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ABSTRACT
Sign language is a rich form of communication, uniquely conveying
meaning through a combination of gestures, facial expressions, and
body movements. Existing research in sign language generation
has predominantly focused on text-to-sign pose generation, while
speech-to-sign pose generation remains relatively underexplored.
Speech-to-sign language generation models can facilitate effective
communication between the deaf and hearing communities. In this
paper, we propose an architecture that utilises prosodic information
from speech audio and semantic context from text to generate sign
pose sequences. In our approach, we adopt a multi-tasking strategy
that involves an additional task of predicting Facial Action Units
(FAUs). FAUs capture the intricate facial muscle movements that
play a crucial role in conveying specific facial expressions during
sign language generation.We train our models on an existing Indian
Sign language dataset that contains sign language videos with audio
and text translations. To evaluate our models, we report Dynamic
Time Warping (DTW) and Probability of Correct Keypoints (PCK)
scores. We find that combining prosody and text as input, along
with incorporating facial action unit prediction as an additional
task, outperforms previous models in both DTW and PCK scores.
We also discuss the challenges and limitations of speech-to-sign
pose generation models to encourage future research in this domain.
We release our models, results and code to foster reproducibility
and encourage future research1.

CCS CONCEPTS
• Computing methodologies→ Neural networks; Learning
latent representations; Computer vision; Information extrac-
tion.

∗Also with Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands.
1https://github.com/Mounika2405/MultiFacet-Speech-to-Sign.git
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1 INTRODUCTION
Sign language is a rich form of communication that seamlessly
blends together the fluidity of hand movements and gestures, the
expressiveness of facial expressions and head movements, and the
subtle nuances of body language. It is this harmony of hand move-
ments and expression that makes it complete and effective. Accord-
ing to theWorldHealth Organization (WHO), over 1.5 billion people,
which accounts for approximately 20% of the global population,
live with hearing loss, underscoring the importance of accessibil-
ity in communication [15]. While the field of Natural Language
Processing (NLP) has made remarkable progress in developing lan-
guage technologies that simplify daily tasks, the advancement in
technology to support sign language has not been as substantial
[32]. Towards this end, automatic sign language translation and
generation systems provide an efficient and accessible means of
communication between deaf people and the hearing community.

Recent years have seen a surge of interest in sign language tech-
nologies, with researchers exploring various computer vision and
deep learning approaches to tackle this complex task [17]. While
many of these works utilize text or gloss as input for generation
tasks, the area of speech-to-sign language generation remains rel-
atively underexplored [17]. Gloss, often used to represent sign
language, has been found to lack accuracy in capturing the com-
plete linguistic and expressive aspects of sign language [29, 35]. A
study on the Phoenix dataset [4] showed that a significant portion
of the data contained linguistic elements not present in the gloss
representation [35]. While text input can help generate semantic
signs, incorporating prosodic information extracted from audio
can provide more comprehensive data for a richer sign language
output[7].

Inspired by co-speech gesture generation literature[14], which
shares similarities with sign language generation, we utilize audio
along with text as input to generate sign pose sequences. In this
paper, we introduce MultiFacet, an architecture that uses prosodic
information derived from speech and semantic information sourced

https://github.com/Mounika2405/MultiFacet-Speech-to-Sign.git
https://doi.org/10.1145/3610661.3616550
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from text. This integrated data serves as the input for generating
key points of both facial and hand movements. Furthermore, our ap-
proach includes the prediction of Facial Action Units (AUs) within
a multi-tasking setup. We evaluate our model using Dynamic Time
Warping (DTW) and Probability of Correct Keypoints (PCK) metrics
against the existing Indian Sign Language dataset[11] and demon-
strate the critical importance of prosody and facial action unit
prediction in better sign language generation. In summary, our
main contributions are as follows:

• Leveraged prosody information from the audio and semantic
context from text for generation of continuous sign pose
sequences.

• Exploring the importance of facial action unit prediction for
generating hand and face key points in Indian sign language.

• We conducted ablation studies and extensively discussed
the limitations of our work to inspire future research and
advancements in this domain.

2 RELATEDWORK
Sign Pose Generation Most of the works in sign language gen-
eration are based on text or gloss as inputs[17]. [20] generated
continuous hand pose sequences using text as input. While this is a
great step in the field, it is only a partial representation of sign lan-
guage, as facial expressions and body language also play a critical
role in conveying meaning [9, 16]. Later works attempted to address
this limitation by including both manual (hand movements) and
non-manual (facial expressions) features in the generation process
but still relied on text or gloss as input. [18] used adversarial training
for multichannel sign production with text as input. Furthermore,
in another study, [21] represented sign sequences as skeletal graph
structures with gloss as an intermediate representation. [28] gen-
erated key points for hands and face by concatenating embedding
outputs from a text encoder and a gloss encoder. [29] first gener-
ated Hamnosys notation from text, which was further converted to
continuous sign pose sequences. These approaches made strides
towards incorporating non-manual features but still lacked the use
of prosodic information as input corresponding to the non-manual
features in sign language. [19, 25] generated photo-realistic sign
videos using text as input. They first generated skeleton poses from
text and then generated sign videos conditioned on these poses.

To address this concern of loss of prosody in gloss representa-
tion, [35] presented gloss enhancement strategies for introducing
intensity modifiers in gloss annotations using Phoenix dataset [4].
Intensity modifiers are the ones that quantify nouns, adjectives
or adverbs in a sentence ((e.g., very happy or little happy). Recent
works explored the use of speech Mel spectrogram inputs to gener-
ate hand movements in Indian Sign Language [11]. While this ap-
proach is a step in the right direction, generating hand movements
alone is insufficient to capture the full extent of sign language.

Co-speech Gesture Generation Co-speech gesture genera-
tion studies have shown the significance of using both speech and
text as input for generating semantically relevant and rythmic ges-
tures [14]. [1, 12, 33] have proposed continuous gesture generation
systems using audio and text as input, further underscoring the
importance of multimodal information for generating meaningful
gestures.

Non-Manual Recognition in Sign Language [26] presented
3D-CNN based multimodal framework for recognition of gram-
matical errors in continuous signing videos belonging to different
sentence types. The methodology they employed encompassed
two primary stages. Initially, 3D-CNN networks were leveraged to
recognise the grammatical elements from manual gestures, facial
expressions, and head movements. Subsequently, a sliding win-
dow technique was adopted to establish correlations between these
modalities, thereby facilitating the detection of grammatical errors
in the signing videos.

In this paper, by incorporating prosody and non-manual fea-
ture recognition, such as predicting Facial Action Units, we aim to
improve the accuracy and naturalness of sign language generation.

3 SPEECH TO SIGN LANGUAGE GENERATION
Given audio and text inputs, our aim is to generate sequences of sign
poses denoted as S, which include both upper body and face key-
points. To accomplish this, we adopt a multi-task learning approach,
incorporating a speech encoder, a Facial Action Units decoder, and
a sign pose decoder. The overall architecture is illustrated in Figure
1.

3.1 Input Embeddings
To facilitate the generation process, we extract two types of embed-
dings from the input data: BERT embeddings for text and Tacotron
2 GST[30] encodings for audio. We use the GST model provided by
NVIDIA2 which was pre-trained on train-clean-100 subset of Lib-
riTTS dataset[34] to represent the expressive features in audio. The
BERT embeddings, denoted as Etext, capture the semantic informa-
tion embedded within the text, allowing our model to understand
the linguistic context. We represent the input text as a sequence
of tokens {𝑥1, 𝑥2, ..., 𝑥𝑊 }, and BERT provides the corresponding
embeddings {𝑒𝑥1 , 𝑒𝑥2 , ..., 𝑒𝑥𝑊 } with a dimensionality of 768.

The Tacotron 2 GST encodings, denoted as Eaudio, extract both
linguistic content and prosody information from the audio input.
The GST model was pre-trained on LibriTTS dataset [34] with
the objective of learning a large range of acoustic expressiveness.
We represent the audio input as a sequence of mel-spectrograms
{𝑚1,𝑚2, ...,𝑚𝑇 }, where each mel-spectrogram has T × 256 dimen-
sions. Tacotron 2 GST[30] provides the corresponding embeddings
{𝑒𝑚1 , 𝑒𝑚2 , ..., 𝑒𝑚𝑇

}.

3.2 FAUs Preprocessing
Amongst various methods for denoting facial expressions, the Fa-
cial Action Coding System (FACS) stands as a comprehensive and
standardized tool [31]. It has been meticulously designed to de-
scribe and analyze these nonverbal cues by precisely identifying
distinct facial muscle movements. Central to FACS are its action
units (FAUs), a set of codes representing individual facial muscle
actions, which, when combined, proficiently portray a diverse ar-
ray of emotions and expressions. As a result of its efficacy, FACS
finds widespread application across various disciplines, including
psychology, neuroscience, anthropology, and computer graphics,
providing an objective and systematic means to categorize and
comprehend facial expressions.
2https://github.com/NVIDIA/mellotron/tree/master

https://github.com/NVIDIA/mellotron/tree/master
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Figure 1: TheArchitecture:We propose a novel architecture to generate sign pose sequences by utilising the prosodic information
from speech and semantic context from text. We also incorporate additional decoders to facilitate rich sign pose generation: (i)
Facial Action Unit decoder and (ii) Cross modal decoder.

While FACS is an index of facial expressions with an anatomical
basis, it generally does not provide the degree of muscle activation.
While there are modifiers that extend this coding system to accom-
modate intensities as well, we don’t consider them in our study due
to limited resources and no clear consensus on their use.

The use of FACS for sign language translation or generation is
relatively understudied [5, 6, 23]. One of the primary reasons for its
limited use is the costly annotation required for the existing sign
language datasets. To overcome this issue, we propose using an
existing state-of-the-art model, ME-GraphAU [13], to predict the
action units for our chosen dataset and use it as weak-supervision
during sign-language generation task. We encourage readers to
refer to [13] for details related to architecture, training dataset and
output format for the aforementioned model.

The output of the chosen model is noisy and lacks temporal con-
sistency since the prediction occurs on a per-frame basis. Training
with such an output would invariably lead to noisy supervision and
poor learning on the model’s part for the proposed task. As such,
we propose a pre-processing pipeline for reducing the noise using
the following steps:

• Threshold the output of the model using the probabilities as
confidence for each action unit and remove any low confi-
dence predictions.

• For these pruned predictions, we use linear interpolation for
estimating their new values.

• Finally, to reduce the remaining noise, we use hanning smooth-
ing over each action unit and get the final output. We use a
window length of 11, which corresponds to 0.5 seconds at
24FPS frame-rate of our source videos.

We show an example of the original prediction and output of
each step in the above-mentioned pipeline in Figure 2.

Figure 3 shows the ground truth facial action units extracted.

3.3 Model Components
The input embeddings Etext and Eaudio are then passed to their
respective encoders in our model:

1. Prosody Encoder: The transformer-based speech encoder, de-
noted as 𝐸speech, processes the Tacotron 2 GST encodings Eaudio to
obtain intermediate representations Hspeech. This can be expressed
as:

Hspeech = 𝐸speech (Eaudio)
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Figure 2: Illustration of the Facial ActionUnits (FAUs) prepro-
cessing pipeline: thresholding using action unit probabilities,
linear interpolation, and Hanning smoothing.

Figure 3: Representation ofGroundTruth Facial ActionUnits,
generated using Blender[3] for visualization purposes.

2. FAUs Decoder: We incorporate the FAUs prediction task as an
additional objective to capture facial expressions. The FAUs decoder,
denoted as 𝐷FAUs, processes the Tacotron 2 GST encodings Eaudio
to predict the Facial Action Units, denoted as FAUs. This can be
expressed as:

FAUs = 𝐷FAUs (Eaudio)
Facial AUs is a widely used facial expression coding system that
consists of a set of action units that correspond to different facial
muscle movements. We use a transformer-based decoder[27] for
this task and train it using cross-entropy loss.

LFAUs = − 1
𝑁

𝑁∑︁
𝑛=1

𝑀∑︁
𝑖=1

𝑦𝑛,𝑖 log(𝑝𝑛,𝑖 ) (1)

where 𝑁 is the number of training examples,𝑀 is the number
of Facial Action Units, 𝑦𝑛,𝑖 is the ground-truth label for the 𝑖-th
Facial Action Unit in the 𝑛-th example (either 0 or 1), and 𝑝𝑛,𝑖 is

the predicted probability for the 𝑖-th Facial Action Unit in the 𝑛-th
example.

3. Sign Pose Decoder: Our sign pose decoder, denoted as 𝐷pose,
is a transformer-based autoregressive decoder that takes the in-
termediate representations Hspeech as input to generate the se-
quence of sign poses S. The keypoints for each frame in the sign
pose sequence are represented as a 3D tensor, with dimensions
num_frames× 85× 3. The output of the decoder can be formulated
as:

𝑦𝑛,𝑖 = DPose (Hspeech,n, y𝑛,0:𝑖−1) (2)

Note that during training, the decoder uses ground-truth poses as
input for stability and faster convergence. During inference, the
pose inputs to the decoder are its own predictions upto the given
timestep.

We use regression loss to train the sign pose decoder, given by:

Lpose =
1
𝑁

𝑁∑︁
𝑛=1

85∑︁
𝑖=1

∥𝑦𝑛,𝑖 − 𝑦𝑛,𝑖 ∥2 (3)

where 𝑁 is the number of training examples, 𝑦𝑛,𝑖 is the ground-
truth value of the 𝑖-th keypoint for the 𝑛-th example, and 𝑦𝑛,𝑖 is the
predicted value of the 𝑖-th keypoint for the 𝑛-th example.

4. Cross-Modal Discriminator We use the same discriminator
used by [11] to match the speech segments with corresponding
pose sequences. The loss for the cross-modal discriminator can be
defined as follows:

LGAN
G =

1
𝑁

𝑁∑︁
𝑛=1

log(1 − (Dcross-modal (Hspeech, n, ŷn))) (4)

LGAN
D = − 1

𝑁

𝑁∑︁
𝑛=1

log((Dcross-modal (Hspeech, n, yn)))

+ log(1 − (Dcross-modal (Hspeech, n, ŷn)))
(5)

where Dcross-modal is the cross-modal discriminator. Hspeech, n
is the intermediate representation for the 𝑛-th example obtained
by the prosody encoder. Variables yn and ŷn are the ground-truth
and predicted pose sequences respectively. LGAN

D and LGAN
G are

the standard binary cross-entropy loss used for discriminator and
generator respectively.

3.4 Multi-Tasking Setup
We use a weighted sum of the losses from the individual decoders
to compute the overall loss.

Ltotal = 𝜆FAUs · LFAUs + 𝜆pose · Lpose + 𝜆discriminator · LGAN
G

where 𝜆FAUs, 𝜆pose, and 𝜆discriminator are hyperparameters that
control the relative importance of the FAUs loss, pose loss, and
discriminator loss, respectively.

The weights for each task are chosen to balance the contribution.
All the decoders are trained in a multitasking setup. The model
is trained to minimize the multitasking loss Ltotal using gradient-
based optimization techniques.
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4 IMPLEMENTATION DETAILS
We set up our transformer model with two layers for both encoders
and decoders, each equipped with eight attention heads. Both en-
coders and decoders use a hidden size of 512. We use the Adam
optimiser with an initial learning rate of 0.001, which can be re-
duced if the training plateaus. We apply gradient clipping with a
threshold of 5.0 and use a batch size of 32 for training efficiency.
We incorporate Future Prediction as proposed by [20]. The train-
ing loss function includes L1 regularisation along with losses for
specific components, each weighted accordingly. For the loss func-
tion, the values for 𝜆Pose, 𝜆FAUs, 𝜆Discriminator are 1, 0.001, 0.0001
respectively.

5 EXPERIMENTS
5.1 Dataset
The dataset used in our study is the continuous Indian Sign Lan-
guage dataset, which was released by [11]. This dataset contains
sign videos along with corresponding audio and text transcription,
covering various topics, such as current affairs, sports, and world
news. The dataset comprises 9137 videos and has a vocabulary size
of 10k.

To represent the sign videos in our analysis, we extracted 3D
joint position keypoints using Mediapipe [8]. This process involved
detecting 37 landmark points for the eyes, eyebrows, lips, and face
outline, along with 6 landmark points for the shoulders, elbows, and
hips. Additionally, each hand was represented with 21 landmark
points, bringing the total to 85 keypoints for upper body, hands
and face.

5.2 Baseline Models
Text2SignWe adopt the progressive transformers introduced by
[20] as the foundation of our approach. We extend their proposed
architecture and train them on the Indian Sign Language Dataset
with 3D keypoints for face and upper body.
Speech2Sign [11] utilised mel spectrograms as input to generate
sign pose sequences of hand movements. They incorporate a text
decoder and a cross-modal discriminator for learning the corre-
lation between speech and sign pose sequences. We extend this
architecture to generate face and body key points and consider it
as our baseline.

5.3 Evaluation Metrics
Dynamic Time Warping (DTW) Dynamic Time Warping (DTW)
[10] is one of the evaluation metrics for speech-to-sign language
generation models to assess the alignment between the predicted
sign language sequences and the ground truth sign language se-
quences.

Let 𝑃 = (𝑝1, 𝑝2, . . . , 𝑝𝑀 ) denote the predicted sign language
sequence, where 𝑝𝑖 represents the 𝑖-th pose in the predicted se-
quence, and 𝑀 is the length of the predicted sequence. Similarly,
let the ground truth sign language sequence be denoted as 𝐺 =

(𝑔1, 𝑔2, . . . , 𝑔𝑁 ), where 𝑔𝑖 represents the 𝑖-th pose in the ground
truth sequence, and 𝑁 is the length of the ground truth sequence.

DTW aims to find an optimal alignment between the sequences
𝑃 and 𝐺 by introducing a warping path𝑊 = {(𝑤1,𝑤2, . . . ,𝑤𝐾 )},

where 𝑤𝑘 = (𝑖, 𝑗) denotes the alignment of 𝑝𝑖 in the predicted
sequence with 𝑔 𝑗 in the ground truth sequence. The warping path
satisfies the conditions:𝑤1 = (1, 1),𝑤𝐾 = (𝑀, 𝑁 ), and𝑤𝑘 −𝑤𝑘−1 ∈
{(1, 0), (0, 1), (1, 1)}, allowing for insertions, deletions, and matches
between the sequences.

The objective of DTW is to minimize the accumulated cost along
the warping path𝑊 , which is defined by a distance or similarity
measure between the individual poses in the sequences. Let𝑑 (𝑝𝑖 , 𝑔 𝑗 )
represent the distance between 𝑝𝑖 and 𝑔 𝑗 in the pose space. The
accumulated cost 𝐶 (𝑊 ) along the warping path𝑊 is given by:

𝐶 (𝑊 ) =
𝐾∑︁
𝑘=1

𝑑 (𝑝𝑤𝑘
, 𝑔𝑤𝑘

)

To compute the final DTW score, we aim to find the optimal
warping path𝑊 ∗ that minimizes the accumulated cost 𝐶 (𝑊 ):

𝐷𝑇𝑊 (𝑃,𝐺) = min
𝑊

𝐶 (𝑊 )

The DTW score provides a measure of the alignment between the
predicted and ground truth sign language sequences, considering
the temporal differences and variations in the movement patterns. A
lower DTW score indicates a better alignment and higher similarity
between the sequences.

Probability of Correct Keypoints (PCK) PCK [2, 24] is a
widely used evaluation metric to assess the accuracy of pose esti-
mation models. It measures the percentage of correctly predicted
keypoints within a certain threshold distance compared to the
ground truth keypoints.

Let𝐺 = {𝑔1, 𝑔2, ..., 𝑔𝑁 } be the set of ground truth keypoints, and
𝑃 = {𝑝1, 𝑝2, ..., 𝑝𝑁 } be the set of predicted keypoints. Each keypoint,
𝑔𝑖 or 𝑝𝑖 , consists of (𝑥,𝑦, 𝑧) coordinates representing the position
of a particular body part, such as a hand or face.

To compute the PCK score, we need to define a threshold distance
𝛿 . For each ground truth keypoint 𝑔𝑖 , we check if there exists a
corresponding predicted keypoint 𝑝 𝑗 within the threshold distance
𝛿 . If such a predicted keypoint exists, and its distance to the ground
truth keypoint is less than or equal to 𝛿 , we consider it as a correct
prediction.

Mathematically, the PCK score can be computed as follows:

𝑃𝐶𝐾 =
1
𝑁

∑︁
𝑖

𝛿 (𝑔𝑖 , 𝑝𝑖 )

where 𝑁 is the total number of keypoints, and 𝛿 (𝑔𝑖 , 𝑝𝑖 ) is an
indicator function defined as:

𝛿 (𝑔𝑖 , 𝑝𝑖 ) =
{
1, if | |𝑔𝑖 − 𝑝𝑖 | | ≤ 𝛿
0, otherwise

Here, | |𝑔𝑖 − 𝑝𝑖 | | represents the Euclidean distance between the
ground truth keypoint 𝑔𝑖 and the predicted keypoint 𝑝𝑖 .

The PCK score is then calculated as the average of the indicator
values over all keypoints. It represents the percentage of keypoints
that have been correctly predicted within the specified threshold
distance 𝛿 . A higher PCK score indicates better accuracy and align-
ment between the predicted and ground truth keypoints.

In the context of sign language generation models, PCK can be
used to evaluate the quality of the generated sign language poses by
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Table 1: Comparison of Dynamic Time Warping (DTW) and
Probabilty of Correct Keypoints (PCK) scores with base-
lines on dev and test sets. B+F indicates model that predicts
body+face keypoints. PE - Prosody Encoder; TE: Text Encoder

Model DTW Score ↓ PCK ↑
Dev set

Text ->Sign[20] 19.55 0.61
Speech2sign [11] 15.94 0.72
PE + TE ->Sign 16.1 0.74
PE + TE ->Sign + FAUs 13.37 0.79

Test set

Text ->Sign[20] 22.55 0.59
Speech2sign [11] 14.08 0.78
PE + TE ->Sign 17.3 0.72
PE + TE ->Sign + FAUs 13.23 0.81

comparing them to the ground truth poses. However, it’s important
to note that PCK only considers individual keypoints and does not
capture the overall spatial or temporal coherence of the generated
sign language sequences.

5.4 Results and insights
We report DTW[10] and Probability of Correct Keypoints scores on
the Indian Sign Language dataset and compare it with the results
of both Text2Sign[20] and Speech2Sign [11] methods. From table
1 we observe that our model performs significantly better than
the existing Speech2Sign[11] method. Figure 4 shows the sample
qualitative results. An interesting observation from the provided
sample results, as well as other instances in our evaluation, is that
while our model encounters challenges in accurately capturing the
precise positions of hands and facial features in specific frames,
these representations exhibit a visual similarity to the target RGB
frames. It is worth noting, however, that minor disparities in hand
positions and facial expressions can convey substantially different
meanings in sign language. Consequently, we refrain from drawing
definitive conclusions from our qualitative assessments and defer
such considerations to future research endeavors.

6 ABLATION ANALYSIS
To evaluate the contribution of each component in our proposed
architecture, we conduct ablation studies on our model. Specifically,
we perform experiments where we remove each component from
the multitasking setup one by one and compare the results with
the full model.

Table 2 summarizes the results of our ablation studies. As can be
seen, removing the FAUs decoder results in a drop in performance
in both metrics. The results demonstrate the effectiveness of our
multitasking approach in leveraging multiple modalities for sign
language generation. However, we observe that the results are still
close to the model that uses only the text encoder.

In summary, our ablation studies demonstrate the effectiveness
of our multitasking approach in leveraging multiple modalities for
sign language generation.

Table 2: Comparison of ablation studies. PE - Prosody En-
coder; TE-Text Encoder

Model DTW Score ↓ PCK ↑
TE ->Sign 13.82 0.81
TE ->Sign + FAUs 15.69 0.78
PE ->Sign 17.16 0.73
PE ->Sign + FAUs 14.52 0.75
PE + TE ->Sign + FAUs (Ours) 13.23 0.81

7 LIMITATIONS & CHALLENGES
Evaluation Methods: Although our model has achieved state-
of-the-art results based on DTW scores, it is essential to conduct
human evaluation with expert sign language interpreters to ensure
the quality and relevance of the generated sign language. DTW
scores only assess the alignment between ground truth poses and
predicted poses but do not measure the correlation with the input
speech. Correlating these scores with human evaluation ratings is
crucial for understanding the model’s performance in real-world
communication scenarios. Metrics that measure the coherence and
synchronization of other non-manual elements, such as body pos-
ture, head movements, and eye gaze are also necessary [26]. There-
fore, when designing a sign language generation model, accounting
for these linguistic elements and their dynamic interactions is es-
sential to produce more accurate and culturally appropriate sign
language outputs.

Fine Movements: The current model successfully learns coarse
hand movements but lacks the ability to capture fine movements
of fingers and facial parts (See Figure 5 in Appendix A)s. This lim-
itation is attributed to the use of Mean Squared Error (MSE) loss,
which penalizes larger movements more than fine movements. To
address this issue, alternative loss functions, such as a keypoint loss
proposed by [22], can be explored. This loss involves a hand key-
point discriminator pre-trained on 2D hand poses and may improve
the model’s capability to generate more accurate and intricate hand
movements.

More Linguistic Information: One significant challenge lies
in handling the sequential nature of input speech or text, as op-
posed to the simultaneous nature of sign language. Speech unfolds
in a linear manner, and sign language relies on the integration
of multiple components in parallel. Thus, capturing and mapping
these linguistic structures effectively requires specialized attention.
Understanding how signers use space, directionality, and facial
expressions to indicate different grammatical constructs is crucial
for generating natural and contextually appropriate sign language.
Currently, our model focuses primarily on generating hand and fa-
cial movements, neglecting other crucial components. Future work
should explore incorporating non-manual markers, body language,
and gaze direction into the generation process to enhance the natu-
ralness and comprehensiveness of sign language communication.

Errors in Skeleton Pose Extraction: One of the significant
challenges in sign language generation is accurately extracting the
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Figure 4: Qualitative Results illustrating the input text, the original video, the ground truth pose, and the predicted pose.

skeleton pose from the input video or speech. The skeleton pose
serves as a crucial input to the model, representing the keypoint po-
sitions of the signer’s hands, face, and body movements. Although
advanced pose estimation techniques like Mediapipe provide robust
keypoint predictions, there are inherent limitations and errors that
can impact the overall performance of the sign language generation
model. Sign language videos captured in real-world settings may
contain various forms of noise, occlusions, and artifacts. These im-
perfections can lead to inaccuracies in the pose estimation process,
resulting in incorrect keypoint positions. For instance, background
clutter, complex hand gestures, or fast movements may obscure
the hand keypoints, leading to incomplete or noisy pose represen-
tations. Additionally, sign language involves intricate hand and
finger movements that can sometimes be challenging to discern
accurately (See Figure 6 in Appendix A ). The dynamic nature of
sign language requires precise identification of hand shapes, finger
positions, and gestures. However, the inherent ambiguity in certain
signs or gestures can lead to misinterpretations and inaccuracies in
the extracted skeleton pose.

Pose Representation: The representation of sign language as
keypoint sequences in videos is abstract and results in the loss
of some skeletal information. This may lead to some loss of fine-
grained details in the generated sign language. Future research
could explore alternative representations that preserve more intri-
cate skeletal information for more accurate sign language genera-
tion.

Dataset Size and Variety: Our current dataset size and variety
might be limited, which could impact the model’s ability to capture
the full complexity and richness of sign language. Expanding the
dataset or exploring low-resource training techniques is essential
to improve the model’s generalization and performance on diverse
signing styles and linguistic patterns.

Signer Style: Sign language relies on the signer’s individual
style and preferences, which can significantly affect the model’s
performance. Investigating the impact of varying signer styles on
the model’s output and devising methods to adapt the model to
different signing styles are critical for real-world applicability.
In conclusion, while our model shows promising results in gener-
ating sign language from speech, there are several limitations and
challenges that need to be addressed in future work.

8 CONCLUSION
In this paper, we introduced a multi-tasking approach, the Multi-
Facet model, for generating sign language poses from input speech
and text. Our model goes beyond just hand movements, also cap-
turing facial expressions, resulting in a more comprehensive repre-
sentation of sign language.

To assess the effectiveness of our model, we conducted experi-
ments on the Indian Sign Language dataset provided by [11]. By
incorporating a pre-trained prosody encoder and utilizing Facial
Action Units, we achieved even better results, surpassing previous
methods. The potential applications of our approach extend beyond
sign language communication.
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Although we achieved better results with the proposed approach,
there is significant room for further advancements in several as-
pects, including the datasets, methodologies, understanding of the
intricate relationship between speech and sign language, and evalu-
ation methods. We hope that our work will inspire further research
in this area and contribute to improving accessibility and inclusivity
for the deaf and hard-of-hearing community.

9 ETHICAL CONSIDERATIONS
In our study, it is important to acknowledge that we have employed
a limited dataset of Indian sign language videos, primarily sourced
from YouTube. While this dataset served as a valuable starting
point for our investigation into speech-to-sign language generation
models, we recognise its inherent limitations regarding representa-
tiveness for the broader sign language community. It is essential
to emphasize that the models proposed in this paper are only to
explore the role of prosody in speech-sign language generation
models and are not suitable for direct deployment due to their in-
sufficient scope and potential biases. Moreover, we acknowledge
that a critical aspect, validation with signers, has not been fully
undertaken within the scope of this study. This is a significant
limitation that warrants further attention and validation in future
research endeavours.
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A QUALITATIVE RESULTS

Figure 5: Sample result showing the model’s accurate hand
movement prediction with inaccurate finger movements.

Figure 6: Mediapipe Errors. The keypoints for the fourth
frame in the first video and the sixth frame in the second
video are predicted incorrectly due to fast/blurry movements
whereas the keypoints for the third frame in the second
video are predicted incorrectly as it contains a complex hand
gesture.
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