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ABSTRACT

Modern large language models (LLMs) such as GPT, Claude, and Gemini have
transformed the way we learn, work, and communicate. Yet, their ability to pro-
duce highly human-like text raises serious concerns about misinformation and aca-
demic integrity, making it an urgent need for reliable algorithms to detect LLM-
generated content. In this paper, we start by presenting a geometric approach to
demystify rewrite-based detection algorithms, revealing their underlying rationale
and demonstrating their robustness in settings where prompts used to generate
text are unobserved. Building on this insight, we introduce a novel rewrite-based
detection algorithm that adaptively learns the distance between the original and
rewritten text. We conduct extensive experiments with over 100 settings, and find
that our approach demonstrates superior performance over baseline algorithms
in the majority of scenarios. In particular, it achieves average improvements of
45.3% to 62.5% over the strongest baseline across different target LLMs (e.g.,
GPT, Claude, and Gemini), with gains reaching up to 100% in some cases.

1 INTRODUCTION

The past few years have witnessed the emergence and rapid development of large language models
(LLMs) such as GPT (Hurst et al., 2024), DeepSeek (Liu et al., 2024), Claude (Anthropic} [2024]),
Gemini (Comanici et al.| [2025), Grok (xAl 2025) and Qwen (Yang et al., 2025). Their impact is
everywhere, from education, academia and software development to healthcare and everyday life
(Arora & Aroral 2023; |(Chan & Hul 2023; [Hou et al., 2024). On one side of the coin, LLMs can
support users with conversational question answering, help students learn more effectively, draft
emails, write computer code, prepare presentation slides and more. On the other side, their ability
to closely mimic human-written text also raises serious concerns, including the generation of biased
or harmful content, the spread of misinformation in the news ecosystem, and the challenges related
to authorship attribution and intellectual property (Dave et al. [2023; |Fang et al., 2024} Messeri &
Crockett, 2024; Mahajan et al., [2025} [Laurito et al., 2025)).

Addressing these concerns requires effective algorithms to distinguish between human-written and
LLM-generated text, which has become an active and popular research direction in recent literature
(see|Crothers et al., 2023} |Wu et al.| 2025| for reviews). Existing works either actively detect LLM-
generated text, by embedding watermarks into LLM-generated text during the design of the model
(see e.g.,|Aaronson & Kirchner] 2023} |Christ et al., [2024; [Dathathri et al.l 2024} |Giboulot & Furon,
2024} (Wouters, 2024; (Wu et al., 2024} |Golowich & Moitra, 2024; |Li et al., |2025), or passively,
without any prior knowledge of the watermarking process. This paper focuses on the latter category
of passive detection algorithms. We review these algorithms below.

1.1 RELATED WORKS

Most existing passive detection algorithms fall into the following two categories: (i) zero-shot meth-
ods and (ii) machine learning (ML)-based approaches, depending on whether they rely on external
data for training the detector. Within each category, methods can be further classified into three
subtypes: (1) logits-based; (2) rewrite-based, and (3) other approaches. This yields a total of 6
combinations.



Under review as a conference paper at ICLR 2026

Zero-shot detection. Zero-shot methods use only the observed text and a surrogate LLM for detec-
tion, without utilizing any additional dataset for training. They compute a statistical measure from
the observed text to determine whether it was authored by a human or an LLM. The underlying ra-
tionale is that human-written text tends to produce statistics that differ (either larger or smaller) from
those of LLM-generated text, and this difference can be exploited for detection (Gehrmann et al.,
2019). Based on the type of statistical measure employed, these methods can be further categorized
into three subtypes:

1. Logits-based methods construct the statistic using the logits of tokens computed by the surrogate
LLM across the observed text (see e.g., Mitchell et al., 2023 |Su et al., 2023} Bao et al.| [2024;
Hans et al., [2024; |Xu et al.| [2025)).

2. Rewrite-based methods define the statistic as a suitable distance between the observed text and its
rewritten (or regenerated) version (Zhu et al., 2023; Nguyen-Son et al.,|2024; Yang et al., [2024;
Sun & Lv, 2025)).

3. Beyond logits or rewrite-based distances, other statistics have been introduced, including the
intrinsic dimensionality of the observed text (Tulchinskii et al.| |2023), its latent representation
patterns (Chen et al.,|2025b)), N-gram distributions (Solaiman et al., [2019) and maximum mean
discrepancy (Zhang et al.,[2024} [Song et al., 2025)).

ML-based detection. ML-based methods leverage external human- and LLM-authored text to en-
hance the detection power of zero-shot methods. A primary approach is to formulate the detection
task as a classification problem and utilize external data to train the classifier. Similar to zero-shot
methods, ML-based approaches can also be categorized into three subtypes:

1. Logits-based methods fine-tune the surrogate LLM’s logits to improve the classification accuracy.
Various LLMs have been employed in the literature, including RoOBERTa (Solaiman et al.,[2019;
Guo et al., 2023, BERT (Ippolito et al., [2020), DistilBERT (Mitrovi¢ et al., [2023), and reward
models for aligning LLMs with human feedback (Lee et al.,2024). Recent works have extended
these methods to more challenging scenarios, including handling adversarial attacks (Hu et al.,
2023, [Koike et al., [2024; |[Sadasivan et al., [2025)), short texts such as tweets and reviews (Tian
et al.} 2024) and black-box settings under diverse prompts (Zeng et al.,[2024;|Chen et al., 2025a).

2. Rewrite-based methods either use the distance between the observed text and its rewritten version
as an input feature for training the classifier (Mao et al., 2024} |Yu et al.| 2024b; |Huang et al.,[2025;
Park et al.,2025), or apply ML to fine-tune the the rewriting model itself to improve the detection
accuracy (Hao et al., 2025).

3. Other methods extract features beyond logits or rewrite-based distances, and then apply ML
algorithms to these features for classification. Examples of features range from classical N-grams
and term frequency—inverse document frequency widely used in natural language processing
(Solaiman et al.,[2019)), to more complex representations such as various combinations of features
constructed based on token probabilities (Verma et al., 2024])), cross-entropy loss between the text
and a surrogate LLM (Guo et al., [2024a)), hidden latent representations (Yu et al.| 2024a) and
features learned via multi-level contrastive learning (Guo et al., 2024b)), and even classification
probabilities of fine-tuned LLMs (Abburi et al.||[2023).

1.2 CONTRIBUTIONS

Our proposal falls under the category of ML-based, rewrite-based detection. We study a commonly
encountered setting in practice, where LLM-authored text is generated using prompts that are unob-
served by the detector. Our main contributions are as follows:

» Theoretically, we develop a geometric approach to demystify the rationale behind rewrite-based
methods (see Figure [I] for illustration and Proposition [I] for the detailed statement). We further
show that these methods are robust to unobserved prompts (Proposition 2)).

* Methodologically, we develop a rewrite-based method tailored for settings with unobserved
prompts. Unlike existing approaches that primarily employ a fixed distance to compare the origi-
nal text with its rewritten version, we propose to adaptively learn this distance via ML. Our pro-
posal better discriminates between LLM- and human-authored text (see Figure [2] for a graphical
illustration), leading to substantial performance gains.
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Figure 1: The rationale behind rewrite-based methods: the brown dot represents a human-authored
text after embedding, while the two green dots represent its projection onto the LLM subspace and
an LLM-generated text produced from an unobserved prompt, respectively. From left to right, the
purple dots denote the reconstructions of the first green dot, the brown dot and the second green dot.
As illustrated, d; > ds, indicating that the reconstruction error for human text is larger than that for
LLM-generated text, which aligns with Proposition|l} Additionally, d; > d3 suggests that rewrite-
based methods remain robust to prompt-induced distribution shifts, as formalized in Proposition

* Empirically, we conduct comprehensive experiments across 24 datasets, 7 target language mod-
els, and 3 types of unseen prompts, covering over 100 settings. Our results show that: (i) our
approach outperforms 11 state-of-the-art methods, achieving average improvements of 45.3% to
62.5% over the strongest baseline across different target LLMs baseline (Sections [4.1] and [4.2));
(i) our approach is more robust than existing methods under adversarial attacks (Section 4.3));
(iii) learning the distance function provides substantial benefits, with an average improvement of
96.1% over using a fixed distance (see the ablation study in Section[d.4).

2 REWRITE-BASED METHODS: BUILDING INTUITION

In this section, we present a geometric framework for understanding rewrite-based detection meth-
ods, revealing their underlying rationale and demonstrating their robustness to unseen prompts.

Let X denote the target text under detection. We study the problem of determining whether X is
authored by a suspected target LLM, or by a human. Rewrite-based methods are straightforward
to describe: they first prompt the target LLM to rephrase the original text and then measure the
discrepancy between the original text X and the LLM’s reconstruction (denoted by R(X)) under
a distance metric d. These methods rely on the observation that, compared to human-authored text,
machine-generated text should be closer to its reconstruction (Mao et al., [2024; Yang et al., [2024)).
In the following, we will formally prove this assertion from a geometric perspective.

Building intuition. We begin with some notations and hypotheses. Let (X', ) denote a measurable
space of texts (after embedding).

Assumption 1. Assume X is a Hilbert space with inner product (-, -), induced norm | - |, and metric
d*(z,y) = |x — y| for any z,y € X.

This assumption is reasonable since texts are typically mapped into a vector space where each token
is represented by a scalar (Mikolov et al., [2013), and padding is commonly applied to ensure all
texts share the same dimensionality.

Let H{ and M denote the subspaces corresponding to texts authored by humans and the target LLM,
respectively. We use p and g to represent their respective probability distributions. We also define
the projection operator II onto M,

HM(CU) = arg min d*(m>y)’ (D

yeM

which projects a given text x € X’ to its closest point in M, produced by the target LLM.
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Figure 2: Histograms comparing the statistics constructed by Fast-DetectGPT (a state-of-the-art
logits-based detector) and the reconstruction errors of rewrite-based methods between human-
written and LLM-rewritten news text. The first two panels show that Fast-DetectGPT effectively
distinguishes human- from LLM-authored text only when the prompt to produce LLM-generated
text is known. The last two panels show that the proposed learned distance provides a much clearer
separation than using a fixed distance.

Assumption 2. ¢ is the projection of p under Iy, i.e., if X ~ pthen IIy((X) ~ q.

Assumption [2]is our key hypothesis, which reflects the geometric relationship between human- and
LLM-authored text. Intuitively, it implies that all LLM-generated texts can be viewed as a projection
of human-written text onto a specific subspace. This assumption is reasonable because (i) LLMs
are trained on massive corpora of human-authored text with the objective of approximating the
distribution of human language; (ii) LLM’s output space is constrained by the model’s architecture
and learned parameters, and is thus different from the human text space. Therefore, the mapping
from human text to LLM-generated text can be interpreted as a projection: a transformation that
preserves semantic meanings while restricting outputs to the region defined by the model.

Assumption 3. For any human-written text x € H, R(x) has the same probability distribution
function to R(IIaq()).

Here, for a fixed text x, we allow its reconstruction R () to be random. This is because LLM outputs
are typically stochastic due to the use of a nonzero temperature during inference. Assumption [3]
essentially requires the reconstructions of a human-written text x and its projection IT x4 (z) to share
the same distribution. This holds when the reconstruction can be written as

R(z) = lm(z) + e, 2)

for some random error e that lies on the space of M. Equation 2] suggests that the rewriting process
can be viewed as a two-step procedure: first, the input text is projected onto the LLM subspace,
and then a small perturbation e is added to the projected text, while preserving the projected text’s
semantic meaning.

Proposition 1. Under Assumptions and|3] we have
with equality if and only if p is supported on M.

Proposition [I] formally establishes the validity of rewrite-based methods, and proves that human-
written text’s reconstruction error (the distance between a text and its reconstruction) is on average
larger than that of LLM-generated text. The equality holds only under the idealized scenario where
the LLM’s output space perfectly replicates the human text space.

Intuitively, this result follows because reconstructions always lie within the LLM subspace M,
whereas human-authored text may lie farther away from M. Figure[I|provides a graphical illustra-
tion: the reconstruction error for human text (d;) is clearly larger than that for LLM-generated text
(do).

Prompt robustness. In practice, LLM-generated text is often produced under a variety of writing
prompts (e.g., “polish this paragraph” or “help me rephrase”). The presence of such prompts induces
a distributional shift: the resulting LLM-generated text no longer follows the original distribution g,
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Figure 3: Workflow of the proposal. Our method adaptively learn a distance metric to measure the
discrepancy between human and LLM-generated texts for detection.

but instead depends on the specific prompt, which we denote by gprompi. This shift is illustrated in
Figure[I] where the prompt alters the location of the generated text in the embedding space.

Rewrite-based methods remain robust to such shifts, provided that the perturbation e in equation
does not substantially distort the semantic meaning of IT(x). We formalize this intuition in the
following proposition.

Proposition 2. Assume equationholds. Let € > 0 denote some positive constant such that |e| < €
almost surely. Then under Assumption[l| we have

Exp[d"(X,R(X))] = Ex,,, [d"(X,R(X))] 2 Exp|X —Tp(X)] = Oe).

Proposition [2] provides a lower bound to quantify the difference in reconstruction error between
human- and LLM-authored text. The bound depends on two factors: (i) the average gap between
human and LLM-generated text, characterized by the norm of the projection E x .,| X — ILr((X)];
(ii) the magnitude of the perturbation e.

Figure [1| offers a graphical illustration: despite the shift introduced by the prompt, as long as e re-
mains small, the reconstruction error for human text (d;) can still be substantially larger than that for
LLM-generated text (d3). In practice, minimizing e requires careful design of the rewriting prompt
to preserve the input text’s semantic meaning. This can be achieved through prompt engineering or
by adaptively learning the rewrite model (Hao et al., 2025)).

3 METHOD

Limitations of existing approaches. We begin by discussing the limitations of existing logits-based
and rewrite-based detection methods to better motivate our proposed approach:

* Logit-based methods, such as DetectGPT (Mitchell et al., [2023)) and Fast-DetectGPT (Bao et al.,
2024), construct the detection statistics using the log-probability log ¢(X) of the text. However,
their performance tends to degrade when the text is generated under unseen prompts (see the
first two panels of Figure 2| for illustration). This arises because the true conditional distribution
log ¢(X | prompt) differs from the marginal distribution log ¢(X ) used by the detector, leading
to the misspecification of the detection statistic.

* The theoretical guarantees in Section[2]depend on access to the oracle distance d*, which captures
the true semantic discrepancy between a text and its reconstruction. In practice, this distance is
unknown and may differ largely from standard Euclidean distance due to the complex geometry
of text embeddings. Nonetheless, existing rewrite-based methods often use fixed, hand-crafted
distance, such as N-gram-based distance (Yang et al., [2024), Levenshtein distance (Mao et al.,
2024), and negative BERTScore or BARTScore (Zhang et al.l 2019; [Yuan et al., 2021), which
may not generalize well across target language models, datasets or unobserved prompts.

Our proposal. Motivated by these limitations, we adopt the rewrite-based approach, and propose
to adaptively learn the distance function to improve the detection performance. As demonstrated in
the last two panels of Figure[2] the learned distance more effectively distinguishes between human-
and LLM-authored text compared to a fixed distance.
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More specifically, assume we have access to a human-authored corpus D;, and an LLM-generated
corpus D,,, both of which are readily available in practice. For instance, Dj, can be obtained by
web-scraping Wikipedia, while D,,, can be constructed by prompting the target LLM (e.g., GPT,
Gemini, or Grok). We next learn the distance function d, parameterized by some parameter ¢, that
maximizes the discrepancy between the reconstructions errors:

Ex~p, [d(X,R(X))] = Ex~p,, [d(X,R(X))].
In our implementation, we parameterize the distance function via
log py (X1) _ log py (X2) 3)
len(X1) len(Xs) |’
where p, is a language model parameterized by ¢ and 1en(-) computes the number of tokens of the
input text. It is straightforward to show that dy in equation [3|satisfies the property of a (pseudo)-

distance: (i) It is non-negative; (ii) It equals zero whenever X; = Xo; (iii) It satisfies the triangle
inequality. Meanwhile, other parameterizations are equally applicable.

d¢(X1’ X2) =

To solve the optimization, we initialize pgs with a pre-trained LLM and fine-tune a small subset
of its parameters to facilitate the computation. This can be done by updating only the final layer
or employing low-rank adaptation (LoRA, |Hu et al., 2022). Our experiments in Section show
that, the learned distance function yields substantial improvements over using the initial pre-trained
LLM.

Finally, since the rewritten text R(X) is stochastic, we mitigate its randomness by generating mul-
tiple reconstructions. Given a text X, we obtain K reconstructions X7, ..., X, and estimate the

reconstruction error as the average: K —! Zszl d(X, X, ). We classify X as LLM-generated if this
value is smaller than a predetermined threshold, and as human-authored otherwise. We summarize
our procedure in Figure 3]

4 EXPERIMENTS

We conduct extensive experiments to evaluate the effectiveness of our approach. To save space, we
defer additional implementation details to Appendix [D] Our empirical study is designed to answer
the following three questions:

1. How does our method perform compared to state-of-the-art approaches under different prompts?
2. How robust is our method under adversarial attacks?

3. To what extent does learning the distance improve the detection accuracy?

To answer the first question, we compare our method against 11 representative baseline detectors in
Sections [.T]and .2} covering both zero-shot (left) and ML-based methods (right):

e Likelihood (Gehrmann et al.,[2019)) ¢ RoBERTa (Solaiman et al.| 2019)

e Intrinsic dimension estimation (/DE, Tulchin-| , RADAR (Hu et al L 2023)
skii et all, 2023) —_— ’

* Log rank ratio (LRR, [Su et al, 2023) * RADIAR (Mao et al., 2024)

e Fast-DetectGPT (FDGPT, Bao et al.,[2024) * Imitate before detection (/mBD, |Chen et al.,
« BARTScore (Zhu et al}, 2023) 2025a)

e Binoculars (Hans et al., [2024) * Learning to rewriting (L2R, |Hao et al., 2025)

We also employ 24 datasets and consider 6 commonly used target LLMs such as Llama-3-70B-
Instruct (Dubey et al.} 2024), Claude-3.5, GPT series (GPT-3.5 Turbo and GPT-40, |OpenAll 2022;
Hurst et al., 2024), and Gemini models (Gemini 1.5 Pro and Gemini 2.5 Flash, Team et al., 2024}
Comanici et al.| [2025) for generating LLM-written text.

To answer the second and third questions, we further consider settings under paraphrasing and de-
coherence attacks in Section[4.3|and compare against a variant of our approach that uses the initial
pre-trained model pg without fine-tuning as the distance function in Section#.4]

Throughout, we use area under the curve (AUC) as the metric for evaluation.
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Table 1: AUC of various detectors when the target LLM is GPT-3.5 Turbo. The largest AUC scores
are highlighted in cyan and the second largest in orange. The last column shows the gain of our
approach over the best baseline in percentage.

Dataset Likelihood LRR IDE BARTScore FDGPT Binoculars RoBERTa RADAR RAIDAR ImBD Ours Gain (%)
AcademicResearch 0.582  0.557 0.571 0.561 0.542 0.532 0.510 0.718 0.663 0950 0.987| 73.7
ArtCulture 0.529  0.539 0.508 0.620 0.556 0.580 0.605 0.618 0.673  0.784 0.880| 44.4
Business 0.532  0.563 0.574 0.639 0.657 0.656 0.564 0.587 0730 0.875 0.931| 44.8
Code 0.677  0.530 0.601 0.551 0.556 0.568 0.525 0.702 0.738  0.865 0.900| 26.1
EducationMaterial 0.561 0.813 0.705 0.808 0.785 0.707 0.708 0.847 0.689  0.999 0.981 —
Entertainment 0.601  0.645 0.725 0.866 0.805 0.745 0.750 0.887 0.691 0995 0.998| 56.7
Environmental 0.672  0.636 0.608 0.854 0.830 0.770 0.680 0.647 0.730  0.920 0.986| 83.1
Finance 0.546  0.608 0.618 0.819 0.730 0.699 0.678 0.647 0.727 0940 0987| 77.7
FoodCusine 0.569  0.534 0.524 0.739 0.639 0.625 0.562 0.526 0.664 0942 0985| 743
GovernmentPublic 0.530  0.551 0.572 0.680 0.697 0.692 0.612 0.639 0.661 0931 0.942| 165
LegalDocument 0.740  0.509 0.807 0.637 0.741 0.701 0.596 0.819 0.729 0997 0.992 —
LiteratureCreativeWriting ~ 0.541  0.520 0.705 0.645 0.634 0.550 0.637 0.866 0.744 0992 0.996| 49.3
MedicalText 0.553  0.564 0.538 0.591 0.620 0.600 0.519 0.629 0.668 0.802 0.872| 352
NewsArticle 0.655  0.674 0.656 0.555 0.513 0.506 0.626 0.861 0.669 0954 0.997| 927
OnlineContent 0.539  0.525 0.512 0.711 0.654 0.632 0.596 0.604 0.734  0.857 0.949| 643
PersonalCommunication 0.555  0.521 0.515 0.602 0.541 0.547 0.526 0.581 0.726  0.738 0912 66.4
ProductReview 0.625  0.628 0.553 0.803 0.688 0.675 0.611 0.591 0.669 0955 0.991| 793
Religious 0.741  0.642 0.662 0.884 0.534 0.543 0.579 0.869 0.741 0975 0.975 04
Sports 0.511  0.531 0.510 0.522 0.584 0.592 0.561 0.606 0.727  0.853 0.888| 235
Technical Writing 0.594  0.559 0.569 0.594 0.555 0.537 0516 0.739 0.729 0960 0.987| 66.6
TravelTourism 0.590  0.538 0.571 0.600 0.550 0.525 0.531 0.741 0.662 0951 0987 729
Average 0.593  0.580 0.600 0.680 0.639 0.618 0.595 0.701 0.703 0916 0.958| 50.2
Std 0.066  0.071 0.080 0.113 0.095 0.078 0.066 0.112 0.032  0.073 0.042 —

4.1 EXPERIMENTS ON DIVERSE DATASETS

We first evaluate our method on the dataset released by Hao et al. (2025 which consists of human-
written text from 21 domains, including academic writing, business, code, sports and religion.
For each human-written sample, four LLM-generated versions were created using Llama-3-70B-
Instruct, Gemini 1.5 Pro, GPT-3.5 Turbo and GPT-4o, respectively, yielding a total of 84 settings.
Refer to|Hao et al.| (2025)) for the detailed prompts used to produce these LLM-generated texts.

Results are reported in Table [T] and Tables [BI|—[B4]in Appendix [B] It can be seen that our method
achieves the best performance across nearly all combinations of datasets and target models. We
focus on comparison against two baselines: (i) ImBD, a logits-based method that typically ranks
second overall and is the strongest among logits-based approaches; (ii) L2R, a rewrite-based method
that also employs ML but learns the rewrite model rather than the distance function. We make two
observations:

1. First, as shown in Tables and our approach outperforms ImBD on 19 out of 21
datasets, and the gain can reach up to 92.7% (see the rightmost column). This comparison high-
lights the advantage of rewrite-based methods over logits-based methods.

2. Second, since L2R does not provide public code, we directly compare against the reported results
in their paper. Table shows that our method outperforms L2R on 20 out of 21 datasets, and
often by a large margin. This comparison suggests that, compared with learning to rewrite,
learning a distance function is more effective for rewrite-based detection.

4.2 EXPERIMENTS UNDER DIFFERENT PROMPTS

Next, following |Chen et al.|(2025a), we examine three scenarios that use different types of unseen
prompts to generate LLM text: (i) rewrite, where the LLM rewrites a human-authored text while
preserving its semantic meaning; (ii) expand, where the LLM elaborates on the text according to a
style randomly selected from various options (e.g., formal, literary); and (iii) polish, where the LLM
refines the text based on the randomly chosen style.

We also consider three widely used benchmark datasets (Bao et al., 2024} |(Chen et al.| [2025a): (i)
Wiki, which consists of Wikipedia-style question answering data (Rajpurkar et al., [2016)); (ii) Story,
which focuses on story generation (Fan et al.| 2018); and (iii) News, which is concerned with news
summarization (Narayan et al.,[2018).

'https://github.com/ranhli/12r_data
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Table 2: AUC of various detectors cross different combinations of datasets, target models, and
prompt types. The largest AUC scores are highlighted in cyan and the second largest in orange. The
last row shows the relative gain of our approach over the best baseline in percentage. The average
relative gains on Claude-3.5, GPT-40, and Gemini-2.5 are 45.3%, 61.0% and 56.5%, respectively.

Claude-3.5 GPT-40 Gemini-2.5

Dataset Method - . . . . .
rewrite polish expand Avg. rewrite polish expand Avg. rewrite polish expand Avg.

Likelihood 0.598 0.604 0.645 0.616 0.572 0.587 0.539 0.566 0.594 0.579 0.732 0.635

LRR 0.594 0.626 0.636 0.619 0.633 0.620 0.559 0.604 0.656 0.601 0.717 0.658
Binoculars 0.555 0.634 0.709 0.633 0.535 0.567 0.631 0.578 0.507 0.632 0.589 0.576
IDE 0.606 0.686 0.726 0.673 0.577 0.736 0.696 0.670 0.608 0.672 0.716 0.665
FDGPT 0.524 0.610 0.686 0.607 0.508 0.561 0.641 0.570 0.507 0.617 0.586 0.570
News BARTScore 0.728 0.583 0.563 0.625 0.653 0.526 0.549 0.576 0.567 0.606 0.671 0.615
RoBERTa 0.544 0524 0.546 0.538 0.509 0.532 0.568 0.536 0.501 0.566 0.567 0.545
RADAR 0.744 0805 0912 0.821 0.774 0.966 0994 0911 0.807 0.858 0.920 0.862
RAIDAR 0931 0931 0931 0931 0.884 0.884 0.884 0.884 0923 0923 0.923 0.923
ImBD 0941 0928 0.990 0.953 0.966 0.999 0999 0.988 0.937 0.977 0.990 0.968
Ours 1.000 0990 1.000 0.997 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Rel. Gain (%) 99.7 85.1 1000 925 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Likelihood 0.519 0532 0.562 0.538 0.546 0.553 0.649 0583 0.505 0512 0.533 0.517
LRR 0.532 0508 0.540 0.527 0.541 0.612 0.695 0.616 0522 0508 0.536 0.522
Binoculars 0.608 0.667 0.762 0.679 0.619 0.717 0862 0.733 0571 0.768 0.793 0.711
IDE 0.565 0.621 0.613 0.600 0.584 0.712 0.682 0.659 0.573 0.642 0.699 0.638
FDGPT 0.587 0.646 0.739 0.658 0.597 0.712 0.867 0.725 0.557 0.748 0.791 0.699
Wiki BARTScore 0.760 0.634 0.520 0.638 0.785 0.592 0.529 0.635 0.605 0.590 0.615 0.603
RoBERTa 0.635 0.659 0.759 0.684 0.565 0.590 0.522 0559 0.638 0.740 0.782 0.720
RADAR 0.533 0507 0.620 0.553 0.541 0.814 0933 0.763 0.550 0.564 0.680 0.598
RAIDAR 0969 0969 0.969 0969 0.857 0.857 0.857 0.857 0.897 0.897 0.897 0.897
ImBD 0913 0931 0968 0.937 0904 0979 0995 0.959 0940 0.966 0.987 0.965
Ours 0976 0970 0.969 0972 0954 0983 0988 0.975 0.961 0.963 0.970 0.965
Rel. Gain (%) 23.6 4.8 1.3 9.9 514 19.8 — 382 356 — — 0.9
Likelihood 0.502 0532 0.587 0.541 0.623 0.740 0.814 0.725 0512 0.656 0.702 0.623
LRR 0.556 0.540 0.596 0.564 0.570 0.728 0.739 0.679 0.504 0.563 0.632 0.566
Binoculars 0.595 0.663 0.755 0.671 0.674 0.739 0.806 0.740 0.624 0.832 0.927 0.794
IDE 0.616 0.610 0.632 0.619 0.575 0.650 0.673 0.633 0.580 0.579 0.609 0.589
FDGPT 0.571 0.635 0.743 0.650 0.655 0.735 0.808 0.733 0.603 0.000 0.918 0.507
Story BARTScore 0.767 0.706 0.566 0.680 0.724 0.754 0.685 0.721 0.708 0.733 0.674 0.705
RoBERTa 0.588 0.586 0.660 0.611 0.540 0.504 0.539 0.527 0571 0.569 0.657 0.599
RADAR 0.597 0.614 0.510 0.574 0.507 0.756 0.827 0.697 0.560 0.513 0.619 0.564
RAIDAR 0974 0974 0974 0974 0.861 0.861 0.861 0.861 0.938 0.938 0.938 0.938
ImBD 0949 0904 0973 0942 0984 0989 0974 0.983 0973 0.986 0.996 0.985
Ours 0999 0954 0.996 0.983 0.990 1.000 0981 0.990 0.987 0.999 0.999 0.995
Rel. Gain (%)  95.7 — 83.3 335 393 972 263 448 520 943 87.8 68.5

We further generate LLM-authored text using three recent and popular proprietary models: (i) GPT-
4o; (ii) Claude-3.5-Haiku and (iii) Gemini-2.5-Flash. This yields a total of 27 settings. Details on
how these texts were generated are provided in Appendix

Table[3|presents the AUC scores for all detectors across the 27 combinations of datasets, target mod-
els, and types of prompts. Our method achieves the best performance in nearly all cases, whereas
ImBD (logits-based) or RAIDAR (rewrite-based) works as the second best. The relative gain over
these best baselines is 65.7% on average and can reach up to 100%, which again highlights (i) the
advantage of rewrite-based methods over logits-based methods in settings with unseen prompts;
and (ii) the effectiveness of learning an adaptive distance function over using a fixed distance in
rewrite-based approaches.

4.3 EXPERIMENTS AGAINST ADVERSARIAL ATTACK

Following |Bao et al.| (2024), we further evaluate the robustness of our method against two types of
adversarial attacks: (i) Rephrasing, where the LLM-written text is further paraphrased by a T5-based
paraphraser before detection; (ii) Decoherence, where in each LLM-generated sentence containing
more than 20 words, two adjacent words are randomly swapped. Both attacks are designed to reduce
the coherence of LLM-generated text and have been shown to degrade the detection accuracy of
existing detectors (Bao et al., [2024).

We conduct experiments on the same three datasets used in Section .2 resulting in a total of six
settings. For comparison, we focus on ImBD and RAIDAR, as they achieve the second best per-
formance on these datasets. We use Claude-3.5-Haiku to generate the LLM-polished text, as this
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Figure 4: AUCs of ImBD, RAIDAR and our approach under paraphrasing (top panels) and decoher-
ence (bottom panels). Each column represents a dataset. For each method, two bars are plotted: the
lighter one indicates AUC without attack, and the darker one indicates AUC under attack. The best
method under attack is highlighted with a bold bar edge, and its AUC value is displayed above the
bar.

represents the least favorable setting for our method. As shown in Table 3] our detection accuracy is
lower than RAIDAR on the Story dataset, and only slightly better — though very similar — on Wiki.

Figure [4 reports the AUC scores with and without adversarial attacks. While RAIDAR achieves
comparable or superior AUCs on Story and Wiki in the absence of attacks, its AUC drops substan-
tially under attacks, failing to maintain its lead. Similarly, InBD’s AUC declines considerably on
Wiki under the rephrasing attack. In contrast, our method remains robust: its AUC either increases
or remains unchanged on News, and only slightly decreases on other two datasets, achieving the best
performance in each setting. This highlights the resilience of our approach to adversarial attacks and
demonstrates its potential for reliable deployment in real-world scenarios.

4.4 ABLATION STUDY

We  conduct an  ab- Table 3: AUCs across 27 combinations of datasets, models, and prompt

lation St}ldy to com- types, with the best method highlighted in cyan. The average relative gain
pare against a version oo EDic 96 19%.

of our approach that
uses the initial lan-  pataset Method

guage model p to con-

: . FD 0541 0539 0576 0552 0525 0.515 0.579 0.540 0.576 0.613 0.645 0.611
struct.the distance (FD’ NewS Ours 1000 0990 1000 0.997 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1000
denoting a fixed dis-

. . FD 0532 0.522 0.532 0529 0.589 0.614 0.738 0.647 0.510 0.605 0.579 0.565
tance).  We consider Wiki 5476 0970 0969 0,972 0954 0.983 0988 0.975 0.961 0963 0,970 0.965
the same settings to

Secti d oy FD 0612 0647 0.728 0.662 0.683 0.821 0.892 0.799 0.641 0.800 0.856 0.766
ection and re-  SOY oy 0999 0.954 0996 0.983 0990 1.000 0.981 0.990 0.987 0.999 0999 0.995
port the AUCs in Table

Bl Our method consis-
tently outperforms FD, with improvements of up to 100%. These results clearly demonstrate the
advantage of learning the distance metric over fixing the distance.

Claude-3.5 GPT-40 Gemini

rewrite polish expand Avg. rewrite polish expand Avg. rewrite polish expand Avg.

5 CONCLUSION

This paper studies prompt-robust detection of LLM-generated text. Our theoretical analysis of-
fers geometric insights to demonstrate the effectiveness of rewrite-based approaches (Proposition
[[) and their robustness to unseen prompts (Proposition [2). Methodologically, we go beyond exist-
ing rewrite-based methods by adaptively learning the distance function, which delivers substantial
empirical gains over both fixed-distance approaches (Section[d.4)) and state-of-the-art detectors (Sec-
tions .T]and [£.2), while maintaining robustness against adversarial attacks (Section f.3).
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A  PROOF

Proof of Proposition [T} We further assume M., is a closed convex set so that the projection

operator is well-defined. Then for any x € X and y € M, we have

d*(z, R(x))

Taking expectation on both sides with respect to X ~ p, we obtain

(x = Tm(x),y — Haq(x)) <0
Taking y = R(x), it directly follows that
d* (2, R(z) — lm(@) + v (z))

d* (2, I, (2)) = 2(z = Im(2), R(z) = Tm(2)) + |R(z) — M ()]
d* (I (), R(x))

forallx € X.

Exnp {d" (X, RAX))} 2 Exop {d" (Ta(X), R(X))} = Exnp {d" (M (X), R(IIM(X)))}

where the last equality follows from Assumption[3] Finally, Assumption [2]yields that

Ex~p {d" (Tm(X), RIIm (X))} = Ex~q {d" (X, R(X

Thus, the conclusion of Proposition|I| follows.

)}

Proof of Proposition 2; According to the definition of projection operator IIn¢ and the fact that
R(X) is supported on M, it is obvious that

d*(X,R(X)) > d* (X, Ly (X)).

“4)

Furthermore, the distribution of ggyompt is also supported on M. Therefore, combining equation
equation 2] we obtain

EXngpromp [ (X, R(X))] =

Ex wgprompe[d" (T (X), R(X))]
EX ~gprompe [ (T (X), T (X) +€)]
]EX"’l]pmmpt ‘6‘ S €.

&)

Combining inequality equation [4]and equation[3] the conclusion of Proposition 2] then follows.

B ADDITIONAL NUMERICAL EXPERIMENTS

Table B1: AUROC results for GPT-40. The highest performing scores are highlighted in cyan, the
second best in orange. The last column shows the relative gain of Ours over the best baseline.

Dataset Likelihood LRR IDE BARTScore FDGPT Binoculars RoBERTa RADAR RAIDAR ImBD Ours Gain (%)
AcademicResearch 0.527  0.503 0.557 0.651 0.648 0.639 0.516 0.637 0.800  0.908 0.981| 79.9
ArtCulture 0.500  0.518 0.504 0.638 0.590 0.605 0.570 0.560 0.800 0.740 0.870| 35.2
Business 0.562  0.578 0.562 0.634 0.675 0.675 0.512 0.540 0.820 0.857 0.934| 53.9
Code 0.563  0.641 0.551 0.646 0.681 0.679 0.589 0.554 0.806  0.819 0.939| 66.1
EducationMaterial 0.643  0.806 0.611 0.825 0.800 0.754 0.724 0.746 0.800  0.993 0.983 —
Entertainment 0.694  0.659 0.595 0.846 0.826 0.818 0.668 0.793 0.800  0.956 1.000| 99.1
Environmental 0.750  0.638 0.585 0.885 0.848 0.818 0.622 0.571 0.820 0.924 0.990| 86.2
Finance 0.639  0.641 0.503 0.824 0.753 0.726 0.612 0.573 0.820 0933 0983 752
FoodCusine 0.625  0.542 0.535 0.783 0.719 0.699 0.558 0.507 0.800 0.888 0.984| 85.9
GovernmentPublic 0.559  0.570 0.536 0.685 0.723 0.716 0.570 0.579 0.800 0.883 0.936| 45.3
LegalDocument 0.523  0.527 0.622 0.700 0.690 0.689 0.528 0.547 0.820  0.960 0.961 3.7
LiteratureCreativeWriting ~ 0.669  0.624 0.534 0.652 0.722 0.703 0.524 0.686 0.820 0.965 0.979| 39.6
MedicalText 0.573  0.507 0.548 0.634 0.661 0.633 0.529 0.564 0.800 0.770 0.841| 20.8
NewsArticle 0512  0.578 0.529 0.600 0.605 0.603 0.515 0.784 0.800 0.847 0.993| 953
OnlineContent 0.554  0.570 0.513 0.700 0.711 0.684 0.577 0.574 0.820 0.816 0.950| 72.5
Personal Communication 0.539  0.520 0.000 0.571 0.623 0.616 0.511 0.518 0.820 0.714 0.881| 33.7
ProductReview 0.682  0.670 0.512 0.804 0.740 0.731 0.583 0.544 0.800 0.855 0.993| 95.0
Religious 0.666  0.593 0.566 0.892 0.521 0.509 0.585 0.763 0.820  0.969 0.970 43
Sports 0.564  0.511 0515 0.565 0.641 0.644 0.507 0.556 0.820 0.845 0.906| 39.3
Technical Writing 0.501  0.501 0.000 0.687 0.638 0.629 0.560 0.631 0.820 0931 0.992| 89.1
TravelTourism 0.501 0.501 0.539 0.687 0.638 0.629 0.560 0.631 0.800 0914 0.991| 89.7
Average 0.588  0.581 0.496 0.710 0.688 0.676 0.568 0.612 0.809 0.880 0.955| 62.5
Std 0.072  0.075 0.164 0.099 0.077 0.071 0.054 0.088 0.010 0.075 0.045 —
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Table B2: AUROC results for Llama-3-70B-Instruct. The highest performing scores are highlighted
in cyan, the second best in orange. The last column shows the relative gain of Ours over the best
baseline.

Dataset Likelihood LRR IDE BARTScore FDGPT Binoculars RoOBERTa RADAR RAIDAR ImBD Ours Gain (%)
AcademicResearch 0.686  0.597 0.522 0.625 0.793 0.786 0.528 0.718 0.634 0980 0.986| 29.8
ArtCulture 0.643  0.635 0.643 0.640 0.829 0.835 0.538 0.586 0.630  0.902 0.945| 43.7
Business 0.756  0.735 0.599 0.709 0.840 0.846 0.513 0.517 0.722 0957 0965 17.9
Code 0.554  0.631 0.574 0.620 0.765 0.761 0.556 0.621 0.723  0.886 0.951| 56.5
EducationMaterial 0.841 0912 0.583 0914 0.936 0.919 0.565 0.903 0.627  0.999 0.999 —
Entertainment 0.933  0.815 0.587 0.940 0.979 0.978 0.802 0.862 0.629  0.999 1.000| 100.0
Environmental 0914  0.838 0.537 0.917 0.962 0.953 0.738 0.602 0719 0973 0.990| 63.5
Finance 0.786  0.767 0.512 0.896 0.910 0.901 0.691 0.597 0.720 0977 0.995| 80.2
FoodCusine 0.800  0.698 0.569 0.827 0.854 0.843 0.556 0.542 0.629 0978 0.999| 94.0
GovernmentPublic 0.731  0.712 0.615 0.718 0.871 0.870 0.572 0.571 0.634 0961 0972 273
LegalDocument 0.503  0.662 0.589 0.763 0.884 0.876 0.517 0.696 0.720  0.990 0.972 —
LiteratureCreativeWriting ~ 0.888  0.824 0.525 0.810 0.910 0.909 0.698 0.789 0717 0991 0992 125
MedicalText 0.761 0.679 0.571 0.648 0.809 0.796 0.552 0.621 0.633 0914 0937| 26.6
NewsArticle 0.688  0.583 0.563 0.652 0.839 0.826 0.643 0.857 0.629 0973 0.994| 78.9
OnlineContent 0.780  0.732 0.534 0.850 0.918 0915 0.634 0.584 0717 0926 0973| 63.6
PersonalCommunication 0.691  0.625 0.590 0.607 0.770 0.761 0.535 0.522 0.718  0.838 0.950| 69.3
ProductReview 0.873  0.769 0.545 0.870 0.872 0.863 0.583 0.546 0.632 0983 0.996| 78.7
Religious 0.599  0.505 0.506 0.927 0.740 0.724 0.559 0.814 0.729  0.995 0.943 —
Sports 0.699  0.600 0.667 0.506 0.789 0.788 0.522 0.573 0.720  0.952 0.939 —
Technical Writing 0.664  0.614 0.501 0.721 0.824 0.817 0.555 0.764 0.720 0974 0.998| 91.7
TravelTourism 0.664  0.614 0.501 0.721 0.824 0.817 0.555 0.764 0.634 0982 099 | 754
Average 0.736  0.693 0.563 0.756 0.853 0.847 0.591 0.669 0.678 0959 0.976| 41.5
Std 0.113  0.099 0.045 0.125 0.064 0.065 0.078 0.121 0.045 0.041 0.022 —

Table B3: AUROC results for Gemini 1.5 Pro. The highest performing scores are highlighted in
cyan, the second best in orange. The last column shows the relative gain of Ours over the best
baseline.

Dataset Likelihood LRR IDE BARTScore FDGPT Binoculars RoOBERTa RADAR RAIDAR ImBD Ours Gain (%)
AcademicResearch 0.956  0.783 0.695 0.516 0.992 0.989 0.724 0.787 0.886  0.998 1.000| 100.0
ArtCulture 0.807  0.774 0.890 0.586 0.982 0.975 0.862 0.506 0.892  0.995 0.987 —
Business 0.899  0.851 0.766 0.506 0.981 0.978 0.791 0.572 0.878  0.996 0.995 —
Code 0.567  0.670 0.683 0.618 0.829 0.805 0.842 0.585 0872  0.966 0.991| 724
EducationMaterial 0.998  0.989 0.607 0.871 1.000 1.000 0.889 0.911 0.901 1.000 1.000 —
Entertainment 0.995 0.916 0.689 0.860 1.000 1.000 0.625 0911 0.895  1.000 1.000 —
Environmental 0.972  0.931 0.506 0.775 0.998 0.997 0.532 0.625 0.880  0.999 0.995 —
Finance 0.930  0.873 0.548 0.745 0.991 0.993 0.629 0.583 0.875  1.000 1.000 —
FoodCusine 0.794  0.608 0.566 0.552 0.901 0.895 0.573 0.594 0.888  0.997 0.995 —
GovernmentPublic 0913  0.874 0.808 0.555 0.981 0.980 0.758 0.517 0.885  0.999 0.998 —
LegalDocument 0.578  0.847 0.644 0.520 0.998 0.998 0.952 0.917 0.878  1.000 1.000 —
LiteratureCreativeWriting ~ 0.984  0.883 0.575 0.843 0.997 0.995 0.729 0.722 0.888  1.000 1.000 —
MedicalText 0.954  0.855 0.775 0.556 0.984 0.985 0.822 0.505 0.891  0.995 0.983 —
NewsArticle 0911  0.705 0.612 0.617 0.987 0.991 0.538 0.926 0.890  1.000 1.000| 100.0
OnlineContent 0.791 0.728 0.524 0.550 0.951 0.941 0.568 0.636 0876 0974 0.994| 76.3
PersonalCommunication 0.813  0.678 0.582 0.559 0.870 0.872 0.682 0.632 0.873 0954 0.991| 80.2
ProductReview 0.888  0.730 0.541 0.589 0.959 0.958 0.509 0.663 0.890  0.999 0.999 —
Religious 0.558  0.551 0.613 0.850 0.873 0.856 0.854 0.805 0.874 0992 0.974 —
Sports 0.811  0.667 0.795 0.799 0.934 0.929 0.772 0.560 0.878 0.986 0.990| 32.9
TechnicalWriting 0.929  0.785 0.751 0.656 0.989 0.986 0.733 0.816 0.879  0.999 1.000| 100.0
TravelTourism 0.929 0.785 0.751 0.656 0.989 0.986 0.733 0.816 0.886  0.999 1.000| 100.0
Average 0.856  0.785 0.663 0.656 0.961 0.957 0.720 0.695 0.884 0993 0.995| 28.8
Std 0.134  0.110 0.106 0.125 0.049 0.054 0.126 0.143 0.008  0.012 0.007 —

Table B4: Comparison between learning to rewriting (L2R) and our proposal. As L2R does not
provides their implementations, we paste the results of Table 1 inHao et al.| (2025) into the Table.
We can see that our proposal surpasses L2R in 20 datasets.

Method AcademicResearch EducationMaterial FoodCusine MedicalText ProductReview TravelTourism ArtCulture
L2R 0.8406 0.9644 0.9547 0.7857 0.9689 0.9475 0.8328
Our 0.9885 0.9906 0.9907 0.9083 0.9948 0.9933 0.9204
Method | Entertainment ~ GovernmentPublic NewsArticle Religious LiteratureCreativeWriting Environmental LegalDocument
L2R 0.9494 0.8675 0.9242 0.9775 0.9294 0.9786 0.7803
Our 0.9993 0.9620 0.9960 0.9656 0.9917 0.9902 0.9812
Method | OnlineContent Sports Code Finance Business PersonalCommunication TechnicalWriting
L2R 0.8881 0.8742 0.8383 0.9400 0.9156 0.8239 0.9369
Our 0.9666 0.9308 0.9451 0.9912 0.9562 0.9334 0.9943
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Figure B1: AUC, runtime for training, and memory usage during training when K increases.

B.1 ADDITIONAL EXPERIMENTS: INSENSITIVITY ON TEMPERATURE

It is well known that varying the sampling temperature produces different outputs from LLMs, and
adjusting temperature is a commonly used strategy in real-world LLM usage (Renzel 2024). In
practice, when collecting text from an LLM, the specific temperature setting is typically unknown.
It is therefore important to evaluate whether our method remains robust when training and test data
are generated with different temperatures.

Following the same data generation process described in Section f.3] we extend the setting to in-
clude six temperature values: {0.01,0.2,0.4,0.6,0.8,1.0}. For evaluation, we partition the datasets
into training and testing splits based on temperature. Specifically, one split uses {0.2,0.6, 0.8} for
training and {0.01,0.4, 1.0} for testing, and the roles are reversed in the other split. This design
mimics realistic scenarios where data collected at one set of temperatures are used to detect text
generated at unseen temperatures.

As shown in Figure[BZ] our method achieves performance nearly identical to the case where training
and test data share the same temperature. These results highlight the robustness of our approach
under temperature variation.

News Wiki Story
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Figure B2: AUCs under varying temperatures. Each column corresponds to a dataset. Dashed lines
indicate performance when training and test data are generated with the same temperature.

C IMPLEMENTATION

Prompt for rewriting. The prompt is set as: You are a professional rewriting
expert and you can rewrite the context without missing the
original details. Please keep the length of the rewritten text
similar to the original text. Original text:.

To generate rewritten texts, we employ an open-source model available on HuggingFace. We rec-
ommend using an instruction fine-tuned variant, as it is more likely to produce faithful rewrite. In
addition, the model should contain at least a billion parameters, since smaller models often fail to
generate reliable rewrite. Choosing a open-source LLM does not require access to proprietary mod-
els like ChatGPT and Grok, making our approach being affordable and accessibility. We set the
max_new_tokens as the 1.2 times of the number of tokens in X, and the min_new_tokens as
the 0.8 times of the number of tokens in X.
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Rewrite times K. The parameter K plays a critical role in balancing computational cost and detec-
tion performance. Increasing K improves the accuracy of estimating 7, but at the expense of longer

training time—since probabilities py(X1),. .., ps(X k) must all be computed—and higher GPU
memory requirements during backpropagation. Figure [B1|illustrates the trade-off: while larger K
generally improves performance, the gains diminish beyond small values, whereas the runtime and
memory usage grow roughly linearly. Notably, as long as K > 1, the AUC remains strong. Moti-
vated by this observation, we adopt a modest choice of K = 4 throughout all experiments, striking
a balance between accuracy and efficiency.

Fine-tuning setting. In our specific fine-tuning, we set the distance function as dy (X1, X2) =
|logpy(X1)/1len(X1) — logps(X2)/len(Xs)| where 1en(Xy) is the number of tokens of X,
(k = 1, 2). This normalization accounts for text length, as a longer text are expected to correspond
to smaller log-likelihood. Without loss of generality, we set py, as the model used for generating the
rewritten text. We fine-tune the model, employ LoRA (Hu et al. [2022) implemented in the peft
library, with rank parameter set to 8, lora_alpha set to 32, and lora_dropout set to 0.1, and the other
parameters use the default settings.

D EXPERIMENTS: DETAILS

This section describes the experimental setup in detail. It is worth noting that throughout all exper-
iments, we use AUC as the evaluation metric, and the relative gain over the strongest baseline is
computed as: (Our AUC — StrongestBaseline’s AUC) /(1.0 — StrongestBaseline’s AUC).

D.1 EXPERIMENTAL SETUP ON DIVERSE DATASETS

Setup for learning-based methods. For fairness, we follow a consistent training protocol across
training-based detectors. Specifically, for each method, we train on 10 out of the 21 datasets and
evaluate on the remaining ones. We then repeat the process by swapping the training and test
splits, ensuring that no evaluation data leaks into training and guaranteeing a fair comparison. For
RoBERTa and RADAR, since only pre-trained checkpoints are publicly available, we directly use
the models released on HuggingFace{Tl This setup also enables a reasonable comparison with L2R,
which uses 70% of each dataset for training and the remainder for testing. In contrast, our method
trains on fewer datasets and the evaluation datasets are out of domains yet still achieves better per-
formance, highlighting the effectiveness of the learning procedure.

Setup for zero-shot methods. For zero-shot detectors, we employ the same open-source LLMs as
surrogate models to compute their statistical measures. These include Likelihood, IDE, and LRR.
Notice that, the implementation of ID provide two method for estimating intrinsic dimension, one
is based on persistence homology and another is based on maximum likelihood estimation (Levina
& Bickel, 2004). Since the former requires a large amount of time on computing, we use maximum
likelihood estimation in the experiments. For Binoculars and FDGPT, which require both a sampling
model and a scoring model, we set p, as the scoring model and use its corresponding base model
as the sampling model. For BARTScore, which also involves rewriting, we align its rewriting step
with our own method while using the pre-trained BARTScore model from Hu ggingFaceE] to compute
distances.

D.2 EXPERIMENTAL SETUP ON DIFFERENT PROMPTS

Data generation. We generate machine-generated texts with three state-of-the-art LLMs: GPT-
40, Claude-3.5-Haiku, and Gemini-2.5-Flash. They specific version are: gpt—-40-2024-08-06,
claude-3-5-haiku-20241022.

We next describe the specific system prompts and user prompts that are used for generating texts.
First, for the rewrite task, the system prompt is:

https://huggingface.co/openai-community/roberta-large-openai-detector
*https://huggingface.co/TrustSafeAI/RADAR-Vicuna-7B
‘nttps://github.com/ArGintum/GPTID
*https://huggingface.co/facebook/bart-large-cnn
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System Prompt on Rewrite

You are a professional rewriting expert and you can help paraphrase this paragraph in English
without missing the original details. Please keep the length of the rewritten text similar to
the original text.

For the polish task, the system prompt is:

System Prompt on Polish

You are a professional polishing expert and you can help polish this paragraph.

For the expand task, the system prompt is:

System Prompt on Expand

You are a professional writing expert and you can help expand this paragraph.

For Gemini-2.5-Flash and Claude-3.5-Haiku, we additionally append the instruction in
the system prompt:

Return ONLY the rewritten/polished/expanded version. Do not
explain changes, do not give multiple options, and do not add
commentary.

This ensures the output is strictly aligned with the assigned task.

The user prompt depends on the task. For rewriting, it takes the form: Please rewrite:
[a human text]. For the expansion task, one of several predefined style promptsﬂ is selected
(e.g., “Expand but not extend the paragraph in an oral style” or “Expand
but not extend the paragraph in a literary style”). For polishing, a prompt
is similarly chosen from a predefined selﬂ (e.g., “Help me refine a paragraph with
a lyrical touch. Enhance the flow and imagery, making the words
sing together in perfect harmony”).

Given these settings, each LLM generates texts from human-written texts randomly sampled from
one of source datasets. In the generation process, we set the temperature parameter of LLM as
0.8. This process is repeated 100 times on one source dataset and one task, yielding a dataset of
100 machine-generated and 100 human-written texts. With three tasks, three LLMs, and three data
sources, we obtain a total of 27 evaluation datasets.

Setup of Baselines. Bascline setups largely follow the procedure in Section [D.1] with slight mod-
ifications to the training data. For instance, when evaluating performance on the News dataset, the
Wiki and Story datasets are used for training. The process is repeated analogously when evaluating
on the Wiki or Story datasets.

D.3 EXPERIMENTAL SETUP FOR ADVERSARIAL ATTACKS AND ABLATION

To evaluate the robustness of our approach against adversarial attacks, we adopt the attacks in
(2024). In particular, for the rephrasing attack, we use the T5-based paraphraser available on
HuggingFacﬂ to paraphrase text generated by Claude-3.5 prior to detection.

In the ablation study, both FD and our method rely on the exact same rewritten texts to compute
distance. This setup reflects the contribution of our adaptive distance learning procedure.

6https://github.com/Jiaqi—Chen—OO/ImBD/blob/ma:i_n/data/expand_prompt.
Jjson

'https://github.com/Jiagi-Chen-00/ImBD/blob/main/data/polish_prompt.
json

®https://huggingface.co/Vamsi/T5_Paraphrase_Paws
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E DECLARATION: LLM USAGE

In preparing this paper, the LLM was used only for writing and editing, and it does not impact the
core methodology.
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