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ABSTRACT

We develop a new method for generating prediction sets that combines the flexi-
bility of conformal methods with an estimate of the conditional distribution PY |X .
Existing methods, such as conformalized quantile regression and probabilistic
conformal prediction, usually provide only a marginal coverage guarantee. In con-
trast, our approach extends these frameworks to achieve approximately conditional
coverage, which is crucial for many practical applications. Our prediction sets
adapt to the behavior of the predictive distribution, making them effective even
under high heteroscedasticity. While exact conditional guarantees are infeasible
without assumptions on the underlying data distribution, we derive non-asymptotic
bounds that depend on the total variation distance of the conditional distribution
and its estimate. Using extensive simulations, we show that our method consistently
outperforms existing approaches in terms of conditional coverage, leading to more
reliable statistical inference in a variety of applications.

1 INTRODUCTION

Conformal prediction methods are often used to generate prediction sets because they provide finite
sample validity under minimal assumptions (Vovk et al., 2005; Shafer & Vovk, 2008). However,
their performance can degrade in the presence of heteroscedasticity (Dewolf et al., 2023). The split-
conformal approach uses a calibration dataset of size n, denoted as {(Xk, Yk)}k∈[n] with Xk ∈ Rd

and Yk ∈ Y to construct prediction sets Cα(x) for a chosen confidence level α ∈ (0, 1). For each
x ∈ Rd, the prediction set based on a conformity score function V : Rd × Y → R, is given by

Cα(x) =
{
y ∈ Y : V (x, y) ≤ Q1−α

(
1

n+ 1

∑n

k=1
δV (Xk,Yk) +

1

n+ 1
δ∞

)}
, (1)

where δx is the Dirac mass and Q1−α(µ) is the (1−α)-quantile of the probability µ. If the calibration
data {(Xk, Yk)}k∈[n] is drawn i.i.d. from a population distribution PX,Y , then for any new data point
(Xn+1, Yn+1) ∼ PX,Y sampled independently of the calibration data, the conformal theory ensures
the marginal validity of Cα(Xn+1), meaning that P (Yn+1 ∈ Cα(Xn+1)) ≥ 1 − α. This marginal
guarantee can hide significant discrepancies in the coverage of different regions of the input space Rd;
see e.g. (Izbicki et al., 2022; Hore & Barber, 2024) Conditional validity is a more desirable guarantee
than marginal validity: for any x ∈ Rd, the set Cα(x) is conditionally valid if

P (Yn+1 ∈ Cα(Xn+1) | Xn+1 = x) ≥ 1− α. (2)

However, this property cannot be achieved without further assumptions about the data distribution;
see (Vovk, 2012; Lei & Wasserman, 2014). For practical purposes, it is enough to construct sets Cα
which approximate (2), and ideally achieve it asymptotically under suitable conditions in the limit of
large sample size n.

RELATED WORK

Conformal prediction with conditional guarantees. A great deal of research has been de-
voted to this problem, starting with the case where Y = R. For example, Romano et al.
(2019) and Kivaranovic et al. (2020) proposed methods based on estimate of the lower and up-
per conditional quantile function q̂α/2 and q̂1−α/2, to define a quantile-based conformity score:
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V (x, y) = max
{
q̂α/2(x)− y, y − q̂1−α/2(x)

}
which is then conformalized. Improvements of this

conformity score are investigated in (Kivaranovic et al., 2020). Sesia & Candès (2020) have shown
that the constructed interval converges to the narrowest possible interval that achieve conditional
coverage under mild assumptions. We stress that these methods are specific to the case Y = R; in
addition, when the conditional distribution PY |X is multimodal, restricting prediction to intervals is
suboptimal; see (Wang et al., 2023) for a discussion and examples. It has been suggested in (Guan,
2023; Alaa et al., 2023; Hore & Barber, 2024) to partition Rd and learn a specific quantile for each
regions. Splitting the space Rd into multiple regions typically leads to an increase in the length of the
prediction set; see (Romano et al., 2020a; Melki et al., 2023) for comments.

Conformal prediction based on estimates of conditional distribution. A number of studies have
focused on the construction of prediction sets using an estimator of the conditional distribution PY |X .
Again, in the case where Y = R, Cai et al. (2014); Lei & Wasserman (2014) have constructed predic-
tion intervals based on an estimator of the conditional density and have established the asymptotic
validity under appropriate conditions. Han et al. (2022) use kernel density estimation to construct
asymmetric prediction bands. However, this method cannot handle bimodality as it generates a single
interval. On the other hand, Sesia & Romano (2021) partition the domain of Y into bins to create
a histogram approximation of PY |X . The authors showed that their method satisfies the marginal
validity while achieving the asymptotic conditional coverage; see also (Lei et al., 2018). Asymptotic
conditional coverage is also obtained in (Sesia & Candès, 2020; Cauchois et al., 2020) using quantile
regression-based methods, or using cumulative distribution function estimators (Izbicki et al., 2020;
Chernozhukov et al., 2021). Conditionally valid prediction sets have been shown to improve the
robustness to perturbations (Gendler et al., 2021). Guha et al. (2024) proposed a novel approach that
converts regression tasks into classification problems by binning the output space and discretizing
the labels. Leveraging this discretization, they approximate the conditional density to construct
prediction sets that correspond to regions of Highest Predictive Density (HPD). A key limitation
of these methods lies in the discretization process, as the number of labels required for complex
scenarios can become computationally prohibitive. Diamant et al. (2024) introduced an approach
that estimates conditional densities using neural networks parameterized by splines, offering a more
flexible representation.

Conformal prediction for multi-output regression. Very few studies have addressed the scenario
where the prediction target is multi-dimensional, i.e., Y = Rq with q > 1. Wang et al. (2023)
developed the PCP method, based on implicit conditional generative models (CGMs). These CGMs
allow for the generation of samples from the conditional distribution without requiring an explicit
closed-form expression. The PCP method constructs prediction sets as unions of balls, whose centers
are generated from the CGM. However, in PCP, the radius of these balls is fixed across the space,
which can introduce significant limitations. In regions with low variability, a fixed radius may result
in over-coverage, while for highly dispersed conditional distributions, it may lead to under-coverage,
failing to capture the full extent of the relevant space. We observed that the performance of PCP
deteriorates as the number of balls increases, exacerbating the heteroscedasticity problem. This
underscores the need for a more adaptive methodology that can dynamically adjust the size of
prediction sets in response to local variability in the data.

Our work addresses these challenges through the following main contributions:

• We propose a new CP2 method for constructing conditional confidence sets that adapts to
the local structure of the data distribution, capable of addressing both classical regression
problems where Y = R and more complex multi-dimensional prediction tasks where
Y = Rq . Our approach is versatile in accommodating scenarios involving either an explicit
conditional density estimator or an implicit generative model; see Section 2.

• We develop a theoretical framework to analyze the properties of the proposed CP2 method,
establishing both its marginal and approximate conditional validity. Furthermore, we
demonstrate that asymptotic conditional coverage is attainable under a weak consistency
assumption on the predictive distribution; see Section 3.

• We demonstrate the effectiveness of the proposed method through a series of experiments
on synthetic and real-world datasets. The results indicate that our approach consistently
outperforms existing methods in terms of conditional coverage. Specifically, it excels in
handling classical regression problems, effectively addressing multimodality, and proves
robust in the more challenging setting of multidimensional prediction tasks; see Section 4.
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2 THE CP2 FRAMEWORK

Problem setup. We want to construct marginally valid predictive sets with approximate conditional
validity. We follow the split-conformal approach to conformal inference; (Papadopoulos et al., 2002;
Papadopoulos, 2008; Romano et al., 2019; Kivaranovic et al., 2020). We split the data samples into
two disjoint subsets, the training set T = {(X̃k, Ỹk)}mk=1 and calibration set C = {(Xk, Yk)}nk=1. It
is assumed that the training and calibration data are mutually independent and i.i.d. with distribution
PX,Y over the feature vectors X ∈ Rd and response variables Y ∈ Y . The target set Y can be either
finite or continuous. Our goal is to construct a prediction set Cα(Xn+1) that contains the response
Yn+1 with probability close to 1− α, where α ∈ (0, 1) is the user-specified confidence level.

Conditional distribution estimator. An estimator ΠY |X of the conditional probability PY |X is
learnt using the training data. There is a rich body of research on nonparametric conditional density
estimation, with the most common methods relying on smoothing techniques such as kernel smoothing
and local polynomial fitting. An alternative approach involves transforming the conditional density
estimation task into a regression problem, allowing the application of nonparametric regression
methods to approximate the conditional density. More recently, generative methods leveraging deep
neural networks have been developed for nonparametric conditional density estimation, which enable
sampling from the conditional distribution; see (Abadi et al., 2016; Zhou et al., 2021) for examples of
these techniques. In the sequel, the choice of this algorithm is treated as a black box.

CP2 framework. There are three main ingredients for our approach:

1. In classical conformal prediction methods, the shape of the prediction set is specified by the score
function V (x, y); see (1). The first element of our construction is a family of explicitly given
confidence setsRz(x; t) parameterized by t ∈ T where T is a subset of R and z ∈ Z auxiliary
variables. The index set T can, in most cases, be taken as either T = R or T = R+. The key
assumptions for the confidence set are as follows: (a) The size ofRz(x; t) increases with t ∈ T
for any z ∈ Z . In addition, by choosing a sufficiently large value of t, the entire output space Y
can be covered. (b) There exists a form of continuity for t 7→ Rz(x; t). In mathematical terms,
the following assumption should hold:
H 1. For any (x, z) ∈ Rd × Z , the confidence sets {Rz(x; t)}t∈T are non-decreasing,
ΠY |X=x(∩t∈TRz(x; t)) = 0, ∪t∈TRz(x; t) = Y; in addition, for any t ∈ T, ∩t′>tRz(x; t

′) =
Rz(x; t).
Example 2.1. For instance, R(x; t) can be chosen as a ball centered around an estimate of
conditional mean PY |X with radius t. There is no auxiliary variables then an we remove subscript
z. Examples of confidence intervals specialized to the case where Y = R are given in Table 1.
Example 2.2. If the predictive distribution is multimodal, a ball centered around the predictive
mean often fails to provide an informative prediction set. Ideally, Rz(x; t) should correspond
to the set with the highest predictive density (HPD) of PY |X . However, HPD regions are
difficult to determine in practice, even when the conditional predictive density is available.
Following (Wang et al., 2023), we may define the prediction set asRz(x; t) := ∪Mi=1B(yi, t), and
it depends on exogenous variables z = (y1, . . . , yM ) ∈ Z , where each yi is sampled conditionally
independently from the conditional generative model ΠY |X=x.

2. To localize conformal prediction methods, it is convenient to introduce a function fτ (λ) parame-
terized by τ . Such function aims to transform the conformity score λ and was introduced (albeit
in a slightly different form) in (Deutschmann et al., 2023; Han et al., 2022). Examples of such a
function are fτ (λ) = τλ and fτ (λ) = τ + λ. We assume that:
H2. There exists φ ∈ T such that τ ∈ T 7→ fτ (φ) is increasing and bijective. In addition,
λ ∈ T 7→ fτ (λ) is increasing for any τ ∈ T.

We define τx,z using the estimated predictive density ΠY |X=x according to

τx,z = inf
{
τ ∈ T : ΠY |X=x(Rz(x; fτ (φ))) ≥ 1− α

}
. (3)

It is easily shown that for any α ∈ (0, 1), x ∈ Rd, z ∈ Z , then τx,z ∈ T and
ΠY |X=x(Rz(x; fτx,z

(φ))) ≥ 1− α; see Lemma A.3.
3. Finally, we need to introduce the conformity score for the considered setup. The natural choice

is the minimal size of the set required to cover the observation y at the input x for the auxiliary
variables z: λx,y,z = inf {t ∈ T : y ∈ Rz(x; t)}.
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Table 1: Confidence setsR(x; t) found in the literature and also discussed in Gupta et al. (2022).

Lei et al. (2018) Lei et al. (2018) Kivaranovic et al. (2020)
[pred(x)− t,pred(x) + t] [pred(x)− tσ(x),pred(x) + tσ(x)] (1 + t)[qα/2(x), q1−α/2(x)]− tq1/2(x)

Chernozhukov et al. (2021) Romano et al. (2019) Sesia & Candès (2020)
[qt(x), q1−t(x)] [qα/2(x)− t, q1−α/2(x) + t] [qα/2(x), q1−α/2(x)]± t(q1−α/2(x)− qα/2(x))

4. The resulting procedure works as follows. Let Π̄Z|X=x be a Markov kernel from Rd to Z: for
each x ∈ Rd, Π̄Z|X=x define a probability distribution on Z . For k ∈ {1, . . . , n}, we set τ̄k :=

τXk,Zk
and λ̄k := λXk,Yk,Zk

where {Zk}nk=1 are sampled conditionally independently from
Π̄Z|X=Xk

. Given Xn+1 ∈ Rd, we sample Zn+1 ∼ Π̄Z|X=Xn+1
conditionally independently

from {(Xk, Yk, Zk)}nk=1, and construct the resulting CP2 prediction set as

Cα(Xn+1) = RZn+1

(
Xn+1; fτ̄n+1

(
Q1−α(µn)

))
, (4)

where Q1−α(µn) is the 1− α quantile of the distribution µn, and is given by

µn =
1

n+ 1

∑n

k=1
δf−1

τ̄k
(λ̄k)

+
1

n+ 1
δ∞. (5)

The transformation {v 7→ fτ (v)}τ∈T balances the following two factors: (a) The optimal
parameter λx,y,z ensuring that y is included in the confidence setRz(x;λx,y,z); (b) The parameter
τx,z obtained from the probabilistic model ΠY |X=x.

We stress that CP2 is a general framework that can be adapted to many choices for conditional
predictive density estimates, constructing the family of confidence sets, and selecting the calibration
function fτ (λ). However, we start with the simple example that shows that CP2 is more general than
the classical split-conformal CP approach.

0.0 0.2 0.4 0.6 0.8 1.0

data

CP2

CP

Figure 1: Predictions sets obtained via the stan-
dard CP and CP2 methods.

Simple example of CP2. We begin with a simple
application of CP2 to highlight its differences from
the basic conformal approach, with Y = R. The
calibration sets are defined as: R(x; t) = {y ∈
Y : |y − pred(x)| ≤ t} for t ∈ R+. There are
no auxiliary variables z in this case, so we omit
z from the notation. Assumption H1 is easily sat-
isfied with T = R+. We then take fτ (λ) = τλ,
τ ∈ R+ and φ = 1: H2 is also satisfied. Note
that f−1

τ (λ) = λ/τ for τ ∈ R∗
+. Using the

CP2 approach, we find that λx,y = |y − pred(x)|,
which corresponds to a standard conformity score.
The classical conformal prediction method defines
the 1 − α quantile based on the associated em-
pirical measure νn = 1

n+1

∑n
k=1 δλ̄k

+ 1
n+1δ∞,

where λ̄k = |Yk − pred(Xk)|. CP2 differs from the basic conformal approach by introducing
τx = argmin{τ ∈ T : ΠY |X=x([pred(x) ± τ ]) ≥ 1 − α} as in (3), where [pred(x) ± τ ] =
[pred(x) − τ,pred(x) + τ ]. The prediction set becomes [pred(x) ± fτx(Q1−α(µn))], where
µn = 1

n+1

∑n
k=1 δλ̄k/τk + 1

n+1δ∞. In this setting, the choice of φ is irrelevant. Take φ > 0 and de-
note τφx = argmin{τ ∈ T : ΠY |X=x([pred(x)±fτ (φ)]) ≥ 1−α}. It is easily seen that τφx = τx/φ.
The prediction set becomes [pred(x)± fτφ

x
(Q1−α(µ

φ
n))], where µφ

n = 1
n+1

∑n
k=1 δλ̄k/τ̄

φ
k
+ 1

n+1δ∞
with τ̄φk = τφXk

. Note that Q1−α(µ
φ
n)) = φQ1−α(µn)) and thus fτφ

x
(Q1−α(µ

φ
n)) = fτx(Q1−α(µn))

showing that, the prediction set does not depend on the choice of φ. To illustrate the advantage of our
method, in Figure 1 we present the prediction sets obtained with the classical CP method and CP2 in
the case of a Neal’s funnel-shaped distribution in 2 dimensions; see (Neal, 2003, Section 9).

The natural approach for the general case is to use the conditional distribution ΠY |X=x or its estimate
to find Highest Predictive Density (HPD) regions and calibrate their size with the help of CP2. We
develop the respective general algorithm CP2-HPD in Appendix B.1. However, the procedures to
find HPDs are usually highly non-trivial and we only investigate this approach experimentally for
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Algorithm 1 CP2-PCP

Input: dataset {(Xk, Yk)}k∈[n], significance level α, conditional distribution ΠY |X , function ft.
// Compute the (1− α)-quantile
for k = 1 to n do

Sample {Ŷk,i}Mi=1 and {Ỹk,j}M̃j=1 from ΠY |X=Xk

Set λ̄k = minMi=1 ∥Yk − Ŷk,i∥
Set τ̄k = (t 7→ ft(φ))

−1{Q1−α(M̃
−1
∑M̃

j=1 δminM
i=1 ∥Ỹk,j−Ŷk,i∥)}

Q1−α (µn)← ⌈(1− α)(n+ 1)⌉-th smallest value in {f−1
τ̄k (λ̄k)}k∈[n] ∪ {∞}

// Compute the prediction set for a new point x ∈ Rd

Sample z = {Ŷi}Mi=1 and {Ỹj}M̃j=1 from ΠY |X=x

Set τx,z = (t 7→ ft(φ))
−1 {Q1−α(M̃

−1
∑M̃

j=1 δminM
i=1 ∥Ỹj−Ŷi∥)}

Output: Cα(x) = ∪Mi=1B(Ŷi, fτx,z
(Q1−α(µn))).

synthetic data; see Section 4.1. Next, we provide a specific implementation of our general CP2

framework that is universally applicable.

CP2 with Implicit Conditional Generative Model: CP2-PCP. We also develop a second instance
of the CP2 algorithm, inspired by (Wang et al., 2023). Unlike CP2-HPD, this approach does not
require the conditional density. It is designed for cases where the conditional generative model
(CGM) ΠY |X is implicit: we cannot evaluate it pointwise while being able to sample from it. For
each calibration point Xk, we draw M random variables {Ŷk,i}Mi=1 from ΠY |X=Xk

. We denote Zk =

(Ŷk,1, . . . , Ŷk,M ) and consider the confidence sets as the union of balls centered around the sample
pointsRZk

(Xk; t) = ∪Mi=1B(Ŷk,i, t). With such choice, we get λ̄k = minMi=1 ∥Yk − Ŷk,i∥. We then

draw a second sample {Ỹk,j}M̃j=1, and compute τ̄k = {t ∈ R+ : M̃−1
∑M̃

j=1 1RZk
(Xk;ft(φ))(Ỹk,j) ≥

1− α}. It is easily seen that

τ̄k = (t 7→ ft(φ))
−1
{
Q1−α

(
1
M̃

∑M̃
j=1 δminM

i=1 ∥Ỹk,j−Ŷk,i∥

)}
.

Given a new input Xn+1 ∈ Rd, we sample Zn+1 = (Ŷn+1,1, . . . , Ŷn+1,M ) and obtain prediction set
as follows

Cα(Xn+1) =
{
y ∈ Y : minMi=1 ∥y − Ŷn+1,i∥ ≤ fτ̄n+1

(Q1−α (µn))
}
,

where µn is given in (5). The CP2-PCP method employs the same confidence set Rz(x; t) as the
one used by PCP. This method effectively captures multimodalities using balls centered at likely
outputs Ŷn+1,i. Furthermore, the conformity scores used by PCP correspond to our λx,y,z . However,
the key distinction between the two algorithms lies in the additional parameter τx,z for CP2-PCP,
which requires the generation of a second random sample from ΠY |X=x. This method is especially
useful when solving equation (3) is intractable. We summarize CP2-PCP in Algorithm 1.

3 THEORETICAL GUARANTEES

In this section, we provide both marginal and conditional guarantees for the prediction set Cα(x)
given in (4). The validity of these guarantees is ensured by the exchangeability of the calibration data,
with the exception of Theorem 3.3 which relies on a concentration inequality and thus requires i.i.d.
calibration data.

The following theorem establishes marginal validity of the predictive set defined by CP2.

Theorem 3.1. Assume H1-H2. Then, for any α ∈ (0, 1), it holds 1− α ≤ P (Yn+1 ∈ Cα(Xn+1)).
Moreover, if the conformity scores {f−1

τ̄k (λ̄k)}n+1
k=1 are almost surely distinct, then it also holds that

P (Yn+1 ∈ Cα(Xn+1)) < 1− α+ (n+ 1)−1.

5
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The proof is postponed to Appendix A.1. Moreover, the upper bound on the coverage always holds
when the distribution of f−1

τ̄k (λ̄k) is continuous.

Now, we will investigate the conditional validity. Denote by dTV the total variation distance and by
PT the conditional probability given the training data.

Theorem 3.2. Assume H1-H2, and let α ∈ (0, 1). For any x ∈ Rd and z ∈ Z , it holds

PT (Yn+1 ∈ Cα(x) | (Xn+1, Zn+1) = (x, z)) ≥ 1− α− dTV(PY |X=x; ΠY |X=x)− p
(x,z)
n+1 ,

where p
(x,z)
n+1 = PT (Q1−α(µn) < f−1

τ̄n+1
(λ̄n+1) ≤ φ | (Xn+1, Zn+1) = (x, z)

)
.

The proof is postponed to Appendix A.1. The more accurately the estimator ΠY |X=x approximates
the true conditional distribution, the closer the result will be to 1− α. The second term in the lower
bound is p(x,z)n+1 . Its expected value is upper bounded by E[p(X,Z)

n+1 ] ≤ α, and non-asymptotic bounds
for this error term are developed in Appendix A.2.

Oracle asymptotic conditional coverage. We will now briefly discuss the asymptotic conditional
coverage guarantee; details are provided in the supplementary paper. Assuming the availability of an
oracle for the predictive distribution, i.e., PY |X=x = ΠY |X=x,we get under H1 and H2, that for any
t ∈ R,

P
(
λX,Y,Z ≤ fτX,Z

(t) |X = x, Z = z
)
= P

(
Y ∈ Rz(x; fτx,z

(t)) |X = x, Z = z
)

= ΠY |X=x

(
Rz(x; fτx,z

(t))
)
,

where (X,Y, Z) follows the same distribution than (Xk, Yk, Zk), k ∈ {1, . . . , n}. Note that
ΠY |X=x(Rz(x; fτx,z

(t))) ≥ 1− α if and only if t ≥ φ, which implies that

P(f−1
τX,Z

(λX,Y,Z) ≤ t | (X,Z) = (x, z)) ≥ 1− α if and only if t ≥ φ. (6)

From (6) it is easily seen that the (1−α)-quantile of f−1
τX,Z

(λX,Y,Z) is φ. The Glivenko–Cantelli Theo-
rem (Van der Vaart, 2000, Theorem 19.1) demonstrates that supt∈R |µn(−∞, t]−P(f−1

τX,Z
(λX,Y,Z) ≤

t)| → 0 almost surely as n → ∞, where µn is defined in (5). Since the convergence of the c.d.f.
implies the convergence of the quantile function (Van der Vaart, 2000, Lemma 21.2), we deduce
that Q1−α(µn)→ φ almost-surely as n→∞. Under weak additional conditions this implies that
limn→∞ p

(x,z)
n+1 = 0, Π̄Z|X × PX -almost everywhere, where Π̄Z|X is the Markov kernel used to draw

the auxiliary variables z; see Appendix A.4. In this case, Theorem 3.1 implies the asymptotic validity
of CP2.

Asymptotic conditional coverage for CP2 . In practice, the oracle is unavailable. In the following
theorem, we examine the asymptotic conditional conformal validity as the size of the training dataset,
mn, goes to infinity with n. In most cases, limn→∞ mn/n = γ > 0, but this is not required here.
To make the dependency of the estimator on the size of the training set explicit, we will denote the
conditional distribution a Π

(mn)
Y |X . Consider the following assumption.

H3. There exists sequence (rn) such that lim
n→∞

P(dTV(PX,Y ;PX ×Π
(mn)
Y |X ) ≤ rn) = 1.

In most interesting case, we have limn→∞ rn = 0. Such types of bounds can be deduced from (De-
vroye & Lugosi, 2001, Chapter 9). Let (X,Y, Z) and (X, Ŷ , Z) be random variables distributed
according to PX,Y × Π̄Z|X and PX ×Π

(mn)
Y |X × Π̄Z|X , respectively.

Theorem 3.3. Assume H1-H2-H3 hold. If the distributions of f−1
τX,Z

(λX,Y,Z) and f−1
τX,Z

(λX,Ŷ ,Z)
are continuous, then, it holds∣∣PT (Yn+1 ∈ Cα(Xn+1) |Xn+1, Zn+1)− 1 + α

∣∣ = OP

(√
n−1 log n+ rn

)
.

In (Lei et al., 2018; Izbicki et al., 2020; Sesia & Candès, 2020), the asymptotic conditional validity is
demonstrated by assuming the consistency of their methods’ estimators. For instance, Romano et al.
(2019) assume that the conditional quantile regressor converges in L2 towards the true quantile with
high probability.
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Figure 2: Mixture Density Network: the multimodal case.

4 NUMERICAL EXPERIMENTS

In this section, we conduct a comprehensive analysis demonstrating the advantage of CP2 compared
to standard and adaptive split conformal algorithms. Specifically, we benchmark our algorithm
against several state-of-the-art methods: Conformalized Quantile Regression (Romano et al., 2019),
Conformalized Histogram Regression (Sesia & Romano, 2021) and Probabilistic Conformal Pre-
diction (Wang et al., 2023). All these method share some key aspects: they are built on top of the
pre-trained models and do not require access to training data or the model’s internals on both cali-
bration and prediction steps. We aim to answer these specific questions: how does CP2 performs in
terms of coverage, conditional coverage and predictive set volume when compared to state-of-the-art
methods on synthetic and real data.

4.1 SYNTHETIC DATA EXPERIMENT

In this example, (Xk, Yk) is sampled from a mixture of P = 4 Gaussians; see Figure 2a. The number
of training and calibration samples is m = 104 and n = 103, respectively. We fit a Mixture Density
Network (MDN) as an explicit generative model, γY |X=x(y) =

∑P
ℓ=1 πℓ(x)N (y;µℓ(x), σ

2
ℓ (x)),

where µℓ(·), σℓ(·) and πℓ(·) are all modeled by fully connected 2-layers neural networks (the
condition

∑P
ℓ=1 πℓ(x) = 1 is ensured by using softmax activation functions). We use CP2-HPD (the

calculation of the HPD rates as well as τx and λx,y is explicit in this case) with ft(v) = tv. The
parameters of the MDN are trained by maximizing the likelihood on the training set.

We compare the plain CP2-HPD, PCP (with the same MDN as CP2-HPD and M = 50 draws) and
CQR. All methods achieve the desired marginal coverage 1− α = 0.9. We illustrate the conditional
coverage in Figure 2b and the lengths of the predictive sets in Figure 2c. CP with a fixed-width
predictive set performs poorly in this multimodal example, both in terms of the size of the confidence
set and the conditional coverage CP2-HPD and CQR perform similarly in terms of conditional
coverage (which remains close to 1− α = 0.9). The conditional coverage of PCP varies between
0.85 and 0.95. CP2-HPD produces shorter prediction sets compared to CQR and PCP. This is because
CP2-HPD uses an HPD confidence set that is more suitable for multimodal applications than the
interval produced by CQR.

4.2 REAL-WORLD REGRESSION DATA EXPERIMENTS

Datasets. We use publicly available regression datasets, which are also considered in (Romano
et al., 2019; Wang et al., 2023). Some of them come from the UCI repository: bike sharing (bike),
protein structure (bio), blog feedback (blog), Facebook comments (fb1 and fb2). Other datasets
come from US Department of Health surveys (meps19, meps20 and meps21), and from weather
forecasts (temp; Cho et al. (2020)).

Methods. We compare the proposed CP2-PCP method with Probabilistic Conformal Prediction
(PCP; Wang et al. (2023)), Conformalized Quantile Regression (CQR; Romano et al. (2019)), Con-
formalized Histogram Regression (CHR; Sesia & Romano (2021)), Conformal Prediction with
Conditional Guaranties (CPCG; Gibbs et al. (2023)), Localized Conformal Prediction (LCR; Guan
(2023)). We also consider CQR2 which is a modification of CQR that uses inverse quantile as confor-
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Figure 3: Worst-slab coverage on real data. Results averaged over 50 random splits of each dataset.
Calibration and test set sizes set to 2000, 50 conditional samples for PCP, CP2 and ΠY |X . Worst-slab
coverage parameter (1− δ) = 0.1. Nominal coverage level is (1− α) = 0.9 and is shown in dashed
black. Methods with conditional coverage below 0.75 shown as cross-hatched on horizontal axis.
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Figure 4: Sizes of the prediction sets on real data. We divide the size of the set by the standard
deviation of response to present the results on the same scale.

mity score. For our method and PCP we use a Mixture Density Network (Bishop, 1994) to estimate
the conditional distribution PY |X , since it was chosen in (Wang et al., 2023) as best-performing.
We also consider different choices of ft for our method: CP2-PCP-L stands for CP2-PCP with
ft(v) = tv and CP2-PCP-D stands for CP2-PCP with ft(v) = t + v. Our implementation of
CP2-PCP is summarized in Algorithm 1. Additionally, we consider ΠY |X which is a special case of
CP2-PCP with ft(v) = t.

Metrics. Empirical coverage (marginal and conditional) is the main quantity of interest for prediction
sets. We evaluate worst-slab conditional coverage (Cauchois et al., 2020; Romano et al., 2020b) in
our experiments, see details in Appendix B.3. We also measure the total size of the predicted sets,
scaled by the standard deviation of the response Y .

Experimental setup. Our experimental setup largely follows the approach outlined in (Wang et al.,
2023). Specifically, we split each dataset into training, calibration, and testing sets. A Mixture Density
Network (MDN) with 10 components is then trained to approximate the conditional distribution
PY |X . For each calibration and test point, we first compute the Gaussian Mixture parameters, forming
ΠY |X , and subsequently draw M = 5, 20, 50 samples from these distributions, which yieldRz(x, t).
This process is repeated across 50 different random splits of each dataset.

Results of the experiments for M = 50 samples are presented in Figures 3 and 4, additional results
are available in Appendix B. In terms of marginal coverage, all methods achieve the target 1 − α
value, except for ΠY |X .

Standard conformal prediction fails to maintain the conditional coverage as expected. We can also
observe that PCP consistently struggles with conditional coverage. On all the datasets CP2-PCP
provides valid conditional coverage, while CQR fails on blog and temp. CHR method shows unsta-
ble performance not achieving conditional coverage more often than other methods but sometimes
providing narrower predictions sets. Additionally, CP2-PCP significantly outperforms quantile
regression-based methods in terms of size of the prediction sets on bike, bio and temp datasets.
CPCG fails on some of the runs, most notably all splits of bio and temp. On most datasets CP2-PCP
provides better conditional coverage and shorter or comparable intervals. Computational complexity
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algorithm with minimum cluster size of 100, min_samples hyper-parameter of 20 and l2 metric.
Cluster label -1 corresponds to the outliers. Sample size for sampling-based methods was set to 50.
Nominal coverage equals (1− α) = 0.9 and is shown in dashed blacks.
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Figure 6: Marginal coverage for multi-target datasets, 50 replications. Sample size was set to 1000.
Nominal coverage equals (1− α) = 0.9 and is shown by dashed black line.

of the prediction is the highest for CPCG, about 10 times that of our approach. LCP shows significantly
lower conditional coverage on larger datasets.

Finally, we assess conditional coverage with the help of clustering. We apply HDBSCAN (Campello
et al., 2013; McInnes & Healy, 2017) method to cluster the test set and then compute coverage within
clusters. Results for fb1 dataset are presented in Figure 5. We again observe that CP and PCP do
not achieve conditional coverage and CHR and CQR performance is unstable. CP2-PCP on the other
hand maintains valid conditional coverage on all clusters and even on outliers (cluster label -1). Note
that these are all outliers combined and they may not lie in the same region of the input space.

4.3 REAL-WORLD REGRESSION DATA WITH MULTI-DIMENSIONAL TARGETS

We also study CP2 family of algorithms on the multi-target regression problems. Since selecting the
threshold τ for our methods is not dependent on the number of dimensions in Y their application
is straightforward. On the other hand, most other methods are inherently one-dimensional thus
require the use of the Bonferroni correction (Dunn, 1961). Each coordinate is treated independently
with miscoverage level adjusted to α/d, where d is the number of targets. As a result, for quan-
tile regression-based methods prediction sets are rectangular cuboids, formed as a product of the
corresponding intervals.

Datasets. We consider open-source multidimensional regression datasets: river flow data
rf1 and rf2 (Xioufis et al., 2012), supply chain management scm1d and scm20d (Xioufis
et al., 2012), indoor localisation indoor (Torres-Sospedra et al., 2014), GPU computation time
sgemm_small1 (Ballester-Ripoll et al., 2017).

We use the same metrics as before: marginal coverage and worst-slab coverage. Evaluating the
difference in prediction set size is more complex in case of multiple dimensions. Due to computational
constraints we perform pairwise comparisons between our methods and selected baselines, measuring

1The full dataset contains 241600 examples. Due to computational constraints we randomly subsample
10000 examples for each replication of our experiment.
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2D projection of the prediction set is calculated. For each test point and each pair of targets methods
are ranked. Lower rank is smaller area. This graph shows averaged results of 10 replications.

approximate areas of 2D projections of the prediction sets (Wang et al., 2023). These results can be
found on Figure 8. We approximate areas using a grid and fewer samples.

Since our methods naturally extend beyond one dimension, the experimental setup is almost identical.
We use the same underlying model for PY |X , the prediction set is now a union of d-dimensional balls
of the same radius around the sampled centers. The number of samples is increased to 1000.

Results. In Figure 6 we show marginal coverage attained by different algorithms. As expected,
naive application of 1D techniques CQR, CQR2 and CHR to multiple outputs produces significant
overcover. PCP and CP2 methods naturally extend to multidimensional targets and provide correct
marginal coverage.

In Figure 7 we present the conditional coverage estimates for multi-target datasets. PCP significantly
undercovers on rf1, rf2 and scm1d datasets, while CP2 comes very close to the nominal coverage
of 0.9. In case of CQR, CQR2 and CHR, they still overcover (scm20d, sgemm) or perform
comparably to our approach.

Figure 8 shows the aggregated results of the set size comparisons in multidimensional target setting.
For each test point and each pair of axes we rank the methods by the area of the projection of the
corresponding prediction set. The plot shows average rank for each method, aggregated across all
axes pairs and replications. Lower rank corresponds to smaller area, which is our goal. For datasets
indoor, scm1d and sgemm_small our approach performs better, while also providing sharper
conditional covergae. On the remaining datasets CP2 performs similarly to the competitors.

5 CONCLUSION

We address the challenge of conditional coverage in CP, and overcome previous negative results
by assuming the knowledge of a good estimator of PY |X . Our proposed mechanism conformalized
the conditional estimator ΠY |X to ensure marginal validity while maintaining similar conditional
coverage guarantees. Specifically, if experts can provide an accurate conditional estimator, our
algorithm CP2 generates nearly conditionally valid multidimensional prediction sets. This approach
offers a practical solution for tackling heteroscedasticity in various machine learning applications.
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A ADDITIONAL RESULTS AND CALCULATIONS

In this section, we analyze the theoretical results of Section 3. First, let’s recall the definition of the
quantile function for any distribution µn living in R. For any α ∈ (0, 1), the quantile Q1−α(µn) is
defined by

Q1−α(µn) = inf {t ∈ R : µn((−∞, t]) ≥ 1− α} .
Given a measure ΠY |X=x defined on σ(Y), we consider for all x ∈ Rd, z ∈ Z , the parameters τx,z
and λx,y,z given by

τx,z = inf
{
τ ∈ T : ΠY |X=x(Rz(x; fτ (φ))) ≥ 1− α

}
,

λx,y,z = inf {λ ∈ T : y ∈ Rz(x;λ)} ,
(7)

where φ is chosen as in H2, and by convention we set inf ∅ =∞. We denote by δv the Dirac measure
at v ∈ R, and write τ̄k = τXk,Zk

and λ̄k = λXk,Yk,Zk
. In this Appendix, we study the coverage of

the prediction set given ∀(x, z) ∈ R×Z by

Cα(x) = Rz

(
x; fτx,z

(
Q1−α(µn)

))
,

where the distribution µn is defined as

µn =
1

n+ 1

n∑
k=1

δf−1
τ̄k

(λ̄k)
+

1

n+ 1
δ∞.

The key idea behind the choice of τ̄k is to ensure that the conditional coverage of the prediction set
Cα(Xk) is approximately 1− α when the empirical distribution ΠY |X=Xk

is close to PY |X=Xk
. In

other words, τ̄k is chosen such that the probability of the observed value Yk given Xk falling inside
the prediction set Cα(Xk) is close to 1− α. On the other hand, the parameter λ̄k is used to ensure
that the prediction set RZk

(Xk; λ̄k) contains the observed value Yk. Moreover, note that τ̄k only
depends on the input data (Xk, Zk), while λ̄k depends on (Xk, Yk, Zk). Thus, the i.i.d. property of
{(Xk, Yk, Zk) : k ∈ [n+ 1]} ensures that the {(τ̄k, λ̄k)}n+1

k=1 are also i.i.d.

13
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A.1 PROOF OF THEOREMS 3.1 AND 3.2

Lemma A.1. Assume H1 hold. For any (x, y, z) ∈ Rd × Y × Z , λx,y,z exists in T, and we have
y ∈ Rz(x;λx,y,z).

Proof. Let (x, y, z) ∈ Rd × Y × Z be fixed. Since ∩t∈TRz(x; t) = ∅ and ∪t∈TRz(x; t) = Y ,
we deduce the existence of t0 and t1 such that y /∈ Rz(x; t0) and y ∈ Rz(x; t1). Therefore,
{t ∈ T : y ∈ Rz(x; t)} is non-empty and lower-bounded by t0. Thus, the infimum λx,y,z exists.
Now, let’s prove that y ∈ Rz(x;λx,y,z). Since λx,y,z = inf{t ∈ T : y ∈ Rz(x; t)}, we deduce the
existence of a decreasing sequence {λn}n∈N such that y ∈ Rz(x;λn) and limn→∞ λn = λx,y,z . By
definition of {λn}n∈N, we have y ∈ ∩n∈NRz(x;λn). However, using H1, remark that

∩n∈NRz(x;λn) = ∩n∈N ∩t>λn Rz(x; t)

= ∩t> lim
n→∞

λnRz(x; t)

= ∩t>λx,y,z
Rz(x; t) = Rz(x;λx,y,z).

Since y ∈ ∩n∈NRz(x;λn), it implies that y ∈ Rz(x;λx,y,z).

We will now present the proof for Theorem 3.1, which establishes the marginal validity of our
proposed method.

Theorem A.2. Assume H1-H2 hold, if {f−1
τ̄k (λ̄k)}n+1

k=1 are almost surely distinct, then it follows

1− α ≤ PT (Yn+1 ∈ Cα(Xn+1)) < 1− α+
1

n+ 1
. (8)

Proof. Using Lemma A.1, we have

PT (Yn+1 ∈ Cα(Xn+1)) = PT (Yn+1 ∈ RZn+1

(
Xn+1, fτ̄n+1(Q1−α(µn))

))
= PT (λn+1 ≤ fτ̄n+1(Q1−α(µn))

)
.

Since λ 7→ fτ̄n+1(λ) is increasing by H2, we deduce that

PT (λn+1 ≤ fτ̄n+1
(Q1−α(µn))

)
= PT

(
f−1
τ̄n+1

(λn+1) ≤ Q1−α(µn)
)
.

Denote by Vk = f−1
τ̄k (λ̄k), the exchangeability of the data {(Xk, Yk, Zk) : k ∈ [n+ 1]} implies that

PT

(
Vn+1 ≤ Q1−α

(
n∑

k=1

δVk

n+ 1
+

δ∞
n+ 1

))
= PT

(
Vn+1 ≤ Q1−α

(
n+1∑
k=1

δVk

n+ 1

))

=
1

n+ 1

n+1∑
k=1

ET

[
1Vk
≤ Q1−α

(
1

n+ 1

n+1∑
k=1

δVk

)]

= ET

[
ET

[
1VI
≤ Q1−α

(
1

n+ 1

n+1∑
k=1

δVk

) ∣∣∣∣V1, . . . , Vn+1

]]
,

where I ∼ Unif(1, . . . , n+ 1). Therefore, the definition of the quantile function implies the lower
bound in (8). Moreover, if there are no ties between the {Vk}n+1

k=1 , then

PT
(
f−1
τ̄n+1

(λn+1) ≤ Q1−α(µn)
)
< 1− α+

1

n+ 1
.

The following lemma provides conditions under which ΠY |X=x(Rz(x; fτx,z (φ))) ≥ 1− α.

Lemma A.3. Assume H1-H2 hold, and let α ∈ (0, 1), x ∈ Rd, z ∈ Z . If ΠY |X=x is a probability
measure, then τx,z is defined in T and ΠY |X=x(Rz(x; fτx,z (φ))) ≥ 1− α.
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Proof. Let x ∈ Rd be such that ΠY |X=x is a probability measure, and fix z ∈ Z . Since τ 7→ fτ (φ)
is increasing and bijective by H2, we have

sup
τ∈T

ΠY |X=x(Rz(x; fτ (φ))) = ΠY |X=x (∪τ∈TRz(x; fτ (φ)))

= ΠY |X=x (∪t∈TRz(x; t)) = 1.

The previous equality shows the existence of τ ∈ T such that ΠY |X=x(Rz(x; fτ (φ))) ≥ 1 − α.
Therefore {τ ∈ T : ΠY |X=x(Rz(x; fτ (φ))) ≥ 1 − α} is non-empty. This proves the existence
of τx,z = inf{τ ∈ T : ΠY |X=x(Rz(x; fτ (φ))) ≥ 1 − α} in T ∪ {−∞}. Moreover, τx,z > −∞,
otherwise we would have

1− α ≤ inf
τ∈T

ΠY |X=x(Rz(x; fτ (φ))) = ΠY |X=x (∩t∈TRz(x; t)) = 0.

Therefore, we deduce that τx,z ∈ T. Lastly, remark that

ΠY |X=x(Rz(x; fτx,z (φ))) = ΠY |X=x(∩τ>τx,zRz(x; fτ (φ)))

= inf
τ>τx,z

ΠY |X=x(Rz(x; fτ (φ))) ≥ 1− α.

Now, we prove Theorem 3.2. This result guarantees that the conditional confidence intervals
constructed by our method approximately satisfy the desired coverage of 1−α. Given (x, y) ∈ Rd×Z ,
let’s introduce

p
(x,z)
n+1 = PT

(
Q1−α(µn) < f−1

τx,z

(
λx,Yn+1,z

)
≤ φ |Xn+1 = x, Zn+1 = z

)
,

q
(x,z)
n+1 = PT

(
φ < f−1

τx,z

(
λx,Yn+1,z

)
≤ Q1−α(µn) |Xn+1 = x, Zn+1 = z

)
.

Theorem A.4. Assume H1-H2 hold, let x ∈ Rd be such that ΠY |X=x is a probability measure. For
any z ∈ Z , it follows that

1− α− dTV(PY |X=x; ΠY |X=x)− p
(x,z)
n+1 ≤ PT (Yn+1 ∈ Cα(Xn+1) | Xn+1 = x, Zn+1 = z)

≤ ΠY |X=x(Rz(x; fτx,z
(φ))) + dTV(PY |X=x; ΠY |X=x) + q

(x,z)
n+1 .

Proof. First, recall that Cα(x) is given in (4), and λx,Yn+1,z is defined in (7). Applying Lemma A.1,
we know that λx,Yn+1,z is defined in T, and also that Yn+1 ∈ Rz(x;λx,Yn+1,z). Hence, it holds

PT (Yn+1 ∈ Cα(Xn+1) |Xn+1 = x, Zn+1 = z)

= PT (Yn+1 ∈ Rz

(
x; fτx,z (Q1−α(µn))

)
|Xn+1 = x, Zn+1 = z

)
= PT (λx,Yn+1,z ≤ fτx,z (Q1−α(µn)) |Xn+1 = x, Zn+1 = z

)
. (9)

Let’s introduce the term PT (λx,Yn+1,z ≤ fτx,z (φ) |Xn+1 = x, Zn+1 = z) as follows:

PT (λx,Yn+1,z ≤ fτx,z (Q1−α(µn)) |Xn+1 = x, Zn+1 = z
)

= PT (λx,Yn+1,z ≤ fτx,z (Q1−α(µn)) |Xn+1 = x, Zn+1 = z
)

± PT (λx,Yn+1,z ≤ fτx,z (φ) |Xn+1 = x, Zn+1 = z
)
. (10)

Now, we will control the difference between the two terms of the previous equation. Let A and B be
defined as

A = PT
(
f−1
τx,z

(λx,Yn+1,z) ≤ Q1−α(µn) < φ |Xn+1 = x, Zn+1 = z
)
,

B = PT
(
f−1
τx,z

(λx,Yn+1,z) ≤ φ ≤ Q1−α(µn) |Xn+1 = x, Zn+1 = z
)
.
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We have

PT (λx,Yn+1,z ≤ fτx,z
(Q1−α(µn)) |Xn+1 = x, Zn+1 = z

)
= A+B + PT

(
φ < f−1

τx,z

(
λx,Yn+1,z

)
≤ Q1−α(µn) |Xn+1 = x, Zn+1 = z

)
,

and also

PT (λx,Yn+1,z ≤ fτx,z (φ) |Xn+1 = x, Zn+1 = z
)

= A+B + PT
(
Q1−α(µn) < f−1

τx,z

(
λx,Yn+1,z

)
≤ φ |Xn+1 = x, Zn+1 = z

)
.

Therefore, the difference between the terms introduced in (10) can be rewritten as

PT (λx,Yn+1,z ≤ fτx,z
(Q1−α(µn)) |Xn+1 = x, Zn+1 = z

)
− PT (λx,Yn+1,z ≤ fτx,z

(φ) |Xn+1 = x, Zn+1 = z
)

= PT
(
φ < f−1

τx,z

(
λx,Yn+1,z

)
≤ Q1−α(µn) |Xn+1 = x, Zn+1 = z

)
− PT

(
Q1−α(µn) < f−1

τx,z

(
λx,Yn+1,z

)
≤ φ |Xn+1 = x, Zn+1 = z

)
. (11)

1. By definition of the total variation distance, we have

PT (λx,Yn+1,z ≤ fτx,z
(φ) |Xn+1 = x, Zn+1 = z

)
≥ PT

(
λx,Ŷn+1,z

≤ fτx,z (φ) |Xn+1 = x, Zn+1 = z
)
− dTV(PY |X=x; ΠY |X=x).

Moreover, Lemma A.3 implies that

PT
(
λx,Ŷn+1,z

≤ fτx,z
(φ) |Xn+1 = x, Zn+1 = z

)
= PT

(
Ŷn+1 ∈

{
y ∈ Y : λx,y,z ≤ fτx,z

(φ)
}
|Xn+1 = x, Zn+1 = z

)
= PT

(
Ŷn+1 ∈ Rz(x; fτx,z

(φ)) |Xn+1 = x, Zn+1 = z
)

= ΠY |X=x(Rz(x; fτx,z
(φ))) ≥ 1− α.

Therefore, we deduce that
PT (λx,Yn+1,z ≤ fτx,z

(φ) |Xn+1 = x, Zn+1 = z
)
≥ 1− α− dTV(PY |X=x; ΠY |X=x).

Combining the previous result with (10) and (11) shows that

PT (λx,Yn+1,z ≤ fτx,z
(Q1−α(µn)) |Xn+1 = x, Zn+1 = z

)
≥ 1−α−dTV(PY |X=x; ΠY |X=x)

− PT
(
Q1−α(µn) < f−1

τx,z

(
λx,Yn+1,z

)
≤ φ |Xn+1 = x, Zn+1 = z

)
.

Finally, using (9) gives a lower bound on PT (Yn+1 ∈ Cα(Xn+1) | Xn+1 = x, Zn+1 = z).

2. By definition of the total variation distance, we have

PT (λx,Yn+1,z ≤ fτx,z
(φ) |Xn+1 = x, Zn+1 = z

)
≤ PT

(
λx,Ŷn+1,z

≤ fτx,z (φ) |Xn+1 = x, Zn+1 = z
)
+ dTV(PY |X=x; ΠY |X=x).

Moreover, Lemma A.3 implies that

PT
(
λx,Ŷn+1,z

≤ fτx,z (φ) |Xn+1 = x, Zn+1 = z
)
= ΠY |X=x(Rz(x; fτx,z (φ))).

Therefore, we deduce that

PT (λx,Yn+1,z ≤ fτx,z
(φ) |Xn+1 = x, Zn+1 = z

)
≤ ΠY |X=x(Rz(x; fτx,z

(φ))) + dTV(PY |X=x; ΠY |X=x).

Finally, combining the previous result with (10) and (11) shows that

PT (λx,Yn+1,z ≤ fτx,z
(Q1−α(µn)) |Xn+1 = x, Zn+1 = z

)
≤ ΠY |X=x(Rz(x; fτx,z

(φ))) + dTV(PY |X=x; ΠY |X=x) + q
(x,z)
n+1 .
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A.2 BOUND ON p
(x,z)
n+1 AND q

(x,z)
n+1

The objective of this section is to study the conditional guarantee obtained in Theorem A.4. Under
some assumptions, we have demonstrated that the conditional coverage is controlled as follows:

1− α− dTV(PY |X=x; ΠY |X=x)− p
(x,z)
n+1 ≤ PT (Yn+1 ∈ Cα(Xn+1) | Xn+1 = x, Zn+1 = z)

≤ ΠY |X=x(Rz(x; fτx,z
(φ))) + dTV(PY |X=x; ΠY |X=x) + q

(x,z)
n+1 ,

In the following, we consider the cumulative density functions F : t 7→ PT (f−1
τX,Z

(λX,Y,Z) ≤ t)

and F̂ : t 7→ PT (f−1
τX,Z

(λX,Ŷ ,Z) ≤ t), where (X,Y, Z) ∼ PX × PY |X × ΠZ|X and (X, Ŷ , Z) ∼
PX × ΠY |X × ΠZ|X . We denote by µ and µ̂ the law of the random variables f−1

τX,Z
(λX,Y,Z) and

f−1
τX,Z

(λX,Ŷ ,Z). Moreover, recall that µn = 1
n+1

∑n
k=1 δf−1

τ̄Xk
(λ̄k)

+ 1
n+1δ∞. Note, the quantile

Q1−α(µn) is an order statistic with a known distribution that converges to the true quantile Q1−α(µ).
The quantile is defined for any t ∈ (0, 1) by

Qt(ν) = inf{u ∈ R : ν((−∞, u]) ≥ t}, where ν ∈ {µ, µn, µ̂}. (12)

Theorem A.5. Assume H1-H2 hold, and let x ∈ Rd be such that ΠY |X=x is a probability measure.
For any ϵ ∈ [0, 1− α), if pϵ = PT (f−1

τX,Z
(λX,Y,Z) < Q1−α−ϵ(µ)) ≤ 1− α, then it follows that

p
(x,z)
n+1 ≤ PT

(
Q1−α−ϵ(µ) < f−1

τx,y
(λx,Yn+1,z) ≤ Q1−α(µ̂) |Xn+1 = x, Zn+1 = z

)
+ exp

(
−npϵ(1− pϵ)h

(
1− α− pϵ
pϵ(1− pϵ)

))
,

where h : u 7→ (1 + u) log(1 + u)− u.

Proof. Let ϵ ∈ [0, 1− α), x ∈ Rd, and consider

A = {Q1−α(µn) < Q1−α−ϵ(µ)} ,
Bx,z =

{
y ∈ Y : fτx,z

(Q1−α−ϵ(µ)) < λx,y,z ≤ fτx,z
(φ)
}
.

We have

PT (fτx,z
(Q1−α(µn)) < λx,Yn+1,z ≤ fτx,z

(φ) |Xn+1 = x, Zn+1 = z
)

≤ PT (A | Xn+1 = x, Zn+1 = z) + PT (Yn+1 ∈ Bx,z | Xn+1 = x, Zn+1 = z) .

Now, let’s upper bound the first term of the right-hand side equation. First, remark that

{Q1−α(µn) < Q1−α−ϵ(µ)} ⇔
{

1

n+ 1

n∑
k=1

1f−1
τ̄k

(λ̄k)<Q1−α−ϵ(µ)
≥ 1− α

}
.

Thus, we deduce that

PT (A | Xn+1 = x, Zn+1 = z) ≤ PT

(
n∑

k=1

1f−1
τ̄k

(λ̄k)<Q1−α−ϵ(µ)
≥ (n+ 1)(1− α)

)
.

Recall that pϵ = PT (f−1
τX,Z

(λX,Y,Z) < Q1−α−ϵ(µ)), and also that we assume pϵ ≤ 1−α. Therefore,
the Bennett’s inequality (Boucheron et al., 2003, Theorem 2) implies that

PT (A | Xn+1 = x, Zn+1 = z) ≤ exp

(
−npϵ(1− pϵ)h

(
(n+ 1)(1− α)− npϵ

npϵ(1− pϵ)

))
, (13)

where h : u 7→ (1 + u) log(1 + u)− u. Moreover, define

uϵ =
1− α− pϵ
pϵ(1− pϵ)

, ũϵ =
(n+ 1)(1− α)− npϵ

npϵ(1− pϵ)
.
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We have ũϵ ≤ uϵ, from the increasing property of h it follows that

PT (A | Xn+1 = x, Zn+1 = z) ≤ exp (−npϵ(1− pϵ)h(uϵ)) .

Furthermore, the definition of Bx,z gives

PT (Yn+1 ∈ Bx,z | Xn+1 = x, Zn+1 = z)

= PT (fτx,z
(Q1−α−ϵ(µ)) < λx,Yn+1,z ≤ fτx,z

(φ) | Xn+1 = x, Zn+1 = z
)
.

Moreover, for any t ∈ (−∞, φ), we have

F̂ (t) = PT
(
f−1
τX,Z

(λX,Ŷ ,Z) ≤ t
)

=

∫
PT
(
f−1
τX,Z

(λX,Ŷ ,Z) ≤ t
∣∣∣X = x, Z = z

)
Π̄Z|X=x(dz)PX(dx)

=

∫
PT
(
Ŷ ∈ R

(
x, fτz,z (t)

) ∣∣∣X = x, Z = z
)
Π̄Z|X=x(dz)PX(dx).

Using H2, the bijective property of τ 7→ fτ (φ) implies the existence of ν ∈ T, such that fν(φ) =
fτz,z (t). Note that, ν < τx,z otherwise it would lead to fν(φ) ≥ fτx,z

(φ) > fτx,z
(t). The definition

of τx,z shows that

PT
(
Ŷ ∈ R (x, fν(φ))

∣∣∣X = x, Z = z
)
< 1− α.

Therefore, we deduce that Q1−α(µ̂) ≥ φ, and we can conclude that

PT (Yn+1 ∈ Bx,z | Xn+1 = x, Zn+1 = z)

≤ PT
(
Q1−α−ϵ(µ) < f−1

τx,y
(λx,Yn+1,z) ≤ Q1−α(µ̂) | Xn+1 = x, Zn+1 = z

)
. (14)

Finally, combining (13) and (14) concludes the proof.

Given α ∈ (0, 1), define the threshold

ϵn =

√
8α(1− α) log n

n
. (15)

Lemma A.6. If the distribution of f−1
τX,Z

(λX,Y,Z) is continuous, then for all ϵ ∈ [0, 1− α), we have

pϵ = PT (f−1
τX,Z

(λX,Y,Z) < Q1−α−ϵ(µ)) = 1− α− ϵ. Moreover, if ϵn ≤ α(1−α)
8 , then it follows

exp

(
−npϵn(1− pϵn)h

(
1− α− pϵn
pϵn(1− pϵn)

))
≤ 1

n
,

where h : u 7→ (1 + u) log(1 + u)− u.

Proof. First, recall that Q1−α−ϵ(µ) is defined in (12). If the distribution of f−1
τX,Z

(λX,Y,Z) is contin-
uous, then we have

1− α− ϵ ≤ F (Q1−α−ϵ(µ)) = sup
δ>0

F (Q1−α−ϵ(µ)− δ)

≤ PT
(
f−1
τX,Z

(λX,Y,Z) < Q1−α−ϵ(µ)
)
= pϵ ≤ 1− α− ϵ.

Therefore, we deduce that pϵ = 1− α− ϵ. Let’s denote

δn = (n+ 1)(1− α)− npϵn , un =
(n+ 1)(1− α)− npϵn

npϵn(1− pϵn)
.

For any u ≥ 0, remark that log(1 + u) ≥ u− u2/2. Thus, we deduce

npϵn(1− pϵn)h (un) ≥ δn
(1 + un) log(1 + un)− un

un

≥ δn
un(1− un)

2
. (16)
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Now, let’s show that un ≤ 1/4. We have

un =
(n+ 1)(1− α)− npϵn

npϵn(1− pϵn)

=
1− α

npϵn(1− pϵn)
+

1− α− pϵn
pϵn(1− pϵn)

=
1− α

n(α+ ϵn)(1− α− ϵn)
+

ϵn
(α+ ϵn)(1− α− ϵn)

.

Therefore, un ≤ 1/4 if and only if

1− α

n
+ ϵn ≤

(α+ ϵn)(1− α− ϵn)

4
.

The function ϵ ∈ [0, 1/2−α] 7→ (α+ϵ)(1−α−ϵ) is increasing. Since ϵn ≤ α(1−α)/8 ≤ 1/2−α,
it is sufficient to prove that

1− α

n
+ ϵn ≤

α(1− α)

4
.

Since ϵn ≤ α(1− α)/8, we just need to show that

1− α

n
≤ α(1− α)

8
, i.e.,

8α(1− α)

n
≤ α2(1− α). (17)

Again, using the fact that ϵn ≤ α(1− α)/8, we deduce that

8α(1− α)

n
=

ϵ2n
log n

≤ α2(1− α)2

8 log n
= α2(1− α)× (1− α)

8 log n
.

Since (1−α)
8 logn ≤ 1, we deduce that (17) holds. This concludes that un ≤ 1/4. Moreover, for any

u ∈ [0, 0.25], we have

δn
u(1− u)

2
≥ uδn

4
.

Plugging the previous line in (16) implies that

exp (−npϵn(1− pϵn)h (un)) ≤ exp

(
− [(n+ 1)(1− α)− npϵn ]

2

4npϵn(1− pϵn)

)

≤ exp

(
− (1− α+ nϵn)

2

4n(α+ ϵn)(1− α− ϵn)

)

≤ exp

(
− nϵ2n
4(α+ ϵn)(1− α− ϵn)

)
. (18)

Lastly, since ϵn ≤ α, it follows that

nϵ2n
4(α+ ϵn)(1− α− ϵn)

=
2α(1− α) log n

(α+ ϵn)(1− α− ϵn)
≥ log n.

Combining the previous line with (18) completes the proof.

For any ϵ ∈ [0, α), define

qϵ = PT (f−1
τX,Z

(λX,Y,Z) < Q1−α+ϵ(µ)).

Theorem A.7. Assume H1-H2 hold, and let x ∈ Rd be such that ΠY |X=x is a probability measure.
If the distribution of f−1

τX,Z
(λX,Y,Z) is continuous and n−1 log n ≤ 8−3α(1− α), then, it holds

q
(x,z)
n+1 ≤

1

n
+PT

(
Q1−α(µ̂) < f−1

τx,y
(λx,Yn+1,z) ≤ Q1−α+ϵn(µ) |Xn+1 = x, Zn+1 = z

)
, (19)

where ϵn is defined in (15).
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Proof. Let’s consider

A = {Q1−α+ϵn(µ) < Q1−α(µn)} ,
Bx,z =

{
y ∈ Y : fτx,z

(Q1−α(µ̂)) < λx,y,z ≤ fτx,z
(Q1−α+ϵn(µ))

}
.

We have

PT (fτx,z
(Q1−α(µ̂)) < λx,Yn+1,z ≤ fτx,z

(Q1−α(µn)) |Xn+1 = x, Zn+1 = z
)

≤ PT (A | Xn+1 = x, Zn+1 = z) + PT (Yn+1 ∈ Bx,z | Xn+1 = x, Zn+1 = z) . (20)

Now, let’s upper bound the first term of the right-hand side equation. First, remark that

{Q1−α+ϵn(µ) < Q1−α(µn)} ⇔
{

1

n+ 1

n∑
k=1

1f−1
τ̄k

(λ̄k)<Q1−α+ϵn (µ) < 1− α

}
.

Thus, we deduce that

PT (A | Xn+1 = x, Zn+1 = z) ≤ PT

(
n∑

k=1

1f−1
τ̄k

(λ̄k)<Q1−α+ϵn (µn)
< (n+ 1)(1− α)

)
.

Recall that qϵn = PT (f−1
τX,Z

(λX,Y,Z) < Q1−α+ϵn(µ)), and also that qϵn < 1 since the distribution
of f−1

τX,Z
(λX,Y,Z) is continuous with 1−α+ ϵn < 1. Therefore, the Bennett’s inequality (Boucheron

et al., 2003, Theorem 2) implies that

PT (A | Xn+1 = x, Zn+1 = z) ≤ exp

(
−nqϵn(1− qϵn)h

(
(n+ 1)(1− α)− nqϵn

nqϵn(1− qϵn)

))
,

where h : u 7→ (1 + u) log(1 + u)− u. Moreover, define

uϵn =
1− α− qϵn
qϵn(1− qϵn)

, ũϵn =
(n+ 1)(1− α)− nqϵn

nqϵn(1− qϵn)
.

We have ũϵn ≤ uϵn , from the increasing property of h combined with Lemma A.6, it follows that

PT (A | Xn+1 = x, Zn+1 = z) ≤ exp (−nqϵn(1− qϵn)h(uϵn)) ≤ n−1.

The previous inequality combined with (20) concludes the proof.

A.3 PROOF OF THEOREM 3.3

Theorem A.8. Assume H1-H2 and suppose the distributions of f−1
τX,Z

(λX,Y,Z) and f−1
τX,Z

(λX,Ŷ ,Z)

are continuous. For any α ∈ (0, 1) and ρ > 0, it holds

PT (∣∣PT (Yn+1 ∈ Cα(Xn+1) |Xn+1, Zn+1)− 1 + α
∣∣ > ρ

)
≤ 2n−1 +

√
128α(1− α)n−1 log n+ 4dTV(PX,Y ;PX ×ΠY |X)

ρ
.

Proof. Let ρ > 0 be fixed. Applying Theorem 3.2, we obtain that

1− α− dTV(PY |X=x; ΠY |X=x)− p
(x,z)
n+1 ≤ PT (Yn+1 ∈ Cα(Xn+1) | Xn+1 = x, Zn+1 = z)

≤ ΠY |X=x(Rz(x; fτx,z
(φ))) + dTV(PY |X=x; ΠY |X=x) + q

(x,z)
n+1 . (21)

Step 1: Lower bound. Using the Markov’s inequality implies that

PT (PT (Yn+1 ∈ Cα(Xn+1) |Xn+1, Zn+1) < 1− α− ρ
)
≤ PT

(
dTV(PY |X ; ΠY |X) + p

(X,Z)
n+1 < ρ

)
≤ ET [dTV(PY |X ; ΠY |X)

]
+ ET [p(X,Z)

n+1

]
ρ

. (22)
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Moreover, using Theorem A.5 with Φ(ϵ) = ϵ[(u−1
ϵ −1) log(1+uϵ)−1] and uϵ = ϵ(α+ϵ)−1(1−α−ϵ),

it holds

ET [p(X,Z)
n+1

]
= PT

(
Q1−α(µn) < f−1

τX,Z
(λX,Y,Z) ≤ φ

)
≤ exp (−nΦ(ϵ)) + PT

(
Q1−α−ϵ(µ) < f−1

τ̄n+1
(λ̄n+1) ≤ Q1−α(µ̂)

∣∣Xn+1 = x, Zn+1 = z
)
.

By Lemma A.6, if n−1 log n ≤ 8−3α(1−α), then, setting ϵn =
√
8α(1− α)n−1 log n ensures that

exp(−nΦ(ϵn)) ≤ n−1. We assume in the following that n−1 log n ≤ 8−3α(1 − α), because, if it
not the case, the final upper bound obtained at the end of the proof is still valid. Thus, we get

ET [p(X,Z)
n+1

]
≤ n−1 + PT

(
Q1−α−ϵn(µ) < f−1

τ̄n+1
(λ̄n+1) ≤ Q1−α(µ̂)

)
. (23)

Let’s define γ̄ by
γ̄ = min(1, 1− α+ dTV(PX,Y ;PX ×ΠY |X)).

We now show that Q1−α(µ̂) ≤ Qγ̄(µ). By continuity of the cumulative density function of
f−1
τX,Z

(λX,Ŷ ,Z), we have

1− α = PT
(
f−1
τX,Z

(λX,Ŷ ,Z) ≤ Q1−α(µ̂)
)

≥ PT
(
f−1
τX,Z

(λX,Y,Z) ≤ Q1−α(µ̂)
)
− dTV(PX,Y ;PX ×ΠY |X).

Hence, it follows that

PT
(
f−1
τX,Z

(λX,Y,Z) ≤ Q1−α(µ̂)
)
≤ γ̄ ≤ PT

(
f−1
τX,Z

(λX,Y,Z) ≤ Qγ̄(µ)
)
.

Thus, the previous line implies that Q1−α(µ̂) ≤ Qγ̄(µ). Once again, using the continuity of the
distribution of f−1

τX,Z
(λX,Y,Z), we can write

PT
(
Q1−α(µ̂) < f−1

τx,y
(λx,Yn+1,z) ≤ Q1−α+ϵn(µ)

)
≤ PT

(
Q1−α−ϵn(µ) < f−1

τ̄n+1
(λ̄n+1) ≤ Qγ̄(µ)

)
= F (Qγ̄(µ))− F (Q1−α−ϵn(µ)) = γ̄ + ϵn − 1 + α

= n−1 +
√
8α(1− α)n−1 log n+ dTV(PX,Y ;PX ×ΠY |X).

Plugging the previous inequality inside (23) yields

ET [p(X,Z)
n+1

]
≤ n−1 +

√
8α(1− α)n−1 log n+ dTV(PX,Y ;PX ×ΠY |X).

Therefore, (22) implies that

PT (PT (Yn+1 ∈ Cα(Xn+1) |Xn+1, Zn+1) < 1− α− ρ
)

≤ n−1 +
√
8α(1− α)n−1 log n+ dTV(PX,Y ;PX ×ΠY |X) + ET [dTV(PY |X ; ΠY |X)

]
ρ

. (24)

Step 2: Upper bound. Using (21), we obtain

PT (PT (Yn+1 ∈ Cα(Xn+1) |Xn+1, Zn+1) > 1− α+ ρ
)

≤ PT
(
ΠY |X=X(RZ(X; fτX,Z

(φ))) + dTV(PY |X=X ; ΠY |X=X) + q
(X,Z)
n+1 > 1− α+ ρ

)
.

The continuity of the distribution of f−1
τX,Z

(λX,Ŷ ,Z) implies

1− α = PT
(
f−1
τX,Z

(λX,Ŷ ,Z) ≤ φ
)
=

∫
ΠY |X=x(Rz(x; fτx,z

(φ)))Π̄Z|X=x(dz)PX(dx).

Since ΠY |X=x(Rz(x; fτx,z
(φ))) ≥ 1 − α, we deduce that ΠY |X=x(Rz(x; fτx,z

(φ))) = 1 − α
almost surely. Therefore, using the Markov’s inequality gives

PT (PT (Yn+1 ∈ Cα(Xn+1) |Xn+1, Zn+1) > 1− α+ ρ
)
≤ ET [dTV(PY |X ; ΠY |X)

]
+ ET [q(X,Z)

n+1

]
ρ

.

(25)
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Moreover, applying Theorem A.7 shows that

q
(x,z)
n+1 ≤ n−1 + PT

(
Q1−α(µ̂) < f−1

τx,y
(λx,Yn+1,z) ≤ Q1−α+ϵn(µ) |Xn+1 = x, Zn+1 = z

)
. (26)

Let’s define γ by
γ = min(1, 1− α− dTV(PX,Y ;PX ×ΠY |X)).

We now show that Qγ(µ) ≤ Q1−α(µ̂). By continuity of the cumulative density function of
f−1
τX,Z

(λX,Ŷ ,Z), we have

1− α = PT
(
f−1
τX,Z

(λX,Ŷ ,Z) ≤ Q1−α(µ̂)
)

≤ PT
(
f−1
τX,Z

(λX,Y,Z) ≤ Q1−α(µ̂)
)
+ dTV(PX,Y ;PX ×ΠY |X).

Hence, it follows that

γ ≤ PT
(
f−1
τX,Z

(λX,Y,Z) ≤ Q1−α(µ̂)
)
.

Thus, we deduce that Q1−α(µ̂) ≥ Qγ(µ). Using the continuity of the distribution of f−1
τX,Z

(λX,Y,Z),
we can write

PT
(
Q1−α(µ̂) < f−1

τx,y
(λx,Yn+1,z) ≤ Q1−α+ϵn(µ)

)
≤ PT

(
Qγ(µ) < f−1

τx,y
(λx,Yn+1,z) ≤ Q1−α+ϵn(µ)

)
= F (Q1−α+ϵn(µ))− F

(
Qγ(µ)

)
= ϵn − 1 + α− γ

= n−1 +
√
8α(1− α)n−1 log n+ dTV(PX,Y ;PX ×ΠY |X).

Plugging the previous inequality inside (26) yields

ET [q(X,Z)
n+1

]
≤ n−1 +

√
8α(1− α)n−1 log n+ dTV(PX,Y ;PX ×ΠY |X).

Therefore, (25) implies that

PT (PT (Yn+1 ∈ Cα(Xn+1) |Xn+1, Zn+1) < 1− α− ρ
)

≤ n−1 +
√
8α(1− α)n−1 log n+ dTV(PX,Y ;PX ×ΠY |X) + ET [dTV(PY |X ; ΠY |X)

]
ρ

. (27)

Step 3: Bound on ET [dTV(PY |X ; ΠY |X)
]
. Let’s denote νY |X=x = 2−1(PY |X=x + ΠY |X=x).

Since PY |X=x ≪ νY |X=x and ΠY |X=x ≪ νY |X=x, there exists two Radon–Nikodym derivatives
g1(x, ·) and g1(x, ·) of PY |X=x and ΠY |X=x with respect to νY |X=x. Moreover, g1 and g2 are also
the Radon–Nikodym derivatives of PX,Y and PX ×ΠY |X with respect to PX × νY |X . By definition
of the total variation distance, we have

ET [dTV(PY |X ; ΠY |X)
]
=

∫
dTV(PY |X ; ΠY |X)PX(dx)

=
1

2

∫
|g1(x, y)− g2(x, y)| νY |X=xPX(dx)

= dTV(PX,Y ;PX ×ΠY |X). (28)

Step 4: Combination. Finally, using (24)-(27) and (28), it follows that

PT (∣∣PT (Yn+1 ∈ Cα(Xn+1) |Xn+1, Zn+1)− 1 + α
∣∣ > ρ

)
≤ 2n−1 +

√
128α(1− α)n−1 log n+ 4dTV(PX,Y ;PX ×ΠY |X)

ρ
.

Note that the proof assumes n−1 log n ≤ 8−3α(1 − α). To ensure the validity of the previous
bound even when this assumption does not hold, we increased the term

√
32α(1− α)n−1 log n to√

128α(1− α)n−1 log n.
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Theorem A.9. Assume H1-H2-H3 hold. If the distributions of f−1
τX,Z

(λX,Y,Z) and f−1
τX,Z

(λX,Ŷ ,Z)

are continuous, then, ∀ϵ ∈ (0, 1) there exists (Λ(ϵ)
n )n∈N such that lim infn→∞ P((Xn+1, Zn+1) ∈

Λ
(ϵ)
n ) ≥ 1− ϵ and also

sup
(x,z)∈Λ

(ϵ)
n

∣∣PT (Yn+1 ∈ Cα(Xn+1) | (Xn+1, Zn+1) = (x, z))− 1 + α
∣∣ = OP

(√
n−1 log n+ rn

)
.

Proof. First of all, define the following variables

cn+1(x, z) =
∣∣PT (Yn+1 ∈ Cα(Xn+1) | (Xn+1, Zn+1) = (x, z))− 1 + α

∣∣ ,
dn = dTV(PX,Y ;PX ×Π

(mn)
Y |X ).

Applying Theorem A.8, we obtain

P (cn+1(Xn+1, Zn+1) > ρ) ≤ P (dn > rn) + P (cn+1(Xn+1, Zn+1) > ρ; dn ≤ rn)

≤ P (dn > rn) + E
[
1dn≤rnPT (cn+1(Xn+1, Zn+1) > ρ)

]
≤ P (dn > rn) +

2n−1 +
√

128α(1− α)n−1 log n+ 4rn
ρ

.

Finally, using H3, we get limn→∞ P(dn > rn) = 0. Therefore, for any ϵ > 0, there exist Mϵ > 0
and ñϵ ∈ N such that, ∀n ≥ ñϵ, it holds

P
(
cn+1(Xn+1, Zn+1) > Mϵ ×

(√
n−1 log n+ rn

))
≤ ϵ. (29)

Given ϵ ∈ (0, 1), let’s consider the following set

Λ(ϵ)
n =

{
(Xn+1(ω), Zn+1(ω)) : ω ∈ Ω, cn+1(Xn+1, Zn+1)(ω) ≤Mϵ ×

(√
n−1 log n+ rn

)}
.

Equation (29) implies that

lim inf
n→∞

P
(
(Xn+1, Zn+1) ∈ Λ(ϵ)

n

)
≥ 1− ϵ,

and by definition of Λ(ϵ)
n , we also have

sup
(x,z)∈Λ

(ϵ)
n

cn+1(x, z) = OP

(√
n−1 log n+ rn

)
.

Note that, (29) also shows that∣∣PT (Yn+1 ∈ Cα(Xn+1) |Xn+1, Zn+1)− 1 + α
∣∣ = OP

(
n−1/2

√
log n+ rn

)
.

A.4 ADDITIONAL RESULTS

Let’s denote the conditional c.d.f of f−1
τX,Z

(λX,Y,Z) by

Fx,z(·) =
∫
Rd×Z

P
(
f−1
τx,z

(λx,Y,z) ≤ · | (X,Z) = (x, z)
)
Π̄Z|X=x(dz)PX(dx).

Lemma A.10. Assume that Q1−α(µn) → φ almost-surely as n → ∞. If FX,Z is continuous
almost-surely, then limn→∞ p

(x,z)
n+1 = 0, Π̄Z|X × PX -almost everywhere.

Proof. First, define the following sets:

A =
{
ω ∈ Ω: lim

n→∞
Q1−α(µn(ω)) = φ

}
,

B =
{
ω ∈ Ω: FX(ω),Z(ω) is continuous

}
.
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For all ω ∈ A ∩B, it holds

lim
n→∞

FX(ω),Z(ω) (Q1−α (µn(ω)) ∧ φ) = FX(ω),Z(ω) (φ) .

Moreover, note that we can write

p
(x,z)
n+1 = Fx,z(φ)− Fx,z(φ ∧Q1−α(µn)).

Hence, we deduce that

1 = P (A ∩B) ≤ P
(
ω ∈ Ω: lim

n→∞
FX(ω),Z(ω) (Q1−α (µn(ω)) ∧ φ) = FX(ω),Z(ω) (φ)

)
= P

(
lim
n→∞

p
(X,Z)
n+1 = 0

)
=

∫
Rd×Z

P
(
lim
n→∞

p
(x,z)
n+1 = 0

∣∣ (X,Z) = (x, z)
)

PZ|X=x(dz)PX(dx).

The last line implies that p(x,z)n+1 → 0 almost PZ|X × PX -everywhere.

The prediction set, defined in (4), is derived from the (1 − α)-quantile of the conformity scores
{f−1

τ̄k (λ̄k)}nk=1 ∪ {∞}. However, {∞} can be removed from these conformity scores. Inspired
by Romano et al. (2019); Sesia & Candès (2020), we prove a corollary of Theorem 3.1. Its result
demonstrates the marginal validity of the prediction set defined as

C̄α(x) = Rz

(
x; fτx,z

(
Q(1−α)(1+n−1)

(
1
n

∑n
k=1 δf−1

τ̄k
(λ̄k)

)))
. (30)

While the prediction set C̄α(x) relies on the quantile of the distribution 1
n

∑n
k=1 δf−1

τ̄k
(λ̄k)

, its proof

reveals that this prediction set is equivalent to Cα(x).
Corollary A.11. Under the same assumptions as in Theorem 3.1, for any α ∈ [1/(n + 1), 1], we
have

1− α ≤ P
(
Yn+1 ∈ C̄α(Xn+1)

)
< 1− α+

1

n+ 1
,

where the upper bound only holds if the conformity scores {f−1
τ̄k (λ̄k)}n+1

k=1 are almost surely distinct.

Proof. Let α ∈ R such that (n+ 1)−1 ≤ α ≤ 1, and recall that

µn =
1

n+ 1

n∑
k=1

δf−1
τ̄k

(λ̄k)
+

1

n+ 1
δ∞.

Since α ≥ (n+ 1)−1, the quantile Q1−α(µn) is the kαth order statistic of V1, . . . , Vn, where

Vk = f−1
τ̄k

(λ̄k), and kα = ⌈(1− α)(n+ 1)⌉.

However, ∀β ∈ (kα−1
n , kα

n ], we have

Qβ

(
1
n

∑n
k=1 δVk

)
= V(kα).

Since Cα(Xn+1) = RZn+1(Xn+1; fτ̄n+1(V(kα))), Theorem 3.1 implies that

1− α ≤ P
(
Yn+1 ∈ RZn+1

(
Xn+1; fτ̄n+1

(
Qβ

(
1
n

∑n
k=1 δVk

))))
< 1− α+

1

n+ 1
.

Setting β = (1−α)(1 + n−1) in the previous inequality and using the definition of C̄α(Xn+1) given
in (30) concludes the proof.

B EXPERIMENTAL SETUP AND RESULTS

This section aims to provide a comprehensive understanding of the CP2 algorithm. We want to further
explore the CP2 approach and to better explain the key concepts.
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NAME fτ (λ) f−1
τ (λ) φ

Linear τλ τ−1λ 1
Difference τ + λ λ− τ 0

Table 2: Adjustment Functions ft, their inverses f−1
τ and φ values used in our experiments.

Choice of ft. We present examples of mappings ft and their inverses f−1
τ in Table 2. The

choice of the mapping ft is crucial for the performance of the method, and we investigate their
impact in Section 4. For instance, choosing fτ (λ) = τλ results in approximately conditionally
valid prediction sets, as long as ΠY |X=x accurately estimates the conditional distribution PY |X=x;
see Theorem 3.2-Theorem 3.3. Initially we also considered other adjustment functions based on
exponent, sigmoid and tanh functions, but they all performed worse than linear and sum. As we
show later in 3, these two selected adjustment function perform similarly, showing only marginal
differences on some datasets. Designing new adjustment functions is a possible future research
direction.

B.1 HIGHEST PREDICTIVE DENSITY (HPD) REGIONS

CP2 with Explicit Conditional Density estimate: CP2-HPD. Assume that an estimator the
conditional density function is known, denoted by γY |X=x. The confidence set is defined as
R(x; t) = {y ∈ Y : γY |X=x(y) ≥ −t}. We omit the variable z from the notation, as we do
not consider exogenous randomization in this case. The parameter τx is obtained by solving

τx = argmin
{
τ ∈ R :

∫
R(x;τ)

γY |X=x(y) dy ≥ 1− α
}
. (31)

We then compute λx,y = −γY |X=x(y) and derive the prediction set as

Cα(x) =
{
y ∈ Y : γY |X=x(y) ≥ −fτx (Q1−α (µn))

}
.

If we take fτ (λ) = λ and φ = 1, the method shares similarity with the CD-split method,
proposed in (Izbicki et al., 2020). While CD-split uses λx,y as the conformity score, our method
uses f−1

τx (λx,y), which incorporates the information from τx to modify γY |X=x(y). The CP2-HPD
workflow is summarized in Algorithm 2.

Of course, the computation of (31) is in general highly non-trivial. Izbicki et al. (2020) suggested to
use binning, therefore approximating the conditional predictive distribution with histograms. The
method is restricted to the case where the dimension of Y the response is small; see (Izbicki et al.,
2020) for the case of Y = R. When the dimension becomes larger, then the estimation of HPD is
typically based on Monte Carlo methods, thus requiring the introduction of auxiliary variables.

Algorithm 2 CP2-HPD

Input: dataset {(Xk, Yk)}k∈[n], significance α, conditional density γY |X , function ft.
// Compute the (1− α)-quantile
for k = 1 to n do

Set λ̄k = −γY |X=Xk
(Yk)

Set τ̄k = τXk
as given in (3)

Q1−α (µn)← ⌈(1− α)(n+ 1)⌉-th smallest value in {f−1
τ̄k (λ̄k)}k∈[n] ∪ {∞}

// Compute the prediction set for a new point x ∈ Rd

Compute τx in (3).
Output: Cα(x) = {y ∈ Y : γY |X=x(y) ≥ −fτx(Q1−α(µn))}.
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B.2 DETAILS OF THE EXPERIMENTAL SETUP

We use the Mixture Density Network (Bishop, 1994) implementation from CDE (Rothfuss et al.,
2019) Python package2 as a base model for CP, PCP and CP2. The underlying neural network
contains two hidden layers of 100 neurons each and was trained for 1000 epochs for each split of the
data. Number of components of the Gaussian Mixture was set to 10 for all datasets.

For the CQR (Romano et al., 2019) and CHR (Sesia & Romano, 2021) we use the original authors’
implementation3. The underlying neural network that outputs conditional quantiles consists of two
hidden layers with 64 neurons each. Training was performed for 200 epochs for batch size 250.

For the CPCG (Gibbs et al., 2023) we also use the original authors’ implementation4. We use the
same splits and preprocessing steps as for other methods. The underlying prediction model is neural
network with of two hidden layers of 64 neurons and is trained for 1000 epochs with early stopping.
Embeddings from the last layer are collected to form feature maps, denoted as Φ(X) in the original
paper. A linear functional class F is used. We fixed some minor bugs in the authors code to avoid
an infinite loop, but the code still fails often which may be due to low dimensionality of the learned
feature space.

For LCP (Guan, 2023) we once again used the original author’s implementation5. The only change
was that we supplied our own preprocessed and split data, the same for all the discussed methods.
Most datasets had to be sub-sampled for training the model since the method computes full Hessian
on the train set, its SVD decomposition and also uses cross-validation estimates of the residuals
(scores). We kept all the hyperparameters values as in the original implementation.

We replicate the experiments for 50 random splits of all nine datasets. To lower noise in calculated
performance metrics we reuse trained networks and samples across different top-level algorithms for
each replication.

B.3 WORST-SLAB COVERAGE

Here we present some additional experiments related to conditional coverage achieved by different
methods. We have used Worst Slab Coverage metric, which is sensitive to the set of labs considered
during the search. Following Cauchois et al. (2020); Romano et al. (2020b), recall that a slab is
defined as

Sv,a,b =
{
x ∈ Rp : a < vTx < b

}
,

where v ∈ Rp and a, b ∈ R, such that a < b. Now, given the prediction set Cα(x) and δ ∈ [0, 1], the
worst-slab coverage is defined as:

WSC(Cα, δ) = inf
v∈Rp,a<b∈R

P (Y ∈ Cα(X)|X ∈ Sv,a,b) s.t. P(X ∈ Sv,a,b) ≥ 1− δ.

In our experiments we follow Romano et al. (2020b) in our implementation of this metric. Namely,
we use 25% of the data to find the worst slab and the use the remaining 75% to calculate the final
value on this slab. We use 5000 randomly sampled directions, that are the same for each algorithm
and change for each replication.

B.4 EXTENDED RESULTS OF REAL DATA EXPERIMENTS

Table 3 we summarize all metrics from our real-world data experiments. For conditional coverage we
report worst-slab coverage with (1− δ) = 0.1. On six out of nine datasets CP2 method achieves the
best result in conditional coverage. In terms of interval width PCP method produces the narrowest
intervals.As we can see, it happens at the expense of conditional coverage: PCP often achieves
significantly lower values.

We also present a more detailed view of set size differences between the methods. In the main part we
reported average rank of each method in Figure 8. We ranked the algorithms by their projected area

2https://github.com/freelunchtheorem/Conditional_Density_Estimation
3https://github.com/msesia/chr
4https://github.com/jjcherian/conditional-conformal
5https://github.com/LeyingGuan/LCP
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at each test point and averaged the ranks. Here we show raw areas of the projections onto each pairs
of axes for sgemm_small dataset in table 4. All targets were standardised to zero mean and unit
standard deviation so that different projections will be in the same scale. We see that PCP produces
smaller set sizes like in one-dimensional case. Quantile-regression based methods have the largest
sets, even larger than the fixed-sized sets of CP. Our approach demonstrates only modest increase in
prediction set size compared to PCP while achieving sharper conditional coverage.

Table 3: Summary results of experiments on real data. “M. Cov.” stands for marginal coverage, “C.
Cov.” is the worst-slab coverage (here (1−δ) = 0.1), and wsd is average total length of the prediction
sets, scaled by standard deviation of Y . Nominal coverage level is set to (1− α) = 0.9. For ΠY |X ,
PCP, CP2-PCP we use the same underlying mixture density network model with 50 samples. CHR
and CQR(2) also share the same base neural network model. We average results of 50 random data
splits. For each dataset, we highlighted the algorithm achieving conditional coverage closest to the
nominal level.

CP2

Dataset Metric CP PCP ΠY |X PCP-L PCP-D CHR CQR CQR2

bike
M. Cov. 0.90 0.90 0.93 0.90 0.90 0.90 0.90 0.90
C. Cov. 0.79 0.85 0.92 0.89 0.89 0.88 0.90 0.87
wsd 0.71 0.71 0.83 0.79 0.80 1.94 2.25 2.31

bio
M. Cov. 0.90 0.90 0.91 0.90 0.90 0.90 0.90 0.90
C. Cov. 0.88 0.89 0.91 0.90 0.90 0.90 0.89 0.89
wsd 2.34 1.89 1.95 1.97 1.95 1.92 2.13 2.10

blog
M. Cov. 0.90 0.90 0.91 0.90 0.90 0.90 0.90 0.90
C. Cov. 0.60 0.74 0.91 0.89 0.90 0.87 0.87 0.86
wsd 0.60 0.30 0.72 0.72 0.71 0.31 0.44 0.39

fb1
M. Cov. 0.90 0.90 0.93 0.90 0.90 0.90 0.90 0.90
C. Cov. 0.49 0.64 0.92 0.88 0.89 0.87 0.90 0.87
wsd 0.47 0.28 0.58 0.56 0.59 0.26 0.37 0.33

fb2
M. Cov. 0.90 0.90 0.93 0.90 0.90 0.90 0.90 0.90
C. Cov. 0.50 0.61 0.91 0.88 0.88 0.88 0.89 0.89
wsd 0.53 0.32 0.65 0.62 0.65 0.33 0.43 0.37

meps19
M. Cov. 0.90 0.90 0.89 0.90 0.90 0.90 0.89 0.90
C. Cov. 0.54 0.78 0.89 0.90 0.89 0.90 0.88 0.89
wsd 1.05 0.73 1.02 1.19 1.07 0.76 1.14 1.19

meps20
M. Cov. 0.90 0.90 0.89 0.90 0.90 0.90 0.90 0.90
C. Cov. 0.58 0.80 0.89 0.90 0.90 0.91 0.88 0.89
wsd 1.06 0.75 0.98 1.15 1.04 0.77 1.09 1.17

meps21
M. Cov. 0.90 0.90 0.89 0.90 0.90 0.90 0.90 0.90
C. Cov. 0.54 0.81 0.89 0.89 0.89 0.90 0.89 0.88
wsd 1.04 0.72 0.99 1.16 1.04 0.79 1.13 1.21

temp
M. Cov. 0.90 0.90 0.82 0.90 0.90 0.90 0.90 0.90
C. Cov. 0.87 0.89 0.81 0.88 0.89 0.86 0.85 0.86
wsd 0.87 0.92 0.78 0.96 0.93 1.31 1.48 1.30

B.5 OTHER PERSPECTIVE ON CONDITIONAL COVERAGE

The worst-slab coverage metric used in the previous section is not always helpful: (1) it provides a
single number for each method, and (2) the selected slab is different for each algorithm. In practice we
might be interested in how sharp the coverage is along the portion of the input space spanned by the
test data. To explore this, we used two approaches: dimensionality reduction and clustering. Results
for clustering with HDBSCAN are presented in the main part in Figure 5, here turn to dimensionality
reduction.
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Figure 9: Worst-slab coverage on real data (mean and stdev.). Results averaged over 50 random splits
of each dataset. Calibration and test set sizes set to 2000, 50 conditional samples for PCP, CP2 and
ΠY |X . Worst-slab coverage parameter (1− δ) = 0.1. Nominal coverage level is (1− α) = 0.9 and
is shown in dashed black. Methods with conditional coverage below 0.75 are not shown.

Table 4: Prediction set size comparison for sgemm_small dataset. Rows correspond to different
pairs of targets (dataset has 4 targets). For each method the reported value is the mean area of the 2D
projection of the prediction set to the corresponding axes pair.

CP2

Axes CP PCP ΠY |X PCP-L PCP-D CHR CQR CQR2

(0, 1) 2.137 0.435 0.517 0.576 0.560 2.290 2.550 2.436
(0, 2) 2.145 0.435 0.518 0.577 0.561 2.267 2.506 2.358
(0, 3) 2.145 0.436 0.519 0.578 0.561 2.086 2.366 2.172
(1, 2) 2.146 0.435 0.517 0.576 0.560 2.388 2.622 2.546
(1, 3) 2.146 0.435 0.517 0.576 0.560 2.166 2.461 2.314
(2, 3) 2.154 0.436 0.519 0.578 0.562 2.153 2.430 2.255

First we apply UMAP algorithm to project data to two dimensions and then construct a heatmap
plot to show coverage in each bin of the histogram. Results for meps_19 dataset are presented in
Figure 10. Nominal coverage is set to (1− α) = 0.9 and corresponds to gray part of the color scale.
We can see that our method and baseline ΠY |X perform better than CP and PCP across the space.
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Figure 10: Conditional coverage after dimensionality reduction, meps_21 dataset. Data projected to
two dimensions using UMAP algorithm with Canberra metric, with the n_neighbors hyperpa-
rameter set to 2. Nominal coverage is set to (1− α) = 0.1, it corresponds to gray on the color scale.
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