
[Re] Temporal Spike Sequence Learning via Backpropagation
for Deep Spiking Neural Networks

Anonymous Author(s)
Affiliation
Address
email

Reproducibility Summary1

Scope of Reproducibility2

In this report, we reproduce the results of a novel learning method for Spiking Neural Networks (SNN) proposed by3

Zhang and Li (2020) [23]. The proposed learning method utilises biologically more plausible neuron interactions4

than existing SNN algorithms. The original paper claims that the method can produce higher performance than other5

state-of-the-art SNN learning algorithms on ML benchmarking datasets whilst utilising many fewer timesteps. In order6

to test this claim, we reproduced the results of two datasets; MNIST and CIFAR-10.7

Methodology8

For the reproduction of the experiments in the paper [23], we used the author’s original source code with minimal9

additions; logging facilities and plotting functionality. We also performed an additional hyperparameter search10

experiment for the MNIST dataset. The experiments were run on two different GPUs, an NVIDIA Tesla V100-PCIE-11

32GB GPU and an NVIDIA Titan RTX. The total GPU runtimes were 150h 26m and 56h 4m, respectively. Additional12

to the experiments performed, we inspected the theoretical equations in the original paper. We then scrutinised the13

source code and the specific implementations of the mathematical equations.14

Results15

Due to high computational requirements, we reproduced two out of four experiments from the original paper. Overall,16

the results match within a reasonable margin as reported in the paper. A Bayesian hyperparameter search, through17

different combinations of parameters, revealed some insights about the stability and the speed of the training process.18

What Was Easy19

The original paper is well-written, with clear explanations of the models and the learning algorithm. We also thank the20

authors for publishing their source code online. This made the reproduction study easier and more fruitful. The source21

code was written in an understandable way and the authors provided clear general instructions to rerun the networks.22

What Was Difficult23

The computationally demanding nature of the networks yields it challenging for us to reproduce all the experiments in24

the paper. Particularly, SNNs require multiple timesteps that leads proportionally longer runtime. Additionally, we25

discovered some parameters that were hardcoded and undocumented in the source code without explanations. We could26

not find their particular contexts in the original paper.27

Communication with Original Authors28

We contacted the authors on several occasions to ask questions about the paper and the undocumented parameters in the29

source code. They kindly clarified all our questions. We also provided some feedback regarding theoretical equations30

and code implementation.31

Submitted to ML Reproducibility Challenge 2020. Do not distribute.



1 Introduction32

Spiking Neural Network (SNN) models are based on biological networks which utilise spikes as a method of information33

transmission. Spiking is highly energy efficient, meaning these networks provide attractive computational solutions [5].34

Several neuromorphic chip hardware have been developed to run spiking networks [1, 3], however, neural network35

algorithms that fully utilise their capabilities have yet to be realised. Deep neural networks have received increasing36

interest over recent years, inspiring the development of efficient deep spiking algorithms (Deep-SNNs) that can be37

run over multiple layers [17]. Deep-SNNs vary in both spatial and temporal aspects, leading to complicated network38

dynamics. The utilisation of spiking codes for machine learning tasks is therefore nontrivial. This is specifically39

due to the challenges of employing backpropagation—the typical basis for calculating weight updates. Previous40

spiking network algorithms have solved the problem of non-differential discrete spike events via surrogate gradients or41

approximation using continuous activation functions. However, these techniques destroy crucial temporal aspects of42

SNNs—previous spikes of a neuron affect future spikes. In addition, the use of spikes in previous SNN models has43

required large temporal latency—a greater number of timesteps, in order to achieve more accurate performance on44

tasks. This makes scaling to deep network architectures with many layers computationally expensive. In this report, we45

review the proposed method of “temporal spike sequence learning via backpropagation” (known as TSSL-BP) which46

claims to deal with both of these problems by considering inter and intra-neuron spiking dependencies, and reducing47

the required number of timesteps.48

Previous studies [19, 6, 15, 10, 7, 18, 16, 22] have demonstrated increasing accuracy of spike-based network algorithms49

on image classification datasets such as MNIST [9], Neuromorphic MNIST (N-MNIST) [12], Fashion-MNIST [20],50

and CIFAR-10 [8]. TSSL-BP demonstrates increased accuracy on all these datasets, including a 3.98% increase for the51

more challenging CIFAR-10. Critically, the network can not only perform at higher accuracy, but requires much shorter52

time-window.53

1.1 TSSL-BP Overview54

The aim of the TSSL-BP algorithm is to learn a desired firing sequence, that can be set arbitrarily. The error function for55

the network to be minimised is the distance between the produced spiking pattern and the desired sequence (target). In56

TSSL-BP, the loss is defined as the sum of the squared error over all neurons for each timestep. The distance between57

the actual and desired spiking times is58

L =

Nt∑
k=0

E[tk] =
1

2

Nt∑
k=0

(
(ε ∗ d)[tk]− (ε ∗ s)[tk]

)2
, (1)

where E[tk] is error at discrete timestep tk, d and s are the desired and actual spike trains, and ε is a kernel function59

measuring the Van Rossum distance between them [13]. The spike trains are binary sequences within a certain60

time-window.61

1.1.1 Leaky Integrate-and-Fire Model62

Spikes in the neural network model are generated using the standard Leaky Integrate-and-Fire (LIF) model [4]. This63

model describes a neuron’s membrane potential over time and generates a spike if the potential value is a higher than a64

specified threshold. Incoming spikes are converted into a postsynaptic current (PSC) aj(t). The neuronal membrane65

potential ui(t) for neuron i is66

τm
dui
dt

= −ui(t) +R
∑
j

wijaj(t) + ηi(t), (2)

where R and τm are leaky resistance and time constant of the membrane, wij is the synaptic weight between neurons i67

and j, and ηi is the reset function. The PSC and the reset function are defined as,68

aj(t) = (ε ∗ sj)(t), ηi(t) = (ν ∗ si)(t), (3)

where sj is the spike times of neuron j, ν is reset kernel and ε is spike response. The spike response kernel is69

τs
aj
dt

= −aj(t) + sj(t), (4)

where τs is synaptic time constant.70

Finally, the firing output is determined by the Heaviside step function, H(.), producing all-or-none spiking depending71

on whether the membrane potential is over a specified threshold Vth:72

si[t] = H(ui[t]− Vth). (5)

2



1.1.2 Inter and Intra-neuron Dependencies73

Spiking outputs are binary; all-or-none discrete events, meaning the activation function is not differentiable. Some74

SNN implementations [18, 16, 21] have circumvented this issue via use of surrogate gradient methods [11]. However,75

these methods degrade training performance due to discrepancies between the target loss and gradient. More recent76

SNN methods have reduced the number of timesteps required, however, still utilise continuous activation functions as77

approximations of the spiking neurons [19]. The approach of TSSL-BP considers the precise temporal dependencies of78

both spiking between neurons (inter) and within neurons (intra). Inter-neuron dependencies arise as the spikes from the79

presynaptic neurons cause changes in the postsynaptic neurons’ current. Furthermore, due to the membrane potential80

reset kernel in the LIF model, the timing of spikes within a neuron can be dependent on previous spikes within a certain81

time-window. This affects the precise timing of spikes and the subsequent postsynaptic current. We refer the reader to82

see the original paper for the derivation.83

2 Scope of reproducibility84

In this reproduction, we test the following claims of the paper:85

1. TSSL-BP performs at a higher accuracy than previous spiking neural nets on supervised learning problems86

using the MNIST and CIFAR-10 datasets. A large increase of 3.98% on CIFAR-10 can be achieved, which is87

a challenging dataset for SNNs.88

2. Compared to previous SNNs, TSSL-BP utilizes a lower latency of spikes, whilst still maintaining high accuracy89

on the datasets.90

To test these claims, we first checked the mathematical derivations provided in the paper, supplementary material and91

the source code implementation. Second, we tested the claims about performance accuracy by reproducing the results92

for the TSSL-BP method on the MNIST and CIFAR-10 datasets. An additional hyperparameter search was conducted93

for the MNIST dataset to assess whether the parameters selected in the original paper were justifiable.94

3 Methodology95

3.1 Model Descriptions96

The neural network architecture and the learning algorithm were implemented in PyTorch ML framework.1 The network97

architecture is an adapted ConvNet, modified to allow spike generations. The network architecture used for MNIST98

dataset was 15C5-P2-40C5-P2-300, it has 210,375 trainable parameters in total. The CIFAR-10 dataset was tested on99

two different network architectures. The first one (CNN1) was 96C3-256C3-P2-384C3-P2-384C3-256C3-1024-1024100

and the second (CNN2), larger network 128C3-256C3-P2-512C3-P2-1024C3-512C3-1024-512. For both, a fixed101

probability of 0.2 dropout was applied after each layer. The networks have 21,156,384 and 44,999,040 trainable102

parameters, respectively. Outputs of the model are converted to spike rates and tested against desired spike rates for103

each class. The target class is given a desired spike count, and other classes are set to target zero spikes.104

At the beginning of network training, low initial weight values can lead to an absence of firing activity, meaning105

backpropagtion with TSSL-BP is not possible. To solve this, the authors suggests to apply a warm-up mechanism,106

where an average firing rate threshold is set for each layer. When an activity is above this threshold, TSSL-BP is applied.107

If the firing activity is very low the warm-up is applied. In this case, the activation function is approximated using a108

continuous sigmoid function of membrane potential, allowing backpropagation without spiking.109

3.2 Datasets and Hyperparameters110

MNIST is a prominent benchmarking dataset of handwritten digits for image recognition tasks. It includes 70,000111

gray-scale input images of size of 28×28 for 10 classes. Amongst these, 60,000 images are used for training and 10,000112

for testing. CIFAR-10 is another well-known, image recognition benchmarking dataset. It includes 60,000 colour input113

images of size 32×32 for 10 classes. Amongst these, 50,000 images are used for training and 10,000 for testing. For114

both the MNIST and CIFAR-10 datasets, preprocessing was performed as in the original paper.2 For each image, short115

time-windows of real-valued spike currents are generated from pixel intensities.116

1TSSL-BP implementation provided by the authors is available on Github: https://github.com/stonezwr/TSSL-BP
2These datasets are downloadable as part of PyTorch package.

3

https://github.com/stonezwr/TSSL-BP


For the reproduction of the experiments, we used the same parameters as in the original paper and source code provided117

by authors. For both MNIST and CIFAR-10 datasets, batch size was 50, τs (synaptic time constant) was 3, τm118

(membrane time constant) was 5, time-window was 5 (with desired count of 4 and undesired 1). For MNIST, the119

networks were trained for 100 epochs at a learning-rate of 0.0005, and for CIFAR-10, 150 epochs at a learning-rate of120

0.0002. An additional Bayesian hyperparameter search (12 runs) was performed for the MNIST dataset. The details of121

this experiment can be found in Section 4.3.122

3.3 Experimental Setup and Computational Requirements123

As in the original paper, we ran five trials each of the MNIST network and CNN1 network (CIFAR-10 dataset). Due to124

runtime limitations, CNN2 network was trained twice and the best performing is reported here. All performance data125

were measured by accuracy.126

Our additional code is available online.3 Weights and Biases API was implemented on the model code to track model127

learning and assist with analysis [2]. Reproduction of the results for MNIST and CIFAR-10 datasets were run on a128

NVIDIA Tesla V100-PCIE-32GB GPU, and the hyperparameter search for MNIST dataset was run on a NVIDIA Titan129

RTX. The detailed GPU runtimes are:130

• For the MNIST dataset, the mean run time was 1h 21m and the total GPU time for 5 runs was 6h 47m.131

• For the CIFAR-10 dataset, the mean run time for CNN1 network was 18h 33m hours and the total GPU time for132

5 runs was 92h 43m.133

• For the CIFAR-10 dataset, the mean run time for CNN2 network was 25h 28m and the total GPU time for 2134

runs was 50h 55m.135

• For the MNIST dataset hyperparameter search, the total runtime of 12 runs was 56h 4m.136

4 Results137

This section reports reproduction of two experiments from the paper; MNIST and CIFAR-10, and an additional138

hyperparameter search for MNIST. Overall, our results supports the claims in the original paper. Accuracy scores for139

each network reproduction were within reasonable margin of the original paper.140

4.1 Result 1: MNIST141

We conducted five runs for MNIST dataset, with the same hyperparameters as the original paper. Our reproduction142

produced a mean accuracy of 99.40% (see Table 1). Compared to the paper, this was within reasonable margin, original143

99.50% with ours 0.1% lower. Between the best performance of each, the difference was only 0.06%.144

Table 1: Performances comparison of the original paper and our reproduction for MNIST dataset.

Method Network Mean Accuracy Std. Deviation Best Performance

Original paper 15C5-P2-40C5-P2-300 99.50% 0.02% 99.53%
Reproduction 15C5-P2-40C5-P2-300 99.40% 0.04% 99.47%

For the MNIST dataset, we confirm that TSSL-BP outperforms most other SNNs [7, 10, 16, 18]. As in the original paper,145

it performs marginally below ST-RSBP network [22]. ST-RSBP achieves 99.57%, versus 99.40% for our replication and146

99.50% reported in the original paper. However, ST-RSBP with the same network architecture requires 400 timesteps,147

versus only 5 for TSSL-BP. Given this, the performance for TSSL-BP is highly comparable to other SNNs. This result148

also provides support for the claim that TSSL-BP can perform well even with few time steps.149

4.2 Result 2: CIFAR-10150

For CIFAR-10, the results of our replication can be found in Table 2. For the smaller CNN1 network, the original paper151

demonstrates best accuracy increases of 3.98% over STBP algorithm [19]. For our reproduction, we achieved mean152

accuracy of 88.96% versus 88.98% in the original paper. Best performance for the reproduction was slightly lower,153

89.07% versus 89.22%. Compared to STBP, the best performance increase is 3.98% original and 3.83% reproduction.154

3Github repository with our additional code: https://github.com/anilozdemir/TSSL-BP

4

https://github.com/anilozdemir/TSSL-BP


Table 2: Performance comparison of the original paper and our reproduction for CIFAR-10.

Method Network Mean Accuracy Std. Deviation Best Performance

Original paper CNN1 88.98% 0.27% 89.22%
Reproduction CNN1 88.96% 0.10% 89.07%

Original paper CNN2 - - 91.41%
Reproduction CNN2 - - 89.61 %

CNN1: 96C3-256C3-P2-384C3-P2-384C3-256C3-1024-1024
CNN2: 128C3-256C3-P2-512C3-P2-1024C3-512C3-1024-512

In the original paper, it is unclear how many times the CNN2 architecture was run. We contacted the authors in that155

regard and they clarified that the network was run only once. The accuracy reported in the original work is 91.41%, a156

0.88% increase on STBP (with NeuNorm) [19]. In this reproduction, we ran the network twice and selected the highest157

accuracy of the two, 89.61% versus 89.53%. This is a lower performance than STBP, with a reduction of 0.92%. It is158

unclear whether TSSL-BP would consistently score lower over more trials, or whether the lower score obtained here159

was due to network stochasticity. Nevertheless, TSSL-BP utilises marginally fewer timesteps, with a reduction from160

eight for STBP (with NeuNorm) to five. The authors also report that there are no additional optimisations on TSSL-BP161

that are used in the comparable SNNs [19], such as neuron normalisation and population decoding.162

4.3 Results Beyond Original Paper163

We investigated the hyperparameters used in the MNIST network, the original parameters can be found in Table 3. As it164

is costly to run the network and impractical to search for large numbers of parameters, we performed a brief Bayesian165

hyperparameter search for learning-rate, number of epochs and time-window. We utilised the sweep functionality from166

Weight & Biases ML developer tools.4 For this search, we used Bayesian optimisation with the objective function167

improving the test-accuracy. We ran this optimisation 12 times, with parameters to be selected from:168

• epochs ∈ {50, 100, 150, 200}169

• learning-rate ∈ {0.0001, 0.0005, 0.001, 0.005, 0.01}170

• time-window ∈ {5, 10, 20}171

Table 3: Original hyperparameters used for the MNIST dataset.

Parameter Value Parameter Value

epochs 100 learning-rate 0.0005
batch size 50 time-window 5

desired count 4 undesired count 1
τm 5 τs 3

Figure 1 shows an overview of the different parameters used and the corresponding test-accuracy after completing172

training. Within the limited number of runs, one can see that a longer time-window leads to higher accuracy. Although,173

there is a trade-off—the longer time-window increases runtime, due to longer input processing. On the other hand, the174

Bayesian optimisation method was favouring longer time-windows.175

Figure 2 shows training accuracy obtained at each epoch for 12 runs. We observed sudden changes in three of the runs176

during training. This may be due to an instability of the learning algorithm—this could be explored in future work.177

Surprisingly, on the other hand, the test performance did not change. Amongst the unexpected runs, one had a peculiar178

learning process (see purple curve). The training performance accuracy periodically changed. Another observation179

is that some of the runs (e.g. top orange curve) increased to their maximum performance quite early on (less than 25180

epochs) and the performance did not improve thereafter, suggesting that the number of epochs may have been set too181

high.182

Figure 3 demonstrates the distribution of learning-rates against number of epochs, and the colours represent test-183

accuracy. It is clear that the effect of epoch is not substantial, though, learning-rate impacts greatly; lower learning-rate184

leads to better performance. Results suggest that approximately the same performance could be achieved with half185

4Documentation for sweep function: https://wandb.ai/site/sweeps.

5

https://wandb.ai/site/sweeps


Figure 1: Parallel coordinates plot showing different combinations of hyperparameters and the resulting test-accuracy.
The colours indicate the performance accuracy—the lighter the colour the higher the test-accuracy. Note that learning-
rate is in log-scale.

Figure 2: Training accuracy at each step for 12 runs. The hyper-parameter settings for each run are given in the legend.
Note that horizontal axis shows the training iteration steps rather than the number of epochs. This is due to using W&B
API and saving the results asynchronously. Overall trends in the plot, however, remain the same.

the amount of epochs, if the learning-rate is chosen appropriately, e.g. 0.001. For this learning-rate setting, three runs186

were performed. The test-accuracy results were 99.3%, 99.43% and 99.37% for number of epochs 50, 150 and 200,187

respectively. On the other hand, the time it takes to run each of them was 1h 50m, 5h 32m and 7h 23m. From this, there188

is no significant benefit of running the MNIST experiment for a large number of epochs.189

Overall, the highest performance was 99.46%, using time-window of 20 for 200 epochs at learning-rate of 0.0005,190

however, this took 7h 22m. The lowest computational cost was 1h when using time-window of 5 for 100 epochs191

at learning-rate of 0.005 with a performance of 98.85%. Comparing this experiment with the paper, the original192

hyperparameters selected in the paper were well-optimised.193

5 Discussion194

Overall, the reproduction study was fairly straightforward. The authors were helpful and provided clear explanations.195

Due to time constraints and limited resources available, we could only reproduce two out of the four experiments from196

the paper. However, our choice of the reproduced experiments was deliberate; we chose a well-known and relatively197

simpler dataset (MNIST) and another well-known but more complicated dataset (CIFAR-10). The reproduced accuracy198

results were within reasonable ranges to the authors’ original paper results. For both MNIST and CIFAR-10 (using a199

6



Figure 3: Distribution of 12 runs with respect to number of epochs and learning-rate, with colours indicating the test
accuracy.

smaller network structure) TSSL-BP outperforms most other SNN algorithms. Furthermore, we found that the reduced200

number of timesteps is sufficient to reproduce these accuracies, supporting claim two.201

We performed an additional hyperparameter search to investigate the proposed learning algorithm’s abilities outside202

of the selected parameter domain. This investigation revealed some interesting properties; such as that comparable203

performance can be achieved in a shorter runtime, and that the learning algorithm may have some instabilities. These204

insights can lead to further experimentation and perhaps further novel contributions in the future.205

What was easy Authors provided the necessary source code for the learning algorithm and most network setups.206

This made the reproducibility study more fruitful. The only missing network setup was for CNN2, however, this can207

easily be reproduced by amending the layer sizes provided in the CNN1 file. We used W&B API for logging the208

results and plotting facilities, this made the collaboration experience easier and allowed us to monitor the network runs209

asynchronously.210

What was difficult Some parameters included in the original source code were undocumented. These are: a = 0.2211

(line 89 in functions/tsslbp.py), th = 1/(4 * tau_s) (line 56 in functions/tsslbp.py), and212

theta = 1.1 (line 31-32 in layers/pooling.py). It was also unclear how the network weight clip-213

ping was determined (-8 and 8 for line 90 at tsslbp.py and -4 and 4 for weight_clipper function in214

layers/linear.py and layers/conv.py).5 We contacted the authors to clarify these; a and th are used as rescaling215

factors and theta was not used in the code (i.e. redundant). Moreover, the authors confirmed that the particular values216

are empirically found and manually tuned. Finally, the network warm-up mechanism could be cumbersome for more217

complicated datasets.218

Communication with original authors We communicated with the author at the NeurIPS poster session, where our219

initial questions were answered surrounding the method, implementation and goals of the network. Following this220

we provided the authors with feedback on the details of some of the equations via email. We also enquired about the221

undocumented parameters given in the source code and the number of runs performed for the CIFAR10 dataset using222

CNN-2 network. We thank the authors for their engagement with this process.223

Future Work We attempted to test the algorithm on another neuromorphic dataset used to benchmark SNN—a dynamic224

vision sensor (DVS) version of the CIFAR-10. During initial testing we found that large computational resources are225

required, and therefore did not proceed. We have provided the code for preprocessing of the dataset (based on [14]) in226

our code repository for future works to utilise.227

The CNN2 network reproduction demonstrated lower accuracy than the STBP algorithm [18]. It is unclear whether228

this is due to variability of running a low number of trials or a more general trend. As fewer timesteps were used for229

5These lines references are for the current state of the GitHub repository. The authors highlighted that the code is still under
development for further optimisation, so these line references may change.

7



the TSSL-BP implementation when comparing, it is possible TSSL-BP would achieve higher accuracy with the same230

number of timesteps. Future work could investigate whether comparing in this case yields higher accuracy as claimed231

by the authors.232

References233

[1] Filipp Akopyan, Jun Sawada, Andrew Cassidy, Rodrigo Alvarez-Icaza, John Arthur, Paul Merolla, Nabil Imam,234

Yutaka Nakamura, Pallab Datta, Gi-Joon Nam, et al. Truenorth: Design and tool flow of a 65 mw 1 million neuron235

programmable neurosynaptic chip. IEEE Transactions on Computer-aided Design of Integrated Circuits and236

Systems, 34(10):1537–1557, 2015.237

[2] Lukas Biewald. Experiment tracking with weights and biases, 2020. Software available from wandb.com.238

[3] Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya, Yongqiang Cao, Sri Harsha Choday, Georgios239

Dimou, Prasad Joshi, Nabil Imam, Shweta Jain, et al. Loihi: A neuromorphic manycore processor with on-chip240

learning. IEEE Micro, 38(1):82–99, 2018.241

[4] Wulfram Gerstner and Werner M Kistler. Spiking neuron models: Single neurons, populations, plasticity.242

Cambridge University Press, 2002.243

[5] Samanwoy Ghosh-Dastidar and Hojjat Adeli. Spiking neural networks. International Journal of Neural Systems,244

19(04):295–308, 2009.245

[6] Eric Hunsberger and Chris Eliasmith. Training spiking deep networks for neuromorphic hardware. arXiv preprint246

arXiv:1611.05141, 2016.247

[7] Yingyezhe Jin, Wenrui Zhang, and Peng Li. Hybrid macro/micro level backpropagation for training deep spiking248

neural networks. arXiv preprint arXiv:1805.07866, 2018.249

[8] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. The CIFAR-10 dataset. online: http://www. cs. toronto.250

edu/kriz/cifar. html, 55, 2014.251

[9] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to document252

recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.253

[10] Jun Haeng Lee, Tobi Delbruck, and Michael Pfeiffer. Training deep spiking neural networks using backpropagation.254

Frontiers in Neuroscience, 10:508, 2016.255

[11] Emre O Neftci, Hesham Mostafa, and Friedemann Zenke. Surrogate gradient learning in spiking neural networks:256

Bringing the power of gradient-based optimization to spiking neural networks. IEEE Signal Processing Magazine,257

36(6):51–63, 2019.258

[12] Garrick Orchard, Ajinkya Jayawant, Gregory K Cohen, and Nitish Thakor. Converting static image datasets to259

spiking neuromorphic datasets using saccades. Frontiers in Neuroscience, 9:437, 2015.260

[13] MCW van Rossum. A novel spike distance. Neural Computation, 13(4):751–763, 2001.261

[14] Ali Samadzadeh, Fatemeh Sadat Tabatabaei Far, Ali Javadi, Ahmad Nickabadi, and Morteza Haghir Chehreghani.262

Convolutional spiking neural networks for spatio-temporal feature extraction, 2020.263

[15] Abhronil Sengupta, Yuting Ye, Robert Wang, Chiao Liu, and Kaushik Roy. Going deeper in spiking neural264

networks: Vgg and residual architectures. Frontiers in Neuroscience, 13:95, 2019.265

[16] Sumit Bam Shrestha and Garrick Orchard. Slayer: Spike layer error reassignment in time. arXiv preprint266

arXiv:1810.08646, 2018.267

[17] Amirhossein Tavanaei, Masoud Ghodrati, Saeed Reza Kheradpisheh, Timothée Masquelier, and Anthony Maida.268

Deep learning in spiking neural networks. Neural Networks, 111:47–63, 2019.269

[18] Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, and Luping Shi. Spatio-temporal backpropagation for training high-270

performance spiking neural networks. Frontiers in Neuroscience, 12:331, 2018.271

[19] Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, Yuan Xie, and Luping Shi. Direct training for spiking neural networks:272

Faster, larger, better. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages273

1311–1318, 2019.274

8



[20] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking machine275

learning algorithms. arXiv preprint arXiv:1708.07747, 2017.276

[21] Friedemann Zenke and Surya Ganguli. Superspike: Supervised learning in multilayer spiking neural networks.277

Neural computation, 30(6):1514–1541, 2018.278

[22] Wenrui Zhang and Peng Li. Spike-train level backpropagation for training deep recurrent spiking neural networks.279

arXiv preprint arXiv:1908.06378, 2019.280

[23] Wenrui Zhang and Peng Li. Temporal spike sequence learning via backpropagation for deep spiking neural281

networks. In Advances in Neural Information Processing Systems, 2020.282

9


	Introduction
	TSSL-BP Overview
	Leaky Integrate-and-Fire Model
	Inter and Intra-neuron Dependencies


	Scope of reproducibility
	Methodology
	Model Descriptions
	Datasets and Hyperparameters
	Experimental Setup and Computational Requirements

	Results
	Result 1: MNIST
	Result 2: CIFAR-10
	Results Beyond Original Paper

	Discussion

