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Abstract

Large autoregressive generative models have001
emerged as the cornerstone for achieving the002
highest performance across several Natural003
Language Processing tasks. However, the urge004
to attain superior results has, at times, led to the005
premature replacement of carefully designed006
task-specific approaches without exhaustive ex-007
perimentation. The Coreference Resolution008
task is no exception; all recent state-of-the-art009
solutions adopt large generative autoregressive010
models that outperform encoder-based discrim-011
inative systems. In this work, we challenge this012
recent trend by introducing Maverick, a care-013
fully designed – yet simple – pipeline, which014
enables running a state-of-the-art Coreference015
Resolution system within the constraints of an016
academic budget, outperforming models with017
up to 13 billion parameters with as few as 500018
million parameters. Maverick achieves state-019
of-the-art performance on the CoNLL-2012020
benchmark, training with up to 0.006x the mem-021
ory resources and obtaining a 170x faster in-022
ference compared to previous state-of-the-art023
systems. We extensively validate the robust-024
ness of the Maverick framework with an ar-025
ray of diverse experiments, reporting improve-026
ments over prior systems in data-scarce, long-027
document, and out-of-domain settings. We re-028
lease our code and models for research pur-029
poses at omitted.link.030

1 Introduction031

As one of the core tasks in Natural Language Pro-032

cessing, Coreference Resolution aims to identify033

and group expressions (called mentions) that refer034

to the same entity (Karttunen, 1969). Given its035

crucial role in various downstream tasks, such as036

Knowledge Graph Construction (Li et al., 2020),037

Entity Linking (Kundu et al., 2018; Agarwal et al.,038

2022), Question Answering (Dhingra et al., 2018;039

Dasigi et al., 2019; Bhattacharjee et al., 2020;040

Chen and Durrett, 2021), Machine Translation041

(Stojanovski and Fraser, 2018; Voita et al., 2018; 042

Ohtani et al., 2019) and Text Summarization (Falke 043

et al., 2017; Pasunuru et al., 2021; Liu et al., 2021), 044

inter alia, there is a pressing need for both per- 045

formance and efficiency. However, recent works 046

in Coreference Resolution either explore methods 047

to obtain reasonable performance optimizing time 048

and memory efficiency (Kirstain et al., 2021; Do- 049

brovolskii, 2021; Otmazgin et al., 2022), or strive 050

to improve benchmark scores regardless of the in- 051

creased computational demand (Bohnet et al., 2023; 052

Zhang et al., 2023). 053

Efficient solutions usually rely on discriminative 054

formulations, frequently employing the mention- 055

antecedent classification method proposed by Lee 056

et al. (2017). These approaches leverage relatively 057

small encoder-only transformer architectures (Joshi 058

et al., 2020; Beltagy et al., 2020) to encode docu- 059

ments and build on top of them task-specific net- 060

works that ensure high speed and efficiency. On 061

the other hand, performance-centered solutions 062

are nowadays dominated by general-purpose large 063

Sequence-to-Sequence models (Liu et al., 2022; 064

Zhang et al., 2023). A notable example of this 065

formulation, and currently the state of the art in 066

Coreference Resolution, is Bohnet et al. (2023), 067

which proposes a transition-based system that in- 068

crementally builds clusters of mentions by gener- 069

ating coreference links sentence by sentence in an 070

autoregressive fashion. Although these solutions 071

achieve remarkable performance, their autoregres- 072

sive nature and the size of the underlying language 073

models (up to 13B parameters) make them dramat- 074

ically slower and memory-demanding compared to 075

traditional encoder-only approaches. This not only 076

makes their usage for downstream applications im- 077

practical but also poses a significant barrier to their 078

accessibility for a large number of users operating 079

within an academic budget. 080

This work argues that discriminative encoder- 081

only approaches for Coreference Resolution have 082
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still not expressed their full potential and have been083

discarded too early in the urge to achieve state-084

of-the-art performance. By proposing Maverick,085

we strike an optimal balance between high per-086

formance and efficiency, a combination that was087

missing in previous systems. Our framework en-088

ables an encoder-only model to achieve top-tier089

performance while keeping the overall model size090

less than one-twentieth of the current state-of-the-091

art system, and training it with academic resources.092

Moreover, when further reducing the size of the un-093

derlying transformer encoder, Maverick performs094

in the same ballpark as encoder-only efficiency-095

driven solutions while improving speed and mem-096

ory consumption. Finally, we propose a novel in-097

cremental Coreference Resolution method that, in-098

tegrated into the Maverick framework, results in a099

robust architecture for out-of-domain, data-scarce,100

and long-document settings.101

2 Related Work102

We now introduce well-established approaches to103

neural Coreference Resolution. In particular, we104

first delve into the details of traditional discrimi-105

native solutions, including their incremental varia-106

tions, and then present the recent paradigm shift for107

approaches based on large generative architectures.108

2.1 Discriminative models109

Discriminative approaches tackle the Coreference110

Resolution task as a classification problem, usu-111

ally employing encoder-only architectures. The112

pioneering works of Lee et al. (2017, 2018) intro-113

duced the Coarse-to-Fine model, the first end-to-114

end discriminative system for Coreference Resolu-115

tion. First, it involved a mention extraction step, in116

which the spans most likely to be coreference men-117

tions are identified. This is followed by a mention-118

antecedent classification step where, for each ex-119

tracted mention, the model searches for its most120

probable antecedent (i.e. the extracted span that ap-121

pears before in the text). This pipeline, composed122

of mention extraction and mention-antecedent clas-123

sification steps, has been adopted with minor modi-124

fications in many subsequent works, that we refer125

to as Coarse-to-Fine models.126

Coarse-to-Fine Models Among the works that127

build upon the Coarse-to-Fine formulation, Lee128

et al. (2018), Joshi et al. (2019) and Joshi et al.129

(2020) experimented with changing the underlying130

document encoder, utilizing ELMo (Peters et al.,131

2018), BERT (Devlin et al., 2019) and SpanBERT 132

(Joshi et al., 2020) respectively, achieving remark- 133

able score improvements on the English OntoNotes 134

(Pradhan et al., 2012). Similarly, Kirstain et al. 135

(2021) introduced s2e-coref that reduces the high 136

memory footprint of SpanBERT leveraging the 137

Longformer (Beltagy et al., 2020) sparse-attention 138

mechanism. Based on the same architecture, Ot- 139

mazgin et al. (2023) analyzed the impact of hav- 140

ing multiple experts scoring different linguistically 141

motivated categories (e.g., pronouns-nouns, nouns- 142

nouns, etc.). While these works have been able 143

to modernize the original Coarse-to-Fine formula- 144

tion, training those architectures on the OntoNotes 145

dataset still requires a considerable amount of mem- 146

ory.1 This occurs because they rely on the tradi- 147

tional Coarse-to-Fine pipeline that, as we will cover 148

in Section 3.1, has a large memory overhead and is 149

based on manually-set thresholds to regulate mem- 150

ory usage. 151

Incremental Models Discriminative systems 152

also include incremental techniques. Incremen- 153

tal Coreference Resolution has a strong cognitive 154

grounding: research on the “garden-path” effect 155

shows that humans resolve referring expressions 156

incrementally (Altmann and Steedman, 1988). 157

A seminal work that proposed an incremental 158

automatic system is Webster and Curran (2014), 159

which introduced a clustering approach based on 160

the shift-reduce paradigm. In this formulation, 161

for each mention, a classifier decides whether to 162

SHIFT it into a singleton (i.e. single mention clus- 163

ter) or to REDUCE it within an existing cluster. 164

The same approach has recently been reintroduced 165

in ICoref (Xia et al., 2020) and longdoc (Toshniwal 166

et al., 2021), which adopted SpanBERT and Long- 167

Former respectively. In these works the mention 168

extraction step is identical to that of Coarse-to-Fine 169

models. On the other hand, the mention clustering 170

step is performed by using a linear classifier that 171

scores each mention against a vector representa- 172

tion of previously built clusters, in an incremental 173

fashion. Since cluster representations are updated 174

with a learnable function, this method ensures con- 175

stant memory usage. In Section 3.2 we present 176

a novel performance-driven incremental method 177

that obtains superior performance and generaliza- 178

tion capabilities, in which we adopt a lightweight 179

transformer architecture that retains the mention 180

representations. 181

1Training those models requires at least 32G of VRAM.
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2.2 Sequence-to-Sequence models182

Recent state-of-the-art Coreference Resolution sys-183

tems all employ autoregressive generative ap-184

proaches. However, an early example of Sequence-185

to-Sequence model, TANL (Paolini et al., 2021),186

failed to achieve competitive performance on187

OntoNotes. The first system to show that the autore-188

gressive formulation was competitive is ASP (Liu189

et al., 2022), which outperformed encoder-only dis-190

criminative approaches. ASP is an autoregressive191

pointer-based model that first generates actions for192

mention extraction (bracket pairing) and then con-193

ditions the next step to generate coreference links.194

Notably, the breakthrough in ASP does not lie only195

in its novel formulation but in the usage of large196

generative models. Indeed, the success of their197

approach is strictly correlated with the underly-198

ing model size, since, when using models with a199

comparable number of parameters, the final perfor-200

mance is significantly lower than encoder-only ap-201

proaches. The same occurs in Zhang et al. (2023),202

a fully-seq2seq approach where a model learns to203

generate a formatted sequence encoding corefer-204

ence notation, in which they report a strong positive205

correlation between performance and model sizes.206

Finally, the current state-of-the-art system on207

the OntoNotes benchmark is held by Link-Append208

(Bohnet et al., 2023), a transition-based system that209

incrementally builds clusters exploiting a multi-210

pass Sequence-to-Sequence architecture. This ap-211

proach incrementally maps the mentions in previ-212

ously coreference-annotated sentences to system213

actions for the current sentence, using the same214

shift-reduce incremental paradigm presented in215

Section 2.1. This method obtains state-of-the-art216

performance at the cost of using a 13B parameters217

model and processing one sentence at a time, dras-218

tically increasing the need for computational power.219

While these models ensure superior performance220

compared to previous discriminative approaches,221

using them for inference is out of reach for many222

users, not to mention training them from scratch.223

3 Methodology224

In this section, we present the Maverick frame-225

work. We propose to replace the preprocessing226

and training strategy of Coarse-to-Fine models227

with the Maverick Pipeline, improving the train-228

ing and inference efficiency of Coreference Res-229

olution systems. Furthermore, with the Maverick230

Pipeline, we eliminate the dependency on long-231

standing manually-set hyperparameters that regu- 232

late memory usage. Finally, building on top of 233

the Maverick Pipeline, we propose three models 234

that adopt a mention-antecedent classification tech- 235

nique, namely Mavericks2e and Maverickmes, and 236

a system that is based upon a novel incremental 237

formulation, Maverickincr. 238

3.1 Maverick Pipeline 239

The Maverick Pipeline is a combination of i) an 240

efficient mention extraction method, ii) a novel 241

mention regularization technique, and iii) a new 242

mention pruning strategy. 243

Mention Extraction When it comes to extract- 244

ing mentions from a document D, there are differ- 245

ent strategies to model the probability that a span 246

contains a mention. Several previous works follow 247

the Coarse-to-Fine formulation presented in Sec- 248

tion 2.1, which consists of scoring all the possible 249

spans in D. This implies a quadratic computational 250

cost with respect to the input length, which they 251

mitigate by introducing several pruning techniques. 252

In this work, we employ a different strategy. We 253

extract coreference mentions by first identifying 254

all the possible starts of a mention, and then, for 255

each start, extracting its possible end. To extract 256

start indices, we first compute the hidden represen- 257

tation (x1, . . . , xn) of the tokens (t1, . . . , tn) ∈ D 258

using a transformer encoder, and then use a fully- 259

connected layer F to compute the probability for 260

each ti being the start of a mention as: 261

Fstart(x) = W ′
start(GeLU(Wstartx)) 262

263
pstart(ti) = σ(Fstart(xi)) 264

With W ′
start,Wstart being the learnable parame- 265

ters, and σ the sigmoid function. For each start of 266

a mention ts, i.e. those tokens having pstart(ts) > 267

0.5, we then compute the probability of its subse- 268

quent tokens tj , with s ≤ j, to be the end of a 269

mention that starts with ts. We follow the same 270

process of the mention start classification, but we 271

condition the prediction on the starting token by 272

concatenating the start, xs, and end, xj , hidden 273

representations before the linear classifier: 274

Fend(x, x
′) = W ′

end(GeLU(Wend[x, x
′])) 275

276
pend(tj |ts) = σ(Fend(xs, xj)) 277

With W ′
end, Wend being learnable parameters. This 278

formulation considers overlapping mentions, since 279
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for each start ts we can find multiple te (i.e. those280

that have pend(tj |ts) > 0.5) and also reduces 9281

times the number of considered mentions compared282

to the Coarse-to-Fine pipeline (Table 1).283

To further reduce the computation demand of284

this process, in the Maverick Pipeline we introduce285

the end-of-sentence (EOS) mention regularization286

strategy: after extracting the span start, we only287

consider the tokens up to the nearest EOS as pos-288

sible mention end candidates.2 Since annotated289

mentions never span across sentences, EOS men-290

tion regularization can efficiently consider all the291

possible spans in a document. In contrast, previous292

Coarse-to-Fine formulations rely on a manually-293

set hyperparameter that regulates maximum span294

length. This implies a large overhead of unneces-295

sary computations and ignores mentions that ex-296

ceed a fixed length.3297

Mention Pruning After the mention extraction298

step, as a result of the Maverick Pipeline, we con-299

sider an 18x lower number of candidate mentions300

for the successive mention clustering phase (Table301

1). This step consists of computing, for each men-302

tion, the probability of all its antecedents being in303

the same cluster, incurring a quadratic computa-304

tional cost. Within the Coarse-to-Fine formulation,305

this high computational cost is mitigated by con-306

sidering only the top k mentions according to their307

probability score, where k is a manually set hy-308

perparameter. Since we obtain probabilities for a309

very concise number of mentions, we consider only310

predicted mentions (i.e. those with pend > 0.5 and311

pstart > 0.5), reducing the number of considered312

mention-pairs by a factor of 10. In Table 1, we313

compare the previous Coarse-to-Fine formulation314

with the new Maverick Pipeline.315

3.2 Mention Clustering316

As a result of the Maverick Pipeline, we obtain a317

set of candidate mentions M = (m1,m2, . . . ,ml),318

for which we propose three different clustering319

techniques: Mavericks2e and Maverickmes, which320

follow the traditional Coarse-to-Fine mention-321

antecedent formulation, and Maverickincr, which322

adopts a novel incremental technique that leverages323

a light transformer architecture.324

2We note that all the well-established Coreference Reso-
lution datasets are sentence-splitted.

3In previous works, max-length regularization filters out
196 correctly annotated spans when training on OntoNotes.

Coarse-to-fine Maverick ∆

Ment. Extraction Enumeration (i) Start-End
183,577 20,565 -8,92x

(+) Regularization (+) Span-length (ii) (+) EOS
14,265 777 -18,3x

Ment. Clustering Top-k (iii) Pred-only
29,334 2,713 -10,81x

Table 1: Comparison between the Coarse-to-Fine
pipeline and the Maverick Pipeline in terms of the av-
erage number of considered mentions in the mention
extraction step (top) and the average number of con-
sidered mention-pairs in the mention clustering step
(bottom). The statistics are computed on the OntoNotes
devset, and refer to the hyperparameters proposed in
(Lee et al., 2018), which were unchanged by subsequent
Coarse-to-Fine works, i.e. span-len = 30, top-k = 0.4.

Mention-Antecedent models The first proposed 325

model, Mavericks2e, adopts a similar mention clus- 326

tering strategy to Kirstain et al. (2021): given a 327

mention mi = (xs, xe) and its antecedent mj = 328

(xs′ , xe′), with their start and end token hidden 329

states, we use two fully-connected layers to model 330

their corresponding representations: 331

Fs(x) = W ′
s(GeLU(Wsx)) 332

333
Fe(x) = W ′

e(GeLU(Wex)) 334

We then calculate their probability to be in the same 335

cluster as: 336

pc(mi,mj) = σ(Fs(xs) ·Wss · Fs(xs′)+ 337

Fe(xe) ·Wee · Fe(xe′)+ 338

Fs(xs) ·Wse · Fe(xe′)+ 339

Fe(xe) ·Wes · Fs(xs′)) 340

With Wss,Wee,Wse,Wes being four learnable ma- 341

trices and Ws,W
′
s,We,W

′
e the learnable parame- 342

ters of the two fully connected layers. 343

A similar formulation is adopted in Maverickmes, 344

where, instead of using only one generic mention- 345

pair scorer, we use 6 different scorers that handle 346

linguistically motivated categories, as introduced 347

by Otmazgin et al. (2023). We detect which cate- 348

gory k a pair of mentions mi and mj belongs to 349

(e.g., if mi is a pronoun and mj is a proper noun, 350

the category will be PRONOUN-ENTITY) and use 351

a category-specific scorer to compute pc. A com- 352

plete description of the process along with the list 353

of categories can be found in Appendix A. 354

Incremental model Finally, we introduce a novel 355

approach to tackle the mention clustering step, 356

namely Maverickincr, which incrementally builds 357
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clusters following the shift-reduce paradigm intro-358

duced in Section 2.1. In Maverickincr, in contrast359

to previous incremental techniques, we leverage360

a lightweight transformer model to attend to pre-361

vious clusters, for which we retain the mentions362

hidden representations. Specifically, we compute363

the hidden representations (h1, . . . , hl) for all the364

candidate mentions in M using a fully-connected365

layer on top of the concatenation of their start and366

end token representations. We first assign the first367

mention m0 to the first cluster c0 = (m0). Then,368

for each mention mi ∈ M at step i we obtain the369

probability of mi to be in a certain cluster cj by370

encoding hi with all the representations of the men-371

tions contained in the cluster cj using a transformer372

architecture. In particular, we use the first special373

token ([CLS]) of a single-layer transformer archi-374

tecture T to obtain the score S(mi, cj) of mi being375

in the cluster cj = (mf , . . . ,mg) with f ≤ g < i376

as:377

S(mi, cj) = (Wc ·(ReLU(TCLS(hi, hf , . . . , hg))378

Finally, we compute the probability of mi to belong379

to cj as:380

pc(mi ∈ cj |(mf , . . . ,mg) ∈ cj) = σ(S(mi, cj))381

We compute this probability for each cluster cj382

computed up to step i. We assign the mention383

mi to the most probable cluster cj having pc(mi ∈384

cj) > 0.5 if one exists, or we create a new singleton385

cluster containing mi.386

As we show in Section 5.3 and in Section 5.5,387

this formulation obtains better results than previ-388

ous incremental methods, and is particularly ben-389

eficial when dealing with long-document and out-390

of-domain settings.391

3.3 Training392

To train a Maverick model, we optimize the sum of393

three binary cross-entropy losses:394

Lcoref = Lstart + Lend + Lclust395

Lstart, Lend comes from the mention extraction396

step and Lclust from mention clustering. All the397

models we introduce are trained using teacher forc-398

ing. In particular, in the mention token end classifi-399

cation step, we use gold start indices to condition400

the end tokens prediction, and, for the mention clus-401

tering step, we consider only gold mention indices.402

For Maverickincr, at each iteration, we compare403

each mention only to previous gold clusters.404

Dataset # Train # Dev # Test Tokens Mentions % Sing
OntoNotes 2802 343 348 467 56 0
LitBank 80 10 10 2105 291 19.8
PreCo 36120 500 500 337 105 52.0
GAP - - 2000 95 3 -
WikiCoref - - 30 1996 230 0

Table 2: Datasets statistics: number of documents in
each dataset split, the average number of words and
mentions per document, and the singletons percentage.

4 Experiments Setup 405

4.1 Datasets 406

We train and evaluate all the comparison systems 407

on three Coreference Resolution datasets: 408

OntoNotes (Pradhan et al., 2012), proposed in 409

the CoNLL-2012 shared task, is the de facto stan- 410

dard dataset used to benchmark Coreference Reso- 411

lution systems. It consists of documents that span 412

seven distinct genres, including full-length docu- 413

ments (broadcast news, newswire, magazines, we- 414

blogs, and Testaments) and multiple speaker tran- 415

scripts (broadcast and telephone conversations). 416

LitBank (Bamman et al., 2020) contains 100 lit- 417

erary documents typically used to evaluate long- 418

document Coreference Resolution. 419

PreCo (Chen et al., 2018) is a large-scale dataset 420

that includes reading comprehension tests for mid- 421

dle school and high school students. 422

Notably, both LitBank and PreCo have different 423

annotation guidelines compared to OntoNotes, and 424

provide annotation for singletons (i.e. clusters one 425

mention). Furthermore, we evaluate models trained 426

on OntoNotes on three out-of-domain datasets: 427

• GAP (Webster et al., 2018) contains sentences 428

in which, given a pronoun, the model has to 429

choose between two candidate mentions. 430

• LitBankns and PreCons, the datasets’ test-set 431

where we filter out singleton annotations. 432

• WikiCoref (Ghaddar and Langlais, 2016), 433

which contains Wikipedia texts, including doc- 434

uments with up to 9,869 tokens. 435

Employed dataset statistics are shown in Table 2. 436

4.2 Comparison Systems 437

Discriminative Among the discriminative sys- 438

tems, we consider c2f-coref (Joshi et al., 2020) and 439

s2e-coref (Kirstain et al., 2021), which build upon 440

the Coarse-to-Fine formulation and adopt different 441
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document encoders. We also report the results of442

LingMess (Otmazgin et al., 2023), which is the pre-443

vious best encoder-only solution, and f-coref (Ot-444

mazgin et al., 2022), which is a distilled version of445

LingMess. Furthermore, we include CorefQA (Wu446

et al., 2020), which casts Coreference as extractive447

Question Answering, and wl-coref (Dobrovolskii,448

2021), which first predicts coreference links be-449

tween words, then extracts mentions spans. Finally,450

we report the results of incremental systems, such451

as ICoref (Xia et al., 2020) and longdoc (Toshniwal452

et al., 2021).453

Sequence-to-Sequence We compare our models454

with TANL (Paolini et al., 2021) and ASP (Liu455

et al., 2022), which frame Coreference Resolu-456

tion as autoregressive structured prediction. We457

also include Link-Append (Bohnet et al., 2023), a458

transition-based system that builds clusters with a459

multi-pass Sequence-to-Sequence architecture. Fi-460

nally, we report the results of seq2seq (Zhang et al.,461

2023), a model that learns to generate a sequence462

with Coreference Resolution labels.463

4.3 Maverick Setup464

All Maverick models use DeBERTa-v3 (He et al.,465

2023) as the document encoder. We use DeBERTa466

because it can model very long input texts4, and467

has shown to be effective in handling long se-468

quences (He et al., 2021). On the other hand, us-469

ing it to encode long documents is computation-470

ally expensive because its attention mechanism im-471

plies a quadratic computational complexity. While472

this further increases the computational cost of473

traditional Coarse-to-Fine systems, the Maverick474

Pipeline enables us to train models that leverage475

DeBERTalarge on the OntoNotes dataset, without476

any performance-lowering pruning heuristic. To477

train our models we use Adafactor (Shazeer and478

Stern, 2018) as our optimizer, with a learning rate479

of 3e-4 for the linear layers, and 2e-5 for the pre-480

trained encoder. We perform all our experiments481

within an academic budget, i.e. a single RTX 4090482

which has 24GB of VRAM. We report more train-483

ing details in Appendix B.484

5 Results485

5.1 English OntoNotes486

We report in Table 3 the average CoNLL-F1 score487

of the comparison systems trained on the English488

4This is because its attention mechanism enables its input
length to grow linearly with the number of its layers.

OntoNotes, along with their underlying pre-trained 489

language models and total parameters. Compared 490

to previous discriminative systems, we report gains 491

of +2.2 CoNLL-F1 points over LingMess, the best 492

encoder-only model. Interestingly, we outperform 493

CorefQA as well, which takes advantage of training 494

on additional Question Answering data. 495

Concerning Sequence-to-Sequence approaches, 496

we report extensive improvements over systems 497

with a similar amount of parameters compared to 498

our large models (500M): we obtain +3.4 points 499

with respect to ASP (770M), and the gap is even 500

wider when taking into consideration Link-Append 501

(3B) and seq2seq (770M), with +6.4 and +5.6, re- 502

spectively. Most importantly, Maverick models sur- 503

pass the performance of all sequence-to-sequence 504

transformers even when they have several billions 505

of parameters. Among our proposed methods, 506

Maverickmes shows the best performance, setting a 507

new state of the art with a score of 83.6 CoNLL-F1 508

points on the OntoNotes benchmark. More de- 509

tailed results, including a table with MUC, B3, and 510

CEAFϕ4 scores and an error analysis, can be found 511

in Appendix C. 512

5.2 PreCo and LitBank 513

We further validate the robustness of the Mav- 514

erick framework by training and evaluating sys- 515

tems on the PreCo and LitBank datasets. As re- 516

ported in Table 4, our models show superior per- 517

formance when dealing with long documents in a 518

data-scarce setting such as the one LitBank poses. 519

On this dataset, Maverickincr achieves a new state- 520

of-the-art score of 78.3, and gains +1.0 CoNLL- 521

F1 points compared with seq2seq. On PreCo, 522

Maverickincr outperforms longdoc, but seq2seq still 523

shows slightly better performance. Among our sys- 524

tems, Maverickincr, leveraging its hybrid architec- 525

ture, performs better on both PreCo and LitBank. 526

5.3 Out-of-Domain Evaluation 527

In Table 5, we report the performance of Maver- 528

ick systems along with LingMess, the best encoder- 529

only model, when dealing with out-of-domain texts, 530

that is when they are trained on OntoNotes and 531

tested on other datasets. First of all, we report con- 532

siderable improvements on the GAP test set, ob- 533

taining a +1.2 F1 score with respect to the previous 534

state of the art. We also test models on WikiCoref, 535

PreCons and LitBankns (Section 4.1). However, 536

since the span annotation guidelines of these cor- 537

pora differ from the ones used in OntoNotes, in 538
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Model LM Avg. F1 Params Training Inference
Time Hardware Time Mem.

Discriminative
c2f-coref (Joshi et al., 2020) SpanBERTlarge 79.6 - - 1x32GB 50s 11.9
ICoref (Xia et al., 2020) SpanBERTlarge 79.4 377M 40h 1x1080TI-12GB 38s 2.9
CorefQA (Wu et al., 2020) SpanBERTlarge 83.1* - - 1xTPUv3-128G - -
s2e-coref (Kirstain et al., 2021) LongFormerlarge 80.3 494M - 1x32G 17s 3.9
longdoc (Toshniwal et al., 2021) LongFormerlarge 79.6 - 16h 1xA6000-48G 25s 2.1
wl-coref (Dobrovolskii, 2021) RoBERTalarge 81.0 360M 5h 1xRTX8000-48G 11s 2.3
f-coref (Otmazgin et al., 2022) DistilRoBERTa 78.5* 91M - 1xV100-32G 3s 1.0
LingMess (Otmazgin et al., 2023) LongFormerlarge 81.4 590M 23h 1xV100-32G 20s 4.8

Sequence-to-Sequence

ASP (Liu et al., 2022) FLAN-T5L 80.2 770M - 1xA100-40G - -
FLAN-T5xxl 82.5 11B 45h 6xA100-80G 20m -

Link-Append (Bohnet et al., 2023) mT5xl 78.0d 3B - 128xTPUv4-32G - -
mT5xxl 83.3 13B 48h 128xTPUv4-32G 30m -

seq2seq (Zhang et al., 2023) T5-large 77.2d 770M - 8xA100-40G - -
T0-11B 83.2 11B - 8xA100-80G 40m -

Ours (Discriminative)

Mavericks2e
DeBERTabase 81.1 192M 7h 1xRTX4090-24G 6s 1.8
DeBERTalarge 83.4 449M 14h 1xRTX4090-24G 13s 4.0

Maverickincr
DeBERTabase 81.0 197M 21h 1xRTX4090-24G 22s 1.8
DeBERTalarge 83.5 452M 29h 1xRTX4090-24G 29s 3.4

Maverickmes
DeBERTabase 81.4 223M 7h 1xRTX4090-24G 6s 1.9
DeBERTalarge 83.6 504M 14h 1xRTX4090-24G 14s 4.0

Table 3: Results on the OntoNotes benchmark. We report the Avg. CoNLL-F1 score, the number of parameters, the
training time, and the hardware used to train each model. Inference time (sec) and memory (GiB) were calculated on
an RTX4090. For Sequence-to-Sequence models we include statistics that are reported in the original papers, since
we could not run models locally. (*) indicates models trained on additional resources. (d) indicates scores obtained
on the development set, however, Maverick systems perform always better on the development than on the test sets.

Model PreCo LitBank
longdoc (Toshniwal et al., 2021) 87.8 77.2
seq2seq (Zhang et al., 2023) 88.5 77.3
Mavericks2e 87.2 77.6
Maverickincr 88.0 78.3
Maverickmes 87.4 78.0

Table 4: Results on the PreCo and LitBank test-sets.

Table 5 we also report the performance using gold539

mentions, i.e. skipping the mention extraction step540

(gold column).5 On the WikiCoref benchmark, we541

achieve a new state-of-the-art score of 67.2 CoNLL-542

F1, with an improvement of +4.2 points over the543

previous best score obtained by LingMess. On the544

same dataset, when using pre-identified mentions545

the gap increases to +5.8 CoNLL-F1 points (76.6546

vs 82.4). In the same setting, our models obtain547

up to +7.3 and +10.1 CoNLL-F1 points on Precons548

and LitBankns compared to LingMess. These re-549

sults suggest that Maverick training strategy makes550

it more suitable when dealing with pre-identified551

mentions and out-of-domain texts. This further in-552

5We do not include autoregressive models because none
of the original articles report scores on out-of-domain datasets.
We could not test those models either, because they do not
provide the code to perform mention clustering alone, and this
methodology is not as clear as it is in encoder-only models.

creases the potential benefits that Maverick systems 553

can bring to many downstream applications that ex- 554

ploit coreference as an intermediate layer, such 555

as Entity Linking (Rosales-Méndez et al., 2020) 556

and Relation Extraction (Xiong et al., 2023; Zeng 557

et al., 2023), where the mentions are already iden- 558

tified. Among our models, on LitBankns and Wiki- 559

Coref, Maverickincr outperforms Maverickmes and 560

Mavericks2e, confirming the superior capabilities 561

of the incremental formulation in the long docu- 562

ment setting. On a final note, we highlight that the 563

performance gap between using gold mentions and 564

performing full Coreference Resolution is wider 565

when tested on out-of-domain datasets (on average 566

+17) compared to testing it directly on OntoNotes 567

(83.6 vs 93.6, +10).6 This result, obtained on three 568

different out-of-domain datasets, confirms that the 569

difference in annotation guidelines considerably 570

contributes to lower OOD performances (7%). 571

5.4 Speed and Memory Usage 572

In Table 3, we include details regarding the train- 573

ing time and the hardware used by each compar- 574

ison system, along with the measurement of the 575

inference time and peak memory usage on the 576

6More on this evaluation can be found in Appendix C.
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Model GAP WikiCoref PreCons LitBankns

sys. gold sys. gold sys. gold
LingMess 89.6 63.0 76.6 65.1 80.6 64.4 73.9
Mavericks2e 91.1 67.2 81.5 67.2 87.9 64.8 83.1
Maverickincr 91.2 66.8 82.4 66.1 86.5 65.4 84.0
Maverickmes 91.1 66.8 82.1 66.1 86.9 65.1 82.8

Table 5: Comparison between LingMess and Maver-
ick systems on GAP, WikiCoref, PreCons LitBankns.
We report scores using systems prediction (sys.) or pass-
ing gold mentions (gold).

development set. Compared to Coarse-to-Fine577

models, which require 32GB of VRAM, we can578

train Maverick systems under 18GB. At infer-579

ence time both Maverickmes and Mavericks2e, ex-580

ploiting DeBERTalarge, achieve competitive speed581

and memory consumption compared to wl-coref582

and s2e-coref. Furthermore, when adopting583

DeBERTabase, Maverickmes proves to be the most584

efficient approach7 among those directly trained585

on OntoNotes, while, at the same time, obtaining586

performance that are equal to the previous best587

encoder-only system, LingMess. The only system588

that shows better inference speed is f-coref, but at589

the cost of lower performance (-3.0).590

With respect to the previous Sequence-to-591

Sequence state-of-the-art approach, Link-Append,592

we train our models with 175x less memory re-593

quirements. Comparing inference time is more594

complicated since we could not run models on our595

memory-constrained budget. For this reason, we596

report the inference times from the original articles,597

hence achieved with their high-resource settings.598

Interestingly, we report as much as 170x faster599

inference compared to seq2seq, which exploits par-600

allel inference on multiple GPUs, and 85x faster601

when compared to the more efficient ASP. Among602

Maverick models, Maverickincr is notably slower603

both in inference and training time, as it incremen-604

tally builds clusters using multiple steps.605

5.5 Maverick Ablation606

In Table 6 we compare Mavericks2e and607

Maverickmes models with s2e-coref and LingMess608

respectively, using different pretrained encoders.609

Interestingly, when using DeBERTa, Maverick sys-610

tems not only achieve better speed and memory611

efficiency but also obtain higher performance com-612

pared to the previous systems. When using the613

LongFormer, instead, their scores are in the same614

ballpark, suggesting that the Maverick training pro-615

7In terms of inference peak memory usage and speed.

Model LM Score
Mavericks2e

Mavericks2e DeBERTabase 81.0
s2e-coreft DeBERTabase 78.3
Mavericks2e LongFormerlarge 80.6
s2e-coref LongFormerlarge 80.3

Maverickmes
Maverickmes DeBERTabase 81.4
LingMesst DeBERTabase 78.6
Maverickmes LongFormerlarge 81.0
LingMess LongFormerlarge 81.4

Maverickincr
Maverickincr DeBERTalarge 83.5
Maverickprev-incr DeBERTalarge 79.6

Table 6: Comparison between Maverick models and pre-
vious techniques. LingMesst and s2e-coreft are trained
using their official scripts. We use DeBERTabase be-
cause the DeBERTalarge could not fit in hardware when
training comparison systems.

cedure better exploits the capabilities of DeBERTa. 616

To test the benefits of our novel incremental formu- 617

lation, Maverickincr, we also implement a Maver- 618

ick model with the previously adopted incremen- 619

tal method used in longdoc and ICoref (Section 620

2.1), which we call Maverickprev-incr. Compared 621

to the previous formulation we report an increase 622

in score of +3.9 CoNLL-F1 points. The improve- 623

ment demonstrates that exploiting a transformer 624

architecture to attend to all the previously clustered 625

mentions is beneficial, and enables the future usage 626

of hybrid architectures when needed. 627

6 Conclusion 628

In this work, we challenged the recent trends of 629

adopting large autoregressive generative models to 630

solve the Coreference Resolution task. To do so, 631

we proposed Maverick, a new framework that en- 632

ables fast and memory-efficient Coreference Reso- 633

lution while obtaining state-of-the-art results. This 634

demonstrates that the large computational overhead 635

required by sequence-to-sequence approaches is 636

unnecessary. Indeed, in our experiments Maver- 637

ick systems can outperform large generative mod- 638

els and improve the speed and memory usage of 639

previous best-performing encoder-only approaches. 640

Furthermore, we introduced Maverickincr, a robust 641

multi-step incremental technique that obtains supe- 642

rior performances in the out-of-domain and long 643

document setting. By releasing our systems, we 644

will make high-performance models usable by a 645

larger portion of users in different scenarios, and 646

potentially improve downstream applications. 647
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7 Limitations648

Our experiments were limited by our resource set-649

ting i.e. a single RTX 4090. For this reason, we650

could not run Maverick using larger encoders, and651

could not properly test sequence-to-sequence mod-652

els as we did with encoder-only models. Neverthe-653

less, we believe this limitation is a common sce-654

nario in many real-world applications that would655

substantially benefit from our system. We also656

did not test our formulation on multiple languages657

but note that both the methodology behind Mav-658

erick and our novel incremental formulation are659

language agnostic, and thus could be applied to any660

language.661
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A Multi-Expert Scorers978

In Maverickmes, the final coreference score between979

two spans is calculated using 6 linguistically moti-980

vated multi-expert scorers. This approach was in-981

troduced by Otmazgin et al. (2023), which demon-982

strated that linguistic knowledge and symbolic com-983

putation can still be used to improve results on the984

OntoNotes benchmark. In Maverickmes we adopt985

this approach on top of the Maverick Pipeline. We986

use the same set of categories, namely:987

1. PRON-PRON-C. Compatible pronouns based988

on their attributes such as gender or number989

(e.g. (I, I), (I, my) (she, her)).990

2. PRON-PRON-NC, Incompatible pronouns991

(e.g. (I, he), (She, my), (his, her)).992

3. ENT-PRON. Pronoun and non-pronoun (e.g.993

(George, he), (CNN, it), (Tom Cruise, his)).994

4. MATCH. Non-pronoun spans with the same995

content words (e.g. Italy, Italy).996

5. CONTAINS. One contains the other (e.g.997

(Barack Obama, Obama)).998

6. OTHER. The Other pairs.999

To detect pronouns we use string match with a full1000

list of English pronouns.1001

To perform mention clustering, we dedicate a1002

mention-pair scorer for each of those categories.1003

Concretely, for the mention mi = (xs, xe) and its1004

antecedent mj = (xs′ , xe′), with their start and end1005

token hidden states, we first detect their category1006

kg using pattern matching on their spans of texts.1007

Then we compute their start and end representa-1008

tions, using the specific fully connected layers for1009

the category kg:1010

F
kg
s (x) = W ′

kg,s(GeLU(Wkg,sx))1011

1012

F
kg
e (x) = W ′

kg,e(GeLU(Wkg,ex))1013

The probability p
kg
c of mi and mj is then calculated1014

as:1015

p
kg
c (mi,mj) = σ(F

kg
s (xs) ·Wss · F

kg
s (xs′)+1016

F
kg
e (xe) ·Wee · F

kg
e (xe′)+1017

F
kg
s (xs) ·Wse · F

kg
e (xe′)+1018

F
kg
e (xe) ·Wes · F

kg
s (xs′))1019

With Wss,Wee,Wse,Wes being four learnable ma- 1020

trices and W ′
kg,e

,W ′
kg,s

,Wkg,e ,W
′
kg,s

the learnable 1021

parameters of the two fully connected layers. In 1022

this way, each mention-pair scorer learns to model 1023

the probability for his specific linguistic categories. 1024

B Training details 1025

B.1 Datasets 1026

We report technical details of the adopted datasets. 1027

• OntoNotes contains several metadata infor- 1028

mation for each document such as genre, 1029

speakers, and constituent graphs. Following 1030

previous works, we incorporate the speaker’s 1031

name into the text whenever there is a change 1032

in speakers for datasets that include this meta- 1033

data. 1034

• LitBank contains 100 literary documents and 1035

is available in different 10 different cross- 1036

validation folds. Our train, dev, and test splits 1037

refer to the first cross-validation fold, LB0. 1038

We report comparison systems results on the 1039

same splits. 1040

• The authors of PreCo have not released their 1041

official test set. To evaluate consistently our 1042

models with previous approaches, we use the 1043

official ’dev’ split as our test set and retain the 1044

last 500 training examples for model valida- 1045

tion. 1046

B.2 Setup 1047

All our experiments are developed using the 1048

pytorch-lightning framework.8 For each Maver- 1049

ick model, we load the pre-trained weights for the 1050

base9 and large10 version of DeBERTA−v3 from 1051

the Huggingface Transformers library (Wolf et al., 1052

2020). We accumulate gradients every 4 steps and 1053

use a gradient clipping value of of 1.0. We adopt a 1054

linear learning rate scheduler a warm-up of 10% of 1055

the total steps check validation scores every 50% of 1056

the total number of steps per epoch. We select our 1057

model upon validation of Avg. CoNLL-f1 score 1058

and use a patience of 20. 1059

C Additional Results 1060

In Table 7 we report models performance according 1061

to the standard Coreference Resolution metrics: 1062

8
https://lightning.ai

9
https://huggingface.co/microsoft/deberta-v3-base

10
https://huggingface.co/microsoft/deberta-v3-large
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Model LM MUC B3 CEAFϕ4 Avg.
P R F1 P R F1 P R F1 F1

Discriminative
e2e-coref (Lee et al., 2017) - 78.4 73.4 75.8 68.6 61.8 65.0 62.7 59.0 60.8 67.2
c2f-coref (Lee et al., 2018) ELMo 81.4 79.5 80.4 72.2 69.5 70.8 68.2 67.1 67.6 73.0
c2f-coref (Joshi et al., 2019) BERTlarge 84.7 82.4 83.5 76.5 74.0 75.3 74.1 69.8 71.9 76.9
c2f-coref (Joshi et al., 2020) SpanBERTlarge 85.8 84.8 85.3 78.3 77.9 78.1 76.4 74.2 75.3 79.6
ICoref (Xia et al., 2020) SpanBERTlarge 85.7 84.8 85.3 78.1 77.5 77.8 76.3 74.1 75.2 79.4
CorefQA (Wu et al., 2020) SpanBERTlarge 88.6 87.4 88.0 82.4 82.0 82.2 79.9 78.3 79.1 83.1*
longdoc (Toshniwal et al., 2021) LongFormerlarge 85.5 85.1 85.3 78.7 77.3 78.0 74.2 76.5 75.3 79.6
s2e-coref Kirstain et al. (2021) LongFormerlarge 86.5 85.1 85.8 80.3 77.9 79.1 76.8 75.4 76.1 80.3
wl-coref (Dobrovolskii, 2021) RoBERTalarge 84.9 87.9 86.3 77.4 82.6 79.9 76.1 77.1 76.6 81.0
f-coref (Otmazgin et al., 2022) DistilRoberta 85.0 83.9 84.4 77.6 75.5 76.6 74.7 74.3 74.5 78.5*
LingMess (Otmazgin et al., 2023) LongFormerlarge 88.1 85.1 86.6 82.7 78.3 80.5 78.5 76.0 77.3 81.4

Sequence-to-Sequence
TANL (Paolini et al., 2021) T5base - - 81.0 - - 69.0 - - 68.4 72.8
ASP (Liu et al., 2022) FLAN-T5XXL 86.1 88.4 87.2 80.2 83.2 81.7 78.9 78.3 78.6 82.5
Link-Append (Bohnet et al., 2023) mT5XXL 87.4 88.3 87.8 81.8 83.4 82.6 79.1 79.9 79.5 83.3
seq2seq (Zhang et al., 2023) T0XXL 86.1 89.2 87.6 80.6 84.3 82.4 78.9 80.1 79.5 83.2

Ours (Discriminative)
Mavericks2e DeBERTalarge 87.1 88.6 87.9 81.7 83.8 82.7 80.8 78.7 79.7 83.4
Maverickincr DeBERTalarge 87.6 88.1 87.9 82.7 82.6 82.7 80.3 79.3 79.8 83.5
Maverickmes DeBERTalarge 87.5 88.5 88.0 82.2 83.5 82.8 80.4 79.3 79.9 83.6

Table 7: Results on the OntoNotes test set. The average CoNLL-F1 score of MUC, B3, and CEAFϕ4 is the main
evaluation criterion. ∗ marks models using additional/different training data.

MUC (Vilain et al., 1995), B3(Bagga and Baldwin,1063

1998), CEAFϕ4 (Luo, 2005) and AVG CoNLL-F1.1064

Scores for Maverick models are computed using1065

the official CoNLL coreference scorer.111066

C.1 Error Analysis1067

To better understand the quality of Maverick pre-1068

dictions, we conduct an error analysis on our best1069

system trained on OntoNotes, Maverickmes. In ta-1070

ble 8, we report the score of performing only men-1071

tion extraction (F1) or mention clustering with gold1072

mention (CoNLL-F1) with our systems. Our results1073

highlight that our models have strong capabilities1074

of clustering pre-identified mentions, but limited1075

performance in the identification of correct spans.1076

We investigated this phenomenon by conducting a1077

qualitative evaluation of the outputs of our best sys-1078

tem, Maverickmes, and found out that OntoNotes1079

contains several annotation errors. We report exam-1080

ples of errors in Table 9. The main inconsistency1081

we found in the gold test set is that many docu-1082

ments have incomplete annotations, which directly1083

correlates with the mention extraction error.1084

11
https://conll.github.io/reference-coreference-scorers

System Ment. Clustering Ment. Extraction
Mavericks2e 89.4 93.5
Maverickincr 89.2 94.2
Maverickmes 89.6 93.7

Table 8: Mention extraction (F1) and mention clustering
(CoNLL-F1) scores on the OntoNotes development set.
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Type Text
Ex. 1
Gold Nine people were injured in Gaza when gunmen [opened]1[fire]2on an Israeli bus.

The passengers were off - duty Israeli security workers.
Witnesses say [the shots]2came from [the Palestinian international airport]3.
Israeli Prime Minister Ehud Barak [closed]4down [the two - year - old airport]3in response to [the incident]1.
[Palestinians]5criticized [the move]4.
[hey]5regard [the airport]3as a symbol of emerging statehood.

Output [Nine people]1were injured in Gaza when gunmen opened fire on an Israeli bus.
[The passengers]1were off - duty Israeli security workers.
Witnesses say the shots came from [the Palestinian international airport]2.
Israeli Prime Minister Ehud Barak [closed]3down [the two - year - old airport]2in response to the incident.
[Palestinians]4criticized [the move]3.
[They]4regard [the airport]2as a symbol of emerging statehood.

Ex. 2
Gold [Mr. Seelenfreund]1is [executive vice president and chief financial officer of [McKesson]3]2-

and will continue in [those roles]2.
[PCS]4also named Rex R. Malson, 57, executive vice president at McKesson,-
as a director, filling the seat vacated by Mr. Field.
Messrs. Malson and Seelenfreund are directors of [McKesson, which has an 86% stake in [PCS]4]3.

Output [Mr. Seelenfreund]1is [executive vice president and chief financial officer of [McKesson]3]2
and will continue in [those roles]2.
[PCS]4also named [Rex R. Malson, 57, executive vice president at [McKesson]3,]5-
as a director, filling the seat vacated by Mr. Field.
Messrs. [Malson]5and [Seelenfreund]1are directors of [McKesson, which has an 86 % stake in [PCS]4]3.

Ex. 3
Gold The Second U.S. Circuit Court of Appeals opinion in the Arcadian Phosphate case -

did not repudiate the position [Pennzoil Co.]1took in [its]1dispute with [Texaco]2, -
contrary to your Sept. 8 article “ Court Backs [Texaco]2’s View in [Pennzoil]1Case – Too Late. ”
The fundamental rule of contract law applied to [both cases]3was that courts will not enforce -
[agreements to [which]4the parties did not intend to be bound]4.
In the Pennzoil / Texaco litigation, [the courts]5found [Pennzoil]1and Getty Oil intended to be bound;
in Arcadian Phosphates [they]5found there was no intention to be bound.

Output The Second U.S. Circuit Court of Appeals opinion in [the Arcadian Phosphate case]1
- did not repudiate the position [Pennzoil Co.]2took in [[[its]2dispute with [Texaco]4]3, -
contrary to your Sept. 8 article “ Court Backs [Texaco ’s]4View in [[Pennzoil]2Case]3]3– Too Late . ”
[[The fundamental rule of contract law]5applied to both cases]5was that courts will not enforce -
agreements to which the parties did not intend to be bound.
In [the [Pennzoil]2 / [Texaco]4litigation]3, [the courts]6found [Pennzoil]2and Getty Oil intended to be bound;
in [Arcadian Phosphates]1[they]6found there was no intention to be bound.

Ex. 4
Gold ... [Harry]1has avoided all that by living in a Long Island suburb with [his]1wife,

who ’s so addicted to soap operas and mystery novels
she barely seems to notice when [her husband[disappears for drug - seeking forays into Manhattan.

Output ... [Harry]1has avoided all that by living in a Long Island suburb with [[his]1wife,
who ’s so addicted to soap operas and mystery novels
[she]2barely seems to notice when [[her]2husband]1disappears for drug - seeking forays into Manhattan]2.

Table 9: Error examples.
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