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ABSTRACT

We consider the explanation problem of Graph Neural Networks (GNNs). Most
existing GNN explanation methods identify the most important edges or nodes
but fail to consider substructures, which are more important for graph data. One
method considering subgraphs tries to search all possible subgraphs and iden-
tifies the most significant ones. However, the subgraphs identified may not be
recurrent or statistically important for interpretation. This work proposes a novel
method, named MotifExplainer, to explain GNNs by identifying important motifs,
which are recurrent and statistically significant patterns in graphs. Our proposed
motif-based methods can provide better human-understandable explanations than
methods based on nodes, edges, and regular subgraphs. Given an instance graph
and a pre-trained GNN model, our method first extracts motifs in the graph using
domain-specific motif extraction rules. Then, a motif embedding is encoded by
feeding motifs into the pre-trained GNN. Finally, we employ an attention-based
method to identify the most influential motifs as explanations for the prediction re-
sults. The empirical studies on both synthetic and real-world datasets demonstrate
the effectiveness of our method.

Graph neural networks (GNNs) have shown capability in solving various challenging tasks in graph
fields, such as node classification, graph classification, and link prediction. Although many GNNs
models Kipf & Welling (2016); Gao et al. (2018); Xu et al. (2018); Gao & Ji (2019); Liu et al. (2020)
have achieved state-of-the-art performances in various tasks, they are still considered black boxes
and lack sufficient knowledge to explain them. Inadequate interpretation of GNN decisions severely
hinders the applicability of these models in critical decision-making contexts where both predictive
performance and interpretability are critical. A good explainer allows us to debate GNN decisions
and shows where algorithmic decisions may be biased or discriminated against. In addition, we can
apply precise explanations to other scientific research like fragment generation. A fragment library
is a key component in drug discovery, and accurate explanations may help its generation.

Several methods have been proposed to explain GNNs, divided into instance-level explainers and
model-level explainers. Most existing instance-level explainers such as GNNExplainer Ying et al.
(2019), PGExplainer Luo et al. (2020), Gem Lin et al. (2021), and ReFine Wang et al. (2021) pro-
duce an explanation to every graph instance. These methods explain pre-trained GNNs by identify-
ing important edges or nodes but fail to consider substructures, which are more important for graph
data. The only method that considers subgraphs is SubgraphX Yuan et al. (2021), which searches all
possible subgraphs and identifies the most significant one. However, the subgraphs identified may
not be recurrent or statistically important, which raises an issue on the application of the produced
explanations. For example, fragment-based drug discovery (FBDD) Erlanson et al. (2004) has been
proven to be powerful for developing potent small-molecule compounds. FBDD is based on frag-
ment libraries, containing fragments or motifs identified as relevant to the target property by domain
experts. Using a motif-based GNN explainer, we can directly identify relevant fragments or motifs
that are ready to be used when generating drug-like lead compounds in FBDD.

In addition, searching and scoring all possible subgraphs is time-consuming and inefficient. We
claim that using motifs, recurrent and statistically important subgraphs, to explain GNNs can provide
a more intuitive explanation than methods based on nodes, edges, or subgraphs.

This work proposes a novel GNN explanation method named MotifExplainer, which can identify
significant motifs to explain an instance graph. In particular, our method first extracts motifs from a
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given graph using domain-specific motif extraction rules based on domain knowledge. Then, motif
embeddings of extracted motifs are generated by feeding motifs into the target GNN model. After
that, an attention model is employed to select relevant motifs based on attention weights. These
selected motifs are used as an explanation for the target GNN model on the instance graph. To our
knowledge, the proposed method represents the first attempt to apply the attention mechanism to
explain the GNN from the motif-level perspective. We evaluate our method using both qualitative
and quantitative experiments. The experiments show that our MotifExplainer can generate a better
explanation than previous GNN explainers. Furthermore, the efficiency studies demonstrate the
efficiency advantage of our methods in terms of a much shorter training and inference time.

1 PROBLEM FORMULATION

This section formulates the problem of explanations on graph neural networks. Let Gi = {V,E} ∈
G = {G1, G2, ..., Gi, ..., GN} denotes a graph where V = {v1, v2, ..., vi, ...vn} is the node set
of the graph and E is the edge set. Gi is associated with a d-dimensional set of node features
X = {x1,x2, ...,xi, ...,xn}, where xi ∈ Rd is the feature vector of node vi. Without loss of
generality, we consider the problem of explaining a GNN-based downstream classification task. For
a node classification task, we associate each node vi of a graph G with a label yi, where yi ∈ Y =
{l1, ..., lc} and c is the number of classes. For a graph classification task, each graph Gi is assigned
a corresponding label.

1.1 BACKGROUND ON GRAPH NEURAL NETWORKS

Most Graph Neural Networks (GNNs) follow a neighborhood aggregation learning scheme. In a
layer ℓ, GNNs contain three steps. First, a GNN first calculates the messages that will be transferred
between every node pair. A message for a node pair (vi, vj) can be represented by a function
θ(·) : bℓij = θ(xℓ−1

i ,xℓ−1
j , eij), where eij is the edge feature vector, xℓ−1

i and xℓ−1
j are the node

features of vi and vj at the previous layer, respectively. Second, for each node vi, GNN aggregates all
messages from its neighborhood Ni using an aggregation function ϕ(·) : Bℓ

i = ϕ
(
{bℓij |vj ∈ Ni}

)
.

Finally, the GNN combine the aggregated message Bℓ
i with node vi’s feature representation from

previous layer xℓ−1
i , and use a non-linear activation function to obtain the representation for node

vi at layer l : xℓ
i = f(xℓ−1

i ,Bℓ
i ). Formally, a ℓ-th GNN layer can be represented by

xℓ
i = f

(
xℓ−1
i , ϕ

({
θ
(
xl−1
i ,xl−1

j , eij
)}

| vj ∈ Ni}
))

.

1.2 GRAPH NEURAL NETWORK EXPLANATIONS

In a GNN explanation task, we are given a pre-trained GNN model, which can be represented by
Ψ(·) and its corresponding dataset D. The task is to obtain an explanation model Φ(·) that can
provide a fast and accurate explanation for the given GNN model. Most existing GNN explanation
approaches can be categorized into two branches: instance-level methods and model-level methods.
Instance-level methods can provide an explanation for each input graph, while model-level methods
are input-independent and analyze graph patterns without input data. Following previous works Luo
et al. (2020); Yuan et al. (2021); Lin et al. (2021); Wang et al. (2021); Bajaj et al. (2021), we focus on
instance-level methods with explanations using graph sub-structures. Also, our approach is model-
agnostic. In particular, given an input graph, our explanation model can generate a subgraph that
is the most important to the outcomes of a pre-trained GNN on any downstream graph-related task,
such as graph classification tasks.

2 MOTIF-BASED GRAPH NEURAL NETWORK EXPLAINER

Most existing GNN explainers Ying et al. (2019); Luo et al. (2020) identify the most important nodes
or edges. SubgraphX Yuan et al. (2021) is the first work that proposed a method to explain GNN
models by generating the most significant subgraph for an input graph. However, the subgraphs
identified by SubgraphX may not be recurrent or statistically important. This section proposes a
novel GNN explanation method, named MotifExplainer, to explain GNN models based on motifs.
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Figure 1: An illustration of the proposed MotifExplainer on graph classification tasks. Given a
graph, we first extract motifs based on extraction rules. Then, motif embedding is generated for each
motif by feeding it into the pre-trained GNN feature extractor. After that, we employ an attention
layer that uses graph embedding as the query and motif embedding as keys and values, resulting in a
new graph embedding. Finally, the loss is computed based on the new and the original predictions.

2.1 FROM SUBGRAPH TO MOTIF EXPLANATION

Unlike explanations on models for text and image tasks, a graph has non-grid topology structure
information, which needs to be considered in an explanation model. Given an input graph and a
trained GNN model, most existing GNN explainers, such as GNNExplainer Ying et al. (2019) and
PGExplainer Luo et al. (2020), identify important edges and construct a subgraph containing all
those edges as the explanation of the input graph. However, these models ignore the interactions
between edges or nodes and implicitly measure the essence of substructures. SubgraphX Yuan
et al. (2021) proposed to employ subgraphs for GNN explanation. It explicitly evaluates subgraphs
and considers the interaction between different substructures. However, it does not use domain
knowledge like motif information when generating the subgraphs.

A motif can be regarded as a simple subgraph of a complex graph, which repeatedly appears in
graphs and is highly related to the function of the graph. Motifs have been extensively studied in
many fields, like biochemistry, ecology, neurobiology, and engineering Milo et al. (2002); Shen-Orr
et al. (2002); Alon (2007; 2019) and are proved to be important. A subgraph identified without
considering domain knowledge can be ineffective for downstream tasks like fragment library gen-
eration in FBDD. Thus, it is desirable to introduce statistically important motif information to a
more human-understandable GNN explanation. In addition, subgraph-based explainers like Sub-
graphX need to handle a large searching space, which leads to efficiency issues when generating
explanations for dense or large scale graphs. In contrast, the number of the extracted motifs can
be constrained by well-designed motif extraction rules, which means that using motifs as explana-
tions can significantly reduce the search space. Another limitation of SubgraphX is that it needs
to pre-determine a maximum number of nodes for its searching space. As the number of nodes in
graphs varies greatly, it is hard to set a proper number for searching subgraphs. A large number will
tremendously increase the computational resources, while a small number can limit the power of the
explainer. To address the limitations of subgraph-based explainers, we propose a novel method that
explicitly select important motifs as an explanation for a given graph. Compared to explainers based
on subgraphs, our method generates explanations with motifs, which are statistically important and
more human-understandable.

2.2 MOTIF EXTRACTION

This section introduces domain-specific motif extraction rules.

Domain knowledge. When working with data from different domains, motifs are extracted based on
specific domain knowledge. For example, in biological networks, feed-forward loop, bifan, single-
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input, and multi-input motifs are popular motifs, which have shown to have different properties
and functions Alon (2007); Mangan & Alon (2003); Gorochowski et al. (2018). For graphs or
networks in the engineering domain, the three-node feedback loop Leite & Wang (2010) and four-
node feedback loop motifs Piraveenan et al. (2013) are important in addition to the feed-forward
loop and bifan motifs. Motifs have also been shown to be important in computational Chemistry Yu
& Gao (2022). The structures of these motifs are illustrated in Appendix 3.

Extraction methods. For molecule datasets, we can use sophisticated decomposition methods like
RECAP Lewell et al. (1998) and BRICS Degen et al. (2008) algorithms to extract motifs. For other
datasets that do not have mature extraction methods like biological networks and social networks,
inspired by related works on graph feature representation learning Yu & Gao (2022); Bouritsas et al.
(2022), we propose a general extraction method that only considers cycles and edges as motifs,
which can cover most popular network motifs.

In particular, given a graph, we first extract all cycles out of it. Then, all edges that are not inside the
cycles are considered motifs. We consider combining cycles with more than two coincident nodes
into a motif. Although this method cannot extract complex motifs like single-input and multi-input
motifs, it can generate the most important motifs, such as ring structures in biochemical molecules
and the feed-forward loop motif. By adopting this simple but general motif extraction method, we
can explain a GNN model without any domain knowledge, making our explanation model more
applicable. Need to be noted that, even though the motif extraction rule cannot extract single-input
and multi-input motifs, these motifs can be implicitly identified by our attention layer. Experiments
in the table 1 demonstrate it.

Our methods can be easily applied to other domains by changing the motif extraction rules accord-
ingly.

Computational graph. We define the computational graph of a given graph based on different
tasks. The computational graph includes all nodes and edges contributing to the prediction. Since
most GNNs follow a neighborhood-aggregation scheme, the computational graph usually depends
on the architecture of GNNs, such as the number of layers. In graph classification tasks, all nodes
and edges contribute to the final prediction. Thus, a graph itself is its computational graph in graph
classification tasks. For node classification tasks, a target node’s computational graph is the L-hop
subgraph centered on the target node, where L is the number of GNN layers. Here, we only consider
motifs in the computational graph since those outside it are irrelevant to the predictions.

Motif extraction. Given a graph G, we extract all motifs based on the motif extraction method. If
a motif has been extracted from the graph, it is added to a motif list M. After searching the whole
graph, there may be edges not in any motif. We regard each of them as a one-edge motif and add
them to the motif list to retain the integrity of the graph information. At last, we can obtain the motif
list M = [m1,m2, . . . ,mt] in G.

2.3 GNN EXPLANATION FOR GRAPH CLASSIFICATION TASKS

Algorithm 1 MotifExplainer for graph classification tasks
Input: a set of graphs G, labels for graphs Y = {y1, ..., yi, ..., yn}, a pre-trained GNN Ψ(·), a
pre-trained classifier ξ(·), motif extraction rule R
Initialization: initial a trainable weight matrix W
for graph Gi in G do

Graph embedding j = Ψ(Gi)
Create motif list M = {m1, ...,mj , ...,mt} based on extraction rule R
Generate motif embedding for each motif mj = Ψ(mj)
Obtain an output score for each motif sj = mj ·W · h
Train an attention weight for each motif αj =

exp(sj)∑t
k=1 exp(sk)

Acquire an alternative graph embedding h′ =
∑t

k=1 αkmk

Output a prediction for the alternative graph embedding y′i = ξ(h′)
Calculate loss based on yi and y′i : loss = f(y, y′)
Update weight W .

end for

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

2.4 MOTIF EMBEDDING

After extracting motifs M from a given graph, we encode the feature representations for each motif.
Given a pre-trained GNN model, we split it into two parts: a feature extractor Ψ(·) and a classifier
ξ(·). The feature extractor Ψ(·) generates an embedding for the prediction target. In particular,
Ψ(·) outputs graph embeddings in graph classification tasks, and outputs node embeddings in node
classification tasks. The motif embedding is obtained in a graph classification task by feeding all
motif node embeddings into a readout function. While in a node classification task, motif embedding
encodes the influence of the motif on the node embedding of the target node. Thus, we feed the
target node k and a motif mj ∈ M as a subgraph into the GNN feature extractor Ψ(·) and use the
resulting target node embedding of k as the embedding of the motif. To ensure the connectivity of
the subgraph, we keep edges from the target node to the motif and mask features of irrelevant nodes.

This section introduces how to generate an explanation for a pre-trained GNN model in a graph
classification task. We split the pre-trained GNN model into a feature extractor Ψ(·) and a classifier
ξ(·). Given a graph G, its original graph embedding h is computed as h = Ψ(G). The prediction y
is computed by y = ξ(h).

Based on the given graph, our method extracts a motif list from it and generates motif embedding
M = [m1,m2, . . . ,mt] using the pre-trained feature extractor Ψ(·). Since the original graph em-
bedding is directly related to the predictions, we identify the most important motifs by investigating
relationships between the original graph embedding and motif embeddings. To this end, we em-
ploy an attention layer, which uses the original graph embedding h = Ψ(G) as query and motif
embedding M as keys and values. The output of the attention layer is considered as a new graph
embedding h′. We interpret the attention scores as the strengths of relationships between the pre-
diction and motifs. Thus, highly relevant motifs will contribute more to the new graph embedding.
By feeding the new graph embedding h′ into the pre-trained graph classifier ξ(·), a new prediction
y′ = ξ(h′) is obtained. The loss based on y and y′ evaluates the contribution of selected motifs
to the final prediction, which trains the attention layer such that important motifs are selected to
produce similar predictions to the original graph embedding. Formally, this explanation process can
be represented as

h = Ψ(G), y = ξ(h), (1)
M = [m1,m2, . . . ,mt] = MotifExtractor(G), (2)

M = [m1,m2, . . . ,mt] = [Ψ(mi)]
t
i=1, (3)

h′ = Attn(h,M ,M), (4)

y′ = ξ(h′), (5)

loss = f(y, y′), (6)

where Attn(·) is an attention layer and f is a loss function. After training, we use the attention
scores to identify important motifs. To our knowledge, our work first attempts to use the attention
mechanism for GNN explanation. We want to mention that the attention mechanism is only a tool
for selecting important motifs. Any other methods that can identify relevances between two feature
vectors can be applied in our model. In addition, attention scores are only used in training, while we
have other metrics for evaluation.

During testing, we use a threshold σ/t to select important motifs, where σ is a hyper-parameter and
t is the number of motifs extracted. The explanation includes the motifs whose attention scores are
larger than the threshold. Algorithm 1 describes our GNN explanation method on graph classifica-
tion tasks. In addition, we provide an illustration of the proposed MotifExplainer in Figure 1.

2.5 GNN EXPLANATION FOR NODE CLASSIFICATION TASKS
This section introduces how to generate an explanation for a node classification task. Given a graph
G and a target node vi, we first construct a computational graph for vi, which is an L-hop subgraph
as described in Section 2.2. Then we extract motifs from the computational graph and generate motif
embedding for each motif using the feature extractor Ψ(·). To keep the connectivity between a target
node and a motif, we keep the shortest path between each node in the motif and the target node in
an explanation graph. To reduce the impact of nodes on the path, we set irrelevant nodes’ features
to zero. After that, the proposed MotifExplainer employs an attention layer to identify important
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Algorithm 2 MotifExplainer for node classification tasks
Input: a graph G, labels for all nodes in the graph Y = {y1, ..., yi, ..., yn}, a pre-trained GNN
Ψ(·), a pre-trained classifier ξ(·), motif extraction rule R
Initialization: initial a trainable weight matrix W , calculate all node embedding H =
{h1, ..., hi, ..., hn}
for node vi in the graph G do

Original node embedding hi ∈ H
Create motif list M = {m1, ...,mj , ...,mt} based on extraction rule R
For each motif mj , we keep the motif, the target node vi and the edges between them. Then we
put this subgraph into the pre-trained GNN Ψ(·) and get a new node embedding of target node
vi as the motif embedding mj

Obtain an output score for each motif sj = mj ·W · hi

Train an attention weight for each motif αj =
exp(sj)∑t

k=1 exp(sk)

Acquire an alternative graph embedding h′
i =

∑t
k=1 αkmk

Output a prediction for the alternative graph embedding y′i = ξ(h′
i)

Calculate loss based on y′i and yi
Update weight W using back-propagation.

end for

motifs. The attention layer for node classification tasks is similar to the one for graph classification
tasks, except that the query is the embedding of the target node. A node embedding is generated by
feeding the whole graph into the feature extractor Ψ(·). The target node’s output feature vector hi is
used as the query vector in the attention layer, which outputs the new node embedding h′

i. Similarly,
the new prediction y′ = ξ(h′

i) is obtained by feeding h′
i into the pre-trained classifier.

We use a threshold σ/t during testing to identify important motifs as an explanation. Algorithm 2
describes the details of the MotifExplainer on node classification tasks. Formally, the different parts
from Section 2.3 are represented as

h = Ψ(G)i, y = ξ(h), (7)
Gc = ComputationGraph(G, vi), (8)
M = [m1,m2, . . . ,mt] = MotifExtractor(Gc). (9)

Then, Eq. (3 - 6) are applied to compute loss for training the attention layer.

3 EXPERIMENTAL STUDIES

We conduct experiments to evaluate the proposed methods on both real-world and synthetic datasets.

3.1 DATASETS AND EXPERIMENTAL SETTINGS

We evaluate the proposed methods using different downstream tasks on seven datasets (MUTAG,
PTC, NCI1, PROTEINS, IMDB, 2Motifs, Shape) to demonstrate the effectiveness of our model.The
details of datasets and experimental settings are introduced in Appendix D.

Baselines. We compare our MotifExplainer model with several state-of-the-art baselines: GNNEx-
plainer, SubgraphX, PGExplainer, and ReFine. We also build a model that uses the same attention
layer as MotifExplainer but assigns weights to edges instead of motifs. Noted that all methods are
compared in a fair setting. During prediction, we use σ = 1 to control the size of selected motifs.
Unlike other methods, we do not explicitly set a fixed number for selected edges as explanations,
enabling maximum flexibility and capability when selecting important motifs.

Evaluation metrics. A fundamental criterion for explanations is that they must be human-
explainable, which means the generated explanations should be easy to understand. Taking the
BA-2Motif as an example, a graph label is determined by the house structure attached to a base BA
graph. A good explanation of GNNs on this dataset should highlight the house structure. To this
end, we perform qualitative analysis to evaluate the proposed method.
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MotifExplainer SubgraphX PGExplainer GNNExplainer ReFine

Figure 2: Visualization of explanation results from different explanation models on three datasets.
The generated explanations are highlighted by green and bold edges. Three rows are results on the
MUTAG dataset, the BA-Shape dataset, and the BA-2Motif dataset, respectively. We only show the
motif-related edges for two synthetic datasets to save space.

Even though qualitative analysis/visualizations can provide insight into whether an explanation is
reasonable for human beings, this assessment is not entirely dependable due to the lack of ground
truth in real-world datasets. Thus, we employ three quantitative evaluation metrics to evaluate our
explanation methods. We use the Accuracy metric to evaluate models for synthesis datasets with
ground truth. Here, we use the same settings as GNNExplainer and PGExplainer. In particular, we
regard edges inside ground truth motifs as positive edges and edges outside motifs as negative.

An explainer aims to answer a question that when a trained GNN predicts an input, which part of
the input makes the greatest contribution. To this end, the explanation selected by an explainer
must be unique and discriminative. Intuitively, the explanation obtained by the explainer should
obtain similar prediction results as the original graph. Also, the explanation is in a reasonable size.
Thus, following Yuan et al. (2020b), we use Fidelity and Sparsity metrics to evaluate the proposed
method on real-world datasets. In particular, the Fidelity metric studies the prediction change by
keeping important input features and removing unimportant features. The Sparsity metric measures
the proportion of edges selected by explanation methods. Formally, they are computed by

Fidelity =
1

N

N∑
i=1

(Ψ(Gi)yi −Ψ(Gpi

i )yi) , (10)

Sparsity =
1

N

N∑
i=1

(
1− |pi|

|Gi|

)
, (11)

where pi is an explanation for an input graph Gi. |pi| and |Gi| denote the number of edges in the
explanation, and the number in the original input graph, respectively.

3.2 QUALITATIVE RESULTS

In this section, we visually compare the explanations of our model with those of state-of-the-art
explainers. Some results are illustrated in Figure 2, with generated explanations highlighted. We
report the visualization results of the MUTAG dataset in the first row. Unlike BA-Shape and BA-
2Motif, MUTAG is a real-world dataset and does not have ground truth for explanations. We need to
leverage domain knowledge to analyze the generated explanations. In particular, carbon rings with
chemical groups NH2 or NO2 tend to be mutagenic. As mentioned by PGExplainer, carbon rings
appear in both mutagen and non-mutagenic graphs. Thus, the chemical groups NH2 and NO2 are
more important and considered as the ground truth for explanations. From the results, our MotifEx-
plainer can accurately identify NH2 and NO2 in a graph while other models can not. PGExplainer
identifies some extra unimportant edges. SubgraphX produces subgraphs as explanations that are
neither motifs nor human-understandable. Our proposed GNN explainer can consider motif infor-
mation and generate better explanations on molecular graphs. Note that neither NH2 nor NO2 is
explicitly included in our motif extraction rules. The explanation is generated by identifying bonds
in these groups, which means that our method can be used to find motifs.

We show the visualization results of the BA-Shape dataset in the second row of Figure 2. In this
dataset, a node’s label depends on its location as described in Section 3.1. Thus, an explanation
generated by an explainer for a target node should be the motif. We consider the selected edges on
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the motif to be positive and those not on the motif negative. From the results, our MotifExplainer
can accurately mark the motif as the explanation. However, other models select a part of the motif
or include extra non-motif edges. The third row of Figure 2 shows the visualization results on the
BA-2Motif dataset, which is also a synthetic dataset. From Section 3.1, a graph’s label is determined
by the motif attached to the base graph: the five nodes house-like motif or the five nodes cycle motif.
Thus, we treat all edges in these two motifs to be positive and the rest of edges to be negative. From
the results, we can see that our MotifExplainer can precisely identify both the house-like motif and
the cycle motif in a graph without including non-motif edges. In contrast, other models select edges
far from the motif. More qualitative analysis results on MUTAG dataset are reported in Appendix E.

Table 1: Results on quantitative studies for different explanation methods. Note that since the
Sparsity cannot be fully controlled, we report Fidelity scores (The less the better) under similar
Sparsity levels for five real-world datasets. For two synthetic datasets, BA-Shape and BA-2Motif,
we report accuracy. S is the sparsity value. K is the maximum number of edges required by baseline
models. Our MotifExplainer does not need this required hyper-parameter. The best performances
on each dataset are shown in bold.

MUTAG PTC NCI1 PROTEINS IMDB 2Motifs Shape
S=0.7 S=0.7 S=0.7 S=0.7 S=0.7 K=5 K=5

(Fidelity) (Accuracy)

GNNExplainer 0.260 0.441 0.365 0.453 0.365 0.742 0.925
PGExplainer 0.241 0.388 0.402 0.521 0.225 0.926 0.963
SubgraphX 0.287 0.227 0.303 0.021 0.167 0.774 0.874
ReFine 0.221 0.349 0.409 0.435 0.127 0.932 0.954

MotifExplainer 0.031 0.129 0.115 -0.030 0.101 1.0 1.0

3.3 QUANTITATIVE RESULTS

Table 2: Quantitative results on PTC and NCI1 dataset. The evaluation metric is Fidelity (The less
the better). S is the sparsity value. The best performances on each dataset are shown in bold.

PTC (Fidelity) NCI (Fidelity)
S=0.6 S=0.7 S=0.8 S=0.6 S=0.7 S=0.8

GNNExplainer 0.3835 0.4406 0.4947 0.3612 0.3653 0.3648

PGExplainer 0.3653 0.3886 0.3917 0.4013 0.4029 0.4045

ReFine 0.3268 0.3499 0.3575 0.4028 0.4093 0.4115

SubgraphX 0.2062 0.2274 0.2643 0.1697 0.3036 0.4075

MotifExplainer 0.1162 0.1299 0.2256 0.1002 0.1154 0.1297

Table 3: Quantitative results on PROTEINS and IMDB-B dataset. The evaluation metric is Fidelity
(The less the better). S is the sparsity value. The best performances on each dataset are shown in
bold.

PROTEINS (Fidelity) IMDB-B (Fidelity)
S=0.6 S=0.7 S=0.8 S=0.6 S=0.7 S=0.8

GNNExplainer 0.4558 0.4535 0.4947 0.1577 0.3653 0.3098

PGExplainer 0.5215 0.5214 0.5207 0.1801 0.2253 0.2784

ReFine 0.3399 0.4354 0.4974 0.0952 0.1278 0.1829

SubgraphX 0.0138 0.0211 0.0398 0.1342 0.1671 0.1955

MotifExplainer -0.0140 -0.0300 -0.0558 0.0757 0.1011 0.1125

Under inductive learning settings, we compared our methods with other state-of-the-art models on
graph classification tasks with MUTAG, PTC, NCI1, PROTEINS, IMDB-BINARY, and BA-2Motifs
datasets. Under transductive learning settings, we compare our proposed method with other state-
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of-the-art models in terms of node classification accuracy. We report node classification accuracies
on datasets BA-Shape.

To fully demonstrate the importance of motifs in GNN explanation, we build an explanation model
named AttnExplainer, which directly uses an attention model to score and select edges instead of
motifs. In AttnExplainer, an edge embedding is generated by taking the mean of its two ending
nodes embedding. We will discuss more on AttnExplainer in section 3.4.
Table 4: Quantitative results on MUTAG dataset. The evaluation metric is Fidelity (The less the
better). S is the sparsity value. The best performances on each dataset are shown in bold.

MUTAG (Fidelity)
S=0.4 S=0.5 S=0.6 S=0.7 S=0.8

GNNExplainer 0.153 0.184 0.219 0.260 0.307
PGExplainer 0.133 0.154 0.194 0.241 0.297
SubgraphX 0.214 0.233 0.254 0.287 0.376
ReFine 0.075 0.124 0.180 0.221 0.311

AttnExplainer 0.085 0.111 0.133 0.166 0.182
MotifExplainer 0.025 0.053 0.054 0.031 0.028

We first report the Fidelity scores under the same Sparsity value on five real-world datasets and the
accuracy on the other two synthetic datasets. The results are summarized in Table 1. From the
results, our MotifExplainer consistently outperforms previous state-of-the-art models on all seven
datasets under a Sparsity value equal to 0.7. Note that our method achieves 100% accuracy on two
synthetic datasets and at least 2.6% to 19.0% improvements on the real-world datasets.

In addition, more Fidelity scores on the real-world datasets are shown in Table 4, 2, 3. Table 4
compares our method with other baselines on the MUTAG dataset under different Sparsity values
from 0.4 to 0.8. We can see that our method achieves the best performance in terms of Fidelity
and Sparsity on the evaluated dataset. Table 2 and 3 show the performance of our model on four
real-world datasets. We notice that MotifExplainer surpasses all the baselines by a notable margin.

Our model can maintain good performances when Sparsity is high. In particular, in the case of high
Sparsity, the explanation contains a very limited number of edges, which shows that our model can
identify the most important structures for GNN explanations. Using motifs as basic explanation
units, our model can preserve the characteristics of motifs and the connectivity of edges which
provide a robust explainer compare to other baselines.

To this end, MotifExplainer can learn to discover the motif-based explanation in a global view of
the whole dataset and thus outperforms all baselines on all seven datasets, which demonstrates the
effectiveness of our MotifExplainer.

3.4 ABLATION STUDIES

Table 5: Results for AttnExplainer and MotifEx-
plainer on three datasets. Sparsity S = 0.7 for
the MUTAG dataset, and K = 5 for two synthetic
datasets.

MUTAG 2Motif Shape

AttnExplainer 0.166 0.934 0.955
MotifExplainer 0.031 1.0 1.0

Our MotifExplainer employs an attention
model to score and select the most relevant mo-
tifs to explain a given graph. To demonstrate
the effectiveness of using motifs as basic expla-
nation units, we build a new model named At-
tnExplainer that uses edges as basic explanation
units and apply an attention model to select rel-
evant edges as explanations. We compare our
MotifExplainer with AttnExplainer on three datasets: BA-Shape, BA-2Motif, MUTAG. The results
are summarized in Table 5, and Table 4. From the results, our model can consistently outperform
AttnExplainer. This is because motifs can better obtain structural information than edges by using
motifs as the basic unit for the explanation.

3.5 ATTENTION LAYER STUDIES
Table 6: The accuracy of reconstructions on five real-world
datasets.

MUTAG NCI1 PROTEINSPTC IMDB

Accuracy 99.98 99.97 98.65 99.34 98.46
In this section, we investigate the ca-
pability of the attention layer in learn-
ing new graph embeddings from mo-
tif embeddings to accurately represent the original graph structure. Table 6 presents the accuracy
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with which our attention layer reconstructs the original graph embedding using these motif embed-
dings. The results demonstrate that our method achieves a very high accuracy, indicating that the
learned graph embeddings effectively approximate the behavior of the original graph embeddings.
This high level of accuracy suggests that the attention layer is successfully capturing and integrating
the essential interaction of motifs, thereby validating the effectiveness of attention weights in expla-
nation tasks. Due to the page limits, we have more threshold studies, efficiency studies, and motif
studies in Appendix.

4 RELATED WORK

The research on GNN explainability is mainly divided into two categories: instance-level expla-
nation and model-level explanation. Instance-level GNN explanation can also be divided into four
directions, namely gradients/features-based methods, surrogate methods, decomposition methods,
and perturbation-based methods. Gradients/features-based methods use gradients or hidden feature
map values as the approximations of an importance score of an input. Recently, several methods
have been employed to explain GNNs like SA Baldassarre & Azizpour (2019), Guided-BP Bal-
dassarre & Azizpour (2019), CAM Pope et al. (2019), Grad-CAM Pope et al. (2019). The main
difference between these methods is the process of gradient back-propagation and how different
hidden feature maps are combined. The basic idea of surrogate methods is using a simple and ex-
plainable surrogate model to approximate the predictions of GNNs. Several methods have been
introduced recently, such as GraphLime Huang et al. (2020), RelEx Zhang et al. (2021), and PGM-
Explainer Vu & Thai (2020). Decomposition methods like LRP Baldassarre & Azizpour (2019),
Excitation BP Pope et al. (2019), GNN-LRP Schnake et al. (2020) and DEGREE Feng et al. (2021)
measure the importance of input features by decomposing original predictions into several terms.
The last method is the perturbation-based method. Along this direction, GNNExplainer Ying et al.
(2019) learns soft masks for edges and node features to generate an explanation via mask optimiza-
tion. PGExplainer Luo et al. (2020) learns approximated discrete masks for edges by using domain
knowledge. GraphMask Schlichtkrull et al. (2020) proposes a method for explaining the edge impor-
tance by generating an edge mask for each GNN layer. ZORRO Funke et al. (2020) studies discrete
masks to select significant input nodes and node features. Causal Screening Wang et al. (2020) em-
ploys the causal attribution of different edges in an input graph as an explanation. SubgraphX Yuan
et al. (2021) employs the Monte Carlo Tree Search algorithm to search possible subgraphs and uses
the Shapley value to measure the importance of subgraphs and choose a subgraph as the explanation.
ReFine Wang et al. (2021) proposes an idea of generating multi-grained explanations. There are also
some reinforcement learning based explainers Shan et al. (2021); Wang et al. (2022). Model-level
explanation methods in the field are currently under-researched, with only a few studies addressing
this issue. These methods can be divided into two categories. The first is concept-based methods.
GCExplainer Magister et al. (2021) incorporates concepts into GNN explanations. PAGE Shin et al.
(2022) discovers propotypes as explanations. GLGExplainer Azzolin et al. (2022) adopts prototype
learning to identify data prototypes. GCNeuron Xuanyuan et al. (2023), employs human-defined
rule in natural language and use compositional concepts with the highest scores for global expla-
nations. The second category is generation-based methods. XGNN Yuan et al. (2020a) uses deep
reinforcement learning to generate explanation graphs node by node. GNNInterpreter Wang & Shen
(2022), alternatively, learns a probabilistic model that identifies the most discriminative graph pat-
terns for explanations.

5 CONCLUSION

This work proposes a novel model-agnostic motif-based GNN explainer to explain GNNs by iden-
tifying important motifs, which are recurrent and statistically significant patterns in graphs. Our
proposed motif-based methods can provide better human-understandable explanations than meth-
ods based on nodes, edges, and regular subgraphs. Given a graph, We first extract motifs from a
graph using motif extraction rules based on domain knowledge. Then, motif embedding for each
motif is generated using the feature extractor from a pre-trained GNN. After that, we train an at-
tention model to select the most relevant motifs based on attention weights and use these selected
motifs as an explanation for the input graph. Experimental results show that our MotifExplainer can
significantly improve explanation performances from quantitative and qualitative aspects.
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A POPULAR MOTIFS IN NETWORK SCIENCE
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Figure 3: Popular motifs in biological and engineering networks.

B STATISTICS AND PROPERTIES OF DATASETS

Table 7: Statistics and properties of seven datasets.
MUTAG PTC NCI1 PROTEINS IMDB BA-

2Motif
BA-

Shape

# Edges (avg) 30.77 14.69 32.30 72.82 96.53 25.48 4110

# Nodes (avg) 30.32 14.29 29.87 39.06 19.77 25.0 700

# Graphs 4337 344 4110 1113 1000 1000 1

# Classes 2 2 2 2 2 2 4

C DATASETS

MUTAG Kazius et al. (2005); Riesen & Bunke (2008) is a chemical compound dataset contain-
ing 4,337 molecule graphs. Each graph can be categorized into mutagen and non-mutagen which
indicates the mutagenic effects on Gramnegative bacterium Salmonella typhimurium.

PTC Kriege & Mutzel (2012) is a collection of 344 chemical compounds reporting the carcinogenic-
ity for rats.

NCI1 Wale et al. (2008) is a balanced subset of datasets of chemical compounds screened for activity
against non-small cell lung cancer and ovarian cancer cell lines respectively.

PROTEINS Dobson & Doig (2003) is a protein dataset classified as enzymatic or non-enzymatic.
The nodes represent amino acids, and if the distance between the two nodes is less than 6 Angstroms,
the two nodes are connected by an edge.

IMDB-BINARY Yanardag & Vishwanathan (2015) is a movie collaboration dataset that consists
of the ego-networks of 1,000 actors/actresses who played roles in movies in IMDB. In each graph,
nodes represent actors/actress, and there is an edge between them if they appear in the same movie
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BA-2Motifs Luo et al. (2020) is a synthetic graph classification dataset. It contains 800 graphs, and
each graph is generated from a Barabasi-Albert (BA) base graph. Half graphs are connected with
house-like motifs, while the rest are assigned with five-node cycle motifs. The labels of graphs are
assigned based on the associated motifs. All node features are initialized as vectors with all 1s.

BA-Shapes Ying et al. (2019) is a synthetic node classification dataset. It contains a single base BA
graph with 300 nodes. Some nodes are randomly attached with 80 five-node house structure motifs.
Each node label is assigned based on its position and structure. In particular, labels of nodes in the
base BA graph are assigned 0. Nodes located at the top/middle/bottom of the house-like network
motifs are labeled with 1, 2, and 3, respectively. Node features are not available in the dataset.

D EXPERIMENTAL SETTINGS

For the pre-trained GNN, we use a 3-layer GCN as a feature extractor and a 2-layer MLP as a
classifier on all datasets. The GCN model is pre-trained to achieve reasonable performances on all
datasets. We use Adam optimizer for training. We set the learning rate to 0.01.

Real World Datasets: We employ a 3-layer GCNs to train all five real world datasets. The input
feature dimension is 7 and the output dimensions of different GCN layers are set to 64, 64, 64,
respectively. We employ mean-pooling as the readout function and ReLU as the activation function.
The model is trained for 170 epochs with a learning rate of 0.01. We study the explanations for the
graphs with correct predictions.

BA-Shape: We use a 3-layer GCNs and an MLP as a classifier to train the BA-Shape dataset. The
hidden dimensions of different GCN layers are set to 64, 64, 64, respectively. We employ ReLU
as the activation function. The model is trained for 300 epochs with a learning rate of 0.01. The
validation accuracy of the pre-trained model can achieve 100%. We study the explanations for the
whole dataset.

BA-2Motifs: We use a 3-layer GCNs and an MLP as a classifier to train the BA-2Motif dataset.
The hidden dimensions of different GCN layers are set to 64, 64, 64, respectively. We employ
mean-pooling as the readout function and ReLU as the activation function. The model is trained for
300 epochs with a learning rate of 0.01. The validation accuracy of the pre-trained model can be
100%, which means the model can perfectly generate the distribution of the dataset. We study the
explanations for the whole dataset.

We conduct experiments using one Nvidia 2080Ti GPU on an AMD Ryzen 7 3800X 8-Core
CPU. Our implementation environment is based on Python 3.9.7, Pytorch 1.10.1, CUDA 10.2, and
Pytorch-geometric 2.0.3.
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MotifExplainer SubgraphX PGExplainer GNNExplainer ReFine

Figure 4: Visualization of explanation on MUTAG dataset.
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F THRESHOLD STUDIES

Table 8: The study of the threshold on MUTAG dataset.
Threshold σ 1.0 1.2 1.5 1.7 2.0

Sparsity 0.4 0.5 0.6 0.7 0.8

Fidelity 0.025 0.053 0.054 0.031 0.028

Our MotifExplainer uses a threshold σ to select important motifs as explanations during inference.
Since σ is an important hyper-parameter, we conduct experiments to study its impact using Sparsity
and Fidelity metrics. The performances of MotifExplainer using different σ values on the MUTAG
dataset are summarized in Table 8. Here, we vary the σ value from 1.0 to 2.0 to cover a reasonable
range. We can observe that when the threshold is larger, the Sparsity of explanations increases,
and the performances in terms of Fidelity gradually decrease. This is expected since fewer motifs
selected will be selected when the threshold becomes larger. Thus, the size of explanations becomes
smaller, and the Sparsity value becomes larger. Note that even when the Sparsity reaches a high
value of 0.8, our model can still perform well. This shows that our model can accurately select
the most important motifs as explanations, demonstrating the advantage of using motifs as GNN
explanations.

G EFFICIENCY STUDIES

Table 9: Results on efficiency studies on MUTAG dataset, Training contains both pre-
processing/motif extraction step and model training time. Inference time is the average time con-
sumed to obtain an explanation for a graph.

Method Inference Training

GNNExplainer 24.3s 0s
PGExplainer 0.03s 740s
SubgraphX 96.7s 0s
ReFine 0.83s 946s

MotifExplainer 0.02s 363s

We study the efficiency of our proposed model in terms of the training time and the inference time.
For models that need to be trained, such as PGExplainer and ReFine, training and evaluation pro-
cesses are separate. We report training and inference time separately. In our proposed method, the
training time includes three parts: motif extraction, motif embedding construction, and the training
of the attention model. For models that do not require training, their training time will be 0. For
each model, we run it on the MUTAG dataset and show the averaging time consumed to obtain
explanations for each graph. Table 9 shows the comparison results with four state-of-the-art GNN
explanation models: MotifExplainer, SubgraphX, PGExplainer, GNNExplainer, and ReFine. From
the results, our model has the shortest inference time among models. Compared to PGExplainer and
ReFine, our model requires significantly less training time. From this point, the proposed method is
efficient and feasible in real-world applications.
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H MOTIF STUDIES

Table 10: The size of motif lists generated by our proposed motif extraction method on five real-
world datasets.

MUTAG NCI1 PROTEINS PTC IMDB

Size 148 296 1584 55 377

The quality and size of the motif list significantly influence the performance of our model. In this
section, we study the efficiency of our proposed motif extraction method. Table 10 shows the size
of motif lists extracted by our proposed extraction method on five real-world datasets. We can see
that since we only consider cycles and edges as motifs, the size of the lists can be well controlled,
which not only reduces the complexity of the model but also allows different graphs to share more
motif information, resulting in better interpretation.

Table 11: The extraction time of motif lists generated by our proposed motif extraction method on
five real-world datasets.

MUTAG NCI1 PROTEINS PTC IMDB

Time(s) 103 90 19 0.9 33

We care about the time complexity of our motif extraction method. The complexity depends on the
cycle basis generation algorithm. Currently, the most widely used cycle-basis extraction method is
O(n3). We report the extraction time of motif lists on five real-world datasets in table 11. We can
see that all five extraction procedures have been done in an acceptable time. Also, since we treat
motif extraction as a pre-processing step, it will not affect the training/inference part of our method.
We will additionally study efficiency in the next section.
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