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Abstract

Sparse Mixture of Experts (MoE) architectures have emerged as a promising ap-
proach for scaling Transformer models. While initial works primarily incorporated
MoE into feed-forward network (FFN) layers, recent studies have explored ex-
tending the MoE paradigm to attention layers to enhance model performance.
However, existing attention-based MoE layers require specialized implementations
and demonstrate suboptimal performance compared to their FFN-based counter-
parts. In this paper, we aim to unify MoE designs in attention and FFN layers
by introducing a novel reformulation of the attention mechanism, that reveals an
underlying FFN-like structure within attention modules. Our proposed architecture,
UMoE, achieves superior performance through attention-based MoE layers while
enabling efficient parameter sharing between FFN and attention components.

1 Introduction

Scaling plays a crucial role in advancing the capabilities of large language models [1, 2, 3]. However,
this scaling advantage comes with substantial computational costs, making continued scaling in-
creasingly impractical. Sparse Mixture-of-Experts (MoE) architectures have emerged as a promising
solution by selectively activating only a subset of model parameters—termed experts—for each
input [4, 5, 6, 7]. This approach effectively decouples model size from computational cost, enabling
efficient scaling with minimal overhead.

Recent work has demonstrated the effectiveness of MoE in Transformer architectures [8, 9, 10, 5, 11],
particularly when applied to feed-forward neural network (FFN) layers. Building on this success,
several studies have explored extending MoE to attention layers [12, 13, 14], indicating potential
for performance gains through attention scaling. Despite the potential, we find that existing MoE
attention layers demonstrate suboptimal performance compared to FFN-MoE approaches, when
provided with similar computational and parametric budgets. This performance gap challenges the
practical utility of attention-MoE architectures, as parameters allocated to scaling attention layers
might be more effectively utilized for scaling FFNs instead.

We identify two distinctions between attention-MoE and FFN-MoE implementations that likely
account for the observed performance differential: (1) the different expert design between attention
and FFN layers, and (2) attention-MoE’s necessity to compromise the expressiveness of vanilla
attention mechanisms to accommodate sparse computation [12]. Motivated by these observations,
we investigate a compelling question: can we reformulate attention to reveal an underlying structure
compatible with the same expert design as FFN layers, without compromising the expressive power
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Figure 1: Illustration of a UMoE layer, which
incorporates MoE into both FFN and attention
modules with shared experts. The primary dis-
tinction between attention-MoE and FFN-MoE
lies in an additional token mixing operation.
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Figure 2: Two formulations of the multi-head
attention mechanism. (a) Vanilla attention inter-
leaves mixing operations with value and output
projections. (b) Pre-mixing attention performs
token mixing prior to projections.

of the attention mechanism? This is a challenging question due to the inherent complexity of attention
mechanisms, including multiple projections and softmax calculations, which fundamentally differ
from the straightforward two-matrix multiplication pattern of FFNs.

To bridge this structural gap, we reformulate the attention mechanism to reveal its underlying FFN-like
structure. Our reformulation decomposes attention into two sequential operations: token mixing and
token-wise expert processing. The token-wise expert processing, consisting of two consecutive matrix
multiplications, can be implemented as an FFN with a small intermediate size. This implementation
naturally aligns with recent advances in fine-grained FFN expert design [6, 15, 3], enabling unified
expert architectures and parameter sharing across both attention and FFN layers.

Based on this insight, we introduce UMoE, a unified MoE architecture that abstracts Transformer
layers into three fundamental components: experts, token mixing operations, and routers, as shown
in Fig. 1. The experts, implemented as standard two-layer FFNs, serve as the primary components
for token processing and knowledge storage. The token mixing operations facilitate contextual
information exchange through weighted summation of tokens. Routers are employed to dynamically
dispatch tokens to the most relevant experts to enable sparse computation. In UMoE, the distinction
between the FFN and attention layers lies solely in the expert inputs: FFN layers process tokens
independently, while attention layers process tokens simultaneously through weighted summation.
This unified design not only simplifies the architecture but also enables parameter-efficient scaling
through expert sharing between attention and FFN components.

To evaluate the effectiveness of UMoE, we conduct extensive experiments across various model
sizes and tasks, including pre-training and zero-shot evaluations. With the reformulated attention
mechanism, the attention-based MoE layers of UMoE match or exceed the performance of previous
FFN-based MoE layers. Moreover, by sharing parameters across attention and FFN modules, UMoE
achieves superior performance in fully MoE architectures while maintaining the same parameter
count. We also present a detailed routing analysis of UMoE, revealing expert specialization patterns
across modules, with higher-ranked experts demonstrating interpretable attention patterns. Our code
is available at https://github.com/ysngki/UMoE.

2 Related Work

Sparse Mixture-of-Experts (MoE). Sparse Mixture-of-Experts (MoE) models have gained in-
creasing attention for their ability to scale model capacity while maintaining computational effi-
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ciency [4, 9, 10, 5, 11]. The core component of these models is the sparsely activated MoE sub-layer,
which selectively activates different parameter subsets for different inputs. In recent Transformer-
based implementations, MoE architectures primarily replace feed-forward network (FFN) layers with
MoE sub-layers. Each MoE layer consists of a collection of experts, denoted as {Ei}Ni=1, where
each expert Ei is implemented as an FFN. Tokens are routed to a subset of experts through a routing
mechanism, with the top-k router [4] being the most prevalent approach. Despite advances in routing
mechanisms [16, 17, 18, 19, 15], the top-k router remains widely adopted due to its simplicity and
robust performance [9]. For a given token x ∈ Rd, where d is the hidden dimension, and a trainable
weight matrix Wr ∈ RN×d, the top-k router computes the probability distribution over experts as:

p = softmax(Wrx). (1)

The set of top-k experts T is then selected based on p, where |T | = k. Each expert processes the
token independently and the final output of the MoE layer is computed as the weighted combination
of these k experts’ outputs:

y =
∑
i∈T

piEi(x), (2)

where each expert is implemented as an FFN with two matrices and a non-linear activation function.

MoE for Attention. Several recent approaches have explored extending the MoE paradigm to
attention layers in Transformers [12, 13], with a primary focus on expert design. Because attention
layers lack the consecutive matrix multiplication pattern found in FFNs, these approaches necessitate
expert designs that differ from FFN-MoE models. The Mixture-of-Attention (MoA) [12] propose to
conceptualize individual attention heads as experts, scaling attention layers by increasing the number
of attention heads. However, introducing sparsity into attention layers presents a significant challenge:
query vectors computed by a specific expert (or head) require corresponding key and value vectors
from the same expert, necessitating identical expert activation across all tokens. To address this
constraint, MoA implements distinct query and output projections per head while maintaining shared
key and value projections across attention heads.

SwitchHead [13] presents an alternative approach to implementing the MoE paradigm in attention
layers. Rather than treating entire attention heads as experts, SwitchHead designates individual
projection matrices within heads as experts. A straightforward implementation maintains four
separate MoE sub-layers per head for query, key, value, and output projections. While scaling
all projections yields performance improvements, empirical results show that value and output
projections benefit most significantly from scaling.

In contrast to these approaches, UMoE unifies attention-MoE and FFN-MoE through a novel refor-
mulation of the multi-head attention mechanism, enabling the shared expert design and parameters
across both attention and FFN layers.

Other Related Work. Several studies have explored connections between MoE and attention
from different perspectives. MoH [20] proposes using MoE for pruning attention heads in LLMs by
continuing pre-training with a routing function. During inference, certain output projections (Wo),
viewed as experts, are selectively skipped based on routing decisions. Taking a different approach,
MH-MoE [21] incorporates concepts from multi-head attention to enhance FFN-based MoE models.
Instead of routing original input tokens to experts, MH-MoE decomposes each token into multiple
low-dimensional sub-tokens, which are then processed in parallel by diverse sets of experts.

3 Method

The attention mechanism is the core of Transformers [22], processing token hidden states to capture
contextual relationships. However, its structure differs from FFN layers, which complicates the unifi-
cation of MoE designs across both modules. In this section, we present two alternative formulations
of attention, pre-mixing and post-mixing, that reveal an inherent FFN-like structure within attention
layers. Based on these formulations, we introduce a novel MoE architecture, UMoE.
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def UMoELayer(x, X):
# x: [1, d], X: [n, d]

### Attention MoE
indices , probs = TopKRouter(x) # Assign token x to Experts

residual_x = x.copy()
K = X @ W_k
q_shared = x @ W_q
for i, p in zip(indices , probs):

q = q_shared + x @ W_a[i] @ W_b[i]
# K and V (the hidden states X) are shared across experts.
y = Attention(Q=q, K=K, V=X)
residual_x += p * Experts[i](y)

x = residual_x

### FFN MoE
indices , probs = TopKRouter(x) # Assign token x to Experts
residual_x = x.copy()
for i, p in zip(indices , probs):

residual_x += p * Experts[i](x)
return residual_x

Figure 3: Implementation details of a UMoE layer. The input consists of a sequence X containing
n token hidden states and x representing the final hidden state. For simplicity, this implementation
focuses on computing the output for the last token.

3.1 Formulations of Attention

Preliminaries. Consider a sequence of token hidden states X ∈ Rn×d, where n is the sequence
length and d is the hidden dimension. In multi-head attention, each token attends to all other tokens
in the sequence through query, key, and value projections. For a single token x (e.g., the last token in
the sequence for simplicity), its attention output is computed as:

q = xWq, K = XWk, V = XWv, (3)

a = softmax
(
qK⊤
√
dk

)
, o = aV, (4)

where Wq,Wk ∈ Rd×dk and Wv ∈ Rd×dv are learnable matrices, respectively, and a ∈ Rn is the
attention weight. To enhance representation capacity, this process is repeated h times in parallel, and
the outputs are combined:

y = [o1;o2; · · · ;oh]Wo, (5)

where Wo ∈ Rhdv×d projects the concatenated outputs back to the original dimension d.

Pre-Mixing Formulation. While multi-head attention is typically expressed using concatenation,
it can be equivalently expressed as a sum of per-head outputs, which helps reveal its connection to
FFN layers. By decomposing Wo into small matrices Wi

o ∈ Rdv×d along the feature dimension, we
can express the output as:

y =

h∑
i=1

oiW
i
o =

h∑
i=1

(aiXWi
v)W

i
o (6)

=

h∑
i=1

(aiX)(Wi
vW

i
o). (7)

This reformulation provides two distinct interpretations, as shown in Fig. 2:

• Eq. 6: The conventional view where value vectors are first aggregated then projected back
into the hidden space with an output projection.
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• Eq. 7: A new interpretation where token hidden states are first aggregated into contextualized
representations, i.e., weighted averages of all tokens, before being processed by the value
(Wi

v) and output (Wi
o) projections. We term this formulation as pre-mixing attention.

While both interpretations yield same outputs, the pre-mixing formulation enables the grouping of
Wo and Wv . This grouping reveals that pre-mixing attention exhibits a two-layer structure analogous
to FFN modules, which can be implemented as a linear FFN with no activation function.

Post-Mixing Formulation. Alternatively, we can rearrange the computation as:

y =

h∑
i=1

ai(XWi
vW

i
o). (8)

In this formulation, token hidden states are transformed by two successive projections independently
for each token, before being aggregated using the attention weights.

3.2 UMoE

By grouping Wv and Wo, both pre-mixing and post-mixing attention can be naturally interpreted as
a MoE architecture, aligning with established FFN-MoE practices. Using pre-mixing attention as an
example, let the expert E(x) := xWvWo. The multi-head attention can then be reformulated as:

y =

h∑
i=1

Ei(aiX). (9)

By increasing the number of experts and introducing a routing mechanism, such as a top-k router,
we derive a MoE architecture, denoted as UMoE-Att. The output of a UMoE-Att layer is:

y =
∑
i∈T

piEi(aiX), where T is the set of activated experts. (10)

Referring to Eq. 2, we observe that the primary distinction between FFN-MoE layers and UMoE-Att
layers lies in their expert inputs: FFN experts operate on individual token hidden states x, while
attention experts process weighted combinations of all token hidden states. This reveals a relationship:
FFN-MoE layers can be interpreted as a specialized case of pre-mixing attention layers where the
attention matrix is constrained to an identity matrix, limiting each token to self-attention only.

Fully MoE Architecture. Both the experts in UMoE-Att and the FFN layers of Transformer consist
of two consecutive matrices. While attention layer experts utilize a relatively small intermediate size
(dv), FFN layers typically employ larger dimensions. Recent advances in FFN-MoE models suggest
the efficacy of using FFN layers with reduced intermediate sizes as experts [6, 15, 3]. This insight
enables the direct adoption of experts in attention layers for FFN layers, resulting in a fully MoE
architecture, denoted as UMoE. Fig. 1 illustrates the architecture of a UMoE layer., where the MoE
paradigm is applied to both FFN and attention layers using a shared expert set. Notably, to facilitate
parameter sharing, experts are implemented as two-layer FFNs with an intermediate size of dv and
incorporate a non-linear activation function between matrix multiplications.

Pre-mixing Implementation. The token mixing operation in pre-mixing attention is a weighted
summation over token hidden states, which can be implemented as vanilla attention, accepting Q,
K, V matrices as input and producing an output matrix. Each token generates distinct query vectors
for different experts, while values (hidden states) and their associated keys are shared across experts.
To generate expert-dependent queries for input tokens, each expert requires an additional query
projection matrix, leading to a notable increase in parameters. To mitigate the parameter count
disparity with existing MoE models, where experts typically comprise two matrices, we employ
low-rank matrices [23] for query projection within UMoE experts. For a given token x, the query for
expert i is computed as:

qi = xWq + xWi
aW

i
b, (11)

where the first term is shared across all experts, while the second term is expert-specific with unique
parameters, Wi

a ∈ Rd×r and Wi
b ∈ Rr×dk , for each expert. Fig. 3 presents the pseudo-code of a

UMoE layer.
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Putting It All Together. As illustrated in Fig. 1, UMoE integrates three key components: (1) experts
implemented as fine-grained FFNs with dual low-rank query projection matrices, (2) pre-mixing
attention mechanism utilizing shared keys and values across experts, and (3) the top-k router for
expert selection. It is noteworthy that while MoA [12] also shares keys and values across experts, the
values of MoA are the results after applying a value linear transformation to the input token hidden
states. In contrast, the values of UMoE directly refer to the input token hidden states.

3.3 Discussion

Vanilla Attention vs Pre-mixing Attention. Vanilla attention and pre-mixing attention differ in
terms of KV cache requirements and computational complexity. During inference, vanilla attention
requires caching multiple keys and values per token, whereas pre-mixing attention requires only
one key and hidden state per token. While grouped-query attention (GQA) is commonly adopted to
reduce the KV cache size in attention layers, it cannot be combined with pre-mixing attention, since
the latter already maintains only a single key–value pair per token. Instead, multi-head latent attention
(MLA) [8], a promising alternative to GQA, can be applied by introducing a down-projection to the
hidden states before the token-mixing operation. Regarding the computation, while vanilla attention
performs weighted summation over low-dimensional value vectors, pre-mixing attention operates on
input token hidden states, introducing a modest increase in computational complexity. This modest
increase, however, becomes increasingly negligible as models scale to larger dimensions, effectively
amortizing the additional computational overhead. A detailed comparative analysis is presented in
Table 8 (A.1). Additionally, the abstract formulation of UMoE opens avenues for future research to
explore more computationally efficient token mixing alternatives, such as linear attention mechanisms
[24, 25].

Mix

O

V

O

V

O

V

Cached Outputs

Token-tToken-0

Figure 4: Post-Mixing Attention.

Pre-mixing Attention vs Post-mixing Attention. As il-
lustrated in Fig. 4, post-mixing attention processes individ-
ual tokens through experts prior to mixing. The architec-
tural distinction between pre-mixing and post-mixing vari-
ants represents different perspectives on token-parameter
interactions in attention layers. Recent interpretability
studies have drawn parallels between the two-matrix mul-
tiplication pattern of FFNs and associative memory mod-
ules, where value neurons, i.e. columns of the second ma-
trix in FFNs, are retrieved by inputs [26, 27, 28]. Within
this framework, pre-mixing attention leverages token mix-
ing to generate contextualized inputs for precise retrieval. In contrast, post-mixing attention can be
conceptualized as an ensemble of independent retrievals executed by preceding tokens. Our prelimi-
nary experiments (A.2) demonstrates a significant performance advantage of pre-mixing attention
over its post-mixing counterpart. This observation suggests that generating contextualized inputs for
token-parameter interactions more effectively aligns with the principles of attention mechanisms.

4 Experiments

4.1 Setup

Datasets. We conduct language modeling pretraining on two datasets: FineWeb-Edu 100B [29] and
Wikitext-103 [30]. FineWeb-Edu has shown superior data efficiency when evaluated on knowledge-
intensive benchmarks. Wikitext-103, consisting of approximately 100M tokens, is a smaller corpus
that has been widely adopted in previous studies [16, 13]. We apply the LLaMA tokenizer [31] with a
32K vocabulary size to both datasets. The zero-shot performance of models trained on FineWeb-Edu
is evaluated using the lm-evaluation-harness framework [32].

Baselines. We compare UMoE against three categories of baselines: dense models, FFN-MoE
models with fine-grained experts [8, 3], and attention-MoE models (specifically MoA [12] and
SwitchHead [13]). Attention-MoE models are configured with identical expert parameters1. We

1SwitchHead represents an exception, as it requires the number of experts to be divisible by the number of
attention heads.
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Table 1: Comparison of Dense and Sparse Mixture-of-Experts (MoE) Models for Language Modeling.
In MoE models, A × B denotes B experts per layer with size A in ‘#Total’ columns, while B
in ‘#Active’ columns indicates the number of experts activated per token. Gray entries in ‘#Total’
columns indicate shared parameters between attention and FFN modules in UMoE models. UMoE-Att
refers to UMoE variants with MoE only applied to attention modules.

Model Params Attention FFN PPL (↓) MACs
#Total #Active #Total #Active Fineweb Wikitext

Base Models

Dense 134 M 768 768 3072 3072 25.79 30.41 525 G
Fine-grained FFN-MoE 535 M 768 768 192×128 192×16 21.19 27.94 530 G
MoA 525 M 192×116 192×4 3072 3072 22.28 27.57 486 G
SwitchHead 533 M 192×116 192×4 3072 3072 22.91 29.47 542 G
UMoE-Att 547 M 192×116 192×4 3072 3072 20.81 27.45 611 G
UMoE 540 M 192×128 192×4 192×128 192×16 20.44 26.67 616 G

Large Models

Dense 1.1 B 2048 2048 5632 5632 17.53 25.46 4.59 T
Fine-grained FFN-MoE 3.8 B 2048 2048 512×64 512×11 16.09 25.47 4.61 T
MoA 3.6 B 512×57 512×4 5632 5632 16.72 25.14 3.99 T
SwitchHead 3.7 B 512×60 512×4 5632 5632 16.48 27.24 4.62 T
UMoE-Att 3.8 B 512×57 512×4 5632 5632 16.03 25.53 4.73 T
UMoE 3.6 B 512×64 512×4 512×64 512×11 15.95 25.44 4.75 T

implement all MoE models with a fixed expert per layer, following recommendations for optimal
model performance [8, 33]. UMoE adopts the pre-mixing attention mechanism, which consistently
outperforms post-mixing variants.

Experimental Setup. UMoE is implemented as a decoder-only Transformer with rotary position
embedding [34], following deepseek-MoE [6]. The load balancing loss proposed by Switch Trans-
former [5] is adopted to encourage a balanced load across experts. The experts in our experiments
are implemented as two-layer MLPs to ensure fair comparison with the baselines.2

We evaluate two model configurations: The base models comprise 12 layers with a hidden size of
768, while the large models consist of 24 layers with a hidden size of 2048. These configurations
yield dense models with 134M and 1.1B parameters, respectively. MoE variants replace all attention
or FFN layers with MoE layers. Due to computational constraints, unless otherwise specified, models
are pretrained on 50B tokens from FineWeb-Edu with batch size of 1024. For Wikitext-103, following
Csordás et al. [13], models are trained for 100k steps, though models typically overfit within 20k
steps. Detailed hyperparameters are provided in A.4.

4.2 Comparison with Baselines

Results. From Table 1, we observe that UMoE shows consistent superiority across different model
sizes and datasets. In the base model regime, UMoE achieves the best performance. Notably, the
attention-only variant of UMoE exhibits substantial improvements over previous attention-based
approaches. Even without parameter sharing, UMoE-Att establishes itself as a compelling alternative
to traditional FFN-based MoE models. The parameter sharing mechanism between attention and FFN
modules further enhances the effectiveness without increasing the total parameter count. Despite
equalizing the number of activated experts across all baselines, we observe subtle computational
discrepancies due to different attention layer implementations, as measured by MACs (multiplication
accumulation operation). We additionally perform a MAC-matched comparison by increasing
the number of activated experts of baseline models. Table 2 shows that even under comparable
computational constraints, UMoE method achieves the lowest perplexity.

2UMoE is designed as a flexible framework agnostic to the expert implementation. Using more advanced
gated MLP variants, such as SwiGLU, may lead to improved performance, as the gating mechanism can enhance
the expressiveness of both attention and feed-forward layers.
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Table 2: MAC-matched comparison for base
models by increasing the number of activated
experts of baseline models.

Model MACs Active Params PPL (↓)

Fineweb Wikitext

FFN-MoE 617 G 768 + 192×22 20.80 27.39
MoA 621 G 192×8 + 3072 22.00 27.63
SwitchHead 649 G 192×12 + 3072 21.57 28.13
UMoE-Att 611 G 192×4 + 3072 20.81 27.45
UMoE 616 G 192×4 + 192×16 20.44 26.67

Table 3: Parameter sharing strategies. in-
dicates shared components between modules
while indicates separate components.

Component UMoE - - -

Fixed Experts
Router

# Params 540 M 536 M 540 M 537 M

PPL 22.82 23.11 23.05 23.02

Table 4: Zero-shot accuracy on downstream tasks. The best score is marked in bold.

Model Params HellaSwag PIQA ARC-E ARC-C RACE Lambada MMLU Wino Avg.

Base Models

Dense 134 M 33.58 62.35 46.09 24.74 27.75 19.97 24.8 49.8 36.14
MoA 525 M 37.82 65.58 51.34 26.19 28.83 22.33 25.1 50.7 38.49
SwitchHead 533 M 37.19 66.12 50.55 26.59 28.14 21.73 25.2 50.9 38.30
FFN-MoE 535 M 39.69 66.43 52.95 26.71 29.76 23.46 25.3 52.1 39.55
UMoE (Att) 547 M 40.72 67.36 51.77 27.82 29.76 23.66 25.9 52.5 39.94
UMoE 540 M 41.28 66.65 51.86 29.01 28.71 23.77 26.6 52.6 40.06

Large Models

Dense 1.1 B 48.45 69.26 58.85 32.17 33.11 31.75 27.4 53.8 44.35
MoA 3.6 B 50.61 70.28 61.47 33.22 32.38 33.15 28.6 54.7 45.55
SwitchHead 3.7 B 51.90 70.83 62.34 33.69 33.27 33.66 28.8 55.7 46.27
FFN-MoE 3.8 B 52.74 71.52 64.23 35.67 33.30 34.00 29.2 56.3 47.12
UMoE (Att) 3.8 B 53.20 71.44 63.30 34.39 32.82 34.78 29.3 57.4 47.08
UMoE 3.6 B 53.17 72.47 64.23 35.75 32.44 35.32 30.4 56.9 47.58

In larger-scale models, UMoE maintains its competitive advantage. While MoA shows marginally
better performance on Wikitext-103, this result may not fully reflect model capabilities given the rela-
tively small size of Wikitext-103 (100M tokens) compared to the model scale. Following established
practice [16], we further report validation perplexity. Fig. 5 shows that UMoE demonstrates faster
convergence and lower validation perplexity compared to baselines, indicating enhanced modeling
capabilities. This superior performance translates to downstream tasks, with Table 4 showing UMoE
consistently achieving the highest average zero-shot accuracy across diverse tasks.

Efficiency. Following Zhang et al. [12], Jin et al. [20], we employ MACs3 as an efficiency metric, as
it remains independent of hardware implementations. As shown in Table 1, the pre-mixing attention
introduces a modest computational overhead, resulting in approximately 1.17× slowdown for base
models. However, this slowdown becomes increasingly negligible as models scale up; in large models,
UMoE introduces only 1.03× slowdown compared to the dense baseline. This favorable scaling
behavior arises from the different growth rates in computational complexity: expert processing scales
quadratically with hidden dimension, while token aggregation in attention layers scales linearly.

4.3 Ablations

We conducted ablation experiments using base models trained on FineWeb-Edu with 20B tokens.

Parameter Sharing Analysis. We investigated various sharing strategies across FFN and attention
layers for fixed experts [6, 33] and routers. As shown in Table 3, all configurations achieved
comparable perplexity. Our default configuration, which employs separate fixed experts and routers
across FFN and attention layers, yielded the optimal perplexity.

Expert Allocation. As suggested in Section 3.2, FFN-MoE layers can be interpreted as a specialized
case of pre-mixing attention layers with an identity matrix as attention matrix. This interpretation
raises a question: does UMoE perform better when allocating more experts to attention layers
rather than FFN layers? According to Table 5, we observe an trend when gradually shifting expert

3MACs is measured using the DeepSpeed Flops Profiler.
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Table 5: Impact of expert allocation between
Attention and FFN layers (total experts = 20).

Model # Expert PPL
Attention FFN

UMoE

4 16 22.82
8 12 22.63
12 8 22.44
16 4 22.50
20 0 21.75

Table 6: Effect of Activation Functions in Ex-
pert Modules. ✓indicates experts with activa-
tion functions while indicates experts with-
out activation functions.

Model Act. Function PPL

UMoE 22.82
24.43

UMoE (Att) 23.37
23.99

Table 7: Top tokens for selected experts in the last attention and FFN layer of UMoE.

Expert ID Top Tokens in Attention Layer Top Tokens in FFN Layer

3 _Each , This , Every , Each , _This This , _This , Every , _Each , _Another
10 _Film , _video , _lab , _film , _Video Tag , _Font , _ISBN , twitter , _DNS
46 The , _The , _the , the , _Our _a , _his , _my , Your , _Your
64 ”. , %. , ." , :) , ." _relatively , _extremely , _a , _very , _Very

allocation from FFN to attention modules while maintaining a total activated expert size of 20. The
model achieves its best perplexity when all experts are allocated to attention layers. This finding
provides empirical evidence supporting our theoretical interpretation that FFN layers function as
a specialized form of attention, with the attention mechanism exhibiting greater expressiveness.
However, increasing the number of attention experts introduces substantial computational overhead
due to token mixing operations. Future research could explore efficient attention alternatives within
the attention MoE framework.
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Figure 5: Best valid PPL (top) and
training loss (bottom) on Wikitext.

Activation Function. Table 6 presents our investigation into
the impact of activation functions in UMoE. The results demon-
strate that incorporating activation functions between matrix
multiplications within experts consistently improves model per-
formance, reinforcing the crucial role of non-linearity in deep
learning architectures. Notably, while the removal of activation
functions reduces the experts to pure linear transformations
in both FFN and attention modules, UMoE remains trainable.
We attribute this robustness to the preserved non-linearity from
token mixing operations and layer normalization. Neverthe-
less, the consistent performance degradation underscores the
importance of activation functions in model expressiveness,
particularly in the context of shared expert architectures.

4.4 Expert Specialization

Table 7 presents the routing patterns in the final layer of UMoE,
where experts are shared between attention and FFN modules
while maintaining distinct routers. Notably, certain token cat-
egories consistently route to the same experts across both mod-
ules, as evidenced by experts 3 and 46. Expert 3 consistently
processes determiners, while expert 46 specializes in demon-
strative pronouns.

The analysis also reveals divergent specialization patterns that
highlight the complexity of shared expert architectures. A notable example is expert 64, which
exhibits distinct specializations: processing consecutive punctuation marks in the attention layer
while handling degree adverbs in the FFN layer. This phenomenon suggests that shared experts can
develop multiple specializations, potentially leading to more efficient parameter utilization. However,
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it also raises important questions about potential knowledge conflicts within individual experts,
indicating promising directions for future research in routing mechanism design for shared expert
architectures.

We also provide an analysis on the attention maps of UMoE in A.5, which confirms that higher-ranked
experts show more focused attention distributions on relevant tokens compared to lower-ranked ones.

5 Conclusion

The paper proposes UMoE, a novel architecture that unifies MoE designs for attention and FFN
layers. The key insight is a reformulation of the attention mechanism that allows the value and output
projections to be grouped into FFN-like experts. This unification enables parameter sharing across
attention and FFN layers, resulting in a fully MoE architecture that improves performance without
introducing additional parameters. The paper presents extensive experiments demonstrating UMoE ’s
superiority over existing MoE architectures in terms of perplexity on language modeling datasets and
accuracy on zero-shot tasks.

As for future work, we are looking at replacing the token mixing mechanism with more efficient
alternatives to enable scaling up the number of activated experts in attention layers. In addition, we
are also interested in investigating architectures that unify attention and FFN into a single layer, given
our finding that FFN layers function as a specialized case of attention with reduced expressiveness.
Exploring parameter sharing across different Transformer layers [35, 36] is also a promising direction.
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Table 8: Computational complexity analysis of vanilla attention and pre-mixing attention mechanisms.
Entries in gray denote identical complexity terms between the two mechanisms. Here, N denotes
sequence length, d represents hidden dimension, h indicates the number of attention heads (activated
experts), dk and dv are key and value dimensions respectively, and r is the rank of query projection
matrices in the pre-mixing attention.

Operation Vanilla Pre-mixing

Output Projection O(N · dv · d · h) O(N · dv · d · h)
Value Projection O(N · dv · d · h) O(N · dv · d · h)
Key Projection O(N · dk · d · h) O(N · dk · d)
Query Projection O(N · dk · d · h) O(N · dk · d+N · (dk + d) · r · h)
QK Multiplication O(N2 · dk · h) O(N2 · dk · h)
Weighted Sum O(N2 · dv · h) O(N2 · d · h)

A Technical Appendices and Supplementary Material

A.1 Complexity

Table 8 presents a detailed computational complexity comparison between vanilla attention and pre-
mixing attention mechanisms. The key distinctions lies in two operations: key projection and weighted
sum computation. In key projection, pre-mixing attention achieves lower complexity. However, this
efficiency is partially offset in the weighted sum operation, where the complexity increases due to
the full dimensional mixing. It is worth mentioning that the computational complexity of weighted
sum grows linearly with the hidden dimension, while the FFN computation grows quadratically. The
computational overhead of weighted sum becomes less significant as model size increases.

def PostMixingMoE(X):
# X: [n, d]

### Attention MoE
# Independent Expert Processing
all_token_outputs = []
all_token_keys = []

for this_token in X:
indices , probs = TopKRouter(this_token)

for i, p in zip(indices , probs):
y = p * Experts[i]( this_token)
all_token_outputs.append(y)

k = W_k[i]( this_token)
all_token_keys.append(k)

# Mixing
Q = (X @ W_q).unsuqeeze (1) # [n, 1, d_q]
K = all_token_keys.reshape(n, k, d_q)
V = all_token_outputs.reshape(n, k, d_v)

attn_output = Attention(Q, K, V) # [n, 1, d_v]

### FFN MoE
...

Figure 6: Implementation of a UMoE layer based on post-mixing attention. X is a sequence of n
token hidden states. In the attention layer, tokens are processed by their top-k experts independently.
The output embeddings of all tokens are aggregated according to the attention weights.
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A.2 Post-mixing vs Pre-mixing

Fig. 6 presents the pseudo-code of a UMoE layer based on post-mixing attention. We conducted
preliminary experiments on Wikitext-103 and FineWeb-Edu datasets. As illustrated in Fig. 7, MoE
models incorporating pre-mixing attention demonstrate substantially superior performance compared
to their post-mixing counterparts.

As discussed in Section 3.1, these two reformulations of the attention mechanism are mathematically
equivalent, owing to the absence of non-linear transformations within the matrix chain multiplication
in attention heads. However, when grouping the value and output projections and implementing
them as an FFN with a non-linear activation function, these formulations yield distinct outputs in the
MoE layers. Fig. 8 illustrates MoE models implemented based on these two reformulations. Both
approaches can be interpreted as extensions of conventional FFN-based MoE models. Specifically,
the pre-mixing approach enhances FFN-based MoE models by contextualizing the inputs, while
post-mixing attention enables MoE layers to incorporate other tokens’ outputs in generating the final
output. Future research could explore the synergistic combination of post- and pre-mixing approaches
to fully leverage contextual information.
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Figure 7: Loss curves of UMoE with attention MoE layers implemented on post-mixing and pre-
mixing attention, respectively. Models are trained on Wikitext-103 (left) and FineWeb-Edu (right).
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Figure 8: Two implementations of UMoE based on pre-mixing and post-mixing attention, respectively.
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Table 9: Comparison of training throughput and inference latency across models. Inference latency
denotes the pre-filling time (1024 tokens) measured on a single H100 GPU. All results are averaged
over multiple runs.

Model Type Model Model Size Pre-filling Latency (s) Training Throughput (tokens/s)

Base Model

GPT 134M 0.1376 126,508
FFN-MoE 535M 0.1974 74,415

MoA 525M 0.1843 90,394
SwitchHead 533M 0.2253 69,374
UMoE-Att 547M 0.2006 76,538

UMoE 540M 0.2197 71,461

Large Model

GPT 1.1B 0.2950 11,634
FFN-MoE 3.8B 0.4080 9,799

MoA 3.6B 0.3624 12,321
SwitchHead 3.7B 0.4328 8,882
UMoE-Att 3.8B 0.4120 11,377

UMoE 3.6B 0.4392 9,194

A.3 Wall-clock Efficiency Analysis

Table 9 presents a quantitative comparison of end-to-end training throughput and inference latency
across various model architectures. All experiments were conducted on a single NVIDIA H100 GPU.
Inference latency corresponds to the pre-filling time for sequences of 1024 tokens, while training
throughput is measured in tokens per second.

Across both scales, all Mixture-of-Experts (MoE) variants exhibit comparable inference latency but
remain slower than the dense baseline, despite their similar theoretical MAC counts. This discrepancy
primarily arises from additional computational overheads introduced by expert routing and sparse
expert execution. Among MoE models, SwitchHead and UMoE show slightly higher latency due to
their architectural designs—SwitchHead applies two MoE layers per attention head, whereas UMoE
employs two MoE layers within each Transformer block.

These results underscore a persistent challenge in MoE-based architectures: while their theoretical
efficiency is well established, current hardware and software infrastructures (e.g., routing kernels,
expert parallelization) are not yet fully optimized to realize these potential speedups. Consequently,
our main paper reports MAC-based efficiency as the primary metric. We anticipate that advances
in GPU kernel design and distributed parallelization will further mitigate the observed wall-clock
inefficiencies in future implementations.

A.4 Hyperparameters

Table 10 and 11 give the parameters used for based and large models, respectively. It takes roughly a
week for pretraining base models on FineWeb-Edu datasets. MoA and SwitchHead utilize identical
parameters as UMoE-Att, excluding the low-rank query projections. Table!12 details the hyperpa-
rameters used during training. For the Wikitext-103 dataset, we adopt the same hyperparameter
configuration as Csordás et al. [13].

A.5 Attention Analysis

We analyze the attention patterns in UMoE by visualizing expert-specific attention maps. While
UMoE (Large) contains 64 experts per layer across 24 layers, we focus on the top 8 experts (ranked by
router scores) to maintain tractability. Each expert utilizes its own query projection matrix, allowing
us to compute attention maps regardless of activation status.

To investigate attention behavior, we examine two inputs:

• “Context: William Shakespeare wrote the famous play Romeo and Juliet in the late 16th
century. Question: Who wrote Romeo and Juliet? The Answer is"
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Table 10: Hyperparameters of Base Models. MoA and SwitchHead use the same hyperparameters as
UMoE-Att.

Hyperparameter Dense FFN-MoE UMoE-Att UMoE

Context Length 1024 1024 1024 768
Number of Layers 12 12 12 12
Hidden Size 768 768 768 768
Attention Heads 4 4 4 4

FFN Size 3072 192 × 16 3072 192 × 16
Query (Key) Dimension 512 512 512 512
Value Dimension 192 192 – –
Query Lora Rank – – 16 16

Number of MoE layers – 12 12 12
Expert Size - 192 192 192
Experts per MoE Layer – 128 116 128
FFN Experts per Token – 16 – 16
Attention Experts per Token – – 4 4

Table 11: Hyperparameters of Large Models. MoA and SwitchHead use the same hyperparameters
as UMoE-Att.

Hyperparameter Dense FFN-MoE UMoE-Att UMoE

Context Length 1024 1024 1024 1024
Number of Layers 24 24 24 24
Hidden Size 2048 2048 2048 2048
Attention Heads 4 4 4 4

FFN Size 5632 512 × 11 5632 512 × 11
Query (Key) Dimension 512 512 512 512
Value Dimension 512 512 – –
Query Lora Rank – – 36 36

Number of MoE layers – 24 24 24
Expert Size - 512 512 512
Experts per MoE Layer – 64 57 64
FFN Experts per Token – 11 – 11
Attention Experts per Token – – 4 4

• “Context: Tokyo is the capital city of Japan and has a population of over 37 million people
in its metropolitan area. Question: What is the capital of Japan? The Answer is"

UMoE successfully predicted the correct answers for both inputs, even after removing the context.
For the final token in each input, we collected attention maps from the top 8 experts across all layers.

Fig. 9 presents attention maps for the final token prediction, revealing distinct patterns between higher
and lower-ranked experts. Higher-ranked experts demonstrate more focused attention distributions
that align with task requirements. For instance, in the Shakespeare question, Expert_0 and Expert_32
show pronounced attention weights on task-critical tokens "who wrote". Similarly, for the Tokyo
question, the top expert exhibits sophisticated attention patterns by focusing on key contextual
elements like "Japan" and "capital". These observations suggest that the routing mechanism effec-
tively identifies experts capable of extracting task-relevant information through specialized attention
patterns.

To create a comprehensive visualization, we aggregated attention maps of all layers by summing
them, as shown in Fig. 10. The values on the left (e.g., E0: 3.83) represent the sum of router scores
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Table 12: Training Hyperparameters on FineWeb-Edu and Wikitext-103.

Hyperparameter FineWeb-Edu Wikitext

Global Batch Size 1024 64
Learning Rate 4e-4 2.5e-4
Training Steps 50000 100000
LR Scheduler cosine cosine
Warmup Ratio 0.05 0.05
GPU H100 H100
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Figure 9: Representative attention maps. The heatmaps show the attention weights of the last token
produced by top 8 experts, ranked by their router scores. (a) Attention patterns for the Shakespeare
question, where higher-ranked experts (e.g., Expert_0, Expert_32) demonstrate focused attention on
question-relevant tokens. (b) Attention patterns for the Tokyo question, showing similar task-specific
attention concentration among top experts.

received by experts at each rank position across all layers. The accumulated patterns reveal that
higher-ranked experts (particularly E0 and E1) maintain more targeted attention distributions focused
on question-relevant tokens, while lower-ranked experts tend to focus heavily on the initial token,

Notably, we observe minimal attention paid to answer tokens present in the context. This phenomenon
aligns with the conceptualization of experts (two consecutive matrices) as key-value memory modules,
where input serves as a query. In other words, the output of attention layers is the composition of
values, i.e., columns of the second matrix, in the activated experts, rather than token hidden states. This
suggests that the token mixing should focus on building appropriate query for accurate compositions.
Therefore, the last token should pay attention to the tokens relevant to the answer token, rather than
the answer itself.

18



Con
tex

t :
Tok

yo is the
cap

ita
l

cit
y of

Jap
an an

d ha
s a

po
pu

lat
ion of

ov
er 3 7

millio
n
pe

op
le in its

metr
op

ol ita
n

are
a .

Que
stio

n :
Wha

t is the
cap

ita
l of

Jap
an ?

Th
e

Answ
er is

Token

E0: 3.65   

E1: 1.62   

E2: 0.98   

E3: 0.74   

E4: 0.63   

E5: 0.58   

E6: 0.54   

E7: 0.51   

Ac
cu

m
ul

at
ed

 P
ro

b.
1

2

3

4

Accum
ulated Attention W

eight

(a)

Con
tex

t :

Willia
m

Sh
ake

spe
arewrot

e the

fam
ou

s
pla

y
Ro

me o
an

d Jul iet in the lat
e 1 6 th

cen
tur

y .

Que
stio

n :
Who

wrot
e
Ro

me o
an

d Jul iet ?
Th

e

Answ
er is

Token

E0: 3.83   

E1: 1.59   

E2: 1.02   

E3: 0.80   

E4: 0.64   

E5: 0.58   

E6: 0.54   

E7: 0.49   

Ac
cu

m
ul

at
ed

 P
ro

b.

0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0 Accum

ulated Attention W
eight

(b)

Figure 10: Layer-wise accumulated attention weights across the model. The values on the left (e.g.,
E0: 3.83) represent the sum of router scores for experts. Higher-ranked experts (E0, E1) consistently
show more focused attention distributions compared to lower-ranked experts.

A.6 Limitations

One limitation of UMoE is, as discussed in Section 4.2, the modest additional computational cost
introduced by reformulating the attention mechanism in relatively small models. Additionally, the
datasets used in this paper do not cover mathematics or code, given the scope of our work and
limited computational resources. Considering recent research on MoE models’ reasoning limitations,
exploring how reasoning abilities scale with UMoE may provide valuable insights for future work.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In the abstract and introduction, we claim that our proposed attention-MoE
layers outperform previous attention-MoE methods and match or exceed the performance of
FFN-MoE models.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper provides a "Limitations" section (A.6).
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: The paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: This paper proposes a novel model architecture. The details of experiments
are provided in Section 4 and A.4. Our code is also available for reproduction.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code is released. The datasets used by this paper are all publicly available.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The details of experiments are provided in Section 4 and A.4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Considering we are performing language modeling pretraining, it would be
too computationally expensive for this given our limited computational budget.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Section A.4 provides information on the time of training and Table 12 provides
the information of GPU.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: There is no societal impact of the work performed since the focus of this work
is to propose a general architecture.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: There is no model or data released.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite the datasets and the code package used for model evaluation. The
FineWeb-Edu dataset is under ODC-By 1.0 license and the Wikitext-103 is released under
CC BY-SA 3.0.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We released our code for reproduction with a document on how to run it.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The answer NA means that the paper does not involve crowdsourcing nor
research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs are used only for writing.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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