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ABSTRACT

We delve into a challenging variant of the Traveling Salesman Problem (TSP),
namely tunnel TSP, which incorporates a new important constraint requiring the
traversal of a prescribed set of tunnels. While traditional deep reinforcement learn-
ing (DRL) based neural TSP algorithms excel in optimizing routes without tunnel
restrictions, they often struggle to achieve optimal performance in tunnel TSP due
to the neglect of the crucial role of tunnel attributes during solution generation. To
address this challenge, we propose a simple but effective and flexible technique,
called Double-Encoder Transformer (DET), which can be seamlessly integrated
into various existing autoregressive neural TSP solvers. DET processes node and
tunnel location information separately and encodes them in two distinct feature
spaces. Following an efficient fusion strategy, DET then integrates the encoded
information from nodes and tunnels, harnessing their intricate interactions. Exper-
imental validation demonstrates that integrating DET into existing autoregressive
neural solvers significantly improves performance, enabling us to reduce the aver-
age optimality gap for tunnel TSP from 12.58% (of the previous Single-Encoder
model) to 7.35%.

1 INTRODUCTION

Combinatorial Optimization (CO) aims to find some optimal solutions within a combinatorial space,
guided by an objective function and subject to constraints. The Traveling Salesman Problem (TSP)
serves as a classic example, where the goal is to determine the shortest route that visits a set of fixed
locations exactly once. However, real-world applications frequently involve additional complexities
such as time constraints, capacity limitations, and infrastructure restrictions, necessitating the devel-
opment of various TSP variants tailored to specific industries (Wahyuningsih & Sari, 2021; Toaza &
Esztergár-Kiss, 2023).

One such variant is the Clustered TSP (CTSP) (Chisman, 1975). In CTSP, travelers are required to
visit all nodes within a cluster before moving to other nodes. CTSP is an NP-hard problem (Mestria,
2018) and finds broad applicability in various domains, including route optimization in automated
warehouses (Bock et al., 2024; Baniasadi et al., 2020), business transactions between supermarkets
and suppliers, manufacturing (Laporte et al., 1998), integrated circuit testing, emergency vehicle
dispatching and examination timetabling (Laporte & Palekar, 2002). Although CTSP has numerous
applications and several existing algorithms specifically tailored to it (Mestria, 2018; Lu et al., 2020;
Ahmed, 2014; Jiang et al., 2020; Bao et al., 2023; Dasari & Singh, 2023), most existing CTSP
solvers employ heuristic methods, with no neural solvers specifically designed for this problem.
Although (Chisman, 1975) proposes a method to reformulate a CTSP instance into a TSP instance,
this approach is incompatible with current neural solvers since existing TSP neural solvers are built
upon 2D Euclidean space, which cannot accommodate such a transformation. See Appendix A for
a counterexample.

We focus on addressing the simplest special case of CTSP, where the cluster sizes are limited to a
maximum of 2, and explore the potential of neural solvers for this problem. We refer to it as tun-
nel TSP, due to the clustering constraint resembling the traversal of a tunnel connecting two nodes.
Although tunnel TSP may appear straightforward, it holds considerable significance. When priori-
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tizing inter-cluster path optimization in CTSP, especially for large-scale TSP problems (Ding et al.,
2007; Pan et al., 2023; Fu et al., 2021; Zong et al., 2022; Fu et al., 2023; Falkner & Schmidt-Thieme,
2023; He et al., 2023) or during CTSP algorithm testing, considering tunnel TSP can intuitively nar-
row down the solution space, enabling a quicker resolution. Initially, each cluster’s interior is treated
as a small-scale TSP problem, determining a path within it. Subsequently, we simplify the cluster’s
elements to two, representing the start and end points of the sub-TSP problem. This transformation
converts the inter-cluster path optimization in CTSP into tunnel TSP, significantly enhancing the
training efficiency for large-scale TSP problems.

In this paper, we systematically define tunnel TSP and introduce two Markov Decision Process
(MDP) frameworks to model it. To enhance the utilization of tunnel TSP problem information, we
propose a generalized strategy named DET (Double Encoder Transformer), which optimizes the so-
lution process by separately inputting node information into a node encoder and tunnel information
into a tunnel encoder to obtain their corresponding embeddings. During the decoding period, both
encoder embeddings are concurrently considered for computation. While DET increases memory
usage compared to a single encoder, it fully leverages tunnel information and explores its properties,
yielding superior results.

In our experiments, we first compared the performance of several autoregressive TSP neural solvers
for the tunnel TSP problem. Subsequently, we tested the performance of these algorithms after in-
corporating DET. The results show that DET, which can serve as a plugin seamlessly integrated into
these DRL-based autoregressive TSP neural solvers, is compatible with both MDP procedures for
solving tunnel TSP. Compared to those Single-Encoder algorithms, those incorporating DET signif-
icantly improve performance, enabling us to reduce the average optimality gap for tunnel TSP from
12.58% (using the Single-Encoder model) to 7.35%(using the Double-Encoder model). We firmly
believe that this innovative approach has the potential to inspire further research into combinatorial
optimization problems that involve specific spatial constraints. Our contribution can be concluded
as follows:

• We address the tunnel TSP problem, a useful variant of TSP. To the best of our knowl-
edge, no prior research has utilized deep reinforcement learning (DRL) to solve tunnel TSP
problems.

• We proposed a model named DET, which encodes node and tunnel information distinctly
to address tunnel TSP. DET can be seamlessly integrated as a plugin into various autore-
gressive neural TSP solvers. Experimental results show that incorporating the DET model
enhances these solvers’ ability to handle tunnel TSP problems effectively.

• By combining the proposed DET model with the Regret model, we develop the DET-
POMO-Regret model. Experimental results showcase that this model achieves state-of-
the-art (SOTA) performance on tunnel TSP problems of varying scales while preserving
accuracy on the standard TSP problems.

2 RELATED WORK

DRL neural methods for solving TSPs With the incorporation of DRL into the routing problems,
some heuristics that are already commonly used achieve better results than the original heuristics (Ye
et al., 2024; Zheng et al., 2023; d O Costa et al., 2020). Apart from these, starting with Pointer Net-
work (Vinyals et al., 2015; Bello et al., 2016), more algorithms that leverage the characteristics of
the problem are employed to solve the routing problem. Neural TSP solvers can be roughly divided
into autoregressive solvers and Non-autoregressive solvers (Joshi et al., 2020). non-autoregressive
solvers often apply GCN (Joshi et al., 2019; Fu et al., 2021) and GNN (Senuma et al., 2022) archi-
tectures, while autoregressive solvers often apply attention mechanism or recurrent neural networks.
Attention Model (Kool et al., 2018) was the first autoregressive solver to use transformer (Vaswani,
2017). POMO (Kwon et al., 2020) exploits the symmetry of TSP routes and trains multiple in-
stances simultaneously to enhance AM’s efficiency. Furthermore, Pointerformer (Jin et al., 2023)
employs a multi-pointer network to achieve better results. (Sun et al., 2024) introduces a regret
mechanism that allows the autoregressive model to withdraw previous choices. Our DET is also
based on autoregressive methods, which can be integrated into various autoregressive models.
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Recent research on TSP problems has focused more on considering the problem structure to improve
their generalization or reduce training costs. Sym-NCO (Kim et al., 2022b) proposes broader sym-
metries of different routing problems than POMO(Kwon et al., 2020). BQ-NCO (Drakulic et al.,
2024) proposes a general framework to transform the CO problems into MDP. ELG (Gao et al.,
2023) learns auxiliary strategies from locally transferable topological features, thereby improving
cross-scale generalization performance. InViT (Fang et al., 2024) reduces the search space based on
a statistical conclusion about the optimal solution. Starting from the unique structure of tunnel TSP,
our DET greatly improves the generalization of different tunnel TSP problems by fully exploiting
the structural characteristics of tunnel TSP.

Different variants of TSPs To address complex real-world scenarios, researchers have developed
many variations of the TSP problem. These variants include but are not limited to clustered TSP
(Chisman, 1975), asymmetric TSP (Zhang et al., 2023), black and white TSP (Bourgeois et al.,
2003), multi-commodity pickup and delivery TSP (Hernández-Pérez & Salazar-González, 2009; Ma
et al., 2022) and generalized TSP (GTSP) (Pop et al., 2024). As heuristic algorithms have advanced,
solvers like LKH3 (Helsgaun, 2017) have proven their proficiency in handling these TSP variants.
However, the traditional heuristic algorithm faces the problem that the computation time increases
greatly with the problem size.

The introduction of DRL has further broadened the horizon of TSP research. By harnessing the
power of machine learning, researchers have explored new variants of TSP. (Zhang et al., 2021) in-
troduces Dynamic TSP (DTSP), where the size of TSP instances is dynamically adjusted throughout
the solution process. The most recently studied variant of the TSP problem is the min-max mTSP
problem (Mahmoudinazlou & Kwon, 2024; Park et al., 2023; Kim et al., 2022a; Son et al., 2024;
2023), which seeks to minimize the maximum cost among all salesmen. These variants underscore
the potential of TSP to address multiple optimization criteria. In addition, the DRL algorithm also
greatly reduces the computation time (Kool et al., 2018; Jin et al., 2023), making it possible to
solve large-scale problems. However, some pre-existing variants remain challenging to solve using
DRL neural solvers, such as the CTSP and the GTSP. Our DET offers a solution to tunnel TSP, the
simplest form of CTSP, marking the first attempt to use DRL to solve CTSP.

3 PROBLEM DEFINITION AND FORMALIZATION

In this section, we present the definition of the tunnel TSP problem, introduce some useful related
concepts, and formalize its solution as a Markov Decision Process. We focus on the 2D Euclidean
TSP and tunnel TSP problems.

3.1 TUNNEL TSP’S DEFINITION

Traveling Salesman Problem A TSP instance with m nodes can be described by an undirected
graph G = (V,E), where V = {vi | i = 1, . . . ,m} represents the set of nodes and E = {ei,j | i =
1, . . . ,m; j = 1, . . . ,m} represents the set of edges. A feasible solution of a TSP instance can be
defined as a closed cycle τ = {τ1, τ2, · · · , τm, τ1}, where τ1, τ2, · · · , τm constitute a permutation of
v1, v2, · · · , vm. The goal is to determine the optimal cycle τ that minimizes the total cost LTSP (τ),
which can be defined as the sum of the costs incurred between consecutive nodes in the cycle τ .
Formally:

LTSP (τ ) =

m∑
i=1

cost(τi, τi+1) (1)

where τm+1 = τ1 for notational convenience.

Tunnel TSP A tunnel TSP problem with m nodes and n tunnels can be described as a pair (G;S).
Component G = (V,E) is the same as in a TSP instance, while component S represents a set
of tunnels, where a tunnel is simply a set of two node indices. Formally, S = {{ai, bi} | ∀i =
1, . . . , n, ai = 1, . . . ,m, bi = 1, . . . ,m}. Without loss of generality, we assume that (1) a tunnel
connects two different nodes and (2) no node belongs to two different tunnels. A feasible solution of
a tunnel TSP instance can also be defined as a closed cycle τ = {τ1, τ2, · · · , τm, τ1}, In contrast to
TSP, a feasible solution of tunnel TSP should ensure that for each tunnel {ai, bi} ∈ S, nodes ai and
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bi are visited directly one after the other. This extra constraint guarantees that the tunnel’s endpoints
are directly connected in the solution sequence. The primary objective is to determine the optimal
solution sequence τ that minimizes the total cost Ltunnel(τ ). This total cost is defined as the sum
of the costs incurred between consecutive nodes in the cycle τ minus a fixed distance component
D(S), which is a constant that represents the total length of the pre-determined tunnels specified in
the set S.

Ltunnel(τ ) =

m∑
i=1

cost(τi, τi+1)−D(S) (2)

where τm+1 = τ1 for notational convenience. Given that both the total number of nodes and tunnels
significantly impact the complexity of Tunnel TSP, it possesses two distinct variables that determine
its scale, in contrast to TSP, which is defined by a single scale variable. For clarity, we adopt the
notation TTSP-m-n to represent Tunnel TSP instances involving a total of m nodes and n tunnels.
Also, we call a node ‘connected node’ if it is one end of an original tunnel. Otherwise, it is called a
‘standalone node’.

3.2 SOME RELATED CONCEPTS

To facilitate our discussion, we introduce the following definitions:
Definition 3.1. (Generalized Tunnel) A generalized tunnel is either an existing tunnel in the original
problem or a dummy tunnel whose two endpoints correspond both to the same standalone node (not
belonging to any existing tunnel).
Definition 3.2. (Corresponding Node) Node vi is called the corresponding node of node vj if they
form the endpoints of some (possibly generalized) tunnel.

Note that any node in G is either a standalone node or a connected node. Actually, S is the set of
original tunnels. We use S̄ to represent the set of generalized tunnels. For a tunnel TSP instance
(G;S), its S̄ can be obtained easily from G and S. The number of generalized tunnels can be easily
determined:
Lemma 3.1. In a TTSP-m-n instance, there exist m− n generalized tunnels.

Proof. Each of the n ordinary tunnels is directly counted. The remaining m− 2n standalone nodes
can be conceptually treated as generalized tunnels.

3.3 THE MARKOV DECISION PROCESS OF TUNNEL TSP

We can formalize the solution of a tunnel TSP instance using two different Markov Decision Pro-
cesses (MDP). The first MDP starts from the definition of clustered TSP and restricts the agent’s
behavior based on a detector. Formally, the first MDP can be defined as follows:

State A state st = (xt,G, S), where xt = (τ1, τ2, ..., τt) represents the t-th partially complete
feasible solution of tunnel TSP (G, S). τ1 can be any point in V .

Action The action is a node at time step t that ensures the partial solution xt+1 is valid. i.e.,
at ∈ V \{τ1, · · · , τt}. Due to the tunnel limitations, if τt is a connected node in G and its
corresponding node has not been visited yet, then at ∈ {τ̂t}, where τ̂t is the corresponding
node of τt.

Transition Given a state st and an action at, the next state st+1 = (xt+1,G, S) is deterministically
determined with xt+1 = (τ1, τ2, ..., τt, τt+1) with τt+1 = at.

Reward Every single time step has the reward rt = −cost(τt, τt+1), which is defined as the nega-
tive cost of the corresponding chosen edge.

Policy Policy network πθ chooses actions according to the state st at each time step t. For a given
instance (G, S), the probability of a solution can be calculated as follows:

pθ(x|G, S) =
m∏
t=1

πθ(at|st) =
m∏
t=1

πθ(at|xt,G, S) (3)

where m represents the total number of steps to get a feasible solution in this MDP because
action is made on a per-node basis.
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The second MDP utilizes the properties of tunnels. When a node is selected, the agent transitions
directly to the corresponding node of the selected generalized tunnel. It seems more like the agent
selects an endpoint of a generalized tunnel each time, taking the generalized tunnel as a unit. For-
mally, the second MDP can be defined as follows:

State A state st = (xt,G, S), where xt = (τ1, τ2, ..., τt′) represents the current partial feasible
solution of tunnel TSP (G, S) at time step t, composed of a sequence of generalized tunnels.
τ1 can be any point in V . For conciseness, we do not repeat the endpoints of a dummy
tunnel. Therefore, t′ ≥ t.

Action The action is a node at time step t that ensures the partial solution xt+1 is valid, i.e., at ∈
V \{τ1, ..., τt′}.

Transition After a state st and an action at, the next state st+1 = (xt+1,G, S) is determined deter-
ministically either as xt+1 = (τ1, τ2, ..., τt′+1) with τt′+1 = at if at is a standalone node,
or xt+1 = (τ1, τ2, ..., τt′+1, τt′+2) with τt′+1 = at and τt′+2 = ât if at is a connected
node and ât is its corresponding node.

Reward Every single time step has the reward rt = −cost(τt′ , τt′+1), which is defined as the
negative cost of the corresponding chosen edge.

Policy Policy network πθ chooses an action at each time step t given state st. For a given instance
(G, S), the probability of a solution can be calculated as follows:

pθ(x|G, S) =
m−n∏
t=1

πθ(at|st) =
m−n∏
t=1

πθ(at|xt,G, S) (4)

where m− n is the total number of steps to get a feasible solution in this MDP, by Lemma
3.1.

4 DOUBLE ENCODER TRANSFORMER

To solve tunnel TSP, we propose the Double Encoder Transformer (DET), which includes two en-
coders to process node and tunnel information in parallel. See Figure 1 for an overview of its
pipeline. Recall that any node can be viewed not only as the node itself but also as an end of a
generalized tunnel in the generalized tunnel graph.

Input features of encoders We input the relevant features of nodes into the node encoder, for-
matted as (x, y) × 8. Here, (x, y) signifies the coordinate of a single node, the ×8 indicates that
we employed an 8-fold data augmentation strategy, a commonly used technique in previous work
(Kwon et al., 2020), which generates 8 equivalent instances of each instance by flipping and rotating
G. We input the relevant features of generalized tunnels into the tunnel encoder, which has a form
denoted as (x1, y1, x2, y2;Dtunnels) × 8. Here (x1, y1) and (x2, y2) represent the coordinates of
the two points that make up a generalized tunnel, Dtunnels represents the enhancement aimed at
emphasizing tunnel features, which may include multiple elements. Since directivity is naturally
introduced in this tunnel representation, we use the symmetry method to avoid the bias in undirected
tunnels. Specifically, for each tunnel, we create a ‘mirror’ version that has inverted coordinates and
negative additional features (i.e. (x2, y2, x1, y1,−Dtunnels)). The two versions are entered into the
tunnel encoder together, and their encoding values are averaged to obtain the final tunnel encoding.
This ensures that the encoding is direction-agnostic. In subsequent experiments, we set Dtunnels to
be the intrinsic length of the tunnel. For dummy generalized tunnels, Dtunnels is set to 0.

Numbers of different element inputs into the tunnel encoder We input the features of m − n
generalized tunnels into the tunnel encoder. This strategy aims to ensure that every node in G can be
effectively integrated into the encoding process of the tunnel encoder. This strategy also guarantees
that nodes located at both ends of the same generalized tunnel maintain consistency at the tunnel
embedding level, meaning their corresponding tunnel embedding is identical.

Generalized tunnel conversion table Following the encoding process, we introduce a transfor-
mation step using the generalized tunnel conversion table to convert the tunnel embedding into the
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Figure 1: Pipeline of our DET. Our main difference is the introduction of a tunnel encoder, high-
lighted in the red dotted box. The DET model separates the tunnel TSP instance (G, S) into nodes
graph G and tunnel graph S, then combines them into generalized tunnel graph S̄. G is input into
the node encoder to get the node embedding. The tunnel embedding is obtained by inputting S̄ into
the tunnel encoder, and the tunnel embedding is transformed into the same dimension as the node
embedding through the generalized tunnel conversion table generated by the S̄. In the decoding
period, both embeddings are considered to calculate the probabilities.

same dimension as the node embedding. Specifically, the generalized tunnel conversion table T (S̄)
is defined as a transformation matrix that maps the tunnel embedding into a new dimension, enabling
these embedding to directly correspond to the nodes in G while preserving the consistency of tunnel
embedding for nodes located at both ends of the same generalized tunnel. In terms of formulation,
T (S̄) has the following form:

T (S̄)i,j =

{
1 if node vi belongs to the j-th tunnel in S̄

0 Otherwise
(5)

where S̄ is the set of the generalized tunnels, containing m− n elements as stated in Lemma 3.1.

Decoding In the decoding process, we need to consider both the embeddings of nodes and tunnels
at the same time. DET can be easily integrated with various autoregressive neural solvers. The
decoding process depends on the specific chosen model. We take the POMO (Kwon et al., 2020)
algorithm as an example to elaborate a possible decoding scheme.

We employ the second MDP outlined in Section 3.3 to address this problem. We differentiate the
information sources by using superscripts. Specifically, superscripts with ‘o’ refer to information
from node embedding, while superscripts with ‘u’ refer to information from tunnel embedding.
Firstly, similar to POMO, we obtain the current contextual embedding from the current state and
both embeddings. Our query is constructed as follows:

qo = ho,f + ho,l,qu = hu,f + hu,l (6)

where the superscript ‘f ’ signifies the fixed starting node of the partial route, while the superscript
‘l’ indicates the dynamic ending node. Following this, we then utilize a multi-head attention mech-
anism. The required query has already been specified above, and both the keys and values originate
from the respective embeddings:

A1 = MHA(qo + qu,ko,vo), A2 = MHA(qo + qu,ku,vu) (7)

Then we apply a Linear layer to project the A1 and A2 and compute the score using a final decoder
layer with a single attention head. After that, we apply the tanh function to clip the score and mask
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all visited nodes, including those automatically visited due to tunnel restrictions. The score for node
j is given by:

dj =

{
C · tanh( (W

a1A1+Wa2A2)(ko
j+ku

j )√
dk

) if node j is unvisited
−∞ Otherwise

(8)

where W a1,W a2 are both trainable Linear layers, dj represents the score of node j. Finally, we
compute the probability of node j to be chosen using softmax function:

pi = πθ(at = i|st, s) =
edi∑
j e

dj
(9)

Training Since the DET model does not require changes to the training strategy, we can use the
same training method for DET-POMO as was used for POMO (Kwon et al., 2020). Specifically,
we employ the REINFORCE algorithm (Williams, 1992) with rollout for training. We sample a set
of m trajectories {τ 1, · · · , τm}, calculate the reward of each trajectory f(τ i). The gradient of the
total training loss L can be approximated as follows:

∇θL(θ) ≈
1

m

m∑
i=1

[(f(τ i)− bi(s))∇ log pθ(τ
i|s)] (10)

where bi(s) is a baseline function, which is commonly set as the average reward of those m trajec-
tories, serving as a shared baseline:

bi(s) = bshared(s) =
1

m

m∑
i=1

f(τ i) for all i.

5 EXPERIMENTS

In this section, we begin by introducing our experimental settings. Following this, we present the key
experimental results, highlighting the performance of various Single-Encoder models on the tunnel
TSP problem and the enhancements observed after incorporating DET into each model. Lastly, we
provide the results of ablation studies.

5.1 EXPERIMENT SETTING

To evaluate the efficiency of our DET, we compared the performance of the original Single-Encoder
model and the model integrated with DET on tunnel TSP, using some state-of-the-art (SOTA) deep
reinforcement learning (DRL)-based autoregressive TSP solvers as a baseline. All models were
trained on a single Nvidia RTX 4090 24GB GPU using the same hyperparameters as in the original
work. Training consisted of 500 epochs, with each epoch comprising 100 batches. The batch size
varied depending on the problem size and available memory, ranging from 10 to 100 instances per
epoch. For the TTSP-50-12 problem, each epoch took approximately 2.5 to 3 minutes to train.

Datasets In our experiments, we use instances from TTSP random to train various models corre-
sponding to instances with different nodes. Although the TSPlib dataset is valid for the calculation
of the TSP problem, it is inadequate for the tunnel TSP problem, which requires both TSP node
information and tunnel connection information. To our knowledge, there is no dataset specifically
designed for tunnel TSP.

• TTSP random: For a TTSP-m-n problem, where 2n < m, we uniformly sample m
nodes from the unit square [0, 1]2. We then randomly select 2n numbers from the inte-
ger set {1, · · · ,m}, and pair them to form n pairs, representing the ordinary tunnels. We
generated 15 different scales of tunnel TSP problems based on m = 50, 100, 200 and
n = 0%, 25%, 50%, 75%, 100%. Here, n = 25% indicates that 25% of the nodes are
connected nodes. Due to significant memory consumption, we do not consider tunnel TSP
problems with a larger number of nodes.
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Baselines We consider the following DRL Algorithms as our baselines:

• LKH3 (Helsgaun, 2017): LKH3 algorithm is an efficient heuristic algorithm for solving
TSP, which uses local search and edge exchange strategies to find the optimal or near-
optimal path solutions. To apply the LKH3 algorithm to the tunnel TSP problem, we follow
the idea of (Lu et al., 2020) and set the elements corresponding to tunnels in the distance
matrix to the negative values of the maximum distances between nodes, guiding the LKH3
algorithm to select tunnels actively.

• POMO (Kwon et al., 2020): Leveraging the symmetry inherent in TSP problems, POMO
utilizes N parallel instances to generate diverse trajectories during the training phase for
dominance estimation. Additionally, it introduces a data augmentation technique to effec-
tively reduce experimental variance.

• InViT (Fang et al., 2024): InViT employs a nested design and incorporates invariant views
within its encoders. This design enhances the model’s generalization capabilities, enabling
it to perform stably across problem instances with varying distributions or scales.

• LCH-Regret (Sun et al., 2024): Building upon the existing learning construction methods,
LCH-Regret introduces a learnable regret coding vector. This vector allows for rollback to
the previous node during construction, avoiding the local optimal scheme caused by the
greedy decoding strategy.

Table 1: Performance on different scales of tunnel TSP. The form of the element in the table is:
Average Distance /GAP(%). The GAP % is w.r.t. the best value across all methods (usually LKH-
3), and we omit the % sign. Bold refers to the best performance among all those DRL-based models.

m & n 50-0 50-6 50-12 50-18 50-25

LKH3 5.692 4.935 4.152 3.379 2.476
POMO 5.731/0.67 5.686/15.21 5.271/26.94 4.646/37.51 3.333/34.60

DET-POMO 5.730/0.65 5.218/5.72 4.493/8.22 3.741/10.70 2.825/14.09
InViT 5.889/3.46 5.894/19.43 5.340/28.61 4.547/34.57 3.374/36.26

DET-InViT 5.888/3.44 5.766/16.84 5.015/20.78 4.248/25.72 3.382/36.59
Regret 5.717/0.44 5.255/6.48 4.647/11.91 3.852/13.99 2.670/7.85

DET-Regret 5.716/0.42 5.053/2.39 4.310/3.79 3.524/4.30 2.653/7.15
m & n 100-0 100-12 100-25 100-37 100-50

LKH3 7.762 6.726 5.589 4.529 3.391
POMO 8.157/5.34 8.119/20.73 7.483/33.87 6.517/43.90 4.778/40.91

DET-POMO 7.985/3.11 7.455/10.85 6.505/16.37 5.492/21.26 4.340/27.99
InViT 8.197/5.85 8.201/21.94 7.361/31.69 6.308/39.28 4.673/37.81

DET-InViT 8.233/6.32 7.951/18.22 6.851/22.56 5.828/28.68 4.649/37.10
Regret 7.935/2.47 7.457/10.88 6.584/17.78 5.472/20.81 3.832/13.00

DET-Regret 7.858/1.48 7.111/5.74 5.992/7.20 4.954/9.38 3.791/11.78
m & n 200-0 200-25 200-50 200-75 200-100

LKH3 10.703 9.216 7.759 6.279 4.800
POMO 11.736/9.65 11.806/28.09 10.797/39.14 9.335/48.67 6.858/42.87

DET-POMO 11.703/9.35 11.079/20.21 9.745/25.59 8.200/30.60 6.576/36.99
InViT 11.944/11.60 11.610/25.97 10.442/34.58 8.862/41.14 6.498/35.37

DET-InViT 11.966/11.81 11.225/21.80 9.770/25.92 8.327/32.62 6.478/34.96
Regret 11.459/7.07 10.797/17.15 9.610/23.86 7.990/27.24 5.652/17.75

DET-Regret 11.442/6.91 10.318/11.95 8.855/14.12 7.251/15.48 5.617/17.02

5.2 EXPERIMENT RESULTS

Performance of different existing models Considering the differences between tunnel TSP and
the standard TSP, some methods that perform well in solving the standard TSP may not excel when
addressing the tunnel TSP. Let’s first consider the performance of different baseline methods.
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We notice a significant widening of the performance gap when TSP models are applied to the tun-
nel TSP. Taking POMO as an example, the gap for solving TTSP-100-12 (20.73%) is nearly four
times that of solving TTSP-100-0 (equivalent to TSP-100) at 5.34%. Similarly, POMO-Regret’s gap
for TSP-100-12 (10.88%) is also over four times that for TTSP-100-0 (2.47%). Notably, in some
scenarios with a small number of tunnels n, we even observe that the results of some models numer-
ically underperform their TSP-m counterparts. As the number of tunnels increases, the performance
gaps between models widen further. However, interestingly, when reaching TTSP-100-50, POMO’s
gap slightly narrows compared to TTSP-100-37. We believe that the reasons for this phenomenon
are as follows:

Those connected nodes significantly elevate the problem’s complexity and diminish the potential
optimization space. Moreover, such tunnel constraints are more likely to lead algorithms to prema-
turely converge to suboptimal solutions within the search space. Additionally, TTSP-m-0 comprises
solely of standalone nodes, TTSP-m-m2 exclusively of connected nodes. In all other tunnel TSP
instances, both standalone and connected nodes coexist. The Single Encoder model struggles to dif-
ferentiate between these two types of nodes, thereby compromising its effectiveness. However, our
Double-Encoder model distinguishes between these standalone nodes and connected nodes, con-
tributing to our algorithm’s superior performance.

Compare DET-Model with Single-Encoder models We have integrated the DET model into
both the POMO and POMO-Regret models. It is noteworthy that the modifications in the Regret
model are primarily made during the decoding period, where a regret flag is introduced during
action selection for optimal use. In contrast, the alterations in DET centered around the encoding
period and affected the method of calculating scores. Since these two models do not conflict, we
can combine them and utilize the score calculation formula mentioned in Section 4 for decoding the
DET-POMO-Regret framework. The results demonstrate that the DET-POMO model outperforms
the POMO model across all problem scales, with particularly significant improvements observed
when n ̸= 0, m

2 . In some cases, its performance is close to that of POMO-Regret. Thanks to the
synergy between DET and Regret, DET-POMO-Regret further reduces the gap across all problem
scales compared to both DET-POMO and POMO-Regret. DET-POMO-Regret represents the current
best DRL solution for solving tunnel TSP. It is worth noting that the specific implementation details
of the two encoders are not our primary concern, and we will later validate this in ablation studies.

We also adapted InViT to create DET-InViT, whose implementation details are shown in Appendix
C due to space constraints. The InViT algorithm’s effectiveness is partly attributed to the statistical
prior that ‘98% of the path nodes in the optimal path of the TSP problem are within the 8-nearest
neighbors of the corresponding node’. However, we found that this prior conclusion does not apply
to the tunnel TSP problem, which may be the main reason why InViT’s performance in the tunnel
TSP problem is not much better than POMO and is significantly behind POMO-Regret. Regarding
DET-InViT, although its performance is not significantly improved when n = 0, m

2 , and may not be
as good as InViT, it is still guaranteed to solve the tunnel TSP problem better than the original InViT
when n ̸= 0, m

2 . But among the various DET models, DET-InViT is the one with the worst relative
performance.

5.3 ABLATION STUDIES

In this part, we present some ablation experiment results that explain some important choices of our
approach. All the experiments are conducted on the TTSP-50-18 problem in this part, using the
DET-POMO-Regret model.

The form of 2 encoders We introduced two encoder frameworks called LinearNet (Vaswani,
2017) and RevNet (Gomez et al., 2017), and we will elaborate on their implementation details in the
Appendix B. Our experimental results demonstrate that the specific type of framework employed by
each of the two encoders has a negligible impact on the overall model performance, with a perfor-
mance variation of less than 0.2%, as detailed in Table 2. This minimal fluctuation suggests that the
detailed architectural design of the encoders does not significantly influence the final performance
of the model, indicating a degree of robustness and insensitivity to architectural nuances within the
encoder design. In all experiments in table 1, we used the LinearNet structure for the node encoder
and the RevNet structure for the tunnel encoder.
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Table 2: The effect of different Encoder structures and different numbers of elements fed into tunnel
encoder.

Node Encoder Tunnel Encoder Numbers of Elements Result Relative %
LinearNet LinearNet m− n 3.5277 100.04%

RevNet LinearNet m− n 3.5327 100.18%
LinearNet RevNet m− n 3.5263 100.00%

RevNet RevNet m− n 3.5317 100.15%
LinearNet RevNet m 3.7836 107.29%

Table 3: The effect of different combinations when decoding. For brevity, columns 1 and 2 omit
the MHA function, leaving only three parts of the input to MHA function. The function cat(·, ·)
represents the concatenation behavior, which is the case when cross attention is considered. ‘None’
in column 2 indicates that there is no A2 in equation 8 calculation.

A1 A2 2nd Var in Equ. 8 Result
qo + qu,ko,vo qo + qu,ku,vu ko + ku 3.5241
qo + qu,ko,vo qo + qu,ku,vu ko 3.6080
qo + qu,ko,vo qo + qu,ku,vu ku 5.9706

qo,ko,vo None ko + ku 3.5536
qu,ko,vo qu,ku,vu ko + ku 5.6263

qo + qu,ko + ku,vo + vu None ko + ku 3.5324
qo + qu, cat(ko + ku), cat(vo + vu) None ko + ku 3.5380

Numbers of different element inputs into the tunnel encoder Unlike the encoder architecture,
the impact of different numbers of elements input into the tunnel encoder is quite significant. We
considered the direct input of features for n nodes within the tunnel encoder, finding that its per-
formance was significantly inferior to that of input features for m − n generalized tunnels. This
highlights the importance of nodes situated at both ends of the same generalized tunnel sharing
identical encodings in tunnel encoding. The outcomes of this comparison are presented in Table 2.

Combination & cross-attention effects while decoding During the decoding stage, we pro-
posed an approach that simultaneously considers two embeddings. However, this combination is
not unique. We explored different combinations, and the detailed experimental results can be found
in Table 3. Additionally, we considered cross-attention, where the dimensions of the query and key
in the attention step are not aligned. The outcomes can be summarized as follows: omitting qo

in equation 7 significantly degrades performance, as does the absence of ko or ku in equation 8;
completely disregarding tunnel information in equation 7 slightly degrades the result; while other
variations, including the consideration of cross-attention, have minimal impact on the outcome.
These results further justify the necessity of using two encoders.

6 CONCLUSION

In this work, we focus on an important variant of the TSP problem: tunnel TSP. It can be regarded
as a special case of Clustered TSP. Notably, there is currently a lack of research on Clustered TSP
using DRL. To fully exploit the information of tunnel TSP, we innovatively propose the DET ar-
chitecture, which efficiently encodes node features and tunnel features separately and effectively
integrates them. Through a large number of experimental validations, we demonstrate that DET can
seamlessly integrate into various autoregressive neural TSP solvers, significantly enhancing their
ability to solve tunnel TSP. We believe that the DET architecture offers new perspectives and ap-
proaches for solving combinatorial optimization problems with specific constraints and holds broad
application prospects. In the future, we will continue to deepen this research by applying DRL
methods to address more complex CTSP problems.
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REPRODUCIBILITY

Our code is included in the supplementary materials, comprising the complete training code for
DET-POMO, DET-InViT, and DET-POMO-Regret. You can easily adapt them into the original
POMO, InViT, and POMO-Regret models. This facilitates the reproducibility of our work.
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Figure 2: A simple example showing that CTSP transformations cannot be used in 2D Euclidean
Spaces. On the left is the original Clustered TSP (CTSP) problem, and on the right is the transformed
standard TSP problem. The contradiction arises at nodes v5, v6.

Jiongzhi Zheng, Kun He, Jianrong Zhou, Yan Jin, and Chu-Min Li. Reinforced lin–kernighan–
helsgaun algorithms for the traveling salesman problems. Knowledge-Based Systems, 260:
110144, 2023.

Zefang Zong, Hansen Wang, Jingwei Wang, Meng Zheng, and Yong Li. Rbg: Hierarchically solving
large-scale routing problems in logistic systems via reinforcement learning. In Proceedings of
the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 4648–4658,
2022.

A THE TRANSFORMATION FROM CTSP TO TSP

It should be pointed out that the method of converting CTSP to TSP is carried out on the distance
matrix. Given a TSP instance G = (V,E) with distance matrix D. Let S = {S1, S2, · · · } represent
the set of clusters. Then the CTSP instance (G, S) can be transformed into TSP instance G′ =
(V ′, E′) via the following steps:

• Define V ′ = V and E′ = E.

• Define the distance matrix D′ as:

d′ij =

{
dij + C if vi and vj belong to different clusters
dij Otherwise

(11)

where C is a sufficiently large constant. The above operation is done on the distance matrix. Let’s
assume the following problem as shown in the left part of Figure 2. There are 7 points and 3 tunnels
(clusters), and the original problem is defined in 2D Euclidean space. Points v1, v2, · · · , v6 are
evenly distributed on a unit circle centered around point v7. Then its distance matrix is:

0 1
√
3 2

√
3 1 1

1 0 1
√
3 2

√
3 1√

3 1 0 1
√
3 2 1

2
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3 1 0 1

√
3 1√

3 2
√
3 1 0 1 1

1
√
3 2

√
3 1 0 1

1 1 1 1 1 1 0


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Figure 3: Specific structure of 2 different Encoders. LinearNet on the left and RevNet on the right.

According to the Equation 11, the transferred distance matrix is:

0 1
√
3 + C 2 + C

√
3 + C 1 + C 1 + C

1 0 1 + C
√
3 + C 2 + C

√
3 + C 1 + C√

3 + C 1 + C 0 1
√
3 + C 2 + C 1 + C

2 + C
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√
3 + C 1 + C√

3 + C 2 + C
√
3 + C 1 + C 0 1 1 + C

1 + C
√
3 + C 2 + C

√
3 + C 1 0 1 + C

1 + C 1 + C 1 + C 1 + C 1 + C 1 + C 0


where C ̸= 0. When considering the new distance matrix as representing 7 points in a 2D Euclidean
space, it becomes apparent that points v1, v2, · · · , v6 are distributed on the circle with point v7 as the
center and 1 +C as the radius. We can easily observe that ∠v6v7v1 = ∠v2v7v3 = ∠v4v7v5 = 60◦.
However, since C ̸= 0, we have ∠v1v7v2 ̸= 60◦,∠v3v7v4 ̸= 60◦,∠v5v7v6 ̸= 60◦, thus the sum
of all angles around the circle does not equal to 360◦, leading to a contradiction. This counterex-
ample shows that this method of converting CTSP (tunnel TSP) to TSP cannot be implemented in
2-dimensional Euclidean space. This shows that we can not directly use the neural solver to get the
exact solution of tunnel TSP.

B THE SPECIFIC ENCODER STRUCTURES

In this section, we will show two different encoder structures, both of which can be used in the
encoder module in Figure 1.

B.1 LINEARNET

The structure of this encoder can be seen in the left-hand section of Figure 3. Its structure is similar
to the encoding structure in Transformer (Vaswani, 2017). First, we pass the input through an
initial mapping layer to obtain the initial mapping h1. Following this, a series of sequential Multi-
Head Attention (MHA) and Feed-Forward (FF) processing steps are performed, where after each
processing step, a simple addition is carried out, followed by layer normalization. This results in
the final embedding output. Mathematically, this series of processing steps can be represented as
follows:
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Figure 4: The pipeline of DET-InViT. The main adaptation occurs in the gray area.

ĥi = LayerNorm(l)(hi + MHA(l−1)(h
(l−1)
1 , · · · ,h(l−1)

n ))

h
(l)
i = LayerNorm(l)(ĥi + FF(l−1)(ĥi)) i = 1, · · · , N

(12)

Here ‘MHA’ means the trainable multi-head attention layer, and ‘FF’ means the trainable feed-
forward layer. l = 1, · · · , N indicates that different layers do not share parameters, while n means
the number of heads. In our experiment, N = 6, n = 8.

B.2 REVNET

RevNet, introduced in (Gomez et al., 2017), incorporates a unique mechanism that facilitates the
direct calculation of derivatives during the backpropagation process, thereby minimizing the mem-
ory footprint of encoding.. the structure of this encoder can be seen in the right-hand section of
Figure 3. In RevNet, a pair of input vectors (f1,g1) are processed through an alternating sequence
of Multi-Head Attention (MHA) and Feed-Forward (FF) modules, enabling the computation of the
subsequent pair (f i+1,gi+1). To initialize the network, we first obtain h1 by projecting the input
features through an initial layer. Then we duplicate h1 and feed the resultant pair (h1,h1) as the
initial input (f1,g1) to RevNet. Subsequently, this input is passed through several reversible blocks,
each comprising MHA and FF modules in a reversible manner. This process culminates in the
generation of the final pair (fo,go). The process can be expressed in the following formulas:

f1 = g1 = h1,

f i+1 = f i + MHAi(gi). i = 1, · · · , N.

gi+1 = gi + FFi(f i). i = 1, · · · , N.

(13)

In our experiment N = 6. ‘MHA’ means the trainable multi-head attention layer, and ‘FF’ means
the trainable feed-forward layer. The superscript of MHA and FF indicates that different layers do
not share parameters. Actually, the second line and third line of the formula 13 is how RevNet
works. Ultimately, gn+1 is output as the final embedding.

C ADAPTING INVIT MODEL INTO DET-INVIT

Due to InViT’s unique encoding mechanism (Fang et al., 2024), although it is a DRL-based autore-
gressive TSP solver, its Double-Encoder implementation diverges from POMO and POMO-Regret.
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Instead, InViT extracts the current node and several of its closest unvisited neighbors, encodes them,
and computes attention. In this part, we’ll cover the conversion of the double-encoder to the InViT
model in detail. It is noteworthy that in the DET-InViT model, we adopt the first MDP in section
3.3, which operates by restricting the agents’ actions based on a detector.

Global tunnel encoder Our primary modification involves the introduction of a global tunnel en-
coder that employs the principle of the tunnel encoder discussed in Section 4. This encoder is tasked
with encoding m − n generalized tunnels accommodating both positive and negative input direc-
tions. Ideally, we would encode one tunnel encoder for each state encoder and one for each action
encoder. However, considering the storage cost, we opted to use a single global tunnel encoder,
When integrating tunnel information into each state or action encoder, we prepend an independent
linear layer to facilitate the conversion process, and the generalized tunnel transformation matrix is
utilized after this step. Since DET does not alter the training methodology, we train DET-InViT in
the same manner as InViT.

Combination strategy Put simply, in InViT, the embeddings of the last visited node and the first
visited node (or depot) serve as the query input for the decoder, while the embeddings of other
potential candidates act as the keys and values within the decoder. After encoding each generalized
tunnel, its encoded value is added to the state encoder and action encoder at each step through
numerical summation. We offer two distinct fusion methods: add tunnel embedding only to the
query in the decoder; and add tunnel embedding to all the queries, keys, and values in the decoder.
As stated in Section 5.2, the statistically derived prior conclusion that ‘98% of the path nodes in
the optimal path of the TSP problem are within the 8-nearest neighbors of the corresponding node’
is the basis of the outperformance of InViT, but it may not fit for tunnel TSP. When the number of
both standalone nodes and connected nodes is not very small, adding tunnel information to the key
and value can greatly improve the results, as it allows for better distinction between the two types of
nodes. Therefore, when n is large (n > 0.45m, i.e. 90% of the nodes are connected nodes), and the
number of standalone nodes is relatively small, we only add tunnel information to the query from
InViT’s Multi-view Decoder; Similarly, when the number of n is small (n < 0.05m), the number
of connected nodes is relatively small, and we only add tunnel information to the query. Otherwise,
we add tunnel information to all the queries, keys, and values in the decoder. In mathematical terms,
if we denote the multi-view decoding process as a function like MVD(q,k,v), then the original
decoding function of InViT can be expressed as:

d = MVD(qo,ko,vo)

where d is the score of different nodes. The superscript ‘o’ represents information from node em-
bedding which is generated by the original InViT. Then the decoding function of our DET-InViT
can be expressed as:

d =

{
MVD(qo + qu,ko + ku,vo + vu) if 0.05m ≤ n ≤ 0.45m

MVD(qo + qu,ko,vo) if n < 0.05m or n > 0.45m

where m,n shares the same meaning as TTSP-m-n. The superscript ‘u’ represents information from
tunnel embedding which is generated by the new-added global tunnel encoder.

Tunnel checking When adopting a multi-instance synchronous training strategy similar to POMO
(Kwon et al., 2020), we streamline the generation process of the action space, temporarily overlook-
ing the restrictions imposed by tunnels on the action space. However, to adhere to the constraints
of the Tunnel TSP problem, a dedicated tunnel checking step is necessary after decoding and cal-
culating the corresponding actions and probabilities. The primary purpose of tunnel checking is to
verify whether the selected actions comply with the constraints of the Tunnel TSP problem and to
rectify them if they do not. Specifically, this step checks whether the last visited node is a connected
node in graph G and whether its corresponding node has not been visited yet. If these conditions are
not met, the original action and probability are retained; otherwise, the action is adjusted to visit its
corresponding node, and its selection probability is set to 1.
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