v - - 68.90 70.42 27.90 7.55

PanoLlama [80] 0.8B v - - 33.15  103.51 32.54 13.99

AR PAR (ours) 0.3B v v v 3.39 41.15 30.21 0.58
PAR (ours) 0.6B v v v 3.34 39.31 30.34 0.57

PAR (ours) 1.4B v v v 3.75 37.37 30.41 0.58

(a) Mask (b) AOG-Net (c) 2S-ODIS (d) PAR w/o prompt (e) PAR w/ prompt

Figure 4: Qualitative comparisons of panorama outpainting on the Matterport3D dataset.
PAR-1.4B is used for this task, where PAR w/o prompt means the textual prompt is set as empty.

Several metrics are used in this paper. Fréchet Inception Distance (FID) [21] measures the similarity
between the distribution of real and generated images in a feature space derived from a pre-trained
inception network. Lower FID scores indicate better realism of synthesized results. CLIP Score
(CS) [46] evaluates the alignment between text and image. Furthermore, as FID relies on an Inception
network [54] trained on perspective images, we also report the Fréchet Auto-Encoder Distance
(FAED) [41] score, which is a variant of FID customized for panorama. To measure the cycle
consistency of panoramic images, we adopt Discontinuity Score (DS) [11].

Baselines. Since only a few approaches combine T2P and PO, we compare PAR with specialist
methods separately. Specifically, for T2P, we compare with several diffusion-based and AR-based
methods, including PanFusion [74], Text2Light [10], and PanoLlama [80]. We take AOG-Net [36]
and 2S-ODIS [38] as PO baselines. All experiments are implemented on the Matterport3D dataset.

4.2 Main Results

Text-to-Panorama. Tab. 1 shows the quantitative comparison results. Within the scope of AR-based
methods, our PAR significantly outperforms previous approaches regarding generation quality and
continuity score. Our method is slightly inferior in the CLIP score metric, probably because CLIP [46]
is pre-trained on massive perspective images, and panoramic geometry is not well aligned with
perspective images. Moreover, our model performs decently compared with a strong diffusion-based
baseline, PanFusion, with only 0.3B parameters. Specifically, PAR-0.3B outperforms PanFusion with
1.73 and 4.06 on FAED and FID, with a discontinuity score of 0.58. Scaling up the parameters helps
achieve better results, which is further illustrated in Sec. 4.3.

Fig. 3 provides visual comparisons with the aforementioned baseline methods, including diffusion-
based and AR-based models. Our model shows better instruction-following ability, more consistent
generation results, and avoids duplicate generation. Specifically, Text2Light cannot obtain satisfactory
synthesized results. PanoLlama cannot understand panorama geometry and neglects the characteristic
of cycle consistency. PanFusion produces more reasonable results, but sometimes faces artifact
problems. For example, the first and second columns of the third row show a room without an exit.

Panorama Outpainting. Tab. 2 compares our method with AOG-Net and 2S-ODIS. We use the
model trained with Eq. 8 and inference following Eq. 4, where S indicates the positions within
the mask. Our model achieves 32.68 and 12.20 on FID and FID-h, respectively. FID-h is similar to
FID, but the difference is that it extracts eight perspective views in the horizontal direction with a
90-degree FoV for each panoramic image, which pays more attention to the generation quality of
local regions. Fig. 4 visualizes the synthesized results. Existing methods suffer from local distortion



Table 2: Panorama outpainting results on the Matterport3D dataset. For FID-h, we horizontally
sample 8 perspective images with FoV=90° for each panorama and then calculate their FID.

Method T2P PO PE FID| FID-h]
AOG-Net [36] - v - 8302 37.88
2S-ODIS [38] - v - 5259 3518
PAR w/o prompt vV v v 41.63 2597
PAR w/ prompt v v oo v 32,68 12.20

Scaling up training compute

Scaling up model parameters

Figure 5: Scaling parameters and training compute improve fidelity and soundness. Two cases
are shown with 3 model sizes and 3 different training stages. From top to bottom: 0.3B, 0.6B, 1.4B.
From left to right: 25%, 50%, 100% of the training process.

(the 37 column) or counterfactual repetitive structures (the 2"¢ column). Our method overcomes
these problems and still produces reasonable results without textual prompts.

4.3 Ablation Study

Scalability. We train with three different parameter sizes, namely 0.3B, 0.6B, and 1.4B, respectively.
In Tab. 1, FID and CS improve with increasing parameters. We also visualize the performance under
different training stages, including 25%, 50%, and 100% of the whole training process. As shown in
Fig. 5, the improvement of fidelity and soundness is consistent with the scaling of parameters and
computation. Larger models learn data distributions better, such as details and panoramic geometry.

Generalization. Fig. 6 visualizes the outpainting results of PAR on OOD data. SUN360 [66] is
used for evaluation, which has different data distributions from Matterport3D. PAR shows decent
performance across various scenarios. We also compared with several PO baselines trained on
the SUN360 dataset. However, Diffusion360 [18] suffers from unrealistic scenes and lacks details.
Panodiff [62] also encounters artifact problems (red sky in the 15! row).

PAR can also adapt to different tasks, such as panoramic image editing. As shown in Fig. 7, the
model needs to preserve the content inside the mask and regenerate according to new textual prompts.
We designed three challenging text prompts, whose content differs from the training datasets, and
contains specific conflicts with the original image. For example, fire vs. yard in (b), snow vs. current
season of scene in (c), and ocean vs. current place of the scene in (d). Interestingly, our model can
generate them well and understands panoramic characteristics. As shown in Fig. 7 (b), the left and
right sides of the image can be stitched to form a whole fire.

Translation Equivariance. Tab. 3 demonstrates

the effectiveness of consistency loss. Eq. 7 helps ] ] )
the model adapt to panoramic characteristics, Table 3: Ablations on cyclic consistency loss.

thus improving generation quality. Fig. 8 (left) = Method FID| CLIPScoret DS
§hovrls the converg]gréce Ef r. Post-[;a?)dmg.tsltgrlnf— WI0 Loomsrotoney 3955 3025 057
icantly improves DS when 7p.¢ asithelps 0, n " Y 3737 3041 058

to smooth stitching seams in the pixel space.
However, the model without pre-padding suffers
from higher discontinuity, indicating the misalignment between the training and testing phases. With



(a) Mask i (b) Panodiff ) (c) Diffusion360 (d) PAR (ours)

Figure 6: Panorama outpainting on OOD dataset. The images are from SUN360, which is out
of the distribution of our training data. PAR generates realistic panorama images while previous
methods have problems like artifacts, or unrealistic results.

(a) Original Image (b) The flames are blazing in the yard ~ (c) A red sports car parked in the snow (d) A house with a view of ocean

Figure 7: Panoramic image editing. We design several challenging textual prompts to enforce the
model to regenerate the contents outside the red box while maintaining the inside contents. Note that
our PAR performs zero-shot task generalization.
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Figure 8: Left: The curve of DS about r,,.. Right: Visualizations of different circular padding
strategies. Each part consists of three images, where the top one represents the panoramic image
generation result, the left and right ones represent the edge stitching results, respectively. The red box
indicates the semantic discontinuity, and the green box highlights the seam after post-padding.

the same 7., DS converges quickly when 7,5 > 0.125. A similar phenomenon is observed with
Tpost fixed. Specifically, the curve of ). = 0.25 and 7}, = 0.5 almost coincide.

Fig. 8 (right) visually explains the difference between the two padding strategies. When 7. = 0,
semantic inconsistency exists between the left and right edges of the panoramic image. Post-padding
cannot repair it even with a large padding ratio, and the green box bounds the smoothed seam. In
contrast, the model generates consistent contents when pre-padding is applied.

5 Conclusion

This paper proposes PAR, a MAR-based architecture that unifies text- and image-conditioned
panoramic image generation. We delve into the cyclic translation equivariance of ERP panora-
mas and correspondingly propose a consistency alignment and circular padding strategy. Experiments
demonstrate PAR’s effectiveness on text-to-panorama and panorama outpainting tasks, whilst showing



promising scalability and generalization capability. We hope our research provides a new solution for
the panorama generation community.
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Answer: [Yes]
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implications would be.
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Justification: The proof is in the appendix.
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Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide details on the implementation in Sec. 4 and appendix.
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The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
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sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: The code is released.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Experimental setting and details are in Sec. 4.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
Justification: We did not conduct experiments with error bars.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

16


https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We provide details of computation cost in the appendix.
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We conducted in the paper conform, in every respect, with the NeurIPS Code
of Ethics .

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discuss the broader impact in the appendix.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]
Justification: We discuss the broader impact in the appendix.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We use existing assets with properly credited.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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15.

16.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Overview. In this appendix, we present more results and details:

* A. Proof of non-i.i.d. of ERP transformation.

* B. More details on method.

* C. More empirical studies and visual results.

* D. Discussion of the broader impacts, safeguards and limitations.

A Proof of Non-i.i.d. of ERP Transformation

A.1 Problem Setting

Let the unit sphere

S?={(z,y,2) ER® : 22 +¢y* + 22 =1}

be parameterised by spherical angles (¢, 0) € (—m, 7] x [0, 7]. The equirectangular projection of
spatial resolution (H, W) € N? is the mapping

T 0,W)x[0,H) — (—m,7] x [0,7],  (u,0) (¢(u)79(v))
with
o+

0
Conversely, u = ——W, v= —H.
2 s

A.2 Gaussian noise field on the sphere

Let {&(¢,0) }(4,0)e(—.x)x[0,x] be @ Gaussian noise field on the sphere, i.e.
Ele(¢,0)] =0,  Cov(e(¢,0),£(¢',6")) = 0 d(¢ — ¢') 6(6 — ), (10)

where 6 is the Dirac distribution and ¢ > 0 is a constant variance density (per steradian).

A.3 Pixel value definition in ERP

Each ERP pixel (u,v) € {0,...,W — 1} x {0,..., H — 1} covers a spherical patch
Puy = [#lu=15),6(u+ 1)) x [0 = 1),000+ 1))
Its area is
. 21 1 1 o2
Ay = Pwsm@dd) do = W [cosO(v — 1) —cosB(v+ 3)] = I sin 6, (11)
with the mid-latitude 6, := 6(v) = 7v/H.
The noise value stored in the pixel is the area—average
1
v =~ / e(¢,0)dA, dA=sinfdpdb. (12)
uv J Py,

Because the integral in Eq. 12 is a linear functional of the Gaussian field ¢, each 7,,,, is still Gaussian.

A.4 Independence

For two different pixels (u,v) # (u/,v") the patches P,,, Py, are disjoint. Since Eq. 10 states that
(¢, 0) is white, integrals over disjoint regions are uncorrelated, hence Gaussian independent:

2 ) _
COV(nuU,nu/v/) = // // g 5(¢A (%4)6(0 0 ) dA dA/ — 0 — Do 1L Do -
Py ! uvu/v’
(13)
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A.5 Non-identical distribution

The variance of one pixel, using Eq. 10, Eq. 11, and Eq. 12, is

2
Var(n,,) = A%//p //P 026(¢p—¢)5(0 —0')dAdA" = Z 2 WH 1 (14)

272 siné,

Eq. 14 depends on the latitude index v through the factor sin 6,,. Pixels close to the poles (6, = 0 or
) possess a larger variance than pixels near the equator (6,, ~ 7 /2). Hence

Var(ny,) # Var(ny,,.) forv#v'.

B More Details on Method

Implementation Details. The sampling step for PAR is set to 64 and » = 0.125 by default. We use
Janus Pro-7B to get the captions with the template as “Use one sentence to describe the photo in
detail.". We then calculate the token lengths and keep them less than 77. Experiments shows that less
than 0.1% of the captions do not meet the requirements, and we add "and briefly" at the end of those
prompts.

Framework Details. The transformer takes patchified visual tokens (from the VAE encoder), masking
indicators, and text embeddings as inputs. It outputs a conditional signal to drive the subsequent
denoising network MLP. The decoding mechanism is illustrated in Fig. 9.

The MLP has multiple stacked blocks. Within each block, the input is first processed by AdaLNZero
to get gating coefficients. It is then transformed using a projection layer consisting of two linear
layers with silu activation. The result is then LN-normalized and multiplied by the gating coefficients,
and finally combined with a residual connection.

I:“:H:”:' Text token Image token (Generated) Image token (To be generated in current AR step)
DDDD i : \ : : ) - : \ : ’
N [
S

Figure 9: Illustration of decoding mechanism.

C More Empirical Studies and Visual Results

Time Analysis. It takes about 2 days to train the 1.4B model on 8 NVIDIA A100 GPUs. As shown
in Tab. 4, we benchmark the inference speed for the 0.3B model with different AR steps using one
NVIDIA A100 GPU with a batch size of 8. The denoising steps for MLP are 25.

Table 4: Ablations of inference time under different AR steps.

AR steps 16 32 64
Inference speed (sec/image) | 3.02 5.49 10.03

We also compare PAR-0.3B with PanFusion with 64 AR steps in Tab. 5.

Table 5: Comparison with PanFusion regarding inference time.

PanFusion PAR (ours)

Inference speed (sec/image) | 28.91 10.03
FID | 45.21 41.15
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Table 6: Ablations of different padding ratios regarding inference time.

Padding Ratio 0 00625 0.125 025 0.5
Inference speed (sec/image) | 2.99  3.01 3.02 3.04 3.05
Additional costs 0 067% 1.00% 1.67% 2.01%

Table 7: Text-to-panorama results on the Matterport3D dataset.

FAED| FID] CLIPScoret DS/

DiffPano [70] 10.03 53.29 30.31 6.16
UniPano [40] 5.87 44.74 30.45 0.77
PAR-0.3B (ours) 3.39 41.15 30.21 0.58

As shown in Tab. 6, circular padding does not bring about additional computational cost in the
transformer and MLP, which account for the majority of inference time. The AR step is 16.

More Results on Text-to-Panorama. Tab. 7 shows that our method has advantages on text-to-
panorama task. We also provide more visual results in Fig. 10. Our model can generate reasonable
panoramic images under the guidance of textual prompts. Tab. 9 provides ablation study for different
denoising steps with our 0.3B model.

More Results on Panorama Outpainting. Tab. 8 shows that our method has advantages on panorama
outpainting task. We provide more visual results for panorama outpainting in Fig. 11. We test the
performance of our model in indoor setting and outdoor setting, and our model can achieve decent
results, which proves its generalizability.

Visual Results of Circular Padding. Fig. 12 compares different circular padding strategies, including
Tpre = 0 and 7p,c = 0.5. 104 ranges from 0 to 0.5. It converges quickly with 7,4 > 0. 7, helps
to maintain cycle consistency at the semantic level.

Classifier-free Guidance. We evaluate PAR-1.4B with different CFG coefficients. The model obtains
40.04 FID when CFG=3 and 39.76 FID when CFG = 10, indicating that too large or too small
guidance strength deteriorates the quality of the generation.

Ablations on other datasets. We include additional experiments using the Structured3D [78]
dataset, which is a large-scale synthesized indoor dataset for house design with well-preserved poles.
We sampled 9000 images for training and 1000 for testing. In Tab. 10, our method outperforms
PanoLlama. Fig. 14 visualizes the synthesized results of PAR-0.3B. This indicates that the blur in the
pole regions originates from the dataset and is irrelevant to the model, which can also be demonstrated
by the visualizations of perspective projections in Fig. 13.

Zero-shot inference on OOD datasets. We evaluate panorama discontinuity using both our method
and StitchDiffusion [61]. StitchDiffusion forces the model to fuse seam areas during inference. On
the contrary, our pre-padding makes the model learn semantic consistency during the training phase,
and post-padding achieves pixel-level consistency in the inference stage. In this experiment, PAR-
0.3B and StitchDiffusion generate images for 100 text prompts sampled from a subset of SUN360,
respectively. Our method achieves a DS score of 0.63, outperforming StitchDiffusion’s 1.12.

For zero-shot outpainting, we compare the two methods on 100 images from the Structured3D dataset,
which is excluded from both training sets for fairness. As shown in Tab. 11, our model outperforms
Diffusion360.

Failure case. As shown in Fig. 15, our model may fail in some details of small objects, such as tables
and sofas.

D Discussion

Comparisons to multi-view diffusion models. On the one hand, our AR-based method has several
advantages over multi-view diffusion models (MVDMs). First, Computational Efficiency. MVDMs
require generating several perspective images to cover a panorama, resulting in more computational
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The image depicts a spacious, elegantly designed living The image depicts a spacious, elegant kitchen and dining

room with large windows, white walls, and a mix of area with a round wooden table, white chairs, and a large
modern and traditional furniture, including sofas, a coffee window adorned with curtains, showcasing a blend of
table, and a grand piano. modern and classic design elements.

The image depicts a spacious, well-lit living room with a The image depicts a spacious, modern bathroom with a
mounted TV, comfortable seating, and a view of the large bathtub, double vanity, and large windows allowing
kitchen and dining area in the background. natural light to fill the room.

Figure 10: Visualization of text-to-panorama generation, including the generated results and corre-
sponding textual prompts.

Table 8: Panorama outpainting results on the Matterport3D dataset.

FID| FID-h)

PanoDiff [62] 65.11  46.58
PAR w/o prompt 41.63  25.97

cost due to the attention mechanism. Second, Global Consistency. Coordinating multiple views
demands complex attention mechanisms to ensure coherence, and struggles to maintain a consistent
global understanding - sometimes leading to duplicated or inconsistent content. Third, Fewer Seam
Issues. MVDMs must handle more seams at the boundaries between views, which increases the
difficulty of achieving seamless stitching and can introduce visible artifacts.

On the other hand, since our model directly generates the entire panoramic image, it needs to
use panoramic data to drive the pre-trained model (trained on perspective images) to adapt to the
panoramic domain knowledge, which might be less efficient.

Broader Impacts. Our proposed PAR employs autoregressive set-by-set modeling for panoramic
image generation tasks. It has significant advantages in generation performance compared with
previous methods. Moreover, it shows the capability of zero-shot task generalization, like panorama
outpainting and editing. This is an attempt towards the unification model in the field of panoramic
image generation and will motivate people to explore the unification of different tasks in panorama
generation. From the perspective of social impact, this will help the creation of artistic content, but at
the same time it may result in the problem of fake content.

Safeguards. The content generated by the generative model, including AR models in this paper,
demonstrates a high degree of correlation with the training data. From this perspective, it is important
to ensure the fairness and cleanliness of the training data. In this way, we can effectively prevent the
model from generating harmful content.

Limitations. We find that there is still a gap between the generated results and the real panoramic
images, such as some details and textures. We argue that scaling on more realistic images can help
alleviate this problem. However, due to the scarcity of panoramic data, we leave it as future work.
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Table 9: Ablations of denoising steps.

Steps 10 20 30 40
FID| 41.57 40.19 4198 43.77

(b) pre = 0.

Tpost = 0 Thost = 0.5
Figure 12: Visualization results of circular padding under different settings.

Table 10: Comparisons of PAR-0.3B and PanoLlama on Structured3D dataset.

FID| CLIPScoretT DS

PanoLlama [80] 125.35 33.90 16.37
PAR-0.3B 47.02 30.75 0.68

Table 11: Zero-shot panorama outpainting results.

FID| FID-h/|

Diffusion360 [18] 14091  74.89
PAR w/o prompt  127.01  68.27
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Panoramic Images Perspective Images

Figure 13: Perspective projections of synthesized results on Matterport3D dataset.

The image depicts a modern, well-lit interior of a home with  The image depicts a modern, well-organized bedroom with a
a kitchen, dining area, hallway, living room, and staircase, large bed, wooden flooring, and a variety of furniture
showcasing a warm and inviting atmosphere. including a wardrobe, a chair, a desk, and a dresser.

Figure 14: Visualizations of synthesized results on Structured3D dataset.

(a) The photo depicts a spacious, modern (b) The image depicts a modern, spacious hotel
bedroom with a large bed, a sitting area, and a room with two twin beds, sleek furniture, and a
balcony overlooking a scenic view of the ocean. clean, neutral color palette.

Figure 15: Failure cases.
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