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Abstract
Generative machine learning (ML) models can
use data generated by scientific modeling to cre-
ate large quantities of novel material structures.
Here, we assess how one state-of-the-art gener-
ative model, the physics-guided crystal genera-
tion model (PGCGM), can be used as part of
the inverse design process. We show that the
default PGCGM’s input space is not smooth with
respect to parameter variation, making material
optimization difficult and limited. We also demon-
strate that most generated structures are predicted
to be thermodynamically unstable by a separate
property-prediction model, partially due to out-of-
domain data challenges. Our findings suggest how
generative models might be improved to enable
better inverse design.

1. Introduction
Inverse design—the discovery of materials with targeted
properties—remains an important task in materials sci-
ence (Wang et al., 2022). In recent years, progress has
been made, spurred by the use of machine learning (ML)
and iterative design loops (Pogue et al., 2022; Goodall et al.,
2022; Stanev et al., 2018; Attia et al., 2020; Zhang et al.,
2020; Baird et al., 2022; Wines et al., 2023), but further
challenges remain. A key reason is the lack of high-quality
experimental and computational data, compared to similar
fields like chemistry (Xie et al., 2022).

Computational and experimental characterization have en-
abled the generation of scientific materials databases like
Materials Project (MP) (Jain et al., 2013), Open Quantum
Materials Database (OQMD) (Saal et al., 2013; Kirklin
et al., 2015), and Inorganic Crystal Structure Database
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(ICSD) (Belsky et al., 2002), which contain hundreds of
thousands of material structures. However, these still sam-
ple only a small fraction of possible materials. To enable the
discovery of additional materials structures, these scientific
databases are used as training data for generative ML models
like generative adversarial networks (GANs) (Goodfellow
et al., 2014) and variational autoencoders (VAEs) (Kingma
& Welling, 2014). Via additional property-prediction mod-
els, generated materials can be assessed for suitability in
design tasks. Identified materials can be studied in detail,
synthesized, and characterized. In recent years, a number
of different ML models for material generation have been
developed (Zhao et al., 2021; Kim & Dordevic, 2022; Ren
et al., 2022; Court et al., 2020; Zhao et al., 2023; Alverson
et al., 2023), and ML has been successfully used for prop-
erty prediction (Goodall & Lee, 2020; New et al., 2022; Xie
& Grossman, 2018; Sanyal et al., 2018; Chen et al., 2019;
Park & Wolverton, 2020; Choudhary & DeCost, 2021).

In this work, we evaluate a state-of-the-art genera-
tive model, the physics-guided crystal generation model
(PGCGM) (Zhao et al., 2023) used to generate diverse and
usable material structures. In Section 2, we detail the genera-
tion process. In Section 3, we identify a potential issue with
the use of PGCGM for inverse optimization—namely, a lack
of smoothness with respect to property and validity variation
in the model’s input space. In Section 4, we use a second
ML model to assess the stability of generated materials and
highlight a lack of diversity in structures. We conclude with
recommendations for how to enhance generative models for
use in inverse design of materials.

2. Generating novel material structures
Our study uses a state-of-the-art generative model,
PGCGM (Zhao et al., 2023). The PGCGM extends the
Wasserstein GAN (Arjovsky et al., 2017) to ternary mate-
rial generation. Given three constituent atoms and space
group of a ternary material system, PGCGM predicts possi-
ble atom coordinates and lattice parameters. Generated unit
cells are saved into crystallographic information file (CIF)
format and can be read by tools like pymatgen (Ong et al.,
2013) and jarvis (Choudhary et al., 2020) for use and
analysis. PGCGM was shown to perform well in terms of
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material validity, diversity, and property similarity to train-
ing data, compared to other models like CubicGAN (Zhao
et al., 2021) and the Fourier-transformed crystal proper-
ties (FTCP) (Ren et al., 2022) method. PGCGM trains a
generator fθ that satisfies:

B, p = fθ(z, E, s), (1)

where the outputs are: B = (b0, b1, b2) ∈ R3×3, the atom
fractional coordinates for each constituent element; and
p = (a, b, c, α, β, γ), the structure’s lattice parameters; and
the inputs are: z ∈ R128, a vector with entries sampled
from a standard normal distribution; E, the three constituent
atoms; and s, a space group. Thus, B and p can be used to
construct a generated material’s CIF.

We use the pretained PGCGM model and post-processing
scripts available on GitHub1 and generate two sets of ma-
terial structures. In the first, we fix the constituent atoms
and the space group and generate 5, 000 samples from fθ
for the Ta−Ge−As system with the Pm3̄m space group;
of these, 241 are valid material structures2. We analyze
how the GAN sample z impacts material structure of these
materials in Section 3. In the second set, we sample sets of
constituent atoms and space groups and generate 500, 000
samples from fθ; of these, 27, 116 are valid. The validity
rate (27, 116/500, 000 ≈ 5.4%) for this sample is slightly
lower but comparable to the 7.14% validity rate (Zhao et al.,
2023) report.

We analyze the predicted stability of these structures in Sec-
tion 4. Figure 6 and Figure 7 in Appendix A show example
structures generated by PGCGM.

3. Assessing smoothness of GAN input space
In the materials design problem, we look for a material that
maximizes a suitability or property function Outcome (e.g.,
critical temperature for superconductors or solubility for
drug-like molecules). Using PGCGM, this problem can be
formulated as:

B̂, p̂ = argmax
z,E,s

Outcome(B(z, E, s), p(z, E, s)), (2)

where B,P, z, S,E are defined in Eq. 1. Given a differen-
tiable suitability function Outcome and fixed space group
s and elements E, Eq. 2 suggests the use of gradient-based
methods to optimize Outcome by differentiating it with re-
spect to z. Similar approaches are often used with VAEs for
inverse design (Gómez-Bombarelli et al., 2018; Xie et al.,
2022) and with GANs for image editing (Zhu et al., 2020).

1https://github.com/MilesZhao/PGCGM
2Following the post-processing scripts of (Zhao et al., 2023),

by “valid”, we mean that their estimated space group (from
pymatgen) matches their input space group s, and atoms of
the same type that occupy approximately the same spatial location
can be merged together.

Figure 1. We use UMAP to project PGCGM inputs (z in Eq. 1)
corresponding to valid CIFs from the Ta−Ge−As system into two
dimensions. Nearby points often have different property values,
suggesting that the PGCGM input-space is not generally smooth
with respect to variation in material properties, making PGCGM
difficult to use as part of gradient-based material optimization.
Statistical analyses (Section 3) further support this observation.

Effective optimization requires two conditions be met: (1)
small perturbations to a PGCGM input z corresponding to
a valid (invalid) CIF should continue to produce a valid
(invalid) CIF, and (2) perturbing a PGCGM input z cor-
responding to a valid CIF should not drastically change
properties of the unit cell (e.g., the gradient of Outcome
should be Lipschitz-continuous with respect to z, which
can enable convergence of gradient descent techniques in
combination with other regularity conditions (Carmon et al.,
2020; Arjevani et al., 2023)).

3.1. Global smoothness analysis

Using the 241 PGCGM inputs z corresponding to valid
structures, we find that the pretrained PGCGM’s input space
does not appear to be globally smooth. In Figure 1, we take
the 241 PGCGM inputs z corresponding to valid structures
and project them into two dimensions using uniform mani-
fold approximation and projection (UMAP) (McInnes et al.,
2020). It is common for a point and its nearest neighbor in
the embedding to have very different property values.

https://github.com/MilesZhao/PGCGM
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We also conduct a more extensive analysis on the relation-
ship between the PGCGM input space and the set of samples
z ∈ R128 corresponding to valid materials. First, we use
the Kolmorogov-Smirnov (KS) test to see if the distribu-
tion of each component of the samples z was distinct from
the standard normal distribution that generated all of the
samples and adjust the 128 p-values with the Benjamini-
Hochberg (Benjamini & Hochberg, 1995) scheme. Four
z components (out of 128) were found to be significantly
distinct from the standard normal distribution, suggesting
that z samples corresponding to valid structures and invalid
structures are often statistically similar, which is evidence
against the first condition. We also train random forest
models to predict unit cell density and volume given z; the
density-prediction model had an out-of-bag R2 estimate of
0.16, and the volume-prediction model had an out-of-bag
R2 estimate of 0.20. This suggests that the relationship
between PGCGM input z and resultant unit cell’s properties
is difficult to model, providing evidence against the second
condition. We repeated this analysis with other material
systems and saw comparable results.

3.2. Local smoothness analysis

Our conclusions in Section 3.1 relied on a projection of a
high-dimensional space to assess smoothness. To provide
additional perspective, we perform a perturbation-based lo-
cal smoothness analysis. This enables us to explore property
variation in local neighborhoods of GAN inputs z corre-
sponding to valid material structures. Specifically, we start
by sampling a point z0 from the GAN’s input distribution
N (0128, I128). We sample N random directions rn from the
surface of the unit sphere in R128 and construct a uniform
discretization 0 < ε1 < · · · < εM of the range (0, εM ]. By
evaluating the PGCGM at each point z0+εmrn and calculat-
ing Outcome of the resultant material fθ(z0 + ϵmrn, E, s),
we see Outcome’s behavior across balls of radius ϵm.

These calculations let us estimate Lipschitz constants
for property functions by evaluating |Outcome(fθ(z0 +
εmrn, E, s) − Outcome(fθ(z0 + εm′rn′ , E, s)| vs.
||ϵmrn − εm′rn′ ||. Although convergence rates for opti-
mization involve Lipschitz constants of function gradients
(i.e., ∇zOutcome(fθ(z0 + εmrn, E, s)), these are harder
to obtain for PGCGM: the PGCGM’s post-processing
non-smoothly merges spatially-adjacent atoms of the same
type together. Future work could estimate some of these
Lipschitz constants using specially-developed techniques
with provable guarantees (Jordan & Dimakis, 2020; 2021).

In this study, we select z0 as one of the 241 stable materi-
als sampled from the Ta−Ge−As system with the Pm3̄m
space group used in Section 3.1, we sample N = 128 dif-
ferent directions rn and evaluate perturbations rnϵm up to
a maximum radius of ϵM = 10. In Figure 2, we show

pairwise property and input distances for the resulting valid
CIFs. For smaller input distances (||ϵmrn − εm′rn′ || ⪅ 4),
the PGCGM input space is locally smooth in the sense that
small changes in the input mostly lead to small changes in
the property. After that, the range in variation of the prop-
erties increases significantly, which aligns with the global
smoothness analysis of Section 3.1.

Figure 2. Using a sample from the Ta−Ge−As system, we ana-
lyze the local smoothness of the PGCGM’s input space by plot-
ting changes in material properties—density (top) and volume
(bottom)—with respect to changes in the PGCGM’s input z. No-
tably, the input space features contours where ||ϵmrn − εm′rn′ ||
is constant, but the property changes.

4. High-throughput thermodynamic stability
predictions

Generative models suggest large numbers of potential ma-
terial structures, and not all generated structures are guar-
anteed to be thermodynamically stable. Some of these can
be further characterized by experimental or computational
techniques, but this characterization is too expensive in time
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Figure 3. 12,826 of the 33,172 PGCGM training set structures are
predicted to have a negative decomposition enthalpy (left) ∆Hd by
ALIGNN, indicating they are predicted to be thermodynamically
stable. In contrast, all but 195 of the 27,116 structures generated
by PGCGM were predicted to have a positive decomposition en-
thalpy (right). The median predicted decomposition enthalpy is
also lower for the training data than the generated structures: 0.02
eV/atom vs. 0.38 eV/atom.

and cost to be performed for all or even most generated ma-
terials. Thus, we trained a ML to predict the thermodynamic
stability of the PGCGM-generated structures.

In particular, we use atomistic line graph neural network
(ALIGNN) (Choudhary & DeCost, 2021) to predict de-
composition enthalpy ∆Hd. ALIGNN is trained on a set
of ternary structures and computationally-predicted ∆Hd

taken from MP and collected by Bartel et al. 2020. A struc-
ture is predicted to be thermodynamically stable if its de-
composition enthalpy is negative.

The ALIGNN forward pass is:

∆Hd = ℓ(h) = ℓ(a(g)), (3)

where ∆Hd is the predicted decomposition enthalpy, ℓ is a
linear layer, and h = a(g) ∈ R256 is the embedding of an
input graph g produced by edge-gated graph convolutional
layers (Bresson & Laurent, 2017). Our ALIGNN model is
trained with the default architecture and hyperparameters.

We evaluate ALIGNN on PGCGM’s training data (33, 172
structures taken from MP, ICSD, and OQMD) and the
27, 116 PGCGM-generated structures, calculating both their
predicted decomposition enthalpies ∆Hd and their embed-
dings h. In Figure 3, we show that only 195 of the 27, 116
generated structures are predicted by ALIGNN to be ther-
modynamically stable. In contrast, 12, 826 of the 33, 172
training set structures are predicted to be stable.

We propose and evaluate two hypotheses for this result.
First, the training data for and generated structures from
PGCGM are potentially out-of-domain for the trained
ALIGNN model. In Figure 4, we show that there is a strong
correlation between the minimum Euclidean distance of a
PGCGM-generated structure’s embedding h to the set of
embeddings of the ALIGNN training set and the predicted
∆Hd. Thus, only the generated structures most similar to

Figure 4. The minimum distance between each of the 27,117 gener-
ated materials’ embeddings (h in Eq. 3) and the ALIGNN training
data’s embeddings has a strong positive correlation with the pre-
dicted decomposition enthalpy (shading indicates regions where
points are concentrated). Thus, only the generated structures most
similar to the training data are predicted to be thermodynamically
stable.

training data are predicted to be stable. In Figure 9 in Ap-
pendix A, we build on this distance vs. prediction for a
held-out subset of the ALIGNN training data; we show that
the correlation of Figure 4 is not a general characteristic of
ALIGNN predictions.

Beyond this distance-based analysis driving ALIGNN’s pre-
dictions, we also provide evidence that the structures gen-
erated by PGCGM are distributionally different and less
varied than those in its training data. In Figure 5, we take
the embeddings of the PGCGM training data and the gen-
erated structures and use UMAP (McInnes et al., 2020) to
project them into two dimensions. The embeddings of the
generated structures are compressed into a tight region of
the projection, while the embeddings of the training data are
spread more widely across the space. Thus, there appears
to be a lack of diversity in the generated structures, with
respect to how the ALIGNN model predicts their stability.
This is similar to the general problem of mode collapse
observed in GANs (Saxena & Cao, 2021), and strategies
adopted there could mitigate it in future work.

In Figure 8 (in the Appendix), we repeat this analysis using
the embeddings of the PGCGM-generated structures and
ALIGNN’s training data from MP. As in Figure 5, the em-
beddings of the generated structures are more compressed
together than the embeddings of the training data.
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Figure 5. We use UMAP to show that the ALIGNN embeddings
of the 27,116 valid CIFs generated by PGCGM are concentrated
in a tight region of latent space. In contrast, the ALIGNN embed-
dings of PGCGM’s training data are spread more widely (shading
indicates regions where points are concentrated). This suggests
PGCGM’s capacity for generating diverse and varied structures
can be further improved. Here, the UMAP embedding was learned
from the combination of the PGCGM’s generated structures and
training data.

5. Conclusion
Here we assess the ability of generative structure models
to assist in designing novel materials. Although current
generative models like PGCGM are able to generate large
numbers of varied and valid material structures, we show
that (1) the PGCGM is not smooth with respect to either
material validity or material property variation, making prop-
erty optimization difficult; and (2) assessing thermodynamic
stability of generated structures is difficult due to generated
structures being concentrated in tight regions of latent space
distant from property-predictor training data. Our particular
analyses are not restricted to the PGCGM and can be ap-
plied to assess other generative material models such as Kim
& Dordevic (2022); Ren et al. (2022); Court et al. (2020);
Alverson et al. (2023).

Our findings here suggest potential investigations to fully
enable inverse design via generative modeling. For example,
the loss formulation of PGCGM or another generative model
could be modified to encourage smoothness with respect
to property variation in its input space via techniques like
optimal transport (Chen et al., 2021). Global smoothness of
PGCGM input space is not necessarily needed, as functions
that are locally Lipchitz can still be optimized in some
settings (Patel & Berahas, 2022).

Although we saw that most PGCGM-generated structures
are predicted to be unstable, this may be a consequence of
a poor property-prediction model, not a poor input struc-
ture. Compared to general neural networks, graph neural
networks like ALIGNN have been shown to perform well
in certain extrapolation tasks (Xu et al., 2021); however, the
distance-to-training set metric we use in Figure 4 does not
fully explain if a prediction is accurate (Hirschfeld et al.,
2020). Recent work also observes that ALIGNN models can
fail specifically in the setting of out-of-domain property pre-
diction for material structures (Li et al., 2023). Challenges
have also been identified in the use of graph neural networks
to predict multiple material properties (e.g., stability and a
design property of interest) (New et al., 2022).

Here we analyze how diverse and stable structures directly
predicted by the PGCGM are. A supplementary strat-
egy, taken by (Zhao et al., 2023), is to further refine ML-
predicted material structures, either with first-principles cal-
culations, or with techniques like constrained Bayesian opti-
mization (Zuo et al., 2021).
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Broader impact
Inverse design of materials is important for many fields
of engineering and science, and these fields have robust
mechanisms for preventing misuse. Materials discoveries
made by ML can thus be beneficial to different aspects of
society.
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A. Supplemental figures

Figure 6. A PGCGM-generated structure for LiZn2Pt with space group 225: Fm3̄m that is predicted by ALIGNN to have a negative
decomposition enthalpy ∆Hd.

Figure 7. A PGCGM-generated structure for SiN2O2 with space group 62: Pnma predicted by ALIGNN to have a positive decomposition
enthalpy ∆Hd.
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Figure 8. We use UMAP (McInnes et al., 2020) and project the ALIGNN embeddings of the 27,116 PGCGM (Zhao et al., 2023)-generated
structures and the MP structures of the ALIGNN training data into two dimensions (shading indicates regions of high concentration). The
PGCGM-generated structures are much more compressed in the latent space than the embeddings of the ALIGNN training data.

Figure 9. We repeat the distance-to-training-set analysis of Figure 4 while only using ALIGNN’s (Choudhary & DeCost, 2021) training
data. We hold out 20% (7, 568 structures) of its training dataset, and we calculate the minimal distance from each point to the remaining
30, 274 training points. Unlike Figure 4, there is no clear correlation between the ALIGNN’s predicted decomposition enthalpy and the
distance to the remaining training points. This suggests that the correlation between predicted decomposition enthalpy and distance-to-
training set occurs specifically in the case of out-of-domain data.
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B. Data details
For PGCGM (Zhao et al., 2023), we used the pre-trained model, which was trained on 33,172 ternary structures sourced
from MP (Jain et al., 2013), ICSD (Belsky et al., 2002), and OQMD (Saal et al., 2013). The IDs were made available by
the PGCGM authors on GitHub3. We trained our ALIGNN (Choudhary & DeCost, 2021) model on the 37,842 ternary
structures from MP, selected from the 85,014 structures analyzed by Bartel et al. 2020.

3https://github.com/MilesZhao/PGCGM/blob/main/data/ids_for_mp_oqmd_icsd.csv

https://github.com/MilesZhao/PGCGM/blob/main/data/ids_for_mp_oqmd_icsd.csv

