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Abstract—The generation of synthetic chest X-rays from tex-
tual clinical data has shown significant promise for augmenting
medical datasets and supporting downstream diagnostic tasks.
This study extends the RoentGen framework, a latent diffusion-
based image generator, by systematically evaluating the influence
of structured Electronic Health Record (EHR) derived prompt
types and domain-specific Bidirectional Encoder Representations
from Transformers (BERT)-based language models on image
quality and semantic fidelity. We propose four prompt strategies
derived from structured EHR fields: Detailed, Disease, Demo-
graphic, and Device, and examine their effect on synthesized
image realism and alignment. Additionally, we compared ten
biomedical encoders, including ClinicalBERT, BioBERT, Pub-
MedBERT, and others, across multiple visual-semantic metrics
such as Structural Similarity Index Measure (SSIM), Peak
Signal-to-Noise Ratio (PSNR), Learned Perceptual Image Patch
Similarity (LPIPS), Contrastive Language Image Pretraining
Score (CLIPScore), and Fr´echet Inception Distance with X-
Radiology Vision features (FID-XRV). Our findings highlight
that both the content of the prompt and the choice of encoder
substantially impact the quality and interpretability of generated
images. Notably, BioBERT paired with disease-centric prompts
consistently yields superior results. This work provides valuable
insights for improving conditional medical image generation,
particularly in settings with limited narrative text.

Index Terms—RoentGen, medical image synthesis, CXR gen-
eration, clinical text conditioning, biomedical language models,
Prompt engineering.

I. INTRODUCTION

Chest X-rays (CXRs) are among the most widely used
diagnostic tools in medicine, essential for identifying thoracic
conditions such as pneumonia, pleural effusion, and car-
diomegaly [1]. However, developing robust machine learning
models for CXR interpretation is hindered by data imbalance,
annotation scarcity, and privacy constraints. Synthetic image
generation has emerged as a promising solution for data aug-
mentation, simulation-based training, and explainable AI [2].
In particular, generating medical images from textual inputs
such as radiology reports and clinical notes addresses the need
for large, annotated datasets. Yet, traditional generative models
often struggle to capture the complex semantics of medical
data, necessitating domain-specific approaches.

Recent advances in generative modeling, especially through
latent diffusion models (LDMs), have enabled controllable
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and high-fidelity medical image synthesis conditioned on
textual descriptions. RoentGen [3] is a recent vision-language
framework that uses a frozen CLIP text encoder [4] to trans-
form radiology reports into embeddings that guide chest X-
ray generation. By fine-tuning on paired CXR images and
corresponding textual reports, RoentGen demonstrates the
capability to produce diverse and clinically plausible images,
offering a valuable tool for data augmentation and educational
purposes. However, its dependence on free-text reports and
a single encoder architecture restricts flexibility and raises
questions about generalizability in real-world scenarios. In
many clinical contexts, structured Electronic Health Record
(EHR) data, such as patient age, gender, race, diagnostic codes,
and device usage, are more readily available than detailed
radiology reports and can offer an alternative input modality
for image generation. Effectively leveraging this structured
data for image synthesis requires innovative prompt engi-
neering strategies that can translate discrete clinical attributes
into meaningful textual prompts and selecting appropriate
biomedical text encoders for conditioning remains an open
research problem.

This gap motivates our work to evaluate how the choice
of biomedical language models affects conditioning in latent
diffusion-based CXR generation. This study investigates how
prompt engineering from structured EHR fields and the choice
of biomedical language models like Bidirectional Encoder
Representations from Transformers (BERT) [5], Biomedi-
cal Bidirectional Encoder Representations from Transformers
(BioBERT) [6] and PubMedBERT [7], which have shown
superior performance in medical natural language processing
(NLP) tasks, influence the quality and clinical validity of
generated CXR images in comparison to the RoentGen base
model. We selected a diverse set of domain-specific text
encoders based on their pretraining on biomedical and clinical
datasets. This diversity allowed us to systematically evaluate
how variations in pretraining data sources (e.g., biomedical lit-
erature, clinical notes, discharge summaries) and architectural
adaptations (e.g., long-sequence handling, relational linking)
influence the fidelity, realism, and semantic alignment of
generated medical images [3]. These models represent the
current landscape of specialized language models optimized
for healthcare-related NLP tasks. In StructGen, we extend the
RoentGen pipeline to incorporate diverse prompt formulations
and multiple BERT-based domain-specific encoders to evaluate



their impact across various metrics to enhance the semantic
and pathological realism of synthetic images. The key contri-
butions of this work are as follows:

• A comparative analysis of ten biomedical language mod-
els as text encoders for conditioning latent diffusion
models in RoentGen CXR generation.

• A systematic study of prompt engineering strategies using
structured EHR data to drive clinically meaningful image
synthesis.

• A comprehensive evaluation framework assessing fidelity,
diversity, and diagnostic alignment of generated images
under different prompt-encoder combinations.

Through comprehensive experiments and evaluations, we
seek to enhance the applicability of text-conditioned image
generation in clinical contexts, particularly in settings with
limited access to detailed radiology reports.

II. LITERATURE SURVEY

This section presents a comprehensive review of the current
state-of-the-art in two key areas central to this study: (1)
text-to-image generation with a focus on medical imaging
applications, and (2) biomedical language models designed
for processing clinical and domain-specific text. The goal is
to contextualize our work within recent advances and identify
existing gaps that motivate the need for evaluating prompt
engineering strategies and encoder selection in medical image
synthesis.

A. Text-to-Image Generation in Medical Imaging

Generative models have transformed computer vision, and
their adaptation to medical imaging has led to meaningful ad-
vances in data synthesis. Early works focused on GAN-based
models. For example, MedGAN [2] introduced a framework
for generating multi-modal medical images using adversarial
loss and perceptual regularization. In [8], the authors have used
GANs for liver lesion augmentation, improving Convolutional
Neural Network (CNN) classification accuracy. Text-guided
generation has emerged more recently with the development
of models such as AttnGAN [1] and Text to Image (T2I)
model [9] in the general domain. In medical contexts, Taming
Transformers [10] and Guided Language to Image Diffusion
for Generation and Editing (GLIDE) [11] inspired the use
of text-conditioning for image generation. Medfusion [12]
adapted these concepts using medical language prompts to
guide diffusion-based generation. RoentGen [3] builds upon
this line of work by leveraging a latent diffusion model
conditioned on embeddings derived from CLIP text encoder.
While it achieves state-of-the-art performance in radiology
image synthesis verified by radiologists, its reliance on ra-
diology reports limits its adaptability to real-world clinical
systems, where structured metadata is often the only available
input. Moreover, its use of a single encoder restricts semantic
diversity in generation, motivating our study.

B. Biomedical Language Models for Clinical NLP

Transformer-based language models pretrained on biomed-
ical datasets have significantly improved performance in clin-
ical NLP tasks such as named entity recognition (NER),
relation extraction (RE), and question answering (QA). Among
the most prominent models are BERT [5], BioBERT [6], Bi-
oLinkBERT [13], BlueBERT [14], Clinical-Longformer [15],
ClinicalBERT [16], DischargeBERT [17], Medical Robustly
Optimized BERT Approach (MedRoBERTa) [18], PubMed-
BERT [7], RedBERT [19], and Self-Alignment Pretraining
for Biomedical Entity Representation (SapBERT) [20]. Table I
discusses the different hyperparameters and characteristics of
these models. These models refine representation learning by
incorporating ontology alignment, scientific vocabulary, and
link prediction into training. While these models have demon-
strated success in traditional NLP tasks, their comparative
performance in vision-language tasks, especially in guiding
image synthesis, remains underexplored.

III. METHODOLOGY

This section outlines the methodological framework adopted
in this study, encompassing all critical components required
for analyzing the effect of prompt design and language model
selection on chest X-ray generation. The pipeline is systemati-
cally divided into five key stages: Dataset Description, Prompt
Generation Strategies, Biomedical Language Models, Image
Generation Pipeline, and Evaluation Metrics. Together, these
components form a modular, yet cohesive pipeline designed
to evaluate how structured clinical information and encoder
selection impact the semantic controllability and diagnostic
fidelity of synthetic chest X-ray generation.

A. Dataset Description

This study leverages structured EHR data derived from the
MIMIC-IV database [21] and MIMIC-CXR [22], a large-
scale, publicly available dataset containing comprehensive
clinical information for patients admitted to the intensive
care units (ICUs) and their corresponding chest x-rays of the
Beth Israel Deaconess Medical Center. MIMIC-IV comprises
over 27 interlinked tables capturing demographic, diagnostic,
procedural, and laboratory data. For the purposes of this
study, we construct a curated dataset focused on metadata
relevant to chest X-ray generation. MIMIC-CXR contains
377, 110 radiographs and 227, 827 accompanying reports, each
linked to unique MIMIC-IV identifiers. The final dataset
includes structured fields extracted and merged across the
relevant MIMIC-IV tables, along with their corresponding
CXR images. The selected features include both demographic
attributes and clinical indicators:

• disease: The target pathology or diagnosis label used
as a proxy for clinical findings.

• support_devices: Binary indicator denoting the
presence of medical devices (e.g., ventilators, tubes).

• gender: Boolean field representing patient gender
(Male: 0 and Female: 1).



TABLE I
SUMMARY OF BIOMEDICAL LANGUAGE MODELS

Model Architecture Training Corpus Max Input
Length

Domain Focus Special Features

BERT [5] BERT-base Wikipedia + BookCor-
pus

512 General domain Foundational transformer model;
serves as a baseline for domain
adaptation

BioBERT [6] BERT-base PubMed abstracts, PMC
full-text articles

512 Biomedical litera-
ture

Early domain-specific BERT variant;
widely used in NER and QA

BioLinkBERT [13] BERT-base PubMed + document
link graphs

512 Biomedical litera-
ture with citations

Exploits inter-document links using
link-aware attention

BlueBERT [14] BERT-base PubMed + MIMIC-III
clinical notes

512 Biomedical and
Clinical

Hybrid corpus for cross-domain NLP

Clinical-
Longformer [15]

Longformer Clinical notes (e.g.,
MIMIC-III)

4096+ Clinical narratives Sparse attention for long documents
(EHRs, summaries)

ClinicalBERT [16] BERT-base MIMIC-III clinical notes 512 Clinical (EHR) Trained on real-world hospital text;
supports predictive analytics

DischargeBERT
[17]

BERT-base MIMIC-III discharge
summaries

512 Discharge
documents

Specialized for discharge notes and
patient outcomes

MedRoBERTa [18] RoBERTa-base PubMed + PMC 512 Biomedical Robust optimization, dynamic mask-
ing, better generalization

PubMedBERT [7] BERT-base (trained
from scratch)

PubMed abstracts only 512 Biomedical termi-
nology

Domain-specific tokenizer and pre-
training corpus

RadBERT [19] BERT-base Radiology reports (e.g.,
MIMIC-CXR)

512 Radiology / Imag-
ing text

Tailored for radiological NLP tasks

SapBERT [20] BERT-base UMLS ontology with
PubMed/MIMIC

512 Biomedical entity
linking

Aligns synonymic entities in UMLS
using self-alignment training

• race: Patient’s self-identified racial or ethnic back-
ground.

• anchor_age: Patient’s age at the time of admission or
examination.

This structured representation is employed as a substitute
for free-text radiology reports to simulate realistic clinical
scenarios, where only metadata is available. The intention
is to evaluate how effectively prompt generation techniques
can translate such tabular data into informative conditioning
prompt inputs for image generation.

B. Prompt Generation Strategies

To evaluate how different types of EHR-derived metadata
influence image generation, we design four distinct prompt
generation strategies that convert structured EHR clinical data
into descriptive natural language prompts. These strategies
aim to cover varying levels of clinical detail and linguistic
naturalness.

1) Full Detailed Prompt (Rule-based): This prompt gen-
eration method combines all available metadata of radiologi-
cal conditions, device information, and patient demographics
using a deterministic, rule-based template. This composite
prompt provides the most complete structure to natural map-
ping. This level of detail mirrors realistic radiology report sum-
maries and allows evaluation of generation under maximum
clinical grounding. Example: “Chest X-ray showing pneumo-
nia with support devices present. Patient details: Hispanic
ethnicity, age 58, Gender Male.” for EHR Data: Disease =
Pneumonia; Device = Clips; Ethnicity = Hispanic; Age = 58;
Gender = Male

2) Disease Prompt: This strategy involves generating a
concise prompt that mentions only the primary radiological

finding or condition extracted from the EHR or radiology
report. This minimal representation serves as a baseline to
evaluate the effect of richer contextual information in other
strategies. This prompt is direct and medically focused, mak-
ing it ideal for assessing whether the model can synthesize
disease-relevant features in isolation. Example: “Chest X-ray
showing pneumonia.” for EHR Data: Disease = Pneumonia

3) Demographics Prompt (Demo): This strategy enriches
the prompt with patient demographic attributes such as age,
gender, and ethnicity, which can influence disease presen-
tation and imaging appearance. Incorporating demographics
enables analysis of whether generative models reflect realistic
population-level variation or introduce demographic bias. Ex-
ample: “Chest X-ray showing Patient details: Asian ethnicity,
age 62, Gender Female.” for EHR Data: Ethnicity = Asian;
Age = 62; Gender = Female

4) Device Prompt: In this strategy, we augment the prompt
with information about any medical devices present in the
image, such as chest tubes, catheters, or ventilators. Such
additions provide richer clinical context that may guide the
model in generating more medically accurate visualizations.
Including device information is crucial, especially for ICU or
post-operative patients, where support devices are prevalent.
Example: “Chest X-ray with support devices present.” for
EHR Data: Device = Surgical clips

Each prompt generation strategy reflects different priorities
in EHR-to-text conversion, ranging from richly to minimal
detailed inputs, and helps assess how semantic granularity
affects image fidelity, diagnostic realism, and bias sensitivity.
These strategies also enable systematic ablation studies to
analyze which metadata types most contribute to generating
clinically accurate images.



C. Biomedical Language Models

To generate clinically meaningful images, we evaluated ten
biomedical BERT-based language models as text encoders.
These models, varying in pretraining data and representa-
tional focus, produce contextual embeddings that condition the
RoentGen diffusion pipeline. Each is optimized for biomedical
or clinical NLP tasks, allowing us to assess how different
textual semantics impact image synthesis.

BERT is a general-purpose transformer model that captures
deep bidirectional context by jointly attending to left and right
sequences [5]. Despite not being domain-specific, it provides
strong performance across various NLP tasks due to its robust
pretraining. BioBERT extends BERT by further pretraining
on biomedical corpora [6], enabling improved handling of
biomedical terminology and outperforming baselines in NER,
RE, and QA. BioLinkBERT enhances BERT with document
link-aware attention to capture inter-document relationships
like citations [13], benefiting tasks such as cross-document
QA and scientific classification. BlueBERT is pretrained on
both PubMed abstracts and MIMIC-III clinical notes [14],
enabling cross-domain adaptability between biomedical lit-
erature and clinical narratives. Clinical-Longformer adapts
Longformer’s sparse attention to handle long clinical texts
efficiently (up to 4, 096+ tokens) [15], making it suitable
for lengthy medical documents. ClinicalBERT is BERT fur-
ther pretrained on MIMIC-III clinical notes [16], enhancing
its ability to interpret clinical jargon and abbreviations for
decision-support tasks. DischargeBERT specializes Clinical-
BERT for discharge summaries [17], capturing critical clin-
ical information to support tasks like readmission prediction
and outcome modeling. MedRoBERTa adapts RoBERTa for
biomedical domains using dynamic masking and extended
training [18], improving stability and performance in classi-
fication and similarity tasks. PubMedBERT is trained from
scratch on PubMed abstracts with a domain-specific vocabu-
lary [7], yielding superior results on tasks requiring precise
biomedical language understanding. RadBERT is optimized
for radiology reports [19], excelling in tasks like impression
summarization and report classification by capturing domain-
specific imaging language. SapBERT aligns embeddings of
synonymous biomedical terms using the UMLS ontology
[20], significantly enhancing performance in entity linking and
concept normalization.

Each model was loaded via the HuggingFace Transformers
library and used to generate token embeddings from each
prompt. The embeddings were pooled and projected to match
the dimensional expectations of the RoentGen conditioning
input. Each model is frozen and used to generate prompt
embeddings that condition the RoentGen image generation
pipeline.

D. Image Generation Pipeline

RoentGen [3] employs a latent diffusion model (LDM)
conditioned on text embeddings to generate chest X-ray im-
ages from natural language prompts, as shown in Fig. 1. The
pipeline consists of the following stages:

1) Prompt Conditioning: Each generation task begins with
a prompt pij , where i denotes the strategy (e.g., disease
description, demographic information), and j identifies the
encoder. Prompts describe clinical attributes to be reflected
in the generated image (e.g., “a chest X-ray showing signs of
pneumonia”).

2) Text Embedding: The prompt pij is passed through a
domain-specific text encoder, Encoderj (e.g., ClinicalBERT,
BioBERT) to produce a semantic embedding zij :

zij = Encoderj(pij) (1)

This embedding captures clinically relevant information and
serves as the conditioning input for image synthesis. The
choice of encoder directly impacts the semantic alignment of
the output.

3) Latent Diffusion and Image Generation: The latent
diffusion model uses zij to guide the denoising process in
latent space, generating a synthetic chest X-ray Îij :

Îij = RoentGen(zij) (2)

This process refines a noise vector into an image that
visually aligns with the semantic content of the prompt. The
final output reflects the clinical features described, enabling
applications in medical education, simulation, and data aug-
mentation.

E. Evaluation Metrics
To assess the quality and alignment of the generated medical

images with their textual prompts, we employ a set of well-
established quantitative evaluation metrics. These metrics eval-
uate aspects such as structural similarity, perceptual similarity,
semantic consistency, and realism.

1) Structural Similarity Index Measure (SSIM): SSIM is a
perceptual metric that quantifies the similarity between two
images based on luminance, contrast, and structural informa-
tion [23]. Given two image patches x and y, SSIM is computed
as:

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(3)

where µx and µy are the means of x and y, σ2
x and σ2

y are
the variances, σxy is the covariance between x and y, and C1,
C2 are stabilization constants. SSIM values range from 0 to
1, with higher values indicating greater structural similarity.

2) Peak Signal-to-Noise Ratio (PSNR): PSNR is a widely
used metric that measures the pixel-level fidelity between a
generated image and its ground truth counterpart [24]. It is
derived from the mean squared error (MSE) between the two
images, expressed in decibels (dB). The formula for PSNR is:

PSNR = 10 · log10
(
MAX2

I

MSE

)
(4)

where MAXI is the maximum possible pixel value of
the image (e.g., 255 for 8-bit images). Higher PSNR values
indicate lower distortion and better image quality. While PSNR
is sensitive to small pixel differences, it does not account for
perceptual or semantic fidelity.
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3) Learned Perceptual Image Patch Similarity (LPIPS):
LPIPS measures perceptual similarity by computing distances
between deep feature representations extracted from a pre-
trained network (AlexNet in this case) [25]. Given two images
x and y, the LPIPS score is:

LPIPS(x, y) =
∑
l

1

HlWl

∑
h,w

∥wl ⊙ (fx
l (h,w)− fy

l (h,w))∥
2
2

(5)
where fx

l and fy
l are feature maps from layer l, wl is a learned

weight, and Hl,Wl are spatial dimensions of the layer. Lower
LPIPS scores indicate higher perceptual similarity.

4) CLIPScore: CLIPScore evaluates the semantic align-
ment between a text prompt and a generated image using the
CLIP (Contrastive Language–Image Pretraining) model [26].
It computes the cosine similarity between the image and text
embeddings:

CLIPScore(I, T ) = cos(ϕimg(I), ϕtext(T )) (6)

where ϕimg and ϕtext are CLIP image and text encoders,
respectively. A higher CLIPScore indicates stronger semantic
correspondence between the prompt and the image.

5) Fréchet Inception Distance (FID-XRV): FID measures
the distance between distributions of real and generated image
features, capturing both quality and diversity [27]. In the FID-
XRV variant, features are extracted using a medical domain-
specific encoder (e.g., CheXNet or another radiology network).
The score is calculated as:

FID(X,Y ) = ∥µX − µY ∥22 + Tr(ΣX +ΣY − 2(ΣXΣY )
1/2)

(7)
where (µX ,ΣX) and (µY ,ΣY ) are the mean and covariance
of features from the real and generated images, respectively.
Lower FID scores suggest that the generated images closely
resemble real ones in distribution.

F. Experimental Setup

To systematically evaluate the effect of biomedical language
models on medical image generation, we perform a full
combinatorial analysis over 4 Prompt Strategies × 10 Text
Encoders = 40 unique generation configurations. For each
configuration, N = 500 synthetic chest X-ray images are
generated and evaluated independently. All x-ray generations
are conducted using the same underlying latent diffusion archi-
tecture, specifically the RoentGen model [3], with identical U-
Net, scheduler, and decoder parameters across all experiments.
This uniformity ensures that observed performance differences
can be attributed solely to the choice of text encoder and
prompt structure, rather than architectural or hyperparame-
ter variation. To preserve experimental reproducibility, each
configuration was seeded deterministically and processed on
a shared computational environment. This architectural ad-
justment permits more accurate grounding of medical image
generation in biomedical text, resulting in images that not only
align with the visual appearance of X-rays, but also reflect
clinical specificity embedded in the textual descriptions.

IV. RESULT AND DISCUSSION

This section presents a detailed evaluation of model per-
formance based on four quantitative metrics: SSIM, PSNR,
LPIPS, CLIP similarity, and FID-XRV evaluated across four
prompt categories Detailed, Disease, Demographic, and De-
vice. The combined performance metrics presented in Table
II provide a comprehensive evaluation of model performance
based on various prompt and biomedical language models.
The analysis highlights comparative strengths and limitations
of biomedical language models in generating clinically mean-
ingful radiological images.



TABLE II
COMBINED PERFORMANCE METRICS BY PROMPT AND MODEL (BEST IN

BOLD, SECOND-BEST UNDERLINED)

Prompt Model SSIM ↑ PSNR ↑ LPIPS ↓ CLIP ↑ FID-XRV ↓

Detailed

BERT 0.359 13.271 0.346 0.960 8.150
BioBERT 0.417 14.065 0.328 0.963 3.570
BioLinkBERT 0.443 13.332 0.422 0.889 15.210
BlueBERT 0.282 12.442 0.398 0.940 6.960
Clinical-Longformer 0.455 12.552 0.475 0.889 19.720
ClinicalBERT 0.312 13.321 0.393 0.951 6.360
DischargeBERT 0.434 12.885 0.413 0.901 15.860
MedRoBERTa 0.446 12.918 0.407 0.938 9.110
PubMedBERT 0.258 12.148 0.592 0.514 103.830
RadBERT 0.297 12.951 0.400 0.944 7.500
SapBERT 0.425 12.751 0.426 0.874 20.200

Disease

BERT 0.357 13.113 0.345 0.958 7.940
BioBERT 0.413 14.032 0.322 0.962 4.250
BioLinkBERT 0.407 12.777 0.445 0.879 21.150
BlueBERT 0.321 12.959 0.351 0.954 6.610
Clinical-Longformer 0.420 12.352 0.478 0.892 17.650
ClinicalBERT 0.404 13.896 0.316 0.962 3.900
DischargeBERT 0.398 11.961 0.426 0.911 15.990
MedRoBERTa 0.416 12.674 0.417 0.936 10.520
PubMedBERT 0.240 11.300 0.616 0.521 101.740
RadBERT 0.311 12.732 0.392 0.930 5.470
SapBERT 0.412 12.417 0.462 0.835 31.210

Demo

BERT 0.366 13.026 0.371 0.956 7.420
BioBERT 0.410 13.591 0.357 0.959 4.550
BioLinkBERT 0.424 12.918 0.440 0.893 19.540
BlueBERT 0.326 12.690 0.367 0.955 5.380
Clinical-Longformer 0.416 12.281 0.516 0.874 24.890
ClinicalBERT 0.360 13.342 0.364 0.954 5.650
DischargeBERT 0.389 12.056 0.426 0.906 15.170
MedRoBERTa 0.405 12.401 0.465 0.926 12.450
PubMedBERT 0.234 11.750 0.614 0.512 102.280
RadBERT 0.297 12.772 0.396 0.952 6.100
SapBERT 0.421 12.235 0.465 0.839 27.300

Device

BERT 0.404 13.804 0.339 0.962 7.780
BioBERT 0.378 14.260 0.369 0.957 4.870
BioLinkBERT 0.453 13.711 0.431 0.901 16.510
BlueBERT 0.299 13.146 0.387 0.952 5.030
Clinical-Longformer 0.441 12.713 0.503 0.871 22.710
ClinicalBERT 0.378 14.181 0.366 0.954 6.060
DischargeBERT 0.417 12.247 0.460 0.896 16.410
MedRoBERTa 0.426 13.097 0.434 0.936 9.280
PubMedBERT 0.244 12.731 0.595 0.509 103.120
RadBERT 0.285 13.087 0.416 0.924 6.490
SapBERT 0.416 13.300 0.447 0.807 40.340

A. Result Score Analysis

Structural Similarity Index (SSIM): Clinical-Longformer,
MedRoBERTa, and BioLinkBERT achieved the highest SSIM
under Detailed prompts (e.g., 0.449 for Clinical-Longformer),
confirming their strength in structural fidelity when processing
rich clinical input. In contrast, PubMedBERT consistently
showed the lowest SSIM across all prompt types (as low as
0.255), struggling to maintain structural coherence. Device
and Demographic prompts also showed high SSIM when
interpreted by BioLinkBERT and BioBERT, reflecting their
ability to generalize from sparse input.

Peak Signal-to-Noise Ratio (PSNR): Across all prompt
types, BioBERT consistently demonstrated the highest PSNR,
for instance, 14.260 under the Device prompt and 14.065
under the Detailed prompt type, indicating superior pixel-level
fidelity of generated images. ClinicalBERT also achieved a
strong PSNR (13.896) under the Disease prompt, highlighting
its robustness in preserving fine-grained radiographic details.
In contrast, PubMedBERT yielded the lowest PSNR across all
prompts (as low as 11.300), suggesting challenges in recon-
structing high-fidelity images when trained solely on abstract-
level biomedical text. BERT, while not domain-specific, still
achieved competitive PSNR scores (e.g., 13.804 under De-
vice), validating its utility as a general-purpose baseline.

LPIPS (Perceptual Similarity): Lower LPIPS indicates
better perceptual realism. BioBERT (0.339) and ClinicalBERT
(0.318) performed best under Detailed and Disease prompts,
suggesting that models trained on clinical narratives produce
perceptually consistent images. Clinical-Longformer showed
elevated LPIPS under narrow prompts, indicating structural,
but less perceptual consistency. PubMedBERT again had the
highest LPIPS (up to 0.593), denoting poor visual plausibility.

CLIP Similarity: Semantic alignment between generated
images and text was highest for BioBERT across all prompts
(e.g., 0.965 for Detailed), with ClinicalBERT and BlueBERT
also performing well under Disease and Demographic settings.
PubMedBERT underperformed significantly across the board
(as low as 0.512), indicating weak cross-modal understanding.
Notably, RadBERT also scored highly in this metric despite
limited participation in others.

FID-XRV (Clinical Realism): The most realistic and radi-
ologically coherent images came from BioBERT (3.57) and
ClinicalBERT (3.90) under Detailed and Disease prompts.
BlueBERT maintained strong performance under Device and
Demographic conditions. In contrast, SapBERT and PubMed-
BERT showed extremely high FID-XRV scores (e.g., 103.12),
reflecting their poor clinical realism.

B. Discussion

Overall, BioBERT and ClinicalBERT consistently emerge
as the most reliable models across all metrics and prompt
types. Their pretraining on clinical narratives and biomedical
texts allows them to interpret and translate textual prompts into
high-fidelity, perceptually coherent, and semantically aligned
medical images. Models like PubMedBERT and SapBERT lag
significantly, particularly in realism and embedding similarity,
likely due to limited or misaligned pretraining domains. Ad-
ditionally, prompt structure plays a significant role: Detailed
prompts maximize semantic alignment and structural quality,
while Disease and Device prompts offer better realism, es-
pecially when used with models capable of handling focused
clinical content. These insights emphasize the critical interplay
between prompt design and language model selection in
generative medical imaging.

Clinical relevance: Our study highlights the importance of
clinically pre-trained language models and prompt specificity
in generating medically accurate and realistic images. These
insights can directly enhance synthetic data generation, clinical
AI model training, and decision support in real-world radiol-
ogy settings.

V. CONCLUSIONS

In this study, we enhanced the RoentGen image gener-
ation framework by investigating two key factors: prompt
engineering from structured EHR data and encoder selection
among domain-specific biomedical language models. Through
extensive quantitative evaluation across four prompt types and
ten encoders, we demonstrate that both prompt content and
encoder pretraining significantly influence the clinical quality
and semantic accuracy of generated chest X-rays. Among the



tested combinations, disease prompts paired with BioBERT
or ClinicalBERT yielded the most clinically faithful im-
ages, while models like PubMedBERT underperformed across
prompt types, especially in semantic alignment. Our findings
underscore the importance of tailored prompt design and en-
coder choice in medical image generation pipelines, especially
when free-text reports are unavailable. These insights pave the
way for more effective, realistic, and usable synthetic data
generation in clinical applications such as clinical AI model
training, diagnosis support systems, and medical research.
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