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Abstract

Large autoregressive generative models have
emerged as the cornerstone for achieving the
highest performance across several Natural
Language Processing tasks. However, the urge
to attain superior results has, at times, led to the
premature replacement of carefully designed
task-specific approaches without exhaustive ex-
perimentation. The Coreference Resolution
task is no exception; all recent state-of-the-art
solutions adopt large generative autoregressive
models that outperform encoder-based discrim-
inative systems. In this work, we challenge this
recent trend by introducing Maverick, a care-
fully designed — yet simple — pipeline, which
enables running a state-of-the-art Coreference
Resolution system within the constraints of an
academic budget, outperforming models with
up to 13 billion parameters with as few as 500
million parameters. Maverick achieves state-
of-the-art performance on the CoNLL-2012
benchmark, training with up to 0.006x the mem-
ory resources and obtaining a 170x faster in-
ference compared to previous state-of-the-art
systems. We extensively validate the robust-
ness of the Maverick framework with an ar-
ray of diverse experiments, reporting improve-
ments over prior systems in data-scarce, long-
document, and out-of-domain settings. We re-
lease our code and models for research pur-
poses at omitted.link.

1 Introduction

As one of the core tasks in Natural Language Pro-
cessing, Coreference Resolution aims to identify
and group expressions (called mentions) that refer
to the same entity (Karttunen, 1969). Given its
crucial role in various downstream tasks, such as
Knowledge Graph Construction (Li et al., 2020),
Entity Linking (Kundu et al., 2018; Agarwal et al.,
2022), Question Answering (Dhingra et al., 2018;
Dasigi et al., 2019; Bhattacharjee et al., 2020;
Chen and Durrett, 2021), Machine Translation

(Stojanovski and Fraser, 2018; Voita et al., 2018;
Ohtani et al., 2019) and Text Summarization (Falke
et al., 2017; Pasunuru et al., 2021; Liu et al., 2021),
inter alia, there is a pressing need for both per-
formance and efficiency. However, recent works
in Coreference Resolution either explore methods
to obtain reasonable performance optimizing time
and memory efficiency (Kirstain et al., 2021; Do-
brovolskii, 2021; Otmazgin et al., 2022), or strive
to improve benchmark scores regardless of the in-
creased computational demand (Bohnet et al., 2023;
Zhang et al., 2023).

Efficient solutions usually rely on discriminative
formulations, frequently employing the mention-
antecedent classification method proposed by Lee
et al. (2017). These approaches leverage relatively
small encoder-only transformer architectures (Joshi
et al., 2020; Beltagy et al., 2020) to encode docu-
ments and build on top of them task-specific net-
works that ensure high speed and efficiency. On
the other hand, performance-centered solutions
are nowadays dominated by general-purpose large
Sequence-to-Sequence models (Liu et al., 2022;
Zhang et al., 2023). A notable example of this
formulation, and currently the state of the art in
Coreference Resolution, is Bohnet et al. (2023),
which proposes a transition-based system that in-
crementally builds clusters of mentions by gener-
ating coreference links sentence by sentence in an
autoregressive fashion. Although these solutions
achieve remarkable performance, their autoregres-
sive nature and the size of the underlying language
models (up to 13B parameters) make them dramat-
ically slower and memory-demanding compared to
traditional encoder-only approaches. This not only
makes their usage for downstream applications im-
practical but also poses a significant barrier to their
accessibility for a large number of users operating
within an academic budget.

This work argues that discriminative encoder-
only approaches for Coreference Resolution have
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still not expressed their full potential and have been
discarded too early in the urge to achieve state-
of-the-art performance. By proposing Maverick,
we strike an optimal balance between high per-
formance and efficiency, a combination that was
missing in previous systems. Our framework en-
ables an encoder-only model to achieve top-tier
performance while keeping the overall model size
less than one-twentieth of the current state-of-the-
art system, and training it with academic resources.
Moreover, when further reducing the size of the un-
derlying transformer encoder, Maverick performs
in the same ballpark as encoder-only efficiency-
driven solutions while improving speed and mem-
ory consumption. Finally, we propose a novel in-
cremental Coreference Resolution method that, in-
tegrated into the Maverick framework, results in a
robust architecture for out-of-domain, data-scarce,
and long-document settings.

2 Related Work

We now introduce well-established approaches to
neural Coreference Resolution. In particular, we
first delve into the details of traditional discrimi-
native solutions, including their incremental varia-
tions, and then present the recent paradigm shift for
approaches based on large generative architectures.

2.1 Discriminative models

Discriminative approaches tackle the Coreference
Resolution task as a classification problem, usu-
ally employing encoder-only architectures. The
pioneering works of Lee et al. (2017, 2018) intro-
duced the Coarse-to-Fine model, the first end-to-
end discriminative system for Coreference Resolu-
tion. First, it involved a mention extraction step, in
which the spans most likely to be coreference men-
tions are identified. This is followed by a mention-
antecedent classification step where, for each ex-
tracted mention, the model searches for its most
probable antecedent (i.e. the extracted span that ap-
pears before in the text). This pipeline, composed
of mention extraction and mention-antecedent clas-
sification steps, has been adopted with minor modi-
fications in many subsequent works, that we refer
to as Coarse-to-Fine models.

Coarse-to-Fine Models Among the works that
build upon the Coarse-to-Fine formulation, Lee
et al. (2018), Joshi et al. (2019) and Joshi et al.
(2020) experimented with changing the underlying
document encoder, utilizing ELMo (Peters et al.,

2018), BERT (Devlin et al., 2019) and SpanBERT
(Joshi et al., 2020) respectively, achieving remark-
able score improvements on the English OntoNotes
(Pradhan et al., 2012). Similarly, Kirstain et al.
(2021) introduced s2e-coref that reduces the high
memory footprint of SpanBERT leveraging the
Longformer (Beltagy et al., 2020) sparse-attention
mechanism. Based on the same architecture, Ot-
mazgin et al. (2023) analyzed the impact of hav-
ing multiple experts scoring different linguistically
motivated categories (e.g., pronouns-nouns, nouns-
nouns, etc.). While these works have been able
to modernize the original Coarse-to-Fine formula-
tion, training those architectures on the OntoNotes
dataset still requires a considerable amount of mem-
ory.! This occurs because they rely on the tradi-
tional Coarse-to-Fine pipeline that, as we will cover
in Section 3.1, has a large memory overhead and is
based on manually-set thresholds to regulate mem-
ory usage.

Incremental Models Discriminative systems
also include incremental techniques. Incremen-
tal Coreference Resolution has a strong cognitive
grounding: research on the “garden-path” effect
shows that humans resolve referring expressions
incrementally (Altmann and Steedman, 1988).

A seminal work that proposed an incremental
automatic system is Webster and Curran (2014),
which introduced a clustering approach based on
the shift-reduce paradigm. In this formulation,
for each mention, a classifier decides whether to
SHIFT it into a singleton (i.e. single mention clus-
ter) or to REDUCE it within an existing cluster.
The same approach has recently been reintroduced
in ICoref (Xia et al., 2020) and longdoc (Toshniwal
et al., 2021), which adopted SpanBERT and Long-
Former respectively. In these works the mention
extraction step is identical to that of Coarse-to-Fine
models. On the other hand, the mention clustering
step is performed by using a linear classifier that
scores each mention against a vector representa-
tion of previously built clusters, in an incremental
fashion. Since cluster representations are updated
with a learnable function, this method ensures con-
stant memory usage. In Section 3.2 we present
a novel performance-driven incremental method
that obtains superior performance and generaliza-
tion capabilities, in which we adopt a lightweight
transformer architecture that retains the mention
representations.

'Training those models requires at least 32G of VRAM.



2.2 Sequence-to-Sequence models

Recent state-of-the-art Coreference Resolution sys-
tems all employ autoregressive generative ap-
proaches. However, an early example of Sequence-
to-Sequence model, TANL (Paolini et al., 2021),
failed to achieve competitive performance on
OntoNotes. The first system to show that the autore-
gressive formulation was competitive is ASP (Liu
et al., 2022), which outperformed encoder-only dis-
criminative approaches. ASP is an autoregressive
pointer-based model that first generates actions for
mention extraction (bracket pairing) and then con-
ditions the next step to generate coreference links.
Notably, the breakthrough in ASP does not lie only
in its novel formulation but in the usage of large
generative models. Indeed, the success of their
approach is strictly correlated with the underly-
ing model size, since, when using models with a
comparable number of parameters, the final perfor-
mance is significantly lower than encoder-only ap-
proaches. The same occurs in Zhang et al. (2023),
a fully-seq2seq approach where a model learns to
generate a formatted sequence encoding corefer-
ence notation, in which they report a strong positive
correlation between performance and model sizes.
Finally, the current state-of-the-art system on
the OntoNotes benchmark is held by Link-Append
(Bohnet et al., 2023), a transition-based system that
incrementally builds clusters exploiting a multi-
pass Sequence-to-Sequence architecture. This ap-
proach incrementally maps the mentions in previ-
ously coreference-annotated sentences to system
actions for the current sentence, using the same
shift-reduce incremental paradigm presented in
Section 2.1. This method obtains state-of-the-art
performance at the cost of using a 13B parameters
model and processing one sentence at a time, dras-
tically increasing the need for computational power.
While these models ensure superior performance
compared to previous discriminative approaches,
using them for inference is out of reach for many
users, not to mention training them from scratch.

3 Methodology

In this section, we present the Maverick frame-
work. We propose to replace the preprocessing
and training strategy of Coarse-to-Fine models
with the Maverick Pipeline, improving the train-
ing and inference efficiency of Coreference Res-
olution systems. Furthermore, with the Maverick
Pipeline, we eliminate the dependency on long-

standing manually-set hyperparameters that regu-
late memory usage. Finally, building on top of
the Maverick Pipeline, we propose three models
that adopt a mention-antecedent classification tech-
nique, namely Mavericky. and Mavericky,s, and
a system that is based upon a novel incremental
formulation, MavericK;yc;.

3.1 Maverick Pipeline

The Maverick Pipeline is a combination of i) an
efficient mention extraction method, ii) a novel
mention regularization technique, and iii) a new
mention pruning strategy.

Mention Extraction When it comes to extract-
ing mentions from a document D, there are differ-
ent strategies to model the probability that a span
contains a mention. Several previous works follow
the Coarse-to-Fine formulation presented in Sec-
tion 2.1, which consists of scoring all the possible
spans in D. This implies a quadratic computational
cost with respect to the input length, which they
mitigate by introducing several pruning techniques.

In this work, we employ a different strategy. We
extract coreference mentions by first identifying
all the possible starts of a mention, and then, for
each start, extracting its possible end. To extract
start indices, we first compute the hidden represen-
tation (z1,...,x,) of the tokens (¢1,...,t,) € D
using a transformer encoder, and then use a fully-
connected layer I’ to compute the probability for
each t; being the start of a mention as:

Fstart(z) = s/tart(GeLU(Wstartx))

pstart(ti) = U(Fstart(xi))

With W!,,,+» Wstart being the learnable parame-
ters, and o the sigmoid function. For each start of
a mention tg, i.e. those tokens having pstqart(ts) >
0.5, we then compute the probability of its subse-
quent tokens ¢;, with s < 7, to be the end of a
mention that starts with ¢;. We follow the same
process of the mention start classification, but we
condition the prediction on the starting token by
concatenating the start, x4, and end, x;, hidden
representations before the linear classifier:

Fend(xvx/) = e/nd

(GeLU (Wepalz, ')

pend(tj‘ts) = U(Fend(ws; x]))

With chn 4> Wena being learnable parameters. This
formulation considers overlapping mentions, since



for each start {5 we can find multiple ¢, (i.e. those
that have penq(tj|ts) > 0.5) and also reduces 9
times the number of considered mentions compared
to the Coarse-to-Fine pipeline (Table 1).

To further reduce the computation demand of
this process, in the Maverick Pipeline we introduce
the end-of-sentence (EOS) mention regularization
strategy: after extracting the span start, we only
consider the tokens up to the nearest EOS as pos-
sible mention end candidates.> Since annotated
mentions never span across sentences, EOS men-
tion regularization can efficiently consider all the
possible spans in a document. In contrast, previous
Coarse-to-Fine formulations rely on a manually-
set hyperparameter that regulates maximum span
length. This implies a large overhead of unneces-
sary computations and ignores mentions that ex-
ceed a fixed length.?

Mention Pruning After the mention extraction
step, as a result of the Maverick Pipeline, we con-
sider an 18x lower number of candidate mentions
for the successive mention clustering phase (Table
1). This step consists of computing, for each men-
tion, the probability of all its antecedents being in
the same cluster, incurring a quadratic computa-
tional cost. Within the Coarse-to-Fine formulation,
this high computational cost is mitigated by con-
sidering only the top £ mentions according to their
probability score, where k is a manually set hy-
perparameter. Since we obtain probabilities for a
very concise number of mentions, we consider only
predicted mentions (i.e. those with pe,,q > 0.5 and
Pstart > 0.5), reducing the number of considered
mention-pairs by a factor of 10. In Table 1, we
compare the previous Coarse-to-Fine formulation
with the new Maverick Pipeline.

3.2 Mention Clustering

As a result of the Maverick Pipeline, we obtain a
set of candidate mentions M = (mq,ma, ..., m;),
for which we propose three different clustering
techniques: Mavericksy. and MavericKyes, which
follow the traditional Coarse-to-Fine mention-
antecedent formulation, and Maverick;,c;, which
adopts a novel incremental technique that leverages
a light transformer architecture.

2We note that all the well-established Coreference Reso-
lution datasets are sentence-splitted.

3In previous works, max-length regularization filters out
196 correctly annotated spans when training on OntoNotes.

‘ Coarse-to-fine ‘ Maverick ‘ A

Ment. Extraction Enumeration (i) Start-End

183,577 20,565 -8,92x
(+) Regularization | (+) Span-length | (ii) (+) EOS

14,265 777 -18,3x
Ment. Clustering Top-k (iii) Pred-only

29,334 2,713 -10,81x

Table 1: Comparison between the Coarse-to-Fine
pipeline and the Maverick Pipeline in terms of the av-
erage number of considered mentions in the mention
extraction step (top) and the average number of con-
sidered mention-pairs in the mention clustering step
(bottom). The statistics are computed on the OntoNotes
devset, and refer to the hyperparameters proposed in
(Lee et al., 2018), which were unchanged by subsequent
Coarse-to-Fine works, i.e. span-len = 30, top-k = 0.4.

Mention-Antecedent models The first proposed
model, Maverickg., adopts a similar mention clus-
tering strategy to Kirstain et al. (2021): given a
mention m; = (x5, x.) and its antecedent m; =
(xs, zer), with their start and end token hidden
states, we use two fully-connected layers to model
their corresponding representations:

Fy(z) = W.(GeLU(Wgx))

F.(z) = W/)(GeLU(W,x))

We then calculate their probability to be in the same
cluster as:

pc(miamj) = U(Fs(xs) - Wes - Fs(l's/)"i'
Fe($e) - Wee - Fe(l'e/)"i'
Fs(xs) - Wee - Fe(xe’)+
Fe(xe) * Wes - Fs(xs’))

With Wig, Wee, Wse, Wes being four learnable ma-
trices and Wy, W/, W,., W/ the learnable parame-
ters of the two fully connected layers.

A similar formulation is adopted in Maverickyes,
where, instead of using only one generic mention-
pair scorer, we use 6 different scorers that handle
linguistically motivated categories, as introduced
by Otmazgin et al. (2023). We detect which cate-
gory k a pair of mentions m; and m; belongs to
(e.g., if m; is a pronoun and m; is a proper noun,
the category will be PRONOUN-ENTITY) and use
a category-specific scorer to compute p.. A com-
plete description of the process along with the list
of categories can be found in Appendix A.

Incremental model Finally, we introduce a novel
approach to tackle the mention clustering step,
namely Maverick;,.;, which incrementally builds



clusters following the shift-reduce paradigm intro-
duced in Section 2.1. In Maverick,c, in contrast
to previous incremental techniques, we leverage
a lightweight transformer model to attend to pre-
vious clusters, for which we retain the mentions
hidden representations. Specifically, we compute
the hidden representations (hy, ..., h;) for all the
candidate mentions in M using a fully-connected
layer on top of the concatenation of their start and
end token representations. We first assign the first
mention mg to the first cluster ¢ = (myg). Then,
for each mention m; € M at step ¢ we obtain the
probability of m; to be in a certain cluster c¢; by
encoding h; with all the representations of the men-
tions contained in the cluster ¢; using a transformer
architecture. In particular, we use the first special
token ([CLS]) of a single-layer transformer archi-
tecture 7" to obtain the score S(m;, ¢;) of m; being
in the cluster ¢; = (my,...,my) with f < g <
as:

S(mi, Cj) = (W,y (ReLU(TCLs(hZ‘, hf, ey hg))

Finally, we compute the probability of m; to belong
to ¢; as:

pe(mi € cjl(my,...,mg) € ¢;) = a(S(mq,cj))

We compute this probability for each cluster c;
computed up to step ¢. We assign the mention
m; to the most probable cluster ¢; having p.(m; €
¢;j) > 0.5 if one exists, or we create a new singleton
cluster containing m;.

As we show in Section 5.3 and in Section 5.5,
this formulation obtains better results than previ-
ous incremental methods, and is particularly ben-
eficial when dealing with long-document and out-
of-domain settings.

3.3 Training

To train a Maverick model, we optimize the sum of
three binary cross-entropy losses:

Lcoref = Lstart + Lend + Lejust

Lgtart, Leng comes from the mention extraction
step and L, from mention clustering. All the
models we introduce are trained using teacher forc-
ing. In particular, in the mention token end classifi-
cation step, we use gold start indices to condition
the end tokens prediction, and, for the mention clus-
tering step, we consider only gold mention indices.
For Maverickj,, at each iteration, we compare
each mention only to previous gold clusters.

Dataset #Train #Dev #Test Tokens Mentions % Sing
OntoNotes 2802 343 348 467 56 0
LitBank 80 10 10 2105 291 19.8
PreCo 36120 500 500 337 105 52.0
GAP - - 2000 95 3 -
WikiCoref - - 30 1996 230 0

Table 2: Datasets statistics: number of documents in
each dataset split, the average number of words and
mentions per document, and the singletons percentage.

4 Experiments Setup

4.1 Datasets

We train and evaluate all the comparison systems
on three Coreference Resolution datasets:

OntoNotes (Pradhan et al., 2012), proposed in
the CoNLL-2012 shared task, is the de facto stan-
dard dataset used to benchmark Coreference Reso-
lution systems. It consists of documents that span
seven distinct genres, including full-length docu-
ments (broadcast news, newswire, magazines, we-
blogs, and Testaments) and multiple speaker tran-
scripts (broadcast and telephone conversations).

LitBank (Bamman et al., 2020) contains 100 lit-
erary documents typically used to evaluate long-
document Coreference Resolution.

PreCo (Chen et al., 2018) is a large-scale dataset
that includes reading comprehension tests for mid-
dle school and high school students.

Notably, both LitBank and PreCo have different
annotation guidelines compared to OntoNotes, and
provide annotation for singletons (i.e. clusters one
mention). Furthermore, we evaluate models trained
on OntoNotes on three out-of-domain datasets:

* GAP (Webster et al., 2018) contains sentences
in which, given a pronoun, the model has to
choose between two candidate mentions.

 LitBank,g and PreCo,g, the datasets’ test-set
where we filter out singleton annotations.

* WikiCoref (Ghaddar and Langlais, 2016),
which contains Wikipedia texts, including doc-
uments with up to 9,869 tokens.

Employed dataset statistics are shown in Table 2.

4.2 Comparison Systems

Discriminative Among the discriminative sys-
tems, we consider c2f-coref (Joshi et al., 2020) and
s2e-coref (Kirstain et al., 2021), which build upon
the Coarse-to-Fine formulation and adopt different



document encoders. We also report the results of
LingMess (Otmazgin et al., 2023), which is the pre-
vious best encoder-only solution, and f-coref (Ot-
mazgin et al., 2022), which is a distilled version of
LingMess. Furthermore, we include CorefQA (Wu
et al., 2020), which casts Coreference as extractive
Question Answering, and wl-coref (Dobrovolskii,
2021), which first predicts coreference links be-
tween words, then extracts mentions spans. Finally,
we report the results of incremental systems, such
as [Coref (Xia et al., 2020) and longdoc (Toshniwal
et al., 2021).

Sequence-to-Sequence We compare our models
with TANL (Paolini et al., 2021) and ASP (Liu
et al., 2022), which frame Coreference Resolu-
tion as autoregressive structured prediction. We
also include Link-Append (Bohnet et al., 2023), a
transition-based system that builds clusters with a
multi-pass Sequence-to-Sequence architecture. Fi-
nally, we report the results of seq2seq (Zhang et al.,
2023), a model that learns to generate a sequence
with Coreference Resolution labels.

4.3 Maverick Setup

All Maverick models use DeBERTa-v3 (He et al.,
2023) as the document encoder. We use DeBERTa
because it can model very long input texts*, and
has shown to be effective in handling long se-
quences (He et al., 2021). On the other hand, us-
ing it to encode long documents is computation-
ally expensive because its attention mechanism im-
plies a quadratic computational complexity. While
this further increases the computational cost of
traditional Coarse-to-Fine systems, the Maverick
Pipeline enables us to train models that leverage
DeBERTa;,,.¢. on the OntoNotes dataset, without
any performance-lowering pruning heuristic. To
train our models we use Adafactor (Shazeer and
Stern, 2018) as our optimizer, with a learning rate
of 3e-4 for the linear layers, and 2e-5 for the pre-
trained encoder. We perform all our experiments
within an academic budget, i.e. a single RTX 4090
which has 24GB of VRAM. We report more train-
ing details in Appendix B.

5 Results

5.1 English OntoNotes

We report in Table 3 the average CoNLL-F1 score
of the comparison systems trained on the English

*This is because its attention mechanism enables its input
length to grow linearly with the number of its layers.

OntoNotes, along with their underlying pre-trained
language models and total parameters. Compared
to previous discriminative systems, we report gains
of +2.2 CoNLL-F1 points over LingMess, the best
encoder-only model. Interestingly, we outperform
CorefQA as well, which takes advantage of training
on additional Question Answering data.

Concerning Sequence-to-Sequence approaches,
we report extensive improvements over systems
with a similar amount of parameters compared to
our large models (500M): we obtain +3.4 points
with respect to ASP (770M), and the gap is even
wider when taking into consideration Link-Append
(3B) and seq2seq (770M), with +6.4 and +5.6, re-
spectively. Most importantly, Maverick models sur-
pass the performance of all sequence-to-sequence
transformers even when they have several billions
of parameters. Among our proposed methods,
Mavericky,es shows the best performance, setting a
new state of the art with a score of 83.6 CoNLL-F1
points on the OntoNotes benchmark. More de-
tailed results, including a table with MUC, B3, and
CEAF ¢4 scores and an error analysis, can be found
in Appendix C.

5.2 PreCo and LitBank

We further validate the robustness of the Mav-
erick framework by training and evaluating sys-
tems on the PreCo and LitBank datasets. As re-
ported in Table 4, our models show superior per-
formance when dealing with long documents in a
data-scarce setting such as the one LitBank poses.
On this dataset, Maverick;yr achieves a new state-
of-the-art score of 78.3, and gains +1.0 CoNLL-
F1 points compared with seq2seq. On PreCo,
Maverick;,cr outperforms longdoc, but seq2seq still
shows slightly better performance. Among our sys-
tems, Maverickin.,, leveraging its hybrid architec-
ture, performs better on both PreCo and LitBank.

5.3 Out-of-Domain Evaluation

In Table 5, we report the performance of Maver-
ick systems along with LingMess, the best encoder-
only model, when dealing with out-of-domain texts,
that is when they are trained on OntoNotes and
tested on other datasets. First of all, we report con-
siderable improvements on the GAP test set, ob-
taining a +1.2 F1 score with respect to the previous
state of the art. We also test models on WikiCoref,
PreCo,s and LitBank,s (Section 4.1). However,
since the span annotation guidelines of these cor-
pora differ from the ones used in OntoNotes, in



Model LM Avg. F1 ~ Params Training Inference
| Time Hardware [ Time Mem.
Discriminative

c2f-coref (Joshi et al., 2020) SpanBERT arge 79.6 - - 1x32GB 50s 11.9
ICoref (Xia et al., 2020) SpanBERT rge 79.4 377M | 40h 1x1080TI-12GB 38s 2.9

CorefQA (Wu et al., 2020) SpanBERT arge 83.1% - - 1xTPUv3-128G - -
s2e-coref (Kirstain et al., 2021) LongFormeriyge 80.3 494M - 1x32G 17s 3.9
longdoc (Toshniwal et al., 2021) LongFormeriage 79.6 - 16h 1xA6000-48G 25s 2.1
wl-coref (Dobrovolskii, 2021) RoBERTay, e 81.0 360M 5h 1xRTX8000-48G 11s 2.3
f-coref (Otmazgin et al., 2022) DistilRoBERTa 78.5% 91IM - 1xV100-32G 3s 1.0
LingMess (Otmazgin et al., 2023) | LongFormeriqye 81.4 590M | 23h 1xV100-32G 20s 4.8

Sequence-to-Sequence

. FLAN-T5L 80.2 770M - 1xA100-40G - -

ASP (Liu etal, 2022) FLAN-T5xx] 82.5 11B | 45h 6xA100-80G | 20m -

. mT5x1 78.07 3B - 128xTPUv4-32G - -

Link-Append (Bohnet et al., 2023) | 55 83.3 13B | 48h  128xTPUV4-32G | 30m -

T5-large 77.29 770M - 8xA100-40G - -

seq2seq (Zhang et al,, 2023) T0-11B 83.2 1B | - 8xA100-80G | 40m -

Ours (Discriminative)

Mavericke DeBERTapase 81.1 192M 7h 1XxRTX4090-24G 6s 1.8
s2e DeBERTajyrge 83.4 449M | 14h  1xRTX4090-24G 13s 4.0
Maverick. DeBERTapase 81.0 197M | 21h  1xRTX4090-24G 22s 1.8
et DeBERTajug. 83.5 452M | 29h  1xRTX4090-24G 29s 34
Maverick ... DeBERTapase 81.4 223M 7h 1xRTX4090-24G 6s 1.9
mes DeBERTayuge 83.6 504M | 14h  1xRTX4090-24G 14s 4.0

Table 3: Results on the OntoNotes benchmark. We report the Avg. CoNLL-F1 score, the number of parameters, the
training time, and the hardware used to train each model. Inference time (sec) and memory (GiB) were calculated on
an RTX4090. For Sequence-to-Sequence models we include statistics that are reported in the original papers, since
we could not run models locally. (*) indicates models trained on additional resources. (%) indicates scores obtained
on the development set, however, Maverick systems perform always better on the development than on the test sets.

Model PreCo  LitBank creases the potential benefits that Maverick systems
longdoc (Toshniwal et al., 2021) 87.8 77.2 brine t d ¢ licati that
seq2seq (Zhang et al., 2023) 88.5 773 can. ring to many downs 'ream app. ications that ex-
MavericKe 87.2 77.6 ploit coreference as an intermediate layer, such
Maverickiner 88.0 78.3 as Entity Linking (Rosales-Méndez et al., 2020)
MavericKpes 87.4 78.0

Table 4: Results on the PreCo and LitBank test-sets.

Table 5 we also report the performance using gold
mentions, i.e. skipping the mention extraction step
(gold column).’ On the WikiCoref benchmark, we
achieve a new state-of-the-art score of 67.2 CoNLL-
F1, with an improvement of +4.2 points over the
previous best score obtained by LingMess. On the
same dataset, when using pre-identified mentions
the gap increases to +5.8 CoNLL-F1 points (76.6
vs 82.4). In the same setting, our models obtain
up to +7.3 and +10.1 CoNLL-F1 points on Precoy
and LitBank,s compared to LingMess. These re-
sults suggest that Maverick training strategy makes
it more suitable when dealing with pre-identified
mentions and out-of-domain texts. This further in-

>We do not include autoregressive models because none
of the original articles report scores on out-of-domain datasets.
We could not test those models either, because they do not
provide the code to perform mention clustering alone, and this
methodology is not as clear as it is in encoder-only models.

and Relation Extraction (Xiong et al., 2023; Zeng
et al., 2023), where the mentions are already iden-
tified. Among our models, on LitBank,s and Wiki-
Coref, Maverickj,., outperforms Mavericky,es and
Maverickye, confirming the superior capabilities
of the incremental formulation in the long docu-
ment setting. On a final note, we highlight that the
performance gap between using gold mentions and
performing full Coreference Resolution is wider
when tested on out-of-domain datasets (on average
+17) compared to testing it directly on OntoNotes
(83.6 vs 93.6, +10).° This result, obtained on three
different out-of-domain datasets, confirms that the
difference in annotation guidelines considerably
contributes to lower OOD performances (7%).

5.4 Speed and Memory Usage

In Table 3, we include details regarding the train-
ing time and the hardware used by each compar-
ison system, along with the measurement of the
inference time and peak memory usage on the

®More on this evaluation can be found in Appendix C.



Model GAP  WikiCoref PreCopg LitBank

sys. gold | sys. gold | sys. gold
LingMess 89.6 | 63.0 76.6 | 651 80.6 | 644 739
Maverickg. | 91.1 | 67.2 815 | 67.2 879 | 64.8 83.1
Maverickine, | 91.2 | 66.8 824 | 66.1 86.5 | 65.4 84.0

Maverickpes | 91.1 | 66.8 82.1 | 66.1 869 | 65.1 82.8

Table 5: Comparison between LingMess and Maver-
ick systems on GAP, WikiCoref, PreCo,; LitBanks.
We report scores using systems prediction (sys.) or pass-
ing gold mentions (gold).

development set. Compared to Coarse-to-Fine
models, which require 32GB of VRAM, we can
train Maverick systems under 18GB. At infer-
ence time both Maverick,,.s and MavericKkge, €x-
ploiting DeBERTay,,, achieve competitive speed
and memory consumption compared to wl-coref
and s2e-coref. Furthermore, when adopting
DeBERTay,, .., Maverickyes proves to be the most
efficient approach’ among those directly trained
on OntoNotes, while, at the same time, obtaining
performance that are equal to the previous best
encoder-only system, LingMess. The only system
that shows better inference speed is f-coref, but at
the cost of lower performance (-3.0).

With respect to the previous Sequence-to-
Sequence state-of-the-art approach, Link-Append,
we train our models with 175x less memory re-
quirements. Comparing inference time is more
complicated since we could not run models on our
memory-constrained budget. For this reason, we
report the inference times from the original articles,
hence achieved with their high-resource settings.
Interestingly, we report as much as 170x faster
inference compared to seq2seq, which exploits par-
allel inference on multiple GPUs, and 85x faster
when compared to the more efficient ASP. Among
Maverick models, Maverickic; is notably slower
both in inference and training time, as it incremen-
tally builds clusters using multiple steps.

5.5 Maverick Ablation

In Table 6 we compare Maverickyp. and
Maverickpes models with s2e-coref and LingMess
respectively, using different pretrained encoders.
Interestingly, when using DeBERTa, Maverick sys-
tems not only achieve better speed and memory
efficiency but also obtain higher performance com-
pared to the previous systems. When using the
LongFormer, instead, their scores are in the same
ballpark, suggesting that the Maverick training pro-

"In terms of inference peak memory usage and speed.

Model LM Score
Maverickg)e

Maverickg)e DeBERTay,q 81.0

s2e-coref; DeBERTay 5 78.3

Maverickg)e LongFormeryyge 80.6

s2e-coref LongFormer,y oe 80.3
Maverickmes

Maverickpes DeBERTay ¢ 81.4

LingMess; DeBERTay ¢ 78.6

Maverickpeg LongFormeryyge 81.0

LingMess LongFormeryyge 81.4
Maverickjycr

Maverickipcr DeBERTay,ge 83.5

Maverickpyrey-incr DeBERTay, e 79.6

Table 6: Comparison between Maverick models and pre-
vious techniques. LingMess, and s2e-coref; are trained
using their official scripts. We use DeBERTays. be-
cause the DeBERTa,,.4 could not fit in hardware when
training comparison systems.

cedure better exploits the capabilities of DeBERTa.
To test the benefits of our novel incremental formu-
lation, Maverick;,.;, we also implement a Maver-
ick model with the previously adopted incremen-
tal method used in longdoc and ICoref (Section
2.1), which we call Maverickprey-iner. Compared
to the previous formulation we report an increase
in score of +3.9 CoNLL-F1 points. The improve-
ment demonstrates that exploiting a transformer
architecture to attend to all the previously clustered
mentions is beneficial, and enables the future usage
of hybrid architectures when needed.

6 Conclusion

In this work, we challenged the recent trends of
adopting large autoregressive generative models to
solve the Coreference Resolution task. To do so,
we proposed Maverick, a new framework that en-
ables fast and memory-efficient Coreference Reso-
lution while obtaining state-of-the-art results. This
demonstrates that the large computational overhead
required by sequence-to-sequence approaches is
unnecessary. Indeed, in our experiments Maver-
ick systems can outperform large generative mod-
els and improve the speed and memory usage of
previous best-performing encoder-only approaches.
Furthermore, we introduced Mavericki,cr, a robust
multi-step incremental technique that obtains supe-
rior performances in the out-of-domain and long
document setting. By releasing our systems, we
will make high-performance models usable by a
larger portion of users in different scenarios, and
potentially improve downstream applications.



7 Limitations

Our experiments were limited by our resource set-
ting i.e. a single RTX 4090. For this reason, we
could not run Maverick using larger encoders, and
could not properly test sequence-to-sequence mod-
els as we did with encoder-only models. Neverthe-
less, we believe this limitation is a common sce-
nario in many real-world applications that would
substantially benefit from our system. We also
did not test our formulation on multiple languages
but note that both the methodology behind Mav-
erick and our novel incremental formulation are
language agnostic, and thus could be applied to any
language.
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A Multi-Expert Scorers

In Maverick,es, the final coreference score between
two spans is calculated using 6 linguistically moti-
vated multi-expert scorers. This approach was in-
troduced by Otmazgin et al. (2023), which demon-
strated that linguistic knowledge and symbolic com-
putation can still be used to improve results on the
OntoNotes benchmark. In Mavericky,.s we adopt
this approach on top of the Maverick Pipeline. We
use the same set of categories, namely:

1. PRON-PRON-C. Compatible pronouns based
on their attributes such as gender or number
(e.g. (I, 1), (I, my) (she, her)).

PRON-PRON-NC, Incompatible pronouns
(e.g. (I, he), (She, my), (his, her)).

ENT-PRON. Pronoun and non-pronoun (e.g.
(George, he), (CNN, it), (Tom Cruise, his)).

MATCH. Non-pronoun spans with the same
content words (e.g. Italy, Italy).

CONTAINS. One contains the other (e.g.
(Barack Obama, Obama)).

6. OTHER. The Other pairs.

To detect pronouns we use string match with a full
list of English pronouns.

To perform mention clustering, we dedicate a
mention-pair scorer for each of those categories.
Concretely, for the mention m; = (xs, =) and its
antecedent m; = (x4, z,), with their start and end
token hidden states, we first detect their category
k4 using pattern matching on their spans of texts.
Then we compute their start and end representa-
tions, using the specific fully connected layers for
the category ky:

F¥ () = W}, (GeLU(Wy, ,x))
F¥(x) = Wy, (GeLU (W, x))

The probability plég of m; and mis then calculated
as:

plsg(mi,mg‘) =o(F
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With Wg, Wee, Wee, Wes being four learnable ma-
tricesand W, W, W, _, W/, the learnable
kg,e k'g,s g,¢ k?g,s
parameters of the two fully connected layers. In
this way, each mention-pair scorer learns to model
the probability for his specific linguistic categories.

B Training details

B.1 Datasets
We report technical details of the adopted datasets.

* OntoNotes contains several metadata infor-
mation for each document such as genre,
speakers, and constituent graphs. Following
previous works, we incorporate the speaker’s
name into the text whenever there is a change
in speakers for datasets that include this meta-
data.

LitBank contains 100 literary documents and
is available in different 10 different cross-
validation folds. Our train, dev, and test splits
refer to the first cross-validation fold, LBy.
We report comparison systems results on the
same splits.

The authors of PreCo have not released their
official test set. To evaluate consistently our
models with previous approaches, we use the
official ’dev’ split as our test set and retain the
last 500 training examples for model valida-
tion.

B.2 Setup

All our experiments are developed using the
pytorch-lightning framework.® For each Maver-
ick model, we load the pre-trained weights for the
base® and large'® version of DeBERTA —v3 from
the Huggingface Transformers library (Wolf et al.,
2020). We accumulate gradients every 4 steps and
use a gradient clipping value of of 1.0. We adopt a
linear learning rate scheduler a warm-up of 10% of
the total steps check validation scores every 50% of
the total number of steps per epoch. We select our
model upon validation of Avg. CoNLL-f1 score
and use a patience of 20.

C Additional Results

In Table 7 we report models performance according
to the standard Coreference Resolution metrics:
8https://lightning.ai

9https://huggingface.co/microsoft/deberta—v3—base
]Ohttps ://huggingface.co/microsoft/deberta-v3-large


https://lightning.ai
https://huggingface.co/microsoft/deberta-v3-base
https://huggingface.co/microsoft/deberta-v3-large

Model LM MUC B3 CEAF¢4 Avg.
\ P R FI| P R FI|P R Fl|Fl
Discriminative
e2e-coref (Lee et al., 2017) - 784 734 758 | 68.6 61.8 650|627 59.0 60.8 | 67.2
c2f-coref (Lee et al., 2018) ELMo 814 79.5 804|722 69.5 708 | 682 67.1 67.6| 73.0
c2f-coref (Joshi et al., 2019) BERT e 847 824 835|765 740 753|741 698 719 | 76.9
c2f-coref (Joshi et al., 2020) SpanBERT e | 85.8 84.8 853 | 783 779 781|764 742 753 | 79.6
ICoref (Xia et al., 2020) SpanBERT . | 85.7 848 853 | 78.1 775 718|763 741 752 | 79.4
CorefQA (Wu et al., 2020) SpanBERT e | 88.6 87.4 88.0 | 824 82.0 822|799 783 79.1 | 83.1*
longdoc (Toshniwal et al., 2021) LongFormeryge | 85.5 85.1 853|787 773 780|742 765 753 | 79.6
s2e-coref Kirstain et al. (2021) LongFormeryge | 86.5 85.1 85.8 | 80.3 779 79.1 | 76.8 754 76.1 | 80.3
wl-coref (Dobrovolskii, 2021) RoBERTajyee | 849 879 863 | 774 826 799|761 77.1 76.6 | 81.0
f-coref (Otmazgin et al., 2022) DistilRoberta | 85.0 839 844|776 755 76.6| 747 743 745 | 78.5%*
LingMess (Otmazgin et al., 2023) | LongFormery,ze | 88.1 85.1 86.6 | 82.7 783 805|785 760 773 | 814
Sequence-to-Sequence
TANL (Paolini et al., 2021) TSpase - - 81.0 - - 69.0 - - 684 | 72.8
ASP (Liu et al., 2022) FLAN-T5xx;. | 86.1 884 872|802 832 817|789 783 786 | 825
Link-Append (Bohnet et al., 2023) mT5xxr. 874 883 87.8|81.8 834 826 |79.1 799 795 | 833
seq2seq (Zhang et al., 2023) TOxxr 86.1 89.2 87.6 |80.6 843 824|789 80.1 79.5 | 832
Ours (Discriminative)

Maverickge DeBERTajyg | 87.1 88.6 87.9 | 81.7 83.8 827|808 787 79.7| 83.4
MavericKiper DeBERTajyge | 87.6 88.1 87.9 | 82.7 82.6 827|803 793 798| 835
MavericKpes DeBERTay,,. | 87.5 885 88.0 | 822 835 828|804 793 799 | 83.6

Table 7: Results on the OntoNotes test set. The average CONLL-F1 score of MUC, B2, and CEAF¢, is the main
evaluation criterion. * marks models using additional/different training data.

MUC (Vilain et al., 1995), B3(Bagga and Baldwin,
1998), CEAF¢, (Luo, 2005) and AVG CoNLL-F1.
Scores for Maverick models are computed using
the official CoONLL coreference scorer.'!

C.1 Error Analysis

To better understand the quality of Maverick pre-
dictions, we conduct an error analysis on our best
system trained on OntoNotes, Mavericky,es. In ta-
ble 8, we report the score of performing only men-
tion extraction (F1) or mention clustering with gold
mention (CoNLL-F1) with our systems. Our results
highlight that our models have strong capabilities
of clustering pre-identified mentions, but limited
performance in the identification of correct spans.
We investigated this phenomenon by conducting a
qualitative evaluation of the outputs of our best sys-
tem, Maverickes, and found out that OntoNotes
contains several annotation errors. We report exam-
ples of errors in Table 9. The main inconsistency
we found in the gold test set is that many docu-
ments have incomplete annotations, which directly
correlates with the mention extraction error.

1 https://conll.github.io/reference-coreference-scorers
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System Ment. Clustering Ment. Extraction
Maverickg, 894 93.5
Maverickiner 89.2 94.2
Maverickpes 89.6 93.7

Table 8: Mention extraction (F1) and mention clustering
(CoNLL-F1) scores on the OntoNotes development set.


https://conll.github.io/reference-coreference-scorers

Type Text

Ex. 1

Gold Nine people were injured in Gaza when gunmen [opened]; [fire],on an Israeli bus.

The passengers were off - duty Israeli security workers.

Witnesses say [the shots],came from [the Palestinian international airport];.

Israeli Prime Minister Ehud Barak [closed],down [the two - year - old airport]sin response to [the incident]; .
[Palestinians|;criticized [the move],.

[hey]sregard [the airport]sas a symbol of emerging statehood.

Output | [Nine people]; were injured in Gaza when gunmen opened fire on an Israeli bus.

[The passengers]; were off - duty Israeli security workers.

Witnesses say the shots came from [the Palestinian international airport]-.

Israeli Prime Minister Ehud Barak [closed];down [the two - year - old airport].in response to the incident.
[Palestinians] criticized [the move]s.

[They],regard [the airport].as a symbol of emerging statehood.

Ex. 2

Gold [Mr. Seelenfreund];is [executive vice president and chief financial officer of [McKesson]; |-

and will continue in [those roles]-.

[PCS],also named Rex R. Malson, 57, executive vice president at McKesson,-

as a director, filling the seat vacated by Mr. Field.

Messrs. Malson and Seelenfreund are directors of [McKesson, which has an 86% stake in [PCS]4]s.

Output | [Mr. Seelenfreund];is [executive vice president and chief financial officer of [McKesson]s]>

and will continue in [those roles]s.

[PCS],also named [Rex R. Malson, 57, executive vice president at [McKesson]s,]s-

as a director, filling the seat vacated by Mr. Field.

Messrs. [Malson];and [Seelenfreund]; are directors of [McKesson, which has an 86 % stake in [PCS]4]s.

Ex. 3

Gold The Second U.S. Circuit Court of Appeals opinion in the Arcadian Phosphate case -

did not repudiate the position [Pennzoil Co.];took in [its]; dispute with [Texaco]-, -

contrary to your Sept. 8 article “ Court Backs [Texaco]’s View in [Pennzoil], Case — Too Late.

The fundamental rule of contract law applied to [both cases]swas that courts will not enforce -
[agreements to [which],the parties did not intend to be bound],.

In the Pennzoil / Texaco litigation, [the courts];found [Pennzoil]; and Getty Oil intended to be bound;
in Arcadian Phosphates [they];found there was no intention to be bound.

Output | The Second U.S. Circuit Court of Appeals opinion in [the Arcadian Phosphate case];

- did not repudiate the position [Pennzoil Co.]>took in [[[its]-dispute with [Texaco],]s, -

contrary to your Sept. 8 article ¢ Court Backs [Texaco ’s], View in [[Pennzoil],Case];]s— Too Late . ”
[[The fundamental rule of contract law];applied to both cases];was that courts will not enforce -
agreements to which the parties did not intend to be bound.

In [the [Pennzoil |, / [Texaco],litigation]s, [the courts]sfound [Pennzoil],and Getty Oil intended to be bound;
in [Arcadian Phosphates]; [they]sfound there was no intention to be bound.

Ex. 4

Gold ... [Harry]; has avoided all that by living in a Long Island suburb with [his]; wife,
who ’s so addicted to soap operas and mystery novels
she barely seems to notice when [her husband[disappears for drug - seeking forays into Manhattan.

Output | ... [Harry];has avoided all that by living in a Long Island suburb with [[his], wife,
who ’s so addicted to soap operas and mystery novels
[she],barely seems to notice when [[her]-husband];disappears for drug - seeking forays into Manhattan]-.

Table 9: Error examples.
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