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Abstract

Out-of-distribution generalization is a common problem that expects the model to perform
well in the different distributions even far from the train data. A popular approach to ad-
dressing this issue is invariant learning (IL), in which the model is compiled to focus on
invariant features instead of spurious features by adding strong constraints during training.
However, there are some potential pitfalls of strong invariant constraints. Due to the limited
number of diverse environments and over-regularization in the feature space, it may lead to a
loss of important details in the invariant features while alleviating the spurious correlations,
namely the over-invariance, which can also degrade the generalization performance. We the-
oretically define the over-invariance and observe that this issue occurs in various classic IL
methods. To alleviate this issue, we propose a simple approach Diverse Invariant Learning
(DivIL) by adding the unsupervised contrastive learning and the random masking mecha-
nism compensatory for the invariant constraints, which can be applied to various IL methods.
Furthermore, we conduct experiments across multiple modalities across 12 datasets and 6
classic models, verifying our over-invariance insight and the effectiveness of our DivIL frame-
work. Our code is available in https://anonymous.4open.science/r/DivGIL-B68F/.

1 Introduction

Modern machine learning methods have exceeded human-level performance across various domains such as
natural language processing, computer vision, and graph neural networks (Kipf & Welling, 2017; Devlin et al.,
2019; Xu et al., 2019). However, these methods heavily rely on the assumption that training and testing
data come from the same distribution, known as the in-distribution assumption (IID assumption) (Liu et al.,
2023; Peters et al., 2016c). When faced with out-of-distribution (OOD) data, almost all of these methods
generalize poorly since they are prone to inherit data biases from the train set as shortcuts (Koh et al., 2021;
Gulrajani & Lopez-Paz, 2021; Gui et al., 2022; Ji et al., 2022).

A canonical method for the OOD generalization is invariant learning (IL) based on the invariant principle
from causality (Arjovsky et al., 2019; Ahuja et al., 2021; Peters et al., 2016b; Krueger et al., 2021). As seen
in Figure 1a, the basic assumption of IL is that each data is determined by the invariant feature Zc and the
spurious feature Zs and only learning the invariant features can achieve the success of OOD generalization.
Specially, the two variables are unobservable and the invariant one is stable across environments (Zc ⊥ S|C)
while the spurious one changes with environments (S). The key challenge of IL is how to learn the invariant
features while alleviating the spurious features. To achieve this goal, various IL methods add regularization
to the original Empirical Risk Minimization (ERM) loss, for example, IRMv1, VREx, and Fishr (Krueger
et al., 2021; Rame et al., 2022) introduce gradients-induced losses and EIIL, EILLS, and CIGA (Creager
et al., 2021b; Fan et al., 2023; Chen et al., 2022) adapt the environment-induced penalties. Others (Peters
et al., 2016b; Ahuja et al., 2021; Wu et al., 2022; Sagawa* et al., 2020) apply complex invariant strategies
during the training process to extract invariance.

However, the rigorous invariance definition (Arjovsky et al., 2019) must (1) be Bayesian optimal across
all environments and (2) completely abandon the spurious feature, which gives a strong restriction to the
representation learning. Despite improvement in performance on the test set, most IL methods perform
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(b) Illustration of the over-invariance issue in the graph field.

Figure 1: (a) shows the structural causal model of invariant and spurious features in relation to the invariance
and the environments. (b) shows the over-invariance issue in the graph field. Each graph G consists of the
invariant subgraph Gc (star, house) and the spurious subgraph Gs (wheel, tree). Previous IL methods
alleviate spurious subgraphs while sacrificing important details of invariant subgraphs (The circle is the
invariant subgraph Ĝc identified by the model.), causing the over-invariance issue.

poorly compared to ERM on the train set (Creager et al., 2021b; Kamath et al., 2021a; Krueger et al.,
2021). Furthermore, extracting invariant features requires the train data from different environments which
are often artificially divided or typically absent in real-world scenarios. Some studies (Lin et al., 2022;
Kamath et al., 2021b) have proved that in cases with insufficient environments in the train set, IL fails to
distinguish the invariance and the spurious correlation. This reveals two critical dilemmas of IL to capture
the invariance: while beneficial for OOD generalization, its over-regularization limits the representation and
requires an infinite number of diverse environments.

In this paper, we highlight that during the pursuit of invariance, current IL methods tend to use fewer
features to avoid any risk of violating invariance, referred to as the over-invariance. Figure 1b demonstrates
an example of over-invariance in the graph field where IL predicts the label only by the small subgraph of
the invariant subgraph Gc and ignores other part of the graph. However, this may come at the cost of losing
enough details and diversity of the invariant feature despite alleviating the spurious correlation, which also
degrades the out-of-distribution generalization. Furthermore, we rigorously define the over-invariance and
conduct simulation experiments on two classic IL methods, IRM (Arjovsky et al., 2019) and VREx (Krueger
et al., 2021), verifying the existence of the over-invariance.

Built upon our observation, we propose a simple and novel method Diverse Invariant Learning (DivIL)
with a focus on promoting richer and more diverse invariance. Since the quality of the invariant feature
plays an essential role in IL, we consider striking a balance between the strong regularizers to alleviate
spurious correlations and the detailed capture of the invariant features. We combine invariant penalties
and unsupervised contrastive learning (UCL) with random data augmentation to extract domain-wise and
sample-wise features, eliminating the reliance on the environments. Meanwhile, we mask the front part of
the UCL feature as zero to reduce overfitting to spurious shortcuts (Jing et al., 2021). We evaluate DivIL on
an extensive set of 12 benchmark datasets across natural language, computer vision, and graph domains with
various distribution shifts, including a challenging setting from AI-aided drug discovery (Ji et al., 2022). We
demonstrate that DivIL can significantly enhance the performance of invariant learning methods, thereby
reinforcing our insight of the over-invariance issue in invariant learning. Our main contributions are:

• We first discover and theoretically define the over-invariance phenomenon, i.e., the loss of important
details in invariance when alleviating the spurious features, which exists in almost all of the previous
IL methods.

• We propose Diverse Invariant Learning (DivIL), combining both invariant constraints and unsuper-
vised contrastive learning with randomly masking mechanism to promote richer and more diverse
invariance.

• Experiments on 12 benchmarks across different modalities (i.e., graph, vision, and natural language)
show that DivIL can attain state-of-the-art performance for out-of-distribution generalization.
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2 Background
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Figure 2: Illustrations of three structural causal mod-
els (SCMs).

In this work, we focus on the OOD generalization
in the classification task. Specifically, given a set of
datasets D = {Ds}s collected from multiple environ-
ments ϵall, samples (Xs

i , Y s
i ) ∈ Ds are considered as

drawn independently from an identical distribution
Ps. A model f = w◦Φ generically has a representa-
tion function Φ : X → H that learns the meaningful
feature Z for each data and a predictor w : H → Y
to predict the label Ŷ based on the feature Z. The
goal of OOD generalization is to train the model on
the train set Dtr = {Ds}s∈ϵtr⊆ϵall

that generalizes
well to all (unseen) environments.

It is known that OOD generalization is impossible
without assumptions on the environments ϵall. Thus
we formulate the data generation process with structural causal model and latent variable model Pearl (2009).
The generation of the observed data X and labels Y are controlled by a set of latent causal variable C and
spurious variable S as suggested in Figure 1a, i.e.,

Zc := gc
gen(C); Zs := gs

gen(S); Z := (Zc, Zs)

Xs := gz
gen(Z); Y := f(Zc).

Zc is the invariant feature determined by the causal variable C, Zs varies with the environment S, and label Y
is determined by the casual variable C. Besides, based on the latent interaction among C, S and Y , SCM can
be further categorized into Full Informative Invariant Features (FIIF) and Partially Informative Invariant
Features (PIIF). Furthermore, PIIF and FIIF shifts can be mixed together and yield Mixed Informative
Invariant Features (MIIF), as shown in Figure 2. We refer interested readers to Ahuja et al. (2021) for a
detailed introduction to the generation process.

Invariance Learning. The invariance learning (IL) approach tackles the OOD Generalization problem by
predicting invariant features within the data. Considering a classification task, the objective of invariance
learning is to find an extractor Φ such that Φ(Xs) = Zc for all s ∈ ϵall. The learning objectives for Φ and
w are formulated as:

mins∈Etr⊆Eall,Φ,wRs(w(Ẑc); Y ) s.t. Ẑc ⊥ s, Ẑc = Φ(Xs). (1)

where Rs is the risk of the function, which is implemented by the cross-entropy loss Lce = − 1
n Σn

i=1log(Ŷ s
i )Y s

i .
Ẑc ⊥ s is the strong restriction for the model that distinguishes the representation from the interventions
from the environments, only obtaining the information about the invariance C. Besides, the basic assumption
of the OOD generalization is the environments, which are usually not accessed in real scenarios. So there are
essentially two distinct categories of Inverse Learning (IL) methods, depending on whether the environments
are explicitly labeled in the training datasets. In this paper, we remove environmental restrictions and focus
on environments not covered in the training dataset.

3 Over-invariance Issue

3.1 Invariant Features Derived from Invariance Principle

The theoretical guarantee to previous IL methods is the invariant principle, which defines what predictor
is invariant in different environments. Following Arjovsky et al. (2019), we formally define the invariant
principle as follows:

Definition 3.1 (Invariance Principle) We define a data representation function Φ as eliciting an invari-
ant predictor w across environments S if there is a classifier w simultaneously optimal for all environments.
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Specifically, this condition can be expressed as follows:

w ∈ argminwE(w ◦ Φ(Xs)), ∀s ∈ S. (2)

The invariant principle gives the rigorous definition of the invariant model. A data representation function
Φ elicits an invariant predictor across environments S if and only if, for all feature Z in the intersection of
the supports of Φ(Xs), we have E[Y s|Φ(Xs) = Z] = E[Y s′ |Φ(Xs′) = Z], for all s, s′ ∈ S. For more clarity,
we further define the invariant feature derived from the invariant principle.

Definition 3.2 (Invariant feature) Suppose selection function I = {0, 1}k , a invariant feature of label
Y under both train distribution Ptr and test distribution Pte is any subset Zc = Z ◦ I of the latent feature
Z ∈ Rk that satisfies

Eptr [Y |Zc] = Eptr [Y |Z], Epte [Y |Zc] = Epte [Y |Z]. (3)

An invariant feature, denoted as Zc, consists of features from X that carry predictive power for the target
Y across both training and test environments. In other words, Zc provides as much information about Y as
the full feature set X, ensuring that the predictive relationship is stable across environments S.

3.2 Rethinking the Effect of Invariant Features in OOD Generalization

In the above section, we formally define the invariant feature. However, this definition imposes a significant
restriction on the feature space, potentially leading to a degradation in out-of-distribution generalization
although it alleviates spurious correlations. In this part, we attribute two potential risks of the invariant
feature dilemma: 1) limited environmental diversity and 2) over-regularization via the loss function.

Limited Numbers of Diverse Environments. A lack of sufficient environmental diversity in real-world
scenarios fails to meet the requirements of the invariance principle. According to Equation 2, the hypothesis
of Invariant Risk Minimization (IRM) assumes that the environment labels are well-defined and that all
environments ϵall must be represented in the expectation condition. However, even if the environments in
the training set differ, they can still be significantly dissimilar to those in the test set, causing the model to
learn shortcuts based on the training data.

Over-Regularization via Implementation. In addition to the inherent limitations of the environment
collection, there is also a gap between the theory based on the ideal assumption and the implementation in
practice. For example, IRMv1 (Arjovsky et al., 2019) employs the l2 norm of the model gradients on the
Empirical Risk Minimization (ERM) loss to learn the invariance across training environments. This penalty-
based approach is also utilized by various IL methods such as VREx (Krueger et al., 2021), Fishr (Rame
et al., 2022), and IB-IRM (Ahuja et al., 2021). All these methods share the common goal of constraining
the rate of feature changes across different environments, preventing overfitting in a specific environment
due to the rapid changes in gradients. This strategy aims to force the model to learn the invariant features
by stable adjustments in train environments. However, the strong second-order regularization terms in the
ERM loss restrict the diversity of invariant features, thereby limiting the model’s ability to capture a broad
range of relevant features.

The above two reasons highlight the failure cases of the invariance principle, revealing that rough constraints
may inadvertently harm valuable invariant features, a phenomenon we refer to as over-invariance. Formally,
due to the unavailability of test environments Pte, such an invariant principle could inadvertently overlook
minor invariant characteristics, potentially misinterpreting them as mere hallucinations of spurious features,
dubbed as the over-invariance issue. In particular, we define the over-invariance issue as follows:

Definition 3.3 (Over-Invariant feature) Let Zc be the invariant feature of Y , if there exist a subset Oc

of Zc that satisfies
Eptr [Y |Oc] = Eptr [Y |Zc], Epte [Y |Oc] ̸= Epte [Y |Zc], (4)

then Oc is the over-invariant feature.
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Figure 3: The over-invariance issue occurs in IRMv1 and VREx. The X-axis represents the logarithm of
spurious variance σs. The Y-axis shows the strength of the corresponding subset of invariant features Φ(x)
under varying invariant variances σc = {0.1, 1, 3, 5}. For each configuration, we run 10 different seeds and
report the average results.

An over-invariant feature is the subset of the invariant feature (Oc ⊂ Zc) that performs similarly in the
train environments. While Oc maintains predictive accuracy for Y in the training distribution Ptr, it only
contains part information of Y , may leading to poor OOD performance in Pte.

3.3 Theoretical Analysis

Since distinguishing between invariant and spurious information in the hidden feature space is challenging
in real-world scenarios, we create a synthetic dataset to simulate various distributions, allowing us to further
observe the existence of the over-invariance.

Definition 3.4 (Data Generation) Given the data (x, y, ys), y is the label and ys is the environment, y
is uniformly sampled from {−1, 1} and ys = Rad(s)× y where Rad(s) is a random variable taking value −1
with with probability s and 1 with with probability 1 − s. The data x ∈ Rd is composed of two components:
the invariant feature xc and the spurious feature xs, where xc ∈ Rdc , xs ∈ Rds , and d = dc + ds. Each
sample x is generated as follows:

x = {xc, xs} ∈ Rd, where
{

xc ∼ N(µcy, σ2
c ),

xs ∼ N(µsys, σ2
s),

Here, µc ∈ Rdc and µs ∈ Rds represent the mean of the Gaussian distributions. σc ∈ Rdc×dc and σs ∈ Rds×ds

denotes the standard deviations that control the variability.

To analyze the preferences of the invariant learning for different components of invariant features, we quantify
the strength of the subset of features, by masking the irrelevant data as 0 and measuring their l2 norms of
the learned representation. Intuitively, this measures how much information the model extracts from the
specified dimensions collectively.

Definition 3.5 (Strength) Given a subset of dimensions {m, m + 1, . . . , n}, we mask all other dimensions
of x as 0 and pass the masked data xm:n through the featurizer. Let Φ∗ be the representation function learned
by the invariant learning. The strength of the selected feature subset is as follows:

strength(xm:n) = ∥Φ∗(xm:n)∥2, (5)

In this paper, we set the dimensions of both the invariant and spurious features to dc = ds = 8. Let 1n be
the all-one vector of length n and diag be the diagonal matrix. For the invariant feature xc, we set µc =
10 ∗ 1dc and σc = diag(5, 5, 3, 3, 1, 1, 0.1, 0.1), where different variances represent different important levels
of invariance where high variance means more important. For the spurious features xs, we set µs = 10 ∗ 1ds
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Figure 4: Data augmentation of Lucl in DivIL across multi-modals. Left up: random masking the figure to
0. Left down: edge removing and node dropping for the graph. Right: We feed the same input sequence to
the encoder twice by applying different dropout masks to obtain the positive pair.

and uniformly sample σs from the range [10−3, 100.5] simulating noisy environments. We set s = 0.3 in the
train set and s = 0.7 in the test set, representing the OOD environments. We train a two-layer perceptron
network featurizer Φ : x → Rl where each layer consists of a linear transformation and a ReLU activation
and a one-layer linear classifier predictor w. We take the classic invariant learning methods IRMv1 Arjovsky
et al. (2019) and VREx Krueger et al. (2021) for example.

Figure 3 illustrates the strengths inside the invariant features. We separate the invariant data xc into 4
parts based on different variances {0.1, 1, 3, 5} and calculate their strengths varying with different spurious
variances σs simulating the noisy environments. The results indicate that while all of the features are
invariant, their strengths vary. IL methods are selective to invariant features with some invariant features
being learned less effectively than others. The lower strength of the subset of the invariant feature suggests
that IRMv1 and VREx may struggle with key parts of invariant features, leading to the over-invariance
issue. Formally, we give the following informal proposition to further illustrate the over-invariance:

Remark 3.6 (Over-invariance issue) Our synthetic experiment shows that with high probability, there
exists a subset of the invariant data xc, denoted as the over-invariant data oc, where the strength of the rest
part of the invariant data (xc\oc) is 0:

strength(xc\oc) = ||Φ∗(xc\oc)||2 = 0.

Thus, over-invariance occurs at test time.

4 DivIL: Diverse Invariant Learning

Built upon our analysis of the pitfall of the invariant feature and the observation about over-invariance issue,
we propose a novel approach Diverse Invariant Learning (DivIL) that integrates unsupervised contrastive
learning (UCL) and the masking mechanism, which can be applied to various IL methods.

Enhancing the Environments by Random Data Augmentation As discussed in Section 3.2, one
fundamental assumption of the invariant principle is the requirement for an infinite number of environments,
which is impractical in real-world. To compensate for this limitation, we employ data augmentation to
produce a wider range of samples. By introducing variations of data, we disrupt the spurious correlation
between the labels and the environments from the train data, fostering the creation of diverse environments.
We only use random data augmentation without careful designs which is enough to show the benefits. As
illustrated in Figure 4, we use edge dropping, node dropping, and random subgraph extraction for graph
following You et al. (2020) and Ding et al. (2022); randomly masking the data xn×n×3 to zero with a
probability of p for CV, and obtaining z′

i, zi with dropout masks on fully-connected layers as well as attention
with a probability of p for NLP (Vaswani et al., 2017; Gao et al., 2021).
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Figure 5: The effectiveness of incorporating UCL with IRMv1 and VREx. The X-axis represents different
invariant variances σc = {5, 3, 1, 0.1}. The Y-axis shows the strength of the corresponding subset of invariant
features Φ(x) before and after adding the UCL. For each configuration, we run 10 different seeds and report
the average results.

Alleviating the Restriction by Unsupervised Contrastive Learning To alleviate the spurious cor-
relations, IL methods usually add strong penalties to the loss (Arjovsky et al., 2019; Krueger et al., 2021;
Rame et al., 2022) which tends to suppress subtle yet important details, thus causing the over-invariance
issues. Unsupervised learning (UL), particularly unsupervised contrastive learning (UCL), provides a pow-
erful mechanism for addressing this by learning the sample-level features, promoting the focus on the minor
details of the invariance (Xue et al., 2023a; Jing et al., 2021; Chen et al., 2020a; Qin et al., 2022; Zhang
et al., 2022b). Formally, Lucl is defined as follows:

Lucl = −
N∑

i=1
log exp(−|zi − z′

i|2/2)∑
j ̸=i′ exp(−|zi − zj |2/2) + exp(−|zi − z′

i|2/2) (6)

Here, zi represents the feature vector of the original sample, z′
i is the augmented version of the same sample,

treated as a positive pair, and zj is the different sample (negative pair).

Overall Training Objective of DivIL By merging our UCL loss with the conventional invariant loss, we
aim to balance the diversity of invariant features while preserving the effectiveness of the prior invariant loss
in reducing the influence of spurious features. The final objective function of Diverse Invariant Learning
(DivIL) is as follows:

LDivIL = Lpred + λLil + βLucl (7)

Here, Lpred is the cross-entropy loss, Lil is any invariant loss from IL methods, and Lucl is our proposed
unsupervised contrastive loss. The hyperparameters λ > 0 and β > 0 control the trade-off between invariance
and diversity, which can be tuned based on the task. As seen in Figure 5, we observe that after adding the
UCL loss, the strength of invariant features increases across various IL penalties, verifying our analysis that
incorporating unsupervised contrastive learning as a complement to the invariant loss effectively enhances
OOD generalization.

Remark 4.1 (Effectiveness of DivIL) Define the linear model as fΘ = Wx + b, where Θ is the con-
catenated parameter [W b]. Let Θ∗ = [W∗, b∗] be the minimizer of DivIL in equation 6. Our synthetic
experiment shows that for any subset of the invariant data xc, denoted as os, the strength of the rest part of
the invariant data (xc\sc) will not be 0:

strength(xc\os) = ||Φ∗(xc\os)||2 ̸= 0, os ⊂ xc.

Thus, DivIL mitigates the over-invariance issue at test time.
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Algorithm 1 Overall Training Objective of DivIL

1: Input: Train dataset Dtr = {Ds}s∈ϵtr⊆ϵall
and test dataset Dte = {Ds}s∈ϵte⊆ϵall

, ϵtr ̸= ϵte.
2: Output: Trained model f = w ◦ Φ
3: Function: Representation function Φ : X → H, Invariant predictor w : H → Y
4: Hyperparameters: λ > 0, β > 0, mask probability p, learning rate η
5: // DivIL OOD Generalization Training
6: for each batch (Xi, Yi) ∈ B from Dtr do
7: Calculate cross-entropy loss: Lpred
8: Calculate invariant loss: Lil
9: Using data augmentation technique to get the z and z′.

10: masking the front p percent of the entire dimensions of z and z′.
11: Calculate unsupervised contrastive loss: Lucl in equation 6.
12: Calculate total loss: LDivIL = Lpred + λLil + βLucl
13: Compute gradients: ∇Φ = ∂LDivIL

∂Φ ,∇w = ∂LDivIL
∂w

14: Update model parameters:
15: Φ← Φ− η∇Φ
16: w ← w − η∇w

17: end for

Table 1: Performance on CMNIST dataset. All results are reported with mean ± std over 5 runs.

train set test set gray set
ERM 86.47 ± 0.16 14.18 ± 0.68 70.74 ± 0.77
IRM 71.47 ± 1.18 65.30 ± 1.09 66.66 ± 2.33
+ DivIL 70.93 ± 0.29 66.40 ± 1.39 66.97 ± 1.85
VREx 72.14 ± 1.49 67.05 ± 0.84 68.96 ± 2.03
+ DivIL 72.67 ± 0.93 67.50 ± 1.45 69.30 ± 1.91
Fishr 71.34 ± 1.27 69.18 ± 0.80 70.35 ± 1.14
+ DivIL 71.27 ± 1.36 69.25 ± 0.81 70.43 ± 1.02

Enhancing Diversity of the Invariance via Random Masking Contrastive learning methods, by
repelling negative samples, can alleviate the over-invariance problem to some extent. However, when faced
with strong data augmentation or deep-layer implicit regularization, the model performance can also remain
suboptimal (Jing et al., 2021). To further enhance feature diversity, we trained a non-linear projector to
scatter the representation space spectrum. Additionally, we introduced a random masking mechanism to
the features to overcome over-invariance. We set the first p dimensions of the contrastive learning feature
dimension to 0, that is z1:p = 0.

In conclusion, the detailed training procedure of DivIL is shown in Algorithm 1.

5 Experiments

We evaluate DivIL and compare with IL methods on a range of tasks requiring OOD generalization. DivIL
provides generalization benefits and outperforms IL methods on a wide range of tasks, including: 1) Colored
MNIST (CMNIST) dataset, 2) natural language datasets, and 3) graph datasets such as the synthetic
Spurious-Motif and drug discovery.

5.1 Experiments on CMNIST

We evaluate DivIL on the synthetic datasets ColoredMNIST following Arjovsky et al. (2019). We compare
DivIL with ERM, and various IL methods, including causal methods that focus on learning invariance (IRM,
VREx) and gradient matching techniques (Fishr). As previously done in Fishr, we maintain all IL method
implementations identical to the IRM implementation, notably the same MLP and hyperparameters, and
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Table 2: Performance on SNLI(in-domain), MNLI matched and mismatched (out-domain) dataset.

SNLI MNLI
matched mismatched

ERM 77.7 54.4 54.7
IRM 77.7 55.0 55.5
DivIL 79.3 55.5 59.2
DivIL- Lucl 77.6 54.5 56.6
DivIL- Lil 78.8 54.5 57.1

just add the DivIL penalty to the loss. We use two-stage scheduling selected in IRM for the regularization
strength λ, which is low until epoch 190 and then jumps to a large value. Due to the varying degrees of
over-invariance introduced by different IL methods, we performed a simple search over β values of {0.01,
0.05, 0.1, 0.2}, and mask probabilities p of {0.3, 0.5, 0.7}.

Table 1 reports the accuracy averaged over 5 runs with standard deviation. Adding DivIL can achieve the
best trade-off between train and test accuracies, notably in test. It reaches 69.25% in the colored test set
and 70.43% when digits are grayscale. In addition, DivIL improves the performance in all IL methods,
verifying our understanding of the issue of over-invariance. Figure 6(a) displays the results of DivIL using
different invariant losses across various mask percentages p, demonstrating the robustness of DivIL to the
hyperparameter p with minimal variance in accuracy across different p values. Figure 6(b) illustrates that
increasing the weight β of the Lucl term leads to improved performance in IRMv1, VREx, and Fishr.
This supports our insight that over-invariance issues exist in current incremental learning (IL) methods.
By introducing diversity penalties Lucl, we can mitigate this issue and enhance out-of-distribution (OOD)
performance.

5.2 Experiments on Natural Language Inference

Inspired by Qin et al. (2024), we also demonstrated the effectiveness of our method in NLP through a Natural
Language Inference (NLI) (Dagan et al., 2013) task, which assesses the logical relationship between two
sentences: entailment, contradiction, or neutrality. Our model was trained on a subset of the SNLI (Bowman
et al., 2015) training set and evaluated on selected cases from the SNLI validation set, as well as the match
and mismatch subsets of the MNLI (Williams et al., 2017) validation set. While SNLI represents an in-
distribution (ID) scenario, MNLI helps assess the generalization to out-of-distribution (OOD) data. The
results show that our method performs well in both IID and OOD scenarios, validating its effectiveness.

In our experiment, we employed a pretrained GPT-2 model with a randomly initialized classification head.
We set the maximum token length to 64 and trained the model for 5 epochs using the AdamW optimizer.
The learning rate was configured at 2e-5, with a weight decay of 0.01 and a linear learning rate scheduler.
We used a training batch size of 32. To optimize our model, we implemented supervised contrastive loss as
Lil following Zhang et al. (2022a) and explored various combinations of weights for λ and β, choosing values
from the set {0, 0.1, 0.3, 0.5, 0.7, 1.0}. Additionally, we fixed the projection mask probability at 0.7 and
reported the results for the best-performing configuration.

Table 2 shows the results of DivIL on the NLI task, where DivIL outperforms both IRM and ERM approaches
on real-world natural language datasets. Furthermore, our ablation study reveals that removing either Lil

or Lucl leads to a decrease in OOD performance. However, the performance remains better than that of
IRM or ERM, indicating that DivIL achieves a trade-off between strong regularization and feature diversity.
Figure 6(c) illustrates the performance of DivIL with varying weights, denoted as β, for the loss function Lucl

across the SNLI, MNLI-match, and MNLI-mismatch datasets. Unlike the findings in CMNIST, increasing β
does not necessarily improve out-of-distribution (OOD) performance. It’s essential to choose an appropriate
weight, possibly due to the unique structure of natural language.
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Figure 6: Ablation study of DivIL on CMNIST and NLI datasets. (a) illustrates the performance of DivIL
on various mask percent p across different implementation of Lil. (b) and (c) illustrates the performance of
DivIL on different weight of UCL β in CMNIST and NLI, respectively.

5.3 Experiments on Graph

Datasets We employed one synthetic dataset along with eight realistic datasets, including the Spurious-
Motif datasets introduced in Wu et al. (2022). These datasets consist of three graph classes, each containing a
designated subgraph as the ground-truth explanation. Additionally, there are spurious correlations between
the remaining graph components and the labels in the training data, challenging the model’s ability to differ-
entiate between true and spurious features. The degree of these correlations is controlled by the parameter
b, with values of 0.33, 0.6, and 0.9. Furthermore, to examine our method in real-world scenarios charac-
terized by more complex relationships and distribution shifts, we incorporated the DrugOOD dataset (Ji
et al., 2022) from AI-aided Drug Discovery, which includes Assay, Scaffold, and Size splits from the EC50
category (denoted as EC50-*) and the Ki category (denoted as Ki-*). Additionally, we included tests on the
CMNIST-sp dataset, which consists of superpixel graphs derived from the ColoredMNIST dataset using the
algorithm from Knyazev et al. (2019), featuring distribution shifts in node attributes and graph size. We
also tested on the sentiment analysis dataset Graph-SST2 (Yuan et al., 2020), which is formed by converting
each text sequence from SST2 into a graph representation.

Baselines We compared DivIL with state-of-the-art causality-inspired invariant graph learning methods,
such as IRM Arjovsky et al. (2019), v-Rex Krueger et al. (2021), and IB-IRM Ahuja et al. (2021). Addi-
tionally, we evaluated DivIL against methods like EIIL Creager et al. (2021b), CNC, CNCP Zhang et al.
(2022a), and CIGA Chen et al. (2022), all of which do not require environment labels. Notably, CNC,
CNCP, and CIGA employ contrastive sampling strategies to address the OOD problem. We implemented
Lil following the SOTA method CIGA, and for Lucl, we selected the best-performing DA techniques, such as
edge removal, node dropping, and subgraph extraction, based on You et al. (2020). We report classification
accuracy for the Spurious-Motif, CMNIST-sp, and Graph-SST2 datasets, and ROC-AUC for the DrugOOD
datasets. The evaluation is conducted five times with different random seeds ({1, 2, 3, 4, 5}), selecting
models based on validation performance. We utilized the GCN backbone Kipf & Welling (2017) with sum
pooling to enhance across all experiments.

DivIL outperforms previous IL methods. As demonstrated in Table 3, DivIL shows better general-
ization ability than all baseline models on real-world datasets. Specifically, in the MNIST-sp dataset, DivIL
surpasses CIGA by 5%. Furthermore, in the ki-scaffold and ki-assay datasets, CIGA performs worse than
ERM, while DivIL by implementing the Lil on CIGA achieves higher performance. The results not only
highlight the competitive edge of DivIL over established baselines but also emphasize its generalization across
varying datasets. Such nuanced performance differentials underscore our capabilities of DivIL in navigating
complex real-world datasets, positioning the over-invariance issues as a crucial problem.
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Table 3: Performance on real-world graph dataset. The blue, gray, and Underline highlight the first, second,
and third best results, respectively. All results are reported with mean ± std across seeds {0, 1, 2, 3, 4}.

EC50-Assay EC50-Scaffold EC50-size Ki-Assay Ki-Scaffold Ki-size CMNIST-sp Graph-SST2
ERM 70.30± 2.15 63.45± 1.43 61.47± 1.99 70.43± 2.19 72.43± 1.38 71.43± 3.60 25.67± 9.70 82.75± 0.20
IRM 71.00± 4.47 60.42± 0.69 60.30± 1.18 70.39± 1.44 69.38± 2.81 70.80± 2.63 19.19± 2.83 82.31± 1.22
VREX 71.91± 6.68 62.07± 1.30 61.03± 1.27 68.74± 4.13 70.51± 3.13 70.34± 4.26 14.91± 1.85 82.40± 0.63
EIIL 70.39± 3.11 61.20± 1.68 60.31± 1.64 69.20± 2.29 69.99± 1.58 72.78± 3.08 22.37± 7.35 82.31± 1.50
IB-IRM 67.04± 2.66 61.04± 1.13 62.20± 0.64 71.94± 2.42 74.16± 1.29 71.15± 4.44 37.44± 7.36 81.95± 0.74
CNC 74.96± 2.48 63.59± 0.87 60.44± 2.15 74.08± 3.67 67.54± 1.26 68.15± 5.24 19.41± 3.15 80.72± 1.15
CNCP 73.74± 2.62 62.05± 1.22 60.53± 2.14 74.13± 2.46 67.70± 2.85 67.54± 3.37 24.99± 4.70 80.76± 0.64
CIGA 76.63± 1.16 66.25± 1.49 63.66± 1.15 71.55± 1.84 71.54± 2.48 74.52± 3.09 41.35± 5.56 82.89± 0.97
DivIL 77.00± 1.52 67.41± 0.55 64.33± 0.83 72.64± 2.78 73.38± 0.91 75.99± 2.46 46.29± 11.2 83.30± 0.91
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Figure 7: Ablation study of different graph data
augmentations in DivIL. (a) compares the perfor-
mance of subgraph extraction, edge removing, and
node dropping on the ec-* category from DrugOOD
datasets. (b) illustrates the performance of edge re-
moving and node dropping on SPMotif with different
OOD shift biases.

Table 4: Performance on Spurious-Motif dataset with
different GNN backbones. The blue, gray, and
Underline highlight the first, second, and third best re-
sults, respectively. All results are reported with mean
± std across seeds {0, 1, 2, 3, 4}.

SPMotif-0.33 SPMotif-0.60 SPMotif-0.90
GNN

GIN 47.8± 8.03 49.21± 4.2 44.11± 5.5
+Lil 50.67± 3.83 50.39± 2.19 42.35± 6.36
+DivIL 51.48± 5.43 51.77± 4.89 45.84± 3.82
GCN 58.51± 2.84 50.51± 4.75 44.67± 3.5
+Lil 67.53± 1.35 59.96± 8.59 47.66± 6.08
+DivIL 67.81± 3.33 62.79± 3.86 50.93± 9.05

XGNN
+Lil(GIN) 57.58± 3.73 58.11± 4.29 52.14± 3.27
+DivIL (GIN) 63.86± 2.19 60.31± 2.04 52.54± 6.57
+Lil(GCN) 63.37± 4.27 65.45± 4.91 59.64± 4.64
+DivIL (GCN) 63.90± 3.7 70.03± 3.66 66.85± 6.61

DivIL shows effectiveness on various backbones. Additionally, we incorporate XGNN, an inter-
pretable GNN to extract the invariant subgraph Gc commonly used in graph OOD models (Wu et al.,
2022; Li et al., 2022; Chen et al., 2022). Specifically, a XGNN wx ◦Φx is with an extractor Φx : G → G that
identifies an invariant subgraph Gc to help predict their labels yx = wx(Gc) with a downstream classifier
w : G → Y. Table 4 shows that DivIL significantly outperforms Vanilla GNN and IL (we implement the
IL methods with one of the SOTA graph IL methods CIGA (Chen et al., 2022)) on Spurious-Motif under
various backbones like GCN, GIN, and XGNN settings. Moreover, as the spurious bias increases, the perfor-
mance of DivIL remains more stable, while the baselines and IL models tend to fail, like in the SPMotif-0.60
dataset DivIL improves performance from 65.45% to 70.03% and in the SPMotif-0.90 dataset from 59.64%
to 66.85%.

Sensitivity on different graph data augmentations. Figure 7(a) illustrates that different random
augmentation methods, such as subgraph extraction, edge removing, and node dropping (You et al., 2020),
yield similar performance in addressing graph out-of-distribution (OOD) challenges, echoing observations
found in recent studies (Guo et al., 2023). Additionally, in Figure 7(b), the comparison between edge
remoing and node dropping methods in SPMotif under varying shift biases reveals a slight advantage of
edge removing over node dropping at b = 0.33 and b = 0.6. However, at b = 0.9, node dropping surpasses
edge removal, although the difference remains modest. This observation supports our insight that the data
augmentation strategies employed may not significantly influence the graph OOD problems.

6 Related work

Out-of-Distribution (OOD) Generalization. Existing strategies to tackle OOD generalization can be
broadly classified into three approaches (Yang et al., 2024). Representation learning focuses on developing
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robust feature representations that generalize across various distributions, including unsupervised domain
generalization (Mahajan et al., 2021; Zhang et al., 2022b; Chen et al., 2020b) and disentangled representations
(Bengio et al., 2013; Higgins et al., 2017; Kim & Mnih, 2018; Yang et al., 2021). Model-based approaches, such
as Invariant Learning (Rosenfeld et al., 2020; Ganin & Lempitsky, 2015; Li et al., 2018; Creager et al., 2021a)
and causal learning (Peters et al., 2016a; Pfister et al., 2019), aim to capture invariant relationships across
environments to enhance robustness against distributional shifts. Finally, optimization-based techniques
seek to ensure strong worst-case performance under potential distributional changes (Delage & Ye, 2010;
Namkoong & Duchi, 2016; Duchi & Namkoong, 2021; Duchi et al., 2023; Zhou et al., 2022), safeguarding
models from uncertainties in the data.

Discussion on Different Invariant Losses Many invariant learning methods focus on learning stable
features across environments by incorporating penalties into the loss function to ensure the consistent change
rate (Arjovsky et al., 2019; Krueger et al., 2021; Rame et al., 2022; Zhang et al., 2022a). One series of methods
relies on explicit environment labels. For example, IRMv1 (Arjovsky et al., 2019) implements the theory of
the invariance principle in practice by assuming the classifier as the constant and employing a gradient-based
penalty that requires the sum of the gradients of the model to remain small. The loss function Lirmv1 is
defined as follows: Lirmv1 = Σs∈ϵtr∥▽w|w=1.0Ls

pred(f)∥2. VREx (Krueger et al., 2021) takes the variance of
the loss across different environments defined as Lvrex = V ar(L1

pred(f),L2
pred(f), · · · ,Lk

pred(f)), where k is
the environment numbers in the training dataset.

There are also plentiful studies in invariant learning without environment labels. Creager et al. (2021b)
proposed a minmax formulation to infer the environment labels. Liu et al. (2021b) proposed a self-boosting
framework based on the estimated invariant and variant features. Liu et al. (2021a); Zhang et al. (2022a)
proposed to infer labels based the predictions of an ERM trained model. Other methods adopt the loss of
supervised contrastive learning as Lil, like CNC Zhang et al. (2022a) and CIGA Chen et al. (2022), using
different heuristic strategies to choose the positive and negative samples. For example, the invariant penalty
of CIGA is Lciga = −

∑N
i=1 log exp(−|zi−zk|2/2)∑

yj ̸=yi
exp(−|zi−zj |2/2)+exp(−|zi−zk|2/2)

, where zi represents the feature learned

by the encoder on the predicted invariant subgraph Gc, zk is the learned feature from the same label, treated
as the positive pair, and zj is the from different labels (negative pair).

Contrastive Learning. SimCLR(Chen et al., 2020a) and MoCo(He et al., 2020) demonstrate how con-
trastive objectives can improve feature robustness and help models generalize better to unseen environments.
Additionally, (Wen & Li, 2021) and (Ji et al., 2023) demonstrate that contrastive learning can effectively
extract semantically meaningful features from data. Furthermore, (Xue et al., 2023b) conducts systematic
experiments on contrastive learning, revealing the effectiveness of combining supervised and unsupervised
contrastive learning for feature learning. By clustering similar features and pushing apart dissimilar ones,
contrastive learning prevents feature collapse, even under strong regularization (Chen et al., 2022; Zhang
et al., 2022a).

7 Conclusion

We shed light on the limitations of invariant constraints in addressing out-of-distribution generalization.
While these constraints can mitigate spurious correlations, our research revealed the risk of over-invariance,
potentially leading to the loss of crucial details in invariant features and a subsequent decline in generalization
performance. To tackle these challenges, we introduced Diverse Invariant Learning (DivIL), leveraging
contrastive learning and random feature masking to introduce uncertainty and diversity. Our comprehensive
experiments spanning various modalities and models, underscored the efficacy of our proposed method in
enhancing model performance.
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A Datasets

A.1 CMNIST

Colored MNIST is a binary digit classification dataset introduced in IRM (Arjovsky et al. (2019)). Compared
to the traditional MNIST, it has 2 main differences. First, 0-4 and 5-9 digits are each collapsed into a single
class, with a 25% chance of label flipping. Second, digits are either colored red or green, with a strong
correlation between label and color in training. However, this correlation is reversed at test time. Specifically,
in training, the model has access to two domains E = {90%, 80%}: in the first domain, green digits have
a 90% chance of being in 5-9; in the second, this chance goes down to 80%. In test, green digits have a
10% chance of being in 5-9. Due to this modification in correlation, a model should ideally ignore the color
information and only rely on the digits’ shape: this would obtain a 75% test accuracy.

A.2 NLI

The natural language inference (NLI) task involves determining the logical relationship between pairs of
sentences, typically categorized as entailment, contradiction, or neutral. In this task, a model is presented
with a premise sentence and a hypothesis sentence, and it must infer how the hypothesis relates to the premise
as seen in Table 6 and Table 7. NLI is crucial in natural language understanding as it tests a model’s ability to
comprehend and reason about language, making it a fundamental benchmark for evaluating the performance
of language models and their ability to capture semantic relationships and contextual information within the
text.

We provide more details about the motivation and construction method of the datasets used in our exper-
iments. Statistics of the datasets are presented in Table 5. We use about 8,000 examples in the train set
from the SNLI Bowman et al. (2015), from the Image Captions from the Flickr30k Corpus domains. We
selected 1,000 examples from the validation-matched set of the MNLI dataset (Williams et al., 2017), sourced
from the Fiction, Government, Slate, Telephone, and Travel domains. Additionally, we chose another 1,000
examples from the validation-matched set of the MNLI dataset, taken from the 9/11, Face-to-Face, Letters,
OUP, and Verbatim domains, to form our out-of-domain (OOD) test set. Examples of SNLI and MNLI are
shown in Table 6 and Table 7.

Table 5: Statistics of our constructed OOD NLI Dataset.

Split Genre Examples Partition Data Domain Metrics

Train set SNLI 7992 train Image Captions from the Flickr30k
Corpus ACC

Test set
SNLI 991 validation Image Captions from the Flickr30k

Corpus ACC

MNLI 1000 validation-matched Fiction, Government, Slate, Tele-
phone, Travel ACC

1000 validation-mismatched 9/11, Face-to-Face, Letters, OUP,
Verbatim ACC

A.3 Graph

We provide more details about the motivation and construction method of the datasets used in our experi-
ments. Statistics of the datasets are presented in Table 8.

Spurious-Motif We construct 3-class synthetic datasets based on BAMotif following Wu et al. (2022),
where the model needs to tell which one of three motifs (House, Cycle, Crane) the graph contains. For
each dataset, we generate 3,000 graphs for each class in the training set, and 1,000 graphs for each class in
the validation set and testing set, respectively. We introduce the bias based on FIIF, where the motif and
one of the three base graphs (Tree, Ladder, Wheel) are artificially (spuriously) correlated with a probability
of various biases, and equally correlated with the other two. Specifically, given a predefined bias b, the
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Table 6: NLI dataset samples from SNLI (IID).

Premise Hypothesis Label
Two men holding their mouths open. Two men with mouths agape. entailment

Trying very hard not to blend any of the yellow paint into the
white. Someone is painting a house. neutral

A man on a small 4 wheeled vehicle is flying through the air. The man is on a bike. contradiction

Two power walkers walking beside one another in a race. Two people in a park walking neutral

Women standing at a podium with a crowd and building in the
background. woman stands at podium entailment

Table 7: MNLI dataset samples from the validation-matched (above) and validation-mismatched (below)
subsets (OOD).

Premise Hypothesis Label
pretty good newspaper uh-huh I think this is a decent newspaper. entailment

Massive tidal waves swept over Crete, and other parts
of the Mediterranean, smashing buildings and drown-
ing many thousands of people.

The waves came with no warning to the in-
habitants. neutral

For such a governmentwide review, an entrance confer-
ence is generally held with applicable central agencies,
such as the Office of Management and Budget (OMB)
or the Office of Personnel Management.

An entrance conference is held with special-
ized agencies. contradiction

As Figure 6.6 shows, the safety stock needed to achieve
a given customer service level is proportional to the
standard deviation of the demand forecast.

Figure 6.6 shows the safety stock needed to
achieve a given customer service level. entailment

Some of Bin Ladin’s close comrades were more peers
than subordinates.

There were three people who could be con-
sidered peers of Bin Ladin. neutral

Nothing except knowing that you are helping to pro-
tect the Earth’s precious natural resources.

Everything, except knowing that you are
helping to protect Earth’s natural re-
sources.

contradiction

probability of a specific motif (e.g., House) and a specific base graph (Tree) will co-occur is b while for the
others is (1− b)/2 (e.g., House-Ladder, House-Wheel). We use random node features in order to study the
influences of structure level shifts.

CMNIST-sp To study the effects of PIIF shifts, we select the ColoredMNIST dataset created in Ar-
jovsky et al. (2019). We convert the ColoredMNIST into graphs using the superpixel algorithm introduced
by Knyazev et al. (2019) .

Graph-SST2 Inspired by the data splits generation for studying distribution shifts on graph sizes, we split
the data curated from sentiment graph data [84], that converts sentiment sentence classification datasets
Graph-SST2 (Yuan et al., 2020) into graphs, where node features are generated using BERT (Devlin et al.,
2019) and the edges are parsed by Gardner et al. (2018). Our splits are created according to the averaged
degrees of each graph. Specifically, we assign the graphs as follows: Those that have smaller or equal to 50-th
percentile while smaller than 80-th percentile are assigned to the validation set, and the left are assigned to
test set.
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DrugOOD datasets To evaluate the OOD performance in realistic scenarios with realistic distribution
shifts, we also include three datasets from DrugOOD benchmark (Ji et al., 2022). DrugOOD is a systematic
OOD benchmark for AI-aided drug discovery, focusing on the task of drug target binding affinity prediction
for both macromolecule (protein target) and smallmolecule (drug compound). The molecule data and the
notations are curated from realistic ChEMBL database (Mendez et al., 2019). Complicated distribution shifts
can happen on different assays, scaffolds and molecule sizes. In particular, we select DrugOOD-lbap-core-
ec50-assay, DrugOOD-lbap-core-ec50-scaffold, DrugOOD-lbap-core-ec50-size, DrugOOD-lbap-core-ki-assay,
DrugOOD-lbap-core-ki-scaffold, and DrugOOD-lbap-core-ki-size, from the task of Ligand Based Affinity
Prediction which uses ic50 measurement type and contains core level annotation noises. We directly use the
data files provided by Ji et al. (2022).

Table 8: Graph dataset details. The number of nodes and edges are respectively taking average among all
graphs.

Dataset Training Validation Testing Classes Nodes Edges Metrics
SPMOTIF 9,000 3,000 3,000 3 44.96 65.67 ACC
CMNIST-SP 40,000 5,000 15,000 2 56.90 373.85 ACC
Graph-SST2 24,881 7,004 12,893 2 10.20 18.40 ACC
EC50-Assay 4,978 2,761 2,725 2 40.89 87.18 ROC-AUC
EC50-Scaffold 2,743 2,723 2,762 2 35.54 75.56 ROC-AUC
EC50-Size 5,189 2,495 2,505 2 35.12 75.30 ROC-AUC
Ki-Assay 8,490 4,741 4,720 2 32.66 71.38 ROC-AUC
Ki-Scaffold 5,389 4,805 4,463 2 29.96 65.11 ROC-AUC
Ki-Size 8,605 4,486 4,558 2 30.35 66.49 ROC-AUC

B Implement Details

During the experiments, we do not tune the hyperparameters exhaustively while following the common
recipes for optimizing the models. Details are as follows. We will publish our code when the paper is
accepted.

B.1 CMNIST Implements

In the experimental setup in Section 5.1, the network is a 3 layers MLP with ReLu activation, optimized with
Adam (Kingma & Ba (2015)). IRM selected the following hyperparameters by random search over 50 trials:
hidden dimension of 390, l2 regularizer weight of 0.00110794568, learning rate of 0.0004898536566546834,
penalty anneal iters (or warmup iter) of 190, penalty weight (λ) of 91257.18613115903, 501 epochs and batch
size 25,000 (half of the dataset size). For the implementation of the invariant losses(IRM, VREx and Fishr),
we strictly keep the same hyperparameters values in our implementation and the code is almost unchanged
from https://github.com/alexrame/fishr. To account for the varying degrees of over-invariance intro-
duced by different IL methods, we performed a straightforward search over β values of {0.01, 0.05, 0.1, 0.2}
and projection mask probabilities of {0.3, 0.5, 0.7}, while keeping the random augmentation mask probability
fixed at 0.2.

B.2 NLI Implements

We employed a pretrained GPT-2 model with a randomly initialized classification head. We set the maximum
token length to 64 and trained the model for 5 epochs using the AdamW optimizer. The learning rate was
configured at 2e-5, with a weight decay of 0.01 and a linear learning rate scheduler. We used a training batch
size of 32. To optimize our model, we explored various combinations of the invariant loss and unsupervised
loss weights for λ and β, choosing the best from the {0, 0.1, 0.3, 0.5, 0.7, 1.0} according to the validation set.
Additionally, we fixed the projection mask probability at 0.7 and reported the results for the best-performing
configuration.
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B.3 Graph Implements

For a fair comparison, DivIL uses the same GNN architecture for GNN encoders as the baseline methods.
We use the GCN backbone and the sum pooling in Table 3. By default, we fix the temperature to be
1 in the unsupervised contrastive loss, and merely search the penalty weight of the contrastive loss from
{0.1, 0.2, 0.5, 1, 2} according to the validation performances. We select the best of the random mask per-
centage p from the {0.2, 0.3, 0.5, 0.7} according to the validation performances. For the implementation of
graph data augmentation, we use the tool from You et al. (2020). We select the best percentage p2 of node
dropping, edge removing, and subgraph extraction from the {0.05, 0.1, 0.15, 0.2} according to the validation
performances to create the positive pair and keep p1 = 0 representing the sample itself. For the implemen-
tation of our baselines, we take the code almost unchanged from https://github.com/LFhase/CIGA.

C Software and Hardware

We implement our methods with PyTorch (Paszke et al., 2019) and PyTorch Geometric (Fey & Lenssen,
2019). We ran our experiments on Linux Servers installed with 3090 graphics cards and CUDA 10.2.
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