
How to Query Human Feedback Efficiently in RL?

Wenhao Zhan Masatoshi Uehara Wen Sun Jason D. Lee

Abstract

Reinforcement Learning with Human Feedback
(RLHF) is a paradigm in which an RL agent learns
to optimize a task using pair-wise preference-
based feedback over trajectories, rather than ex-
plicit reward signals. While RLHF has demon-
strated practical success in fine-tuning language
models, existing empirical work does not address
the challenge of how to efficiently sample trajec-
tory pairs for querying human feedback. In this
study, we propose an efficient sampling approach
to acquiring exploratory trajectories that enable
accurate learning of hidden reward functions be-
fore collecting any human feedback. Theoretical
analysis demonstrates that our algorithm requires
less human feedback for learning the optimal pol-
icy under preference-based models with linear
parameterization and unknown transitions, com-
pared to the existing literature. Specifically, our
framework can incorporate linear and low-rank
MDPs with efficient sample complexity. Addi-
tionally, we investigate RLHF with action-based
comparison feedback and introduce an efficient
querying algorithm tailored to this scenario.

1. Introduction
Reinforcement learning algorithms train agents to optimize
rewards of interests. However, setting an appropriate numer-
ical reward can be challenging in practical applications (e.g.,
design a reward function for a robot arm to learn to play table
tennis), and optimizing hand-crafted reward functions can
lead to undesirable behavior when the reward function does
not align with human intention. To overcome this challenge,
there has been a recent surge of interest in preference-based
reinforcement learning with Human Feedback (RLHF). In
reinforcement learning with human feedback (RLHF), the
agent does not receive a numerical reward signal, but rather
receives feedback from a human expert in the form of prefer-
ences, indicating which state-action trajectory is preferred in
a given pair of trajectories. RLHF has gained considerable
attention in various domains, including NLP (Ziegler et al.,
2019; Stiennon et al., 2020; Wu et al., 2021; Nakano et al.,
2021; Ouyang et al., 2022; Glaese et al., 2022; Ramamurthy

et al., 2022; Liu et al., 2023), robot learning (Christiano
et al., 2017; Brown et al., 2019; Shin et al., 2023), and
recommender systems (Xue et al., 2022).

Despite the promising applications of RLHF in various ar-
eas, there are only a few provably efficient algorithms (also
known as PAC RL) for this purpose (Pacchiano et al., 2021;
Chen et al., 2022b). These algorithms iterate through the
following processes: collecting new trajectories from the
environment, obtaining human feedback on the trajectories,
and learning hidden reward functions from the human feed-
back. However, this approach can be slow and expensive in
practice as it requires humans in the loop of learning pro-
cess, which is not as easy as it may sound. Putting human
in the loop of the entire learning process typically means
that we need human involved in the loop of hyperparameter
tuning and model selection as well. For example, interactive
decision-making algorithms such as DAgger (Ross et al.,
2011) that put human in the loop of training can become
impractical when the expert is human, which has been ob-
served in prior works (Ross et al., 2013; Laskey et al., 2016)
when applying DAgger to some real-world robotics applica-
tions. In contrast, in InstructGPT (Ouyang et al., 2022), the
majority of preference data are collected by crowdsourcing
prompts from the entire world and the supervised policies,
therefore most of the human labeling process does not de-
pend on the training steps afterward. Another line of work
(Zhu et al., 2023) focuses on purely offline RL algorithms
to learn a near-optimal policy from offline trajectories with
good coverage (e.g., offline data that covers some high-
quality policies’ traces). Nevertheless, it is unclear how
to obtain such high-quality offline data a priori (Chen and
Jiang, 2019).

We propose a new method that lies in between purely on-
line and purely offline methods for RLHF. Our algorithm
first collects state-action trajectories from the environment
without human feedback. In this step, we design a novel
sampling procedure to acquire exploratory trajectories that
facilitate the subsequent learning of reward functions. In the
second step, we collect preference feedback on the collected
trajectories from human experts. In the third step, we aim
to learn the underlying hidden reward functions using the
collected trajectories in the first step and preference feed-
back in the second step. In the fourth step, we learn the
optimal policy by solving the offline RL problem under the

1

How to Query Human Feedback Efficiently in RL?

learned reward function. Our approach can be understood
as performing experimental design for RLHF, which allows
us to separate the data-collection process from the process
of querying human feedback, eliminating the need for con-
stantly keeping human in the training loop. For instance, we
only need to keep human experts in step 2 above, while we
can freely perform hyperparameter tuning / model selection
for the rest steps without requiring human experts sitting
next to the computers. This process can significantly reduce
the burden from human experts.

Our contributions can be summarized as follows:

• We propose an efficient experimental design algorithm
for RLHF. Our algorithm is specifically designed for lin-
ear reward parametrization, which is commonly used in
models such as the Bradley-Terry-Luce model, and can
handle unknown transitions. This flexibility allows us to
handle non-tabular transition models like low-rank MDPs
(Agarwal et al., 2020a) and linear MDPs (Jin et al., 2019).
To the best of the our knowledge, existing works with
statistical guarantees cannot incorporate these models ef-
ficiently. Notably, our experimental design algorithm
does not depend on any information of the reward and is
reward-agnostic. Therefore, the collected trajectories can
indeed be reused for learning many reward functions at
the same time.

• Our key idea is to decouple the interaction with the en-
vironment and the collection of human feedback. This
decoupling not only simplifies the process of obtaining
human feedback in practice but also results in a signifi-
cant reduction in the sample complexity associated with
human feedback compared to existing works (Pacchiano
et al., 2021; Chen et al., 2022b). This improvement is par-
ticularly valuable as collecting human feedback is often a
resource-intensive process.

• To circumvent the scaling with the maximum per-
trajectory reward in the trajectory-based comparison set-
ting, we further investigate preference-based RL with
action-based comparison and propose a provably efficient
algorithm for this setting. We show that in this case the
sample complexity only scales with the bound of the ad-
vantage functions of the optimal policy, which can be
much smaller than the maximum per-trajectory reward
(Ross et al., 2011; Agarwal et al., 2019).

1.1. Related Works
We refer the readers to Wirth et al. (2017) for an overview of
Preference-based RL (PbRL). PbRL has been well-explored
in bandit setting under the notion of dueling bandits (Yue
et al., 2012; Zoghi et al., 2014; Dudík et al., 2015), where
the goal is to find the optimal arm in the bandit given hu-
man preference over action pairs. For MDPs, in addition

to Pacchiano et al. (2021); Chen et al. (2022b), which we
compare in the introduction, Novoseller et al. (2020); Xu
et al. (2020) have also developed algorithms with sample
complexity guarantees. Novoseller et al. (2020) proposes
a double posterior sampling algorithm with an asymptotic
regret sublinear in the horizon H . Xu et al. (2020) proposes
a PAC RL algorithm but relies on potentially strong assump-
tions such as Strong Stochastic Transitivity. Note both of
Novoseller et al. (2020); Xu et al. (2020) are limited to the
tabular setting.

Our algorithm shares a similar concept with reward-free
RL which focuses on exploration in the state-action space
without using explicit rewards. Reward-free RL has been
studied in many MDPs such as tabular MDPs (Jin et al.,
2020a), linear MDPs (Wang et al., 2020), low-rank MDPs
(Agarwal et al., 2020a) and several other models (Chen et al.,
2022a; Zanette et al., 2020; Qiu et al., 2021). The goal of
reward-free RL is to gather exploratory state-action data
to address the challenge of unknown transitions before ob-
serving rewards. In contrast, our approach aims to design a
single exploration distribution from which we can draw tra-
jectory pairs to solicit human feedback for learning reward
functions. Our setting can be considered as an experimental
design for RLHF.

2. Preliminaries
We introduce our formulation of Markov decision processes
(MDPs) and RLHF.

2.1. MDPs with Linear Reward Parametrization

We consider a finite-horizon MDPM = (S,A, P ∗, r∗, H),
where S is the state space, A is the action space, P ∗ =
{P ∗h}Hh=1 is the ground-truth transition dynamics, r∗ =
{r∗h}Hh=1 is the ground-truth reward function, and H is
the horizon. Specifically, for each h ∈ [H] ([H] :=
(1, · · · , H)), P ∗h : S×A → ∆(S) and r∗h : S×A → [0, 1]
represent the transition and reward function at step h, re-
spectively. Moreover, we use P1(·) to denote the initial
state distribution. Here, both r∗, P ∗ are unknown to the
learner. In this work, we assume that the cumulative reward
of any trajectory τ = (sh, ah)Hh=1 does not exceed rmax,
i.e.,

∑H
h=1 rh(sh, ah) ≤ rmax.

Policies and value functions. A policy π = {πh}Hh=1

where πh : S → ∆(A) for each h ∈ [H] charac-
terizes the action selection probability for every state
at each step. In this paper, we assume the policy be-
longs to a policy class Π, which can be infinite. Given
a reward function r and policy π, the associated value
function and Q function at time step h are defined
as follows: V r,πh (s) = Eπ,P∗ [

∑H
h′=h rh(sh, ah)|sh =

2

How to Query Human Feedback Efficiently in RL?

s], Qr,πh (s, a) = Eπ,P∗ [
∑H
h′=h rh(sh, ah)|sh = s, ah =

a]. Here, Eπ,P∗ [·] represents the expectation of the distribu-
tion of the trajectory induced by a policy π and the transition
P ∗. We use V r,π to denote the expected cumulative rewards
of policy π with respect to reward function r under P ∗, i.e.,
V r,π := Es∼P∗1 V

r,π
1 (s), and use V r,∗ to denote the max-

imal expected cumulative rewards with respect to reward
function r under P ∗, i.e., V r,∗ := maxπ∈Π V

r,π. In par-
ticular, let π∗ denote the best policy in Π with respect to
r∗, i.e., arg maxπ∈Π V

r∗,π . In contrast, we denote the glob-
ally optimal policy by πg := arg maxπ∈ΠMar

V r
∗,π where

ΠMar is the set of all Markovian policies. Note that when
Π 6= ΠMar, π∗ might not be optimal compared to πg.

Linear reward parametrization. To learn the unknown
reward function, it is necessary to make structural assump-
tions about the reward. We consider a setting where the true
reward function possesses a linear structure:
Assumption 1 (Linear Reward Parametrization). We as-
sume MDP has a linear reward parametrization with respect
to (w.r.t.) known feature vectors φh(s, a) ∈ Rd. Specifically,
for each h ∈ [H], there exists an unknown vector θ∗h ∈ Rd
such that r∗h(s, a) = φh(s, a)>θ∗h for all (s, a) ∈ S × A.
For technical purposes, we suppose for all s ∈ S, a ∈
A, h ∈ [H], we have ‖φh(s, a)‖ ≤ R, ‖θ∗h‖ ≤ B.

Note when d = |S||A| and setting φh(s, a) as one-hot
encoding vectors, we can encompass the tabular setting.
Linear reward parametrization is commonly used in the
literature of preference-based RL with statistical guarantees
(Pacchiano et al., 2021; Zhu et al., 2023).

Notation. We use r∗(τ) :=
∑H
h=1 r

∗
h(sh, ah) to de-

note the ground-truth cumulative rewards of trajec-
tory τ . In particular, r∗(τ) = 〈φ(τ), θ∗〉 where
φ(τ) := [φ1(s1, a1)>, · · · , φH(sH , aH)>]>, θ∗ :=
[θ∗>1 , · · · , θ∗>H]>. We use φ(π) to denote Eτ∼(π,P∗)[φ(τ)]
for simplicity. We also use Θ(B) to denote the set {θ ∈
Rd : ‖θ‖ ≤ B} and Θ(B,H) to denote the set {θ ∈ RHd :
θ = [θ>1 , · · · , θ>H]>, θh ∈ Θ(B),∀h ∈ [H]} ∩ {θ ∈ RHd :
〈φ(τ), θ∗〉 ≤ rmax,∀τ}. We use the notation f = O(g)
when there exists a universal constant C > 0 such that
f ≤ Cg and Õ(g) := O(g log g).

2.2. Reinforcement Learning with Human Feedback

In this paper, we consider a framework for RLHF that
mainly consists of the following four steps:

• Step 1: Collect a dataset of trajectory pairs Dreward =

(τn,0, τn,1)
N
n=1 in a reward-agnostic fashion, where

τn,i = {sn,ih , an,ih , sn,ih+1}Hh=1 for n ∈ [N] and i ∈ (0, 1).

• Step 2: Obtain preference feedback from human experts
for each pair of trajectories in Dreward. Namely, if tra-

jectory τn,1 is preferred over τn,0, then assign on = 1,
otherwise assign on = 0.

• Step 3: Estimate the ground truth reward using the dataset
Dreward and preference labels {on}Nn=1.

• Step 4: Run RL algorithms (either online or offline) using
the learned rewards and obtain a policy π̂ that maximizes
the cumulative learned rewards.

The above framework has been applied in practical applica-
tions, such as PEBBLE (Lee et al., 2021). However, these
algorithms lack provable sample efficiency guarantees. In
particular, it remains unclear in the literature how to collect
the trajectories in Step 1 to enable accurate estimation of
the ground truth reward. In our work, we strive to develop
a concrete algorithm that adheres to the above framework
while ensuring theoretical sample efficiency. We also em-
phasize that step 1 is reward-agnostic, and the collected
dataset can be re-used for learning many different rewards
as long as they are linear in the feature φ.

Preference model. In this work, we assume the prefer-
ence label follows the Bradley-Terry-Luce (BTL) model
(Bradley and Terry, 1952) in Step 2, i.e., we have the fol-
lowing assumption:

Assumption 2. Suppose for any pair of trajectory (τ0, τ1),
we have

P(o = 1) = P(τ1 � τ0) = σ(r∗(τ1)− r∗(τ0))

=
exp(r∗(τ1))

exp(r∗(τ0)) + exp(r∗(τ1))
,

where o is the human preference over (τ0, τ1) and σ(·) is
the sigmoid function.

Our analysis will leverage the quantity κ :=
sup|x|≤rmax

|1/σ′(x)| = 2 + exp(2rmax) + exp(−2rmax)
to measure the difficulty of estimating the true reward from
the BTL preference model.

3. Algorithm: REGIME
We propose an algorithm specifically designed for the RLHF
setting when the transitions are unknown. In order to handle
unknown transitions, we use the following mild oracle:

Definition 1 (Reward-free RL oracle). A reward-free learn-
ing oracle P(Π, ε, δ) can return an estimated model P̂ such
that with probability at least 1− δ, we have for all policy
π ∈ Π and h ∈ [H], s ∈ S, a ∈ A, ‖P̂1(·) − P ∗1 (·)‖1 ≤
ε′,Eπ,P∗ [‖P̂h(·|s, a) − P ∗h (·|s, a)‖1] ≤ ε′ where ‖ · ‖1 de-
notes total variation distance (i.e., `1-norm).

This oracle necessitates accurate model learning through
interactions with the environment. The required guarantee

3

How to Query Human Feedback Efficiently in RL?

Algorithm 1 REGIME: Experimental Design for Querying
Human Preference

1: Input: Regularization parameter λ, model estimation
accuracy ε′, parameters ε, δ.

2: Initialize Σ1 = λI
3: Estimate model P̂ ← P(Π, ε′, δ/4) (Possibly, requires

the interaction with the enviroment.)
4: for n = 1, · · · , N do
5: Compute (πn,0, πn,1)← arg maxπ0,π1∈Π ‖φ̂(π0)−

φ̂(π1)‖Σ̂−1
n

.

6: Update Σ̂n+1 = Σ̂n + (φ̂(π0) − φ̂(π1))(φ̂(π0) −
φ̂(π1))>.

7: end for
8: for n = 1, · · · , N do
9: Collect a pair of trajectories τn,0, τn,1 from the en-

viroment by πn,0, πn,1, respectively.
10: Add it to Dreward.
11: end for.
12: Obtain the preference labels {on}Nn=1 for Dreward from

human experts.
13: Run MLE θ̂ ← arg maxθ∈Θ(B,H) L(θ,Dreward, {on}Nn=1)

where L(θ,Dreward, {on}Nn=1) is defined in (1).
14: Return π̂ = arg maxπ∈Π〈φ̂(π), θ̂〉.

is relatively mild since we do not require a point-wise error
guarantee, but rather an expectation-based guarantee under
the ground truth transition. This oracle holds true not only in
tabular MDPs (Jin et al., 2020a), but also in low-rank MDPs
(Agarwal et al., 2020a; 2022), where the only assumption is
the low-rank property of the transition dynamics, and fea-
tures could be unknown to the learner. Low-rank MDPs find
wide application in practical scenarios, including blocked
MDPs (Du et al., 2019; Zhang et al., 2020a;b; Sodhani et al.,
2021; 2022).

3.1. Algorithm

The algorithm is described in Algorithm 1. Given a learned
model P̂ , we use φ̂(π) = Eτ∼(π,P̂)[φ(τ)] to estimate
φ(π) := Eτ∼(π,P?)[φ(τ)]. The algorithm mainly consists
of four steps as follows.

Step 1: Collection of state-action trajectories by inter-
acting with the environment (Line 1–1). To learn the
ground truth reward function, we collect exploratory state-
action trajectories that cover the space spanned by φ(·) be-
fore collecting any human feedback. To achieve this, at each
iteration, we identify a set of explorative policy pairs that
are not covered by existing data. We measure the extent to
which the trajectory generated by (π0, π1) can be covered
by computing the norm of φ̂(π0) − φ̂(π1) on the metric
induced by the inverse covariance matrix Σ−1

n at time step

n. After iterating this procedure N times and obtaining sets
of policies {(πn,0, πn,1)}Nn=1, we sample N exploratory
trajectory pairs by executing the policy pairs (πn,0, πn,1)
for n ∈ [N]. Notably, this trajectory-collection process is
reward-agnostic and thus the collected samples can be used
to learn multiple rewards in multi-task RL.

Step 2: Collection of preference feedback by interact-
ing with human experts (Line 1). If trajectory τn,1 is
preferred over τn,0, then assign on = 1, otherwise assign
on = 0.

Step 3: Reward learning via MLE (Line 1). We adopt
the widely-used maximum likelihood estimation (MLE)
approach to learn the reward function, which has also been
employed in other works (Ouyang et al., 2022; Christiano
et al., 2017; Brown et al., 2019; Shin et al., 2023; Zhu
et al., 2023). Specifically, we learn the reward model by
maximizing the log-likelihood L(θ,Dreward, {on}Nn=1):

N∑
n=1

log
(
on · σ(〈θ, φ(τn,1)− φ(τn,0)〉)

+ (1− on) · σ(〈θ, φ(τn,0)− φ(τn,1)〉)
)
. (1)

Step 4: RL with respect to learned rewards (Line 1).
We obtain the near-optimal policy that maximizes the cumu-
lative learned rewards.

Our algorithm differs significantly from the algorithms pro-
posed in (Pacchiano et al., 2021; Chen et al., 2022b). In
their algorithms, they repeat the following steps: (a) col-
lect new trajectories from the environment using policies
based on the current learned reward and transition models,
(b) collect human feedback for the obtained trajectories,
(c) update the reward and transition models. A potential
issue with this approach is that every time human feedback
is collected, agents need to interact with the environment,
causing a wait time for humans. In contrast, our algorithm
first collects exploratory trajectories without collecting any
human feedback in Step 1. Then, we query human feedback
and learn the reward model in Step 2-3. As a result, we
decouple the step of collecting exploratory data from that
of collecting human feedback. Hence, in our algorithm, we
can efficiently query human feedback in parallel, mirroring
common practice done in InstructGPT. Moreover, our algo-
rithm’s design leads to lower sample complexity for both
trajectory pairs and human feedback than (Pacchiano et al.,
2021; Chen et al., 2022b), as demonstrated in the following
discussion.

Remark 1. In Step 4 (Line 1), it is not necessary to use
the same P̂ as in Line 1. Instead, any sample-efficient RL
algorithm can be employed w.r.t. the learned reward such
as Lee et al. (2021).

4

How to Query Human Feedback Efficiently in RL?

3.2. Analysis

Now we provide the sample complexity of Algorithm 1 as
shown in the following theorem.

Theorem 1. Let

ε′ ≤ ε

6BRH2
, λ ≥ 4HR2,

N ≥ Õ
(λκ2B2R2H4d2 log(1/δ)

ε2

)
,

Then under Assumption 1 and 2, with probability at least
1− δ, we have

V r
∗,π̂ ≥ V r

∗,∗ − ε.

Note the sample complexity in Theorem 1 does not depend
on the complexity of Π and thus we can learn arbitrary
policy classes. When Π = ΠMar, we have π∗ = πg and
thus we can compete against the global optimal policy.

Since the sample complexity of human feedback, denoted
by Nhum, is equal to N , Theorem 1 shows that the sam-
ple complexity of human feedback required to learn an
ε-optimal policy scales with Õ(1/ε2) and is polynomial in
the norm bounds B,R, the horizon H , and the dimension
of the feature space d. Notably, the sample complexity of
human feedback Nhum only depends on the structural com-
plexity of the reward function, regardless of the underlying
transition model. This is because while our theorem re-
quires that the learned transition model is accurate enough
(ε′ ≤ ε

6BRH2), we do not need human feedback to learn
the transition model for this purpose. This property of our
algorithm is particularly desirable when collecting human
feedback is much more expensive than collecting trajecto-
ries from the environment. Existing works with sample-
efficient guarantees, such as (Pacchiano et al., 2021; Chen
et al., 2022b), do not have this property. Our algorithm’s
favorable property can be attributed to the careful design of
the algorithm, where the step of collecting trajectories and
learning transitions is reward-agnostic and thus separated
from the step of collecting human feedback and learning
rewards.

As the most relevant work, we compare our results with
Pacchiano et al. (2021), which considers online learning
in RLHF with unknown tabular transition models and lin-
ear reward parameterization. Let Ntra and Nhum denote
the number of required trajectory pairs and human feed-
back, respectively. Then, to obtain an ε-optimal policy, the
algorithm in Pacchiano et al. (2021, Theorem 2) requires:

Ntra = Nhum = Õ
(
|S|2|A|d+ κ2d2

ε2

)
.

Here we omit the dependence on B,R,H to facilitates the
comparison. In contrast, in the setting considered in Pac-
chiano et al. (2021), by leveraging the reward-free learning

oracle from Jin et al. (2020a), our algorithm achieves the
following sample complexity:

Ntra = Õ
(
|S|2|A|
ε2

+
κ2d2

ε2

)
, Nhum = Õ

(
κ2d2

ε2

)
,

where the number of required trajectory-pairs comes from
Jin et al. (2020a)[Lemma 3.6]. We observe that our algo-
rithm achieves a better sample complexity for both trajectory
pairs and human feedbacks than the previous work. In par-
ticular, our algorithm has the advantage that Nhum depends
only on the feature dimension d and not on |S| or |A|. This
improvement is significant since obtaining human feedback
is often costly. Lastly, we note that a similar comparison
can be made to the work of Chen et al. (2022b), which con-
siders reward and transition models with bounded Eluder
dimension.

4. REGIME in Linear MDPs
So far, we have considered RLHF given reward-free RL
oracle satisfying Definition 1. Existing works have shown
the existence of such a model-based reward-free RL oracle
in low-rank MDPs (Agarwal et al., 2020a; 2022). How-
ever, these results have not been extended to linear MDPs
(Jin et al., 2020b) where model-free techiniques are neces-
sary. Linear MDPs are relevant to our setting because linear
reward parametrization naturally holds in linear MDPs. Un-
fortunately, a direct reduction from linear MDPs to low-rank
MDPs may introduce a dependence on the cardinality of S
without assuming strong inductive bias in the function class.
In this section, we propose a model-free algorithm that can
overcome this dependence by making slight modifications
to Algorithm 1. We begin by providing the definition of
linear MDPs.

Assumption 3 (Linear MDPs (Jin et al., 2020b)). We sup-
pose MDP is linear with respect to some known feature vec-
tors φh(s, a) ∈ Rd(h ∈ [H], s ∈ S, a ∈ A). More specif-
ically, if for each h ∈ [H], there exist d unknown signed
measures µ∗h = (ψ

(1)
h , · · · , ψ(d)

h) over S and an unknown
vector θ∗h ∈ Rd such that P ∗h (·|s, a) = φh(s, a)>µ∗h(·) and
r∗h(s, a) = φh(s, a)>θ∗h for all (s, a) ∈ S ×A. For techni-
cal purposes, we suppose the norm bound ‖µ∗h(s)‖2 ≤

√
d

for any s ∈ S.

In addition, we use NΠ(ε) to denote the covering number
of Π, which is defined as follows:

Definition 2 (ε-covering number). The ε-covering number
of the policy class Π, denoted by NΠ(ε), is the minimum
integer n such that there exists a subset Π′ ⊂ Π with
|Π′| = n and for any π ∈ Π there exists π′ ∈ Π′ such
that maxs∈S,h∈[H] ‖πh(·|s)− π′h(·|s)‖1 ≤ ε.

5

How to Query Human Feedback Efficiently in RL?

4.1. Algorithm

The reward-free RL oracle that satisfies Definition 1 for
learning accurate transitions may be excessively strong for
linear MDPs. Upon closer examination of Algorithm 1, it
becomes apparent that the learned transition model is solely
used for estimating φ(π). Therefore, our approach focuses
on achieving a precise estimation of φ(π).

Our main algorithm is described in Algorithm 2 with sub-
routines for estimating φ̂(π). The overall structure of the
primary algorithm resembles that of Algorithm 1. The key
distinction lies in the part to accurately estimate φ̂(π) within
the subroutines, without relying on the abstract reward-free
RL oracle (Definition 1). In the following, we provide a
brief explanation of these subroutines. The detailed descrip-
tions of these subroutines is deferred to Algorithm 3 and 4
in Appendix A.

Collecting exploratory data to learn transitions. Being
inspired by the approach in (Jin et al., 2020b; Wang et al.,
2020), we construct an exploratory dataset by running LSVI-
UCB (Jin et al., 2020b) with rewards equivalent to the bonus.
Specifically, in the k-th iteration, we recursively apply the
least square value iteration with a bonus term {bkh(s, a)}Hh=1,
which is introduced to induce exploration. This process
yields an exploratory policy πk based on exploratory re-
wards {rkh}Hh=1, where rkh = bkh/H . We then collect a tra-
jectory by executing policy πk. By repeating this procedure
for K iterations, we accumulate an exploratory dataset. The
detailed algorithm is provided in Appendix A (Algorithm 3).
It is important to note that this step involves generating K
trajectories through interactions with the environment.

Estimating φ(π) using the exploratory data. Let
(φ(π))h,j denote the j-th entry of φh(π) := Eπ[φh(sh, ah)].
Then to estimate φ(π), we only need to es-
timate (φ(π))h,j for all h ∈ [H], j ∈ [d].
Note that for all π ∈ Π, we have φ(π) =[
Eπ,P∗ [φ1(s1, a1)>], · · · ,Eπ,P∗ [φH(sH , aH)>]

]>
.

Here, the key observation is that (φ(π))h,j is exactly
the expected cumulative rewards with respect to the
following reward function rh,jh′ (s, a) = φh′(s, a)>θh,jh′ for
all h′ ∈ [H] (up to an R factor) where θh,jh′ = 1

R · ej for
h′ = h and θh,jh′ = 0, otherwise (h′ 6= h). Here ej is the
one-hot encoding vector whose j-th entry is 1. Therefore,
with the collected dataset, we can run the least square
policy evaluation to estimate (φ(π))h,j . The detail is in
Algorithm 4 in Appendix A.

4.2. Analysis

Now we present the sample complexity of Algorithm 2. The
formal statement and proof are deferred to Appendix A and

E.1.
Theorem 2 (Informal). By choosing parameters in an ap-
propriate way and setting

K ≥ Õ
(H8B2R4d4 log(NΠ(ε′)/δ)

ε2

)
,

N ≥ Õ
(λκ2B2R2H4d2 log(1/δ)

ε2

)
, ε′ =

ε

72BR2H
√
dHKH−1

,

under Assumption 1,2, and 3, with probability at least 1−δ,
we have

V r
∗,π̂ ≥ V r∗,∗ − ε.

Furthermore, by selecting a policy class Π properly, we
have

V r
∗,π̂ ≥ V r∗,πg − 2ε.

by replacing log(NΠ(ε′)/δ) = Hd log
(

12WR
ε′

)
where

W =

(
B+(H+ε)

√
d
)
H log |A|

ε .

The first statement says Algorithm 2 can learn an ε-optimal
policy with the number of trajectory-pairs and human feed-
backs as follows:

Ntra = K +N = Õ
(
d4 logNΠ(ε′)+κ2d2

ε2

)
, Nhum = Õ

(
κ2d2

ε2

)
.

Since the sample complexity depends on the covering num-
ber of Π, we need to carefully choose the policy class. When
we choose Π to be the log-linear policy class:

Π =
{
π = {πζh}

H
h=1 : πζh(a|s) =

exp(ζ>h φh(s, a))∑
a′∈A exp(ζ>h φh(s, a′))

,

ζh ∈ B(d,W),∀s ∈ S, a ∈ A, h ∈ [H]
}
,

although π∗ 6= πg, we can show that the value of π∗ is
close to the value of πg up to ε by setting sufficiently large
W . This immediately leads to the second statement in
Theorem 2. Consequently, to learn an ε-global-optimal
policy, it is concluded that the number of required trajectory
pairs and human feedbacks for Algorithm 2 does not depend
on |S| at all.

Finally, we compare our work to Chen et al. (2022b), as
it is the only existing work that addresses provable RLHF
with non-tabular transition models. Their algorithm exhibits
sample complexities that depend on the Eluder dimension
associated with the transition models. However, in linear
MDPs, it remains uncertain whether we can get upper-bound
on the Eluder dimension without introducing a dependence
on |S|. Consequently, our Algorithm 2 is the first provable
RLHF algorithm capable of achieving polynomial sample
complexity that is independent of |S| in linear MDPs.

6

How to Query Human Feedback Efficiently in RL?

References
Agarwal, A., Jiang, N., Kakade, S. M., and Sun, W. (2019).

Reinforcement learning: Theory and algorithms. Techni-
cal report.

Agarwal, A., Kakade, S., Krishnamurthy, A., and Sun,
W. (2020a). Flambe: Structural complexity and rep-
resentation learning of low rank mdps. arXiv preprint
arXiv:2006.10814.

Agarwal, A., Kakade, S. M., Lee, J. D., and Mahajan, G.
(2020b). Optimality and approximation with policy gradi-
ent methods in Markov decision processes. In Conference
on Learning Theory, pages 64–66. PMLR.

Agarwal, A., Song, Y., Sun, W., Wang, K., Wang, M.,
and Zhang, X. (2022). Provable benefits of represen-
tational transfer in reinforcement learning. arXiv preprint
arXiv:2205.14571.

Bradley, R. A. and Terry, M. E. (1952). Rank analysis
of incomplete block designs: I. the method of paired
comparisons. Biometrika, 39(3/4):324–345.

Brown, D., Goo, W., Nagarajan, P., and Niekum, S. (2019).
Extrapolating beyond suboptimal demonstrations via in-
verse reinforcement learning from observations. In Inter-
national conference on machine learning, pages 783–792.
PMLR.

Cen, S., Cheng, C., Chen, Y., Wei, Y., and Chi, Y. (2022).
Fast global convergence of natural policy gradient meth-
ods with entropy regularization. Operations Research,
70(4):2563–2578.

Chen, J. and Jiang, N. (2019). Information-theoretic con-
siderations in batch reinforcement learning. In Interna-
tional Conference on Machine Learning, pages 1042–
1051. PMLR.

Chen, J., Modi, A., Krishnamurthy, A., Jiang, N., and
Agarwal, A. (2022a). On the statistical efficiency of
reward-free exploration in non-linear rl. arXiv preprint
arXiv:2206.10770.

Chen, X., Zhong, H., Yang, Z., Wang, Z., and Wang,
L. (2022b). Human-in-the-loop: Provably efficient
preference-based reinforcement learning with general
function approximation. In International Conference
on Machine Learning, pages 3773–3793. PMLR.

Christiano, P. F., Leike, J., Brown, T., Martic, M., Legg,
S., and Amodei, D. (2017). Deep reinforcement learning
from human preferences. Advances in neural information
processing systems, 30.

Du, S. S., Luo, Y., Wang, R., and Zhang, H. (2019). Prov-
ably efficient Q-learning with function approximation
via distribution shift error checking oracle. In Advances
in Neural Information Processing Systems, pages 8058–
8068. PMLR.

Dudík, M., Hofmann, K., Schapire, R. E., Slivkins, A.,
and Zoghi, M. (2015). Contextual dueling bandits. In
Conference on Learning Theory, pages 563–587. PMLR.

Glaese, A., McAleese, N., Trębacz, M., Aslanides, J., Firoiu,
V., Ewalds, T., Rauh, M., Weidinger, L., Chadwick, M.,
Thacker, P., et al. (2022). Improving alignment of di-
alogue agents via targeted human judgements. arXiv
preprint arXiv:2209.14375.

Jin, C., Krishnamurthy, A., Simchowitz, M., and Yu, T.
(2020a). Reward-free exploration for reinforcement learn-
ing. In International Conference on Machine Learning,
pages 4870–4879. PMLR.

Jin, C., Yang, Z., Wang, Z., and Jordan, M. I. (2019). Prov-
ably efficient reinforcement learning with linear function
approximation. arXiv preprint arXiv:1907.05388.

Jin, C., Yang, Z., Wang, Z., and Jordan, M. I. (2020b). Prov-
ably efficient reinforcement learning with linear function
approximation. In Conference on Learning Theory, pages
2137–2143. PMLR.

Laskey, M., Staszak, S., Hsieh, W. Y.-S., Mahler, J., Poko-
rny, F. T., Dragan, A. D., and Goldberg, K. (2016). Shiv:
Reducing supervisor burden in dagger using support vec-
tors for efficient learning from demonstrations in high
dimensional state spaces. In 2016 IEEE International
Conference on Robotics and Automation (ICRA), pages
462–469.

Lee, K., Smith, L., and Abbeel, P. (2021). Pebble: Feedback-
efficient interactive reinforcement learning via relabeling
experience and unsupervised pre-training. arXiv preprint
arXiv:2106.05091.

Liu, H., Sferrazza, C., and Abbeel, P. (2023). Languages
are rewards: Hindsight finetuning using human feedback.
arXiv preprint arXiv:2302.02676.

Nachum, O., Norouzi, M., Xu, K., and Schuurmans, D.
(2017). Bridging the gap between value and policy based
reinforcement learning. In Advances in Neural Informa-
tion Processing Systems, pages 2775–2785.

Nakano, R., Hilton, J., Balaji, S., Wu, J., Ouyang, L., Kim,
C., Hesse, C., Jain, S., Kosaraju, V., Saunders, W., et al.
(2021). Webgpt: Browser-assisted question-answering
with human feedback. arXiv preprint arXiv:2112.09332.

7

How to Query Human Feedback Efficiently in RL?

Novoseller, E., Wei, Y., Sui, Y., Yue, Y., and Burdick, J.
(2020). Dueling posterior sampling for preference-based
reinforcement learning. In Conference on Uncertainty in
Artificial Intelligence, pages 1029–1038. PMLR.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright,
C., Mishkin, P., Zhang, C., Agarwal, S., Slama, K., Ray,
A., et al. (2022). Training language models to follow
instructions with human feedback. Advances in Neural
Information Processing Systems, 35:27730–27744.

Pacchiano, A., Saha, A., and Lee, J. (2021). Dueling rl:
reinforcement learning with trajectory preferences. arXiv
preprint arXiv:2111.04850.

Qiu, S., Ye, J., Wang, Z., and Yang, Z. (2021). On reward-
free rl with kernel and neural function approximations:
Single-agent mdp and markov game. In International
Conference on Machine Learning, pages 8737–8747.
PMLR.

Ramamurthy, R., Ammanabrolu, P., Brantley, K., Hessel,
J., Sifa, R., Bauckhage, C., Hajishirzi, H., and Choi, Y.
(2022). Is reinforcement learning (not) for natural lan-
guage processing?: Benchmarks, baselines, and building
blocks for natural language policy optimization. arXiv
preprint arXiv:2210.01241.

Ross, S., Gordon, G., and Bagnell, D. (2011). A reduction of
imitation learning and structured prediction to no-regret
online learning. In Proceedings of the fourteenth interna-
tional conference on artificial intelligence and statistics,
pages 627–635.

Ross, S., Melik-Barkhudarov, N., Shankar, K. S., Wendel,
A., Dey, D., Bagnell, J. A., and Hebert, M. (2013). Learn-
ing monocular reactive uav control in cluttered natural
environments. In 2013 IEEE international conference on
robotics and automation, pages 1765–1772. IEEE.

Shin, D., Dragan, A. D., and Brown, D. S. (2023). Bench-
marks and algorithms for offline preference-based reward
learning. arXiv preprint arXiv:2301.01392.

Sodhani, S., Meier, F., Pineau, J., and Zhang, A. (2022).
Block contextual mdps for continual learning. In Learn-
ing for Dynamics and Control Conference, pages 608–
623. PMLR.

Sodhani, S., Zhang, A., and Pineau, J. (2021). Multi-task re-
inforcement learning with context-based representations.
In International Conference on Machine Learning, pages
9767–9779. PMLR.

Stiennon, N., Ouyang, L., Wu, J., Ziegler, D., Lowe, R.,
Voss, C., Radford, A., Amodei, D., and Christiano, P. F.
(2020). Learning to summarize with human feedback.
Advances in Neural Information Processing Systems,
33:3008–3021.

Wang, R., Du, S. S., Yang, L., and Salakhutdinov, R. R.
(2020). On reward-free reinforcement learning with linear
function approximation. Advances in neural information
processing systems, 33:17816–17826.

Wirth, C., Akrour, R., Neumann, G., Fürnkranz, J., et al.
(2017). A survey of preference-based reinforcement learn-
ing methods. Journal of Machine Learning Research,
18(136):1–46.

Wu, J., Ouyang, L., Ziegler, D. M., Stiennon, N., Lowe,
R., Leike, J., and Christiano, P. (2021). Recursively
summarizing books with human feedback. arXiv preprint
arXiv:2109.10862.

Xu, Y., Wang, R., Yang, L., Singh, A., and Dubrawski, A.
(2020). Preference-based reinforcement learning with
finite-time guarantees. Advances in Neural Information
Processing Systems, 33:18784–18794.

Xue, W., Cai, Q., Xue, Z., Sun, S., Liu, S., Zheng, D.,
Jiang, P., and An, B. (2022). Prefrec: Preference-based
recommender systems for reinforcing long-term user en-
gagement. arXiv preprint arXiv:2212.02779.

Yue, Y., Broder, J., Kleinberg, R., and Joachims, T. (2012).
The k-armed dueling bandits problem. Journal of Com-
puter and System Sciences, 78(5):1538–1556.

Zanette, A., Lazaric, A., Kochenderfer, M. J., and Brunskill,
E. (2020). Provably efficient reward-agnostic navigation
with linear value iteration. Advances in Neural Informa-
tion Processing Systems, 33:11756–11766.

Zhang, A., Lyle, C., Sodhani, S., Filos, A., Kwiatkowska,
M., Pineau, J., Gal, Y., and Precup, D. (2020a). Invari-
ant causal prediction for block mdps. In International
Conference on Machine Learning, pages 11214–11224.
PMLR.

Zhang, A., McAllister, R., Calandra, R., Gal, Y., and Levine,
S. (2020b). Learning invariant representations for rein-
forcement learning without reconstruction. arXiv preprint
arXiv:2006.10742.

Zhu, B., Jiao, J., and Jordan, M. I. (2023). Principled rein-
forcement learning with human feedback from pairwise
or k-wise comparisons. arXiv preprint arXiv:2301.11270.

Ziegler, D. M., Stiennon, N., Wu, J., Brown, T. B., Radford,
A., Amodei, D., Christiano, P., and Irving, G. (2019).
Fine-tuning language models from human preferences.
arXiv preprint arXiv:1909.08593.

Zoghi, M., Whiteson, S. A., De Rijke, M., and Munos, R.
(2014). Relative confidence sampling for efficient on-
line ranker evaluation. In Proceedings of the 7th ACM
international conference on Web search and data mining,
pages 73–82.

8

How to Query Human Feedback Efficiently in RL?

Algorithm 2 REGIME-lin
Input: Regularization parameter λ, feature estimation
sample complexity K.
Call Algorithm 3 with generating K trajectories by inter-
acting with the environment.
Call Algorithm 4 with reward function (rh,jh′)h′∈[H] to
estimate (φ̂(π))h,j for all π ∈ Π, h ∈ [H], j ∈ [d] using
K trajectories. Let φ̂(π) = [φ̂1(π), · · · , φ̂H(π)] where
the j-th entry of φ̂h(π) is (φ̂(π))h,j .
for n = 1, · · · , N do

Compute (πn,0, πn,1) ← arg maxπ0,π1∈Π ‖φ̂(π0) −
φ̂(π1)‖Σ̂−1

n
.

Update Σ̂n+1 = Σ̂n + (φ̂(π0) − φ̂(π1))(φ̂(π0) −
φ̂(π1))>.

end for
for n = 1, · · · , N do

Collect a pair of trajectories τn,0, τn,1 from the envi-
ronment by πn,0, πn,1, respectively.
Add (τn,0, τn,1) to Dreward.

end for
Obtain the preference labels {o(n)}Nn=1 from human ex-
perts.
Run MLE θ̂ ← arg minθ∈Θ(B,H) Lλ(θ,Dreward, {o(n)}Nn=1).
Return π̂ = arg maxπ∈Π V̂

π(r̂) where V̂ π(r̂) is ob-
tained by calling Algorithm 4 with reward function
r̂ = {r̂h}Hh=1 for all π where r̂h(s, a) = 〈φh(s, a), θ̂〉.

A. Omit details in Section 4
In this section we present the details of Algorithm 3 and
Algorithm 4. Here Clip[a,b](x) means min{max{a, x}, b}.
In particular, when estimating (φ(π))h,j , we use the reward
function rh,jh′ (s, a) = φh′(s, a)>θh,jh′ for all h′ ∈ [H] (up to
an R factor) where

θh,jh′ =

{
1
R · ej , if h′ = h,

0, otherwise.

Here ej is the one-hot vector whose j-th entry is 1.
For simplicity, we denote V̂ r

h,j ,π, Q̂r
h,j ,π, wr

h,j ,π by
V h,j,π, Qh,j,π, wh,j,π and let the estimation (φ̂(π))h,j be
RV̂ π(rh,j).

Then we have the following formal theorem characterizing
the sample complexity of Algorithm 2:

Algorithm 3 REGIME-exploration
Input: The number of total episodes K, bonus parameter
βex and regularization parameter λex.
for k = 1, · · · ,K do

Initialize: QkH+1(·, ·)← 0, V kH+1(·)← 0.
for h = H, · · · , 1 do

Compute the covariance matrix: Λkh ←
∑k−1
i=1

φh(sih, a
i
h)φh(sih, a

i
h)> + λexI .

Compute the bonus and reward:
bkh(·, ·) ← min

{
βex‖φh(·, ·)‖(Λkh)−1 , H − h + 1

}
and rkh = bkh/H .
Compute Q function:

Qkh(·, ·) ← Clip[0,H−h+1]

(
Clip[0,H−h+1]((w

k
h)>

φh(·, ·) + rkh(·, ·)) + bkh(·, ·)
)

,

where wkh = (Λkh)−1
∑k−1
i=1 φh(sih, a

i
h) ·

V kh+1(sih+1).
Compute value function and policy:

V kh (·)← max
a∈A

Qkh(·, a), πkh(·)← arg max
a∈A

Qkh(·, a).

end for
Collect a trajectory τk = (skh, a

k
h, s

k
h+1)Hh=1 by run-

ning πk = {πkh}Hh=1 and add τk into Dex.
end for
SampleK states from the initial states {si,in1 }Ki=1 and add
them to Din.
Return Dex,Din.

Theorem 3. Let

λex = λpl = R2,

βex = CβdHR
√

log(dKHR/δ),

βpl = CβdHR
√

log(dKHRNΠ(ε′)/δ)

λ ≥ 4HR2,K ≥ Õ
(H8B2R4d4 log(NΠ(ε′)/δ)

ε2

)
,

N ≥ Õ
(λκ2B2R2H4d2 log(1/δ)

ε2

)
,

where ε′ = ε

72BR2H
√
dHKH−1

, Cβ > 0 is a universal con-
stant and κ = 2+exp(2rmax)+exp(−2rmax). Then under
Assumption 1 and 3, with probability at least 1− δ, we have

V r
∗,π̂ ≥ V r

∗,∗ − ε.

The proof is deferred to Appendix E.1.

A.1. Log-Linear Policy Class

The sample complexity in Theorem 2 depends on the cov-
ering number of the policy class Π. Therefore we want

9

How to Query Human Feedback Efficiently in RL?

Algorithm 4 REGIME-planning

Input: Dataset Dex = {(sih, aih, sih+1)}K,Hi=1,h=1,Din =

{si,in1 }Ki=1, bonus parameter βpl and regularization pa-
rameter λpl, policy π, reward function (rh)Hh=1.
for h′ = H, · · · , 1 do

Compute the covariance matrix: Λh′ ←
∑K
i=1

φh′(s
i
h′ , a

i
h′)φh′(s

i
h′ , a

i
h′)
> + λplI .

Compute the bonus:
bh′(·, ·)← min

{
βpl‖φh′(·, ·)‖(Λh′)−1 , 2(H−h+1)

}
.

end for
Initialize: Q̂r,πH+1(·, ·)← 0, V̂ r,πH+1(·)← 0.
for h′ = H, · · · , 1 do

Compute Q function:
Q̂r,πh′ (·, ·)←

Clip[−(H−h+1),H−h+1]

(
Clip[−(H−h+1),H−h+1]

((wr,πh′)>φh′(·, ·) + rh′(·, ·)) + bh′(·, ·)
)

,

where
wr,πh′ = (Λh′)

−1
∑K
i=1 φh′(s

i
h′ , a

i
h′) · V̂

r,π
h′+1(sih′+1).

Compute value function:
V̂ r,πh′ (·)← Ea∼πh′ Q̂

r,π
h′ (·, a).

end for
Compute V̂ π(r)← 1

K

∑K
i=1 V̂

r,π
1 (si,in1).

Return V̂ π(r).

to find a policy class for linear MDPs that is rich enough
(i.e., contains near-global-optimal policies) while retains
a small covering number at the same time. Indeed, the
log-linear policy class (Agarwal et al., 2020b) satisfies this
requirement, which is defined as follows:

Π =
{
π : πζh(a|s) =

exp(ζ>h φh(s, a))∑
a′∈A exp(ζ>h φh(s, a′))

,

ζh ∈ B(d,W),∀s ∈ S, a ∈ A, h ∈ [H]
}

Here B(d,W) is the d-dimensional ball centered at the ori-
gin with radius W . The following proposition characterizes
the covering number of such log-linear policy class:

Proposition 1. Let Π be the log-linear policy class. Then
under Assumption 1, for any ε ≤ 1, we have logNΠ(ε) ≤
Hd log

(
12WR
ε

)
.

Meanwhile, we can quantify the bias of such log-linear
policy class as follows:

Proposition 2. Let W =

(
B+(H+ε)

√
d
)
H log |A|

ε , then un-
der Assumption 1 and 3, we have

V r
∗,πg −max

π∈Π
V r
∗,π ≤ ε,

where πg is the global optimal policy.

Combining Theorem 3, Proposition 1 and Proposition 2, we
know that the returned policy π̂ by Algorithm 2 with log-
linear policy classes can indeed compete against the global
optimal policy with the following sample complexities:

Ntra = K +N = Õ
(
d5 + κ2d2

ε2

)
, Nhum = Õ

(
κ2d2

ε2

)
.

B. REGIME with Action-Based Comparison
The drawback of the current results is that the sample com-
plexity is dependent on κ, which can exhibit exponential
growth in rmax under the BTL model. This is due to the
fact that sup|x|≤rmax

|1/σ′(x)| = O(exp(rmax)). Such de-
pendence on rmax is undesirable, especially when rewards
are dense and rmax scales linearly with H . Similar lim-
itations are present in existing works, such as Pacchiano
et al. (2021); Chen et al. (2022b). To address this challenge,
we consider the action-based comparison model (Zhu et al.,
2023) in this section. Here, we assume that humans compare
two actions based on their optimal Q-values. Given a tuple
(s, a0, a1, h), the human provides feedback o following

P(o = 1|s, a0, a1, h) = P(a1 � a0|s, h)

= σ(A∗h(s, a1)−A∗h(s, a0)), (2)

where A∗h is the advantage function of the optimal policy.
Similar to trajectory-based comparisons with linear reward
parametrization, we assume linearly parameterized advan-
tage functions:

Assumption 4 (Linear Advantage Parametrization). An
MDP has linear advantage functions with respect to some
known feature vectors φh(s, a) ∈ Rd(h ∈ [H], s ∈ S, a ∈
A). More specifically, if for each h ∈ [H], there exists an
unknown vector ξ∗h ∈ Rd such thatA∗h(s, a) = φh(s, a)>ξ∗h
for all (s, a) ∈ S ×A. For technical purposes, we assume
for all s ∈ S, a ∈ A, h ∈ [H], we have ‖φh(s, a)‖ ≤
R, ‖ξ∗h‖ ≤ B.

Generally, the value of |A∗h(s, a)| tends to be much smaller
than H since a large value of |A∗h(s, a)| implies that it may
be difficult to recover from a previous incorrect action even
under the best policy π∗ (Ross et al., 2011; Agarwal et al.,
2019). Therefore, by defining Badv = sup(s,a) |A∗h(s, a)|,
we expect that Badv will be much smaller than H , even in
scenarios with dense rewards.

In the following discussion, we will use Z(B, h) to de-
note the convex set {ζ ∈ Rd : ‖ζ‖ ≤ B, 〈φh(s, a), ζ〉 ≤
Badv,∀s ∈ S, a ∈ A}. We consider the setting where
Π = ΠMar and assume the transition model is known for
brevity. In the case of unknown transition models, we can
employ the same approach as described in Section 3 with
reward-free RL oracles.

10

How to Query Human Feedback Efficiently in RL?

B.1. Algorithm

We present our algorithm for action-based comparison mod-
els in Algorithm 5. The overall construction is similar to
that of Algorithm 1, but with modifications to accommodate
the changes in the preference model. We provide a detailed
description of each step of our algorithm as follows.

Step 1: Collection of exploratory trajectories (Line 5-5
). Similar to Algorithm 1, we generate a set of exploratory
policy pairs. Our sampling procedure is designed for action-
based comparisons.

Step 2: Collection of preference feedback (Line 5). If
a1 is preferred over a0, the algorithm assigns on = 1; other-
wise, it assigns on = 0 according to the model in Eq. (2).

Step 3: Advantage function learning via MLE (Line 5).
Similar to Algorithm 1, we use MLE to learn the advantage
function. More specifically, we learn it by maximizing the
log-likelihood:

L(ξ,Dhadv, {oh,n}Nn=1)

=

N∑
n=1

log
(
oh,n · σ(〈ξ, φh(sh,n, ah,n,1)− φ(sh,n, ah,n,0)〉)

+ (1− oh,n) · σ(〈ξ, φh(sh,n, ah,n,0)− φ(sh,n, ah,n,1)〉)
)
,

where Dhadv = {sh,n, ah,n,0, ah,n,1}Nn=1.

Step 4: Policy output (Line 5). We select the action with
the highest learned advantage for each state, i.e., output the
greedy policy based on the learned advantage function.

B.2. Analysis

Theorem 4. Let

λ ≥ 4R2, N ≥ Õ
(λκ2

advB
2R2H2d2 log(1/δ)

ε2

)
,

where κadv = sup|x|≤Badv
|1/σ′(x)| in

REGIME-action. Then under Assumption 4, with
probability at least 1− δ, we have V r

∗,π̂ ≥ V r∗,∗ − ε.

Theorem 4 demonstrates that for the action-based compari-
son model, the number of required human feedbacks scales
with κadv instead of κ. This implies that when σ is a com-
monly used sigmoid function, the sample complexity is
exponential in Badv rather than rmax. Crucially, Badv is
always less than or equal to rmax, and as mentioned ear-
lier, Badv can be o(H) even in dense reward settings where
rmax = Θ(H). Consequently, we achieve superior sample
complexity compared to the trajectory-based comparison
setting.

Algorithm 5 REGIME-action
1: Input: Regularization parameter λ.
2: for h = 1, · · · , H do
3: Initialize Σh,1 = λI .
4: for n = 1, · · · , N do
5: Compute:
6: (πh,n,0, πh,n,1) = arg maxπ0,π1∈Π

‖Esh∼π0 [φh(sh, π
0) − φh(sh, π

1)]‖Σ−1
h,n

, where
φh(s, π) = Ea∼πh(·|s)[φh(s, a)].

7: Update:
8: Σh,n+1 = Σh,n + (Esh∼πh,n,0 [φh(sh, π

h,n,0) −
φh(sh, π

h,n,1)]) · (Esh∼πh,n,0 [φh(sh, π
h,n,0) −

φh(sh, π
h,n,1)])>.

9: end for
10: end for
11: for h = 1, · · · , H do
12: for n = 1, · · · , N do
13: Sample sh,n at time step h by executing a policy

πh,n,0 = {πh,n,0k }Hk=1.
14: Sample actions ah,n,0 ∼ πh,n,0h (·|sh,n), ah,n,1 ∼

πh,n,1h (·|sh,n).
15: Add (sh,n, ah,n,0, ah,n,1) to Dhadv.
16: (These steps involve the interaction with environ-

ment)
17: end for
18: end for
19: Obtain the preference labels {oh,n}Nn=1 for Dhadv from

human experts.
20: Run MLE:
21: ξ̂h = arg minξ∈Z(B,h) L(ξ,Dhadv, {oh,n}Nn=1).
22: Compute: for all s ∈ S, a ∈ A, h ∈ [H]:
23: Âh(s, a)← φh(s, a)>ξ̂h,
24: π̂h(s)← arg maxa∈A Âh(s, a).
25: Return π̂ = {π̂}Hh=1.

C. Proof of Theorem 1 With Known
Transitions

In this section, we consider the proof of Theorem 1 when
transitions are known, i.e., ε′ = 0 and P̂ = P ∗. In this
case we have φ̂(π) = φ(π). We will deal with the unknown
transition in Appendix D.1.

First, note that from the definition of π̂, we have

V r̂,π̂ ≥ V r̂,π
∗
,

where π∗ is the optimal policy with respect to the ground-
truth reward r∗, i.e., π∗ = arg maxπ∈Π V

r∗,π. Therefore

11

How to Query Human Feedback Efficiently in RL?

we can expand the suboptimality as follows:

V r
∗,∗ − V r

∗,π̂ = (V r
∗,∗ − V r̂,π

∗
) + (V r̂,π

∗
− V r̂,π̂)

+ (V r̂,π̂ − V r
∗,π̂)

≤ (V r
∗,∗ − V r̂,π

∗
) + (V r̂,π̂ − V r

∗,π̂)

= Eτ∼(π∗,P∗)[〈φ(τ), θ∗ − θ̂〉]

− Eτ∼(π̂,P∗)[〈φ(τ), θ∗ − θ̂〉]

= 〈φ(π∗)− φ(π̂), θ∗ − θ̂〉

≤ ‖φ(π∗)− φ(π̂)‖Σ−1
N+1
· ‖θ∗ − θ̂‖ΣN+1

,

(3)

where Σn := λI +
∑n−1
i=1 (φ(πi,0) − φ(πi,1))(φ(πi,0) −

φ(πi,1))> for all n ∈ [N + 1]. Here the third step is due
to the definition of value function and the last step comes
from Cauchy-Schwartz inequality. Next we will bound
‖φ(π∗)− φ(π̂)‖Σ−1

N+1
and ‖θ∗ − θ̂‖ΣN+1

respectively.

First for ‖φ(π∗)− φ(π̂)‖Σ−1
N+1

, notice that ΣN+1 � Σn for
all n ∈ [N + 1], which implies

‖φ(π∗)− φ(π̂)‖Σ−1
N+1
≤ 1

N

N∑
n=1

‖φ(π∗)− φ(π̂)‖Σ−1
n

≤ 1

N

N∑
n=1

‖φ(πn,0)− φ(πn,1)‖Σ−1
n

≤ 1√
N

√√√√ N∑
n=1

‖φ(πn,0)− φ(πn,1)‖2
Σ−1
n
, (4)

where the second step comes from the definition of πn,0 and
πn,1 and the last step is due to Cauchy-Schwartz inequality.
To bound the right hand side of (4), we utilize the following
Elliptical Potential Lemma:
Lemma 1 (Elliptical Potential Lemma). For any λ ≥ R2

x

and d ≥ 1, consider a sequence of vectors {xn ∈ Rd}Nn=1

where ‖xn‖ ≤ Rx for all n ∈ [N]. Let Σn = λI +∑n−1
i=1 x

n(xn)>, then we have

N∑
n=1

‖xn‖2
Σ−1
n
≤ 2d log

(
1 +

N

d

)
.

The proof is deferred to Appendix C.1. Since we have
λ ≥ 4HR2, by Lemma 1 we know√√√√ N∑

n=1

‖φ(πn,0)− φ(πn,1)‖2
Σ−1
n

≤
√

2HdN log(1 +N/(Hd)).

Combining the above inequality with (4), we have

‖φ(π∗)− φ(π̂)‖Σ−1
N+1
≤
√

2Hd log(1 +N/(Hd))

N
. (5)

For ‖θ∗ − θ̂‖ΣN+1
, first note that θ̂ is the MLE estimator.

Let Σ̃n denote the empirical cumulative covariance matrix
λI +

∑n−1
i=1 (φ(τ i,0)− φ(τ i,1))(φ(τ i,0)− φ(τ i,1))>, then

from the literature (Zhu et al., 2023), we know that MLE
has the following guarantee:
Lemma 2 (MLE guarantee). For any λ > 0 and δ ∈ (0, 1),
with probability at least 1− δ, we have

‖θ̂ − θ∗‖Σ̃N+1
≤ CMLE ·

√
κ2(Hd+ log(1/δ)) + λHB2,

(6)

where κ = 2+exp(2rmax)+exp(−2rmax) and CMLE > 0
is a universal constant.

The proof is deferred to Appendix C.2. With Lemma 2,
to ‖θ∗ − θ̂‖ΣN+1

we only need to show Σ̃N+1 is close to
ΣN+1. This can be achieved by the following concentration
result from the literature:
Lemma 3 ((Pacchiano et al., 2021)[Lemma 7]). For any
λ > 0 and δ ∈ (0, 1), with probability at least 1 − δ, we
have

‖θ∗ − θ̂‖2ΣN+1

≤ 2‖θ∗ − θ̂‖2
Σ̃N+1

+ CCONH
3dR2B2 log(N/δ),

(7)

where CCON > 0 is a universal constant.

Therefore, combining (7) and (6), by union bound with
probability at least 1− δ, we have that

‖θ∗ − θ̂‖ΣN+1
≤ C1 · κBR

√
λH3d log(N/δ), (8)

where C1 is a universal constant.

Thus substituting (5) and (8) into (3), we have V ∗(r∗) −
V (r∗, π̂) ≤ ε with probability at least 1− δ as long as

N ≥ Õ
(λκ2B2R2H4d2 log(1/δ)

ε2

)
.

C.1. Proof of Lemma 1

Note that when λ ≥ R2
x, we have ‖xn‖Σ−1

n
≤ 1 for all

n ∈ [N], which implies that for all n ∈ [N], we have

‖xn‖2
Σ−1
n
≤ log

(
1 + ‖xn‖2

Σ−1
n

)
.

On the other hand, let wn denote ‖xn‖Σ−1
n

, then we know
for any n ∈ [N − 1]

log det Σn+1 = det(Σn + xn(xn)>)

= log det(Σ1/2
n (I + Σ−1/2

n xn(xn)>Σ−1/2
n)Σ1/2

n)

= log det(Σn) + log det(I + (Σ−1/2
n xn)(Σ−1/2

n xn)>)

= log det(Σn) + log det(I + (Σ−1/2
n xn)>(Σ−1/2

n xn))

= log det(Σn) + log

(
1 + ‖xn‖2

Σ−1
n

)
,

12

How to Query Human Feedback Efficiently in RL?

where the fourth step is due to the property of determinants.
Therefore we have

N∑
n=1

log

(
1 + ‖xn‖2

Σ−1
n

)
= log det ΣN+1 − log det Σ1

= log(det ΣN+1/ det Σ1)

= log det

(
I +

1

λ

N∑
n=1

xn(xn)>
)
.

Now let {λi}di=1 denote the eigenvalues of
∑N
n=1 x

n(xn)>,
then we know

log det

(
I +

1

λ

N∑
n=1

xn(xn)>
)

= log

(d∏
i=1

(1 + λi/λ)

)

≤ d log

(
1

d

d∑
i=1

(1 + λi/λ)

)
≤ d log

(
1 +

NR2
x

dλ

)
≤ d log

(
1 +

N

d

)
,

where the third step comes from
∑d
i=1 λi =

Tr

(∑N
n=1 x

n(xn)>
)

=
∑N
n=1 ‖xn‖2 ≤ NR2

x and

the last step is due to the fact that λ ≥ R2
x. This concludes

our proof.

C.2. Proof of Lemma 2

First note that we have the following lemma from literature:

Lemma 4 ((Zhu et al., 2023)[Lemma 3.1]). For any λ′ > 0,
with probability at least 1− δ, we have

‖θ̂ − θ∗‖D+λ′I ≤ O
(√

κ2(Hd+ log(1/δ))

N
+ λ′HB2

)
,

where D = 1
N

∑N
i=1(φ(τ i,0) − φ(τ i,1))(φ(τ i,0) −

φ(τ i,1))>.

Therefore let λ′ = λ
N and from the above lemma we can

obtain

‖θ̂ − θ∗‖ Σ̃N+1
N

≤ O
(√

κ2(Hd+ log(1/δ))

N
+
λHB2

N

)
,

which is equivalent to

‖θ̂ − θ∗‖Σ̃N+1
≤ O

(√
κ2(Hd+ log(1/δ)) + λHB2

)
.

This concludes our proof.

D. Proofs in Section 3
D.1. Proof of Theorem 1

Note that from the proof of Theorem 1 with known transition
dynamics, we have:

V r
∗,∗ − V r

∗,π̂ ≤ 〈φ(π∗)− φ(π̂), θ∗ − θ̂〉+ (V r̂,π
∗
− V r̂,π̂),

(9)

Then we have

V r
∗,∗ − V r

∗,π̂ ≤ 〈φ(π∗)− φ̂(π∗), θ∗ − θ̂〉+ 〈φ̂(π̂)− φ(π̂), θ∗ − θ̂〉

+ 〈φ̂(π∗)− φ̂(π̂), θ∗ − θ̂〉+ (V r̂,π
∗
− V r̂,π̂).
(10)

Now we only need to bound the three terms in the RHS of
(10). For the first and second term, we need to utilize the
following lemma:

Lemma 5. Let dπh(s, a) and d̂πh(s, a) denote the visitation
measure of policy π under P ∗ and P̂ . Then with probability
at least 1− δ/4, we have for all h ∈ [H] and π ∈ Π,

‖dπh − d̂πh‖1 ≤ hε′. (11)

Let E1 denote the event when (11) holds. Then under event
E1, we further have the following lemma:

Lemma 6. Under event E1, for all policy π ∈ Π and vector
v = [v1, · · · , vH] where vh ∈ Rd and ‖vh‖ ≤ 2B for all
h ∈ [H] we have,

|〈φ(π)− φ̂(π), v〉| ≤ BRH2ε′.

Substitute Lemma 6 into (10), we have

V r
∗,∗ − V r

∗,π̂ ≤〈φ̂(π∗)− φ̂(π̂), θ∗ − θ̂〉+ 2BRH2ε′

+ (V r̂,π
∗
− V r̂,π̂).

Then by Cauchy-Schwartz inequality, we have under event
E1,

V r
∗,∗ − V r

∗,π̂ ≤ ‖φ̂(π∗)− φ̂(π̂)‖Σ̂−1
N+1
· ‖θ∗ − θ̂‖Σ̂N+1

+ 2BRH2ε′ + (V r̂,π
∗
− V r̂,π̂). (12)

Following the same analysis in the proof of Theorem 1 with
known transition, we know

‖φ̂(π∗)− φ̂(π̂)‖Σ̂−1
N+1
≤
√

2Hd log(1 +N/(Hd))

N
.

(13)

Now we only need to bound ‖θ∗ − θ̂‖Σ̂N+1
. Similar to the

proof of Theorem 1 with known transition, we use Σn and

13

How to Query Human Feedback Efficiently in RL?

Σ̃n to denote λI +
∑n−1
i=1 (φ(πi,0) − φ(πi,1))(φ(πi,0) −

φ(πi,1))> and λI +
∑n−1
i=1 (φ(τ i,0) − φ(τ i,1))(φ(τ i,0) −

φ(τ i,1))> respectively. Then under event E1, we have the
following connection between Σ̂N+1 and ΣN+1:

Lemma 7. Under event E1, we have

‖θ∗ − θ̂‖Σ̂N+1
≤
√

2‖θ∗ − θ̂‖ΣN+1
+ 2
√

2BRH2ε′.

Combining Lemma 7 with Lemma 2 and Lemma 3, we have
under event E1 ∩ E2,

‖θ∗ − θ̂‖Σ̂N+1
≤
√

2‖θ∗ − θ̂‖ΣN+1
+ 2
√

2BRH2ε′

≤ C2 · κBR
√
λH3d log(N/δ) + 2

√
2BRH2ε′,

(14)

where Pr(E2) ≥ 1−δ/2 and C2 > 0 is a universal constant.

Now we only need to bound (V r̂,π
∗ − V r̂,π̂), which can be

achieved with Lemma 6:

V r̂,π
∗
− V r̂,π̂ = 〈φ(π∗), θ̂〉 − 〈φ(π̂), θ̂〉

= 〈φ(π∗)− φ̂(π∗), θ̂〉+ 〈φ̂(π∗)− φ̂(π̂), θ̂〉 (15)

+ 〈φ̂(π̂)− φ(π̂), θ̂〉
≤ 2BRH2ε′, (16)

where the last step comes from Lemma 6 and the definition
of π̂.

Combining (12), (13) (14) and (16), we have V r
∗,∗ −

V r
∗,π̂ ≤ ε with probability at least 1− δ as long as

ε′ ≤ ε

6BRH2
, N ≥ Õ

(λκ2B2R2H4d2 log(1/δ)

ε2

)
.

D.2. Proof of Lemma 5

First notice that dπh(s, a) = dπh(s)π(a|s) and d̂πh(s, a) =

d̂πh(s)π(a|s), which implies that for all h ∈ [H]∥∥dπh − d̂πh∥∥1
=
∑
s,a

∣∣dπh(s, a)− d̂πh(s, a)
∣∣

=
∑
s,a

∣∣dπh(s)− d̂πh(s)
∣∣π(a|s)

=
∑
s

∣∣dπh(s)− d̂πh(s)
∣∣∑
a

π(a|s)

=
∑
s

∣∣dπh(s)− d̂πh(s)
∣∣.

Therefore we only need to prove
∑
s

∣∣dπh(s)− d̂πh(s)
∣∣ ≤ hε′

for all h ∈ [H]. We use induction to prove this. First for the
base case, we have

∑
s |dπ1 (s) − d̂π1 (s)| =

∑
s

∣∣P ∗1 (s) −
P̂1(s)

∣∣ ≤ ε′ according to the guarantee of the reward-free
learnign oracle P .

Now assume that
∑
s

∣∣dπh′(s)− d̂πh′(s)∣∣ ≤ h′ε′ for all h′ ∈
[h] where h ∈ [H − 1]. Then we have∑
s

∣∣dπh+1(s)− d̂πh+1(s)
∣∣

=
∑
s

∣∣∣∑
s′,a′

d̂πh(s′)π(a′|s′)P̂h(s|s′, a′)− dπh(s′)π(a′|s′)P ∗h (s|s′, a′)
∣∣∣

≤
(∑
s,s′,a′

∣∣∣d̂πh(s′)− dπh(s′)
∣∣∣π(a′|s′)P̂h(s|s′, a′)

)
+
(∑
s,s′,a′

dπh(s′)π(a′|s′)
∣∣∣P̂h(s|s′, a′)− P ∗h (s|s′, a′)

∣∣∣)
=
(∑

s′

∣∣∣d̂πh(s′)− dπh(s′)
∣∣∣∑
a′

π(a′|s′)
∑
s

P̂h(s|s′, a′)
)

+ Eπ,P∗ [‖P̂h(·|s′, a′)− P ∗h (·|s′, a′)‖1]

≤ (h+ 1)ε′,

where the second step comes from the triangle inequal-
ity and the last step is dueto the induction hypothesis and
the guarantee of P . Therefore, we have

∑
s |dπh+1(s) −

d̂πh+1(s)| ≤ (h + 1)ε′. Then by induction, we know∑
s |dπh(s)− d̂πh(s)| ≤ hε′ for all h ∈ [H], which concludes

our proof.

D.3. Proof of Lemma 6

Note that from the definition of φ(π) we have

〈φ(π), v〉 = Eτ∼(π,P∗)

[H∑
h=1

φ>h (sh, ah)vh

]

=

H∑
h=1

∑
sh,ah

dπh(sh, ah)φ>h (sh, ah)vh.

Similarly, we have

〈φ̂(π), v〉 =

H∑
h=1

∑
sh,ah

d̂πh(sh, ah)φ>h (sh, ah)vh.

Therefore,

|〈φ(π)− φ̂(π), v〉| ≤
H∑
h=1

∑
sh,ah

|d̂πh(sh, ah)− dπh(sh, ah)|

· |φ>h (sh, ah)vh|

≤ 2BR

H∑
h=1

∑
sh,ah

|d̂πh(sh, ah)− dπh(sh, ah)|

≤ 2BR

H∑
h=1

hε′ ≤ BRH2ε′,

where the first step is due to the triangle inequality and the
third step comes from Lemma 5. This concludes our proof.

14

How to Query Human Feedback Efficiently in RL?

D.4. Proof of Lemma 7

We use ∆θ to denote θ∗ − θ̂ in this proof. From Lemma 6,
we know that for any policy π,

|〈φ(π)− φ̂(π),∆θ〉| ≤ BRH2ε′.

By the triangle inequality, this implies that for any policy
π0, π1,

|〈φ̂(π0)− φ̂(π1),∆θ〉| ≤|〈φ(π0)− φ(π1),∆θ〉|
+ 2BRH2ε′.

Therefore we have for any policy π0, π1,

|〈φ̂(π0)− φ̂(π1),∆θ〉|2 ≤2|〈φ(π0)− φ(π1),∆θ〉|2

+ 8(BRH2ε′)2. (17)

Note that from the definition of Σ̂N+1 and ΣN+1, we have

‖∆θ‖2
Σ̂N+1

= ∆θ>
(
λI +

N∑
n=1

(φ̂(πn,0)− φ̂(πn,1))

· (φ̂(πn,0)− φ̂(πn,1))>
)

∆θ

= λ‖∆θ‖2 +

N∑
n=1

|〈φ̂(πn,0)− φ̂(πn,1),∆θ〉|2

≤ 2
(
λ‖∆θ‖2 +

N∑
n=1

|〈φ(πn,0)− φ(πn,1),∆θ〉|2
)

+ 8(BRH2ε′)2

= 2‖∆θ‖2ΣN+1
+ 8(BRH2ε′)2,

where the third step comes from (17). This implies that

‖∆θ‖Σ̂N+1
≤
√

2‖∆θ‖ΣN+1
+ 2
√

2BRH2ε′,

which concludes our proof.

E. Proofs in Section 4 and Appendix A
E.1. Proof of Theorem 3

First note that Algorithm 3 provides us with the following
guarantee:

Lemma 8. We have with probability at least 1− δ/6 that

Es1∼P1(·)[V
b/H,∗
1 (s1)]

≤ Clin

√
d3H4R2 · log(NΠ(ε′)dKHR/δ)/K,

where bh is defined in Algorithm 4 and Clin > 0 is a univer-
sal constant. Here V r,∗1 (s1) := maxπ∈Π V

r,π
1 (s1).

Lemma 8 is adapted from (Wang et al., 2020)[Lemma 3.2]
and we highlight the difference of the proof in Appendix E.2.
Then we consider a ε′-covering for Π, denoted by C(Π, ε′).
Following the similar analysis in (Wang et al., 2020)[Lemma
3.3], we have the following lemma:
Lemma 9. With probability 1−δ/6, for all h′ ∈ [H], policy
π ∈ C(Π, ε′) and linear reward function r with rh ∈ [−1, 1],
we have

Qr,πh′ (·, ·) ≤ Q̂r,πh′ (·, ·) ≤ rh′(·, ·) +
∑
s′

P ∗h′(s
′|·, ·)V̂ r,πh′+1(s′) + 2bh′(·, ·).

The proof of Lemma 9 is deferred to Appendix E.3. De-
note the event in Lemma 8 and Lemma 9 by E4 and E5
respectively. Then under event E4 ∩ E5, we have for all
policy π ∈ C(Π, ε′) and all linear reward function r with
rh ∈ [−1, 1],

0 ≤ Es1∼P∗1 (·)[V̂
r,π
1 (s1)− V r,π1 (s1)] ≤ 2Es1∼P∗1 (·)[V

b,π
1 (s1)]

≤ 2HEs1∼P1(·)[V
b/H,∗
1 (s1)]

≤ 2Clin

√
d3H6R2 · log(dKHRNΠ(ε′)/δ)

K
≤ ε0,

(18)

where ε0 = ε
72BR

√
Hd

. Here the first step comes from the
left part of Lemma 9 and the second step is due to the right
part of Lemma 9.

Note that in the proof of Lemma 13, we calculate
the covering number of the function class {V̂ r,π1 :
r is linear and rh ∈ [−1, 1]} for any fixed π in (25). Then
by Azuma-Hoeffding’s inequality and (25), we have with
probability at least 1− δ/6 that for all policy π ∈ C(Π, ε′)
and all linear reward function r with rh ∈ [−1, 1] that∣∣∣Es1∼P∗1 (·)[V̂

r,π
1 (s1)]− 1

K

K∑
i=1

V̂ r,π1 (si,in1)
∣∣∣

≤ C3H ·
√

log(NΠ(ε′)HKdR/δ)

K
≤ ε0, (19)

where C3 > 0 is a universal constant.

Combining (18) and (19), we have with probability at least
1− δ/2 that for all policy π ∈ C(Π, ε′) and all linear reward
function r with rh ∈ [−1, 1]

|V̂ π(r)− V r,π| ≤ 2ε0. (20)

This implies that we can estimate the value function for all
π ∈ C(Π, ε′) and linear reward function r with rh ∈ [−1, 1]
up to estimation error 2ε0.

Now we consider any policy π ∈ Π. Suppose that π′ ∈
C(Π, ε′) satisfies that

max
s∈S,h∈[H]

‖πh(·|s)− π′h(·|s)‖1 ≤ ε′. (21)

15

How to Query Human Feedback Efficiently in RL?

Then we can bound |V̂ π(r)−V̂ π′(r)| and |V r,π−V r,π′ | for
all linear reward function r with rh ∈ [−1, 1] respectively.

For |V r,π − V r,π′ |, note that we have the following perfor-
mance difference lemma:

Lemma 10. For any policy π, π′ and reward function r, we
have

V r,π
′
− V r,π =

H∑
h=1

Eπ′,P∗
[
〈Qr,πh (sh, ·), π′h(·|s)− πh(·|s)〉

]
.

The proof is deferred to Appendix E.4. Therefore from
Lemma 10 we have

|V r,π
′
− V r,π| ≤

H∑
h′=1

Eπ,P∗
[∣∣〈Qrh,j ,π′h′ (sh′ , ·),

πh′(·|s)− π′h′(·|s)〉
∣∣]

≤
H∑
h′=1

Eπ,P∗
[
‖πh′(·|s)− π′h′(·|s)‖1

]
≤ Hε′.

(22)

On the other hand, we have the following lemma to bound
|V̂ π(r)− V̂ π′(r)|:

Lemma 11. Suppose (21) holds and V̂ π(r), V̂ π
′
(r) are

calculated as in Algorithm 4. Then for all linear reward
function r with 0 ≤ r(τ) ≤ rmax, we have

|V̂ π(r)− V̂ π
′
(r)| ≤ εcover :=

Hε′√
dK − 1

· (dK)
H
2 . (23)

The proof is deferred to Appendix E.5.

Combining (20),(22) and (23), we have for all policy π ∈ Π
and linear reward function r with 0 ≤ r(τ) ≤ rmax,

|V̂ π(r)− V r,π| ≤ 2ε0 +Hε′ + εcover. (24)

In particular, since (φ(π))h,j = RV r
h,j ,π, we have for all

policy π ∈ Π and h ∈ [H], j ∈ [d],

|(φ(π))h,j − (φ̂(π))h,j | ≤ 2Rε0 +HRε′ +Rεcover.

This implies that for all policy π ∈ Π and any v defined in
Lemma 6, we have

|〈(φ(π))− (φ̂(π)), v〉| ≤ 2BH
√
d(2Rε0 +HRε′ +Rεcover).

The rest of the proof is the same as Theorem 1 and thus is
omitted here. The only difference is that we need to show
π̂ is a near-optimal policy with respect to r̂. This can be

proved as follows:

V r̂,∗ − V r̂,π̂ =
(
V r̂,∗ − V̂ π̂(r̂)

)
+
(
V̂ π̂(r̂)− V̂ π

∗(r̂)(r̂)
)

+
(
V̂ π
∗(r̂)(r̂)− V r̂,π̂

)
≤ 4ε0 + 2Hε′ + 2εcover,

where the last step comes from (24) and the definition of π̂.

E.2. Proof of Lemma 8

Here we outline the difference of the proof from (Wang
et al., 2020)[Lemma 3.2]. First, we also have the following
concentration guarantee:

Lemma 12. Fix a policy π. Then with probability at least
1− δ, we have for all h ∈ [H] and k ∈ [K],∥∥∥∥ k∑
i=1

φih

(
V kh+1(sih+1)−

∑
s′∈S

P ∗h (s′|sih, aih)V kh+1(s′)

)∥∥∥∥
Λ−1
h

≤ O
(
dHR

√
log(dKHR/δ)

)
.

The proof is almost the same as Lemma 13 and thus is omit-
ted here. Then following the same arguments in (Wang et al.,
2020), we have the following inequality under Lemma 12:∣∣∣∣φh(s, a)>wkh −

∑
s′∈S

P ∗h (s′|s, a)V kh+1(s′)

∣∣∣∣ ≤ βex‖φh(s, a)‖(Λkh)−1 .

Note that V kh+1(s) ∈ [0, H−h] for all s ∈ S , which implies
that

0 ≤
∑
s′∈S

P ∗h (s′|s, a)V kh+1(s′) + rkh(s, a) ≤ H − h+ 1.

Note that Clip is a contraction operator, which implies that∣∣∣∣Clip[0,H−h+1]((w
k
h)>φh(s, a) + rkh(s, a))

−
(∑
s′∈S

P ∗h (s′|s, a)V kh+1(s′) + rkh(s, a)

)∣∣∣∣
≤
∣∣∣∣(wkh)>φh(s, a)−

∑
s′∈S

P ∗h (s′|s, a)V kh+1(s′)

∣∣∣∣
≤ βex‖φh(s, a)‖(Λkh)−1 .

On the other hand,∣∣∣∣Clip[0,H−h+1]((w
k
h)>φh(s, a) + rkh(s, a))

−
(∑
s′∈S

P ∗h (s′|s, a)V kh+1(s′) + rkh(s, a)

)∣∣∣∣ ≤ H − h+ 1.

16

How to Query Human Feedback Efficiently in RL?

This implies that∣∣∣∣Clip[0,H−h+1]((w
k
h)>φh(s, a) + rkh(s, a))

−
(∑
s′∈S

P ∗h (s′|s, a)V kh+1(s′) + rkh(s, a)

)∣∣∣∣ ≤ bkh(s, a).

The rest of the proof is the same as (Wang et al., 2020) and
thus is omitted.

E.3. Proof of Lemma 9

In the following discussion we will use φih to denote
φh(sih, a

i
h). First we need the following concentration

lemma which is similar to (Jin et al., 2020b)[Lemma B.3]:

Lemma 13. Fix a policy π. Then with probability at least
1− δ, we have for all h ∈ [H] and linear reward functions
r with rh ∈ [−1, 1],∥∥∥∥ K∑
i=1

φih

(
V̂ r,πh+1(sih+1)−

∑
s′∈S

P ∗h (s′|sih, aih)V̂ r,πh+1(s′)

)∥∥∥∥
Λ−1
h

≤ O
(
dHR

√
log(dKHR/δ)

)
.

The proof is deferred to Appendix E.6. Then by union
bound, we know with probability 1− δ/6, we have for all
policy π ∈ C(Π, ε′), h ∈ [H] and linear reward functions r
with rh ∈ [−1, 1] that∥∥∥∥ K∑
i=1

φih

(
V̂ r,πh+1(sih+1)−

∑
s′∈S

P ∗h (s′|sih, aih)V̂ r,πh+1(s′)

)∥∥∥∥
Λ−1
h

≤ O
(
dHR

√
log(dKHRNΠ(ε′)/δ)

)
.

Let E6 denote the event thar the above inequality holds.
Then under E6, following the same analysis in (Wang et al.,
2020)[Lemma 3.1], we have for all policy π ∈ C(Π, ε′),
(s, a) ∈ S ×A, h ∈ [H] and linear reward functions r with
rh ∈ [−1, 1] that∣∣∣∣φh(s, a)>wr,πh −

∑
s′∈S

P ∗h (s′|s, a)V̂ r,πh+1(s′)

∣∣∣∣
≤ βpl‖φh(s, a)‖Λ−1

h
.

From the contraction property of Clip and the fact that∑
s′∈S P

∗
h (s′|s, a)V̂ r,πh+1(s′) + rh(s, a) ∈ [−(H − h +

1), H − h+ 1], we know∣∣∣∣Clip[−(H−h+1),H−h+1]((w
r,π
h)>φh(s, a) + rh(s, a))

−
∑
s′∈S

P ∗h (s′|s, a)V̂ r,πh+1(s′)− rh(s, a)

∣∣∣∣ ≤ bh(s, a)

Therefore, under E6 we have

Q̂r,πh (s, a) ≤ rh(s, a) +
∑
s′

P ∗h (s′|s, a)V̂ r,πh+1(s′) + 2bh(s, a).

Now we only need to prove under E6, for all policy π ∈
C(Π, ε′), (s, a) ∈ S×A, h ∈ [H] and linear reward function
r with rh ∈ [−1, 1], we have Qr,πh (s, a) ≤ Q̂r,πh (s, a). We
use induction to prove this. The claim holds obviously for
h = H + 1. Then we suppose for some h ∈ [H], we
have Qr,πh+1(s, a) ≤ Q̂r,πh+1(s, a) for all policy π ∈ C(Π, ε′),
(s, a) ∈ S × A and linear reward function r with rh ∈
[−1, 1]. Then we have:

V r,πh+1(s) = Ea∼πh+1(·|s)
[
Qr,πh+1(s, a)

]
≤ V̂ r,πh+1(s) = Ea∼πh+1(·|s)

[
Q̂r,πh+1(s, a)

]
.

This implies that

Clip[−(H−h+1),H−h+1]((w
r,π
h)>φh(s, a) + rh(s, a)) + bh(s, a)

≥
∑
s′∈S

P ∗h (s′|s, a)V r,πh+1(s′) + rh(s, a) = Qr,πh (s, a).

On the other hand we have

Qr,πh (s, a) ≤ H − h+ 1.

Therefore we have

Qr,πh (s, a) ≤ Q̂r,πh (s, a).

By induction we can prove the lemma.

E.4. Proof of Lemma 10

For any two policies π′ and π, it follows from the definition
of V r,π

′
and V r,π that

V r,π
′
− V r,π

=Eπ′,P∗
[
r1(s1, a1) + V r,π

′

2 (s2)
]
− Eπ′,P∗ [V r,π1 (s1)]

=Eπ′,P∗
[
V r,π

′

2 (s2)− (V r,π1 (s1)− r1(s1, a1))
]

=Eπ′,P∗
[
V r,π

′

2 (s2)− V r,π2 (s2)
]

+ Eπ′,P∗ [Qr,π1 (s1, a1)− V r,π1 (s1)]

=Eπ′,P∗
[
V r,π

′

2 (s2)− V r,π2 (s2)
]

+ Eπ′,P∗ [〈Qr,π1 (s1, ·), π′1(·|s1)− π1(·|s1)〉]

= · · · =
H∑
h=1

Eπ′,P∗ [〈Qr,πh (sh, ·), π′h(·|s)− πh(·|s)〉] .

This concludes our proof.

17

How to Query Human Feedback Efficiently in RL?

E.5. Proof of Lemma 11

For any h′ ∈ [H], suppose maxs∈S |V̂ r,πh′+1(s) −
V̂ r,π

′

h′+1(s)| ≤ εh′+1, then for any s ∈ S, a ∈ A, we have

|Q̂r,πh′ (s, a)− Q̂r,π
′

h′ (s, a)| ≤ |(wr,πh′ − w
r,π′

h′)>φh′(s, a)|

≤ εh′+1

K∑
i=1

|φh′(s, a)>(Λh′)
−1φh′(s

i
h′ , a

i
h′)|

≤ εh′+1

√√√√[K∑
i=1

‖φh′(s, a)‖2(Λh′)−1

]

·

√√√√[K∑
i=1

‖φh′(sih′ , aih′)‖2(Λh′)−1

]
≤ εh′+1

√
dK.

Here the final step is comes from the auxiliary
Lemma 14 and the fact that Λh′ ≥ R2I and thus∑K
i=1 ‖φh′(s, a)‖2(Λh′)−1 ≤

∑K
i=1 1 ≤ K.

Therefore we have

εh′ := max
s∈S
|V̂ r,πh′ (s)− V̂ r,π

′

h′ (s)| ≤ Hε′ +
√
dKεh′+1.

Note that εH+1 = 0, therefore we have

ε1 ≤
Hε′√
dK − 1

· (dK)
H
2 ,

This concludes our proof.

E.6. Proof of Lemma 13

The proof is almost the same as (Jin et al., 2020b)[Lemma
B.3] except that the function class of V r,πh is differ-
ent. Therefore we only need to bound the covering
number NV(ε) of V r,πh where the distance is defined as
dist(V, V ′) = sups |V (s)−V ′(s)|. Note that V r,πh belongs
to the following function class:

V =

{
Vw,A(s) = Ea∼π(·|s)

[
Clip[−(H−h+1),H−h+1](

Clip[−(H−h+1),H−h+1](w
>φh′(s, a))

+ Clip[0,2(H−h+1)](‖φ(s, a)‖A)

)]
, ∀s ∈ S

}
,

where the parameters (w,A) satisfy ‖w‖ ≤ 2H
√
dK/λpl,

‖A‖ ≤ β2
plλ
−1
pl .

Note that for any Vw1,A1
, Vw2,A2

∈ V , we have

dist(Vw1,A1 , Vw2,A2) ≤ sup
s,a

∣∣∣∣[Clip[−(H−h+1),H−h+1](w
>
1 φh′(s, a))

+ Clip[0,2(H−h+1)](‖φ(s, a)‖A1
)
]

−
[
Clip[−(H−h+1),H−h+1](w

>
2 φh′(s, a))

+ Clip[0,2(H−h+1)](‖φ(s, a)‖A2)
]∣∣∣∣

≤ sup
s,a

∣∣∣∣Clip[−(H−h+1),H−h+1](w
>
1 φh′(s, a))

− Clip[−(H−h+1),H−h+1](w
>
2 φh′(s, a))

∣∣∣∣
+ sup

s,a

∣∣∣∣Clip[0,2(H−h+1)](‖φ(s, a)‖A1
)

− Clip[0,2(H−h+1)](‖φ(s, a)‖A2
)

∣∣∣∣
≤ R sup

‖φ‖≤1

∣∣∣(w1 − w2)>φ
∣∣∣

+R sup
‖φ‖≤1

√∣∣∣φ>(A1 −A2)φ
∣∣∣

≤ R(‖w1 − w2‖+
√
‖A1 −A2‖F),

where the first and third step utilize the contraction property
of Clip. Let Cw be the ε/(2R)-cover of {w ∈ Rd : ‖w‖ ≤
2rmax

√
dK/λpl} w.r.t. `2-norm and CA be the (ε/2R)-

cover of {A ∈ Rd×d : ‖A‖ ≤ β2
plλ
−1
pl } w.r.t. the Frobenius

norm, then from the literature (Jin et al., 2020b)[Lemma
D.5], we have

NV(ε) ≤ log |Cw|+ log |CA|

≤ d log
(

1 + 8
√
dKr2

maxR
2/(λplε2)

)
(25)

+ d2 log
[
1 + 8d1/2β2

plR
2/(λplε

2)
]
. (26)

The rest of the proof follows (Jin et al., 2020b)[Lemma B.3]
directly so we omit it here.

E.7. Proof of Proposition 1

First consider ζ and ζ ′ which satisfies:

‖ζh − ζ ′h‖ ≤ εz,∀h ∈ [H].

Then we know for any h ∈ [H], s ∈ S, a ∈ A,

|ζ>h φh(s, a)− (ζ ′h)>φh(s, a)| ≤ εzR. (27)

Now fix any h ∈ [H] and s ∈ S. To simplify writ-
ing, we use x(a) and x′(a) to denote ζ>h φh(s, a) and
(ζ ′h)>φh(s, a) respectively. Without loss of generality, we

18

How to Query Human Feedback Efficiently in RL?

assume
∑
a exp(x(a)) ≤

∑
a exp(x′(a)). Then from (27)

we have∑
a

exp(x(a)) ≤
∑
a

exp(x′(a)) ≤ exp(εzR)
∑
a

exp(x(a)).

Note that we have

‖πζh(·|s)− πζ
′

h (·|s)‖1

=
∑
a

∣∣∣ exp(x(a))∑
a′ exp(x(a′))

− exp(x′(a))∑
a′ exp(x′(a′))

∣∣∣
=

1∑
a′ exp(x(a′)) ·

∑
a′ exp(x′(a′))

·
∑
a

∣∣∣ exp(x(a))
∑
a′

exp(x′(a′))

− exp(x′(a))
∑
a′

exp(x(a′))
∣∣∣.

For any a ∈ A, if exp(x(a))
∑
a′ exp(x′(a′)) −

exp(x′(a))
∑
a′ exp(x(a′)) ≥ 0, then∣∣∣ exp(x(a))
∑
a′

exp(x′(a′))− exp(x′(a))
∑
a′

exp(x(a′))
∣∣∣

≤ exp(εzR) exp(x(a))
∑
a′

exp(x(a′))

− exp(−εzR) exp(x(a))
∑
a′

exp(x(a′))

=(exp(εzR)− exp(−εzR)) exp(x(a))
∑
a′

exp(x(a′)).

Otherwise, we have∣∣∣ exp(x(a))
∑
a′

exp(x′(a′))− exp(x′(a))
∑
a′

exp(x(a′))
∣∣∣

≤ exp(εzR) exp(x(a))
∑
a′

exp(x(a′))

− exp(x(a))
∑
a′

exp(x(a′))

=(exp(εzR)− 1) exp(x(a))
∑
a′

exp(x(a′)).

Therefore we have

‖πζh(·|s)− πζ
′

h (·|s)‖1

≤
(exp(εzR)− exp(−εzR))

∑
a exp(x(a))

∑
a′ exp(x(a′))∑

a′ exp(x(a′)) ·
∑
a′ exp(x′(a′))

≤ exp(2εzR)− 1.

This implies that for any ε ≤ 1,

NΠ(ε) ≤
(
NB(d,W)

(ln 2

2R
ε
))H

≤
(12WR

ε

)Hd
,

where the first step uses exp(x) − 1 ≤ x/ ln 2 when x ≤
ln 2. This concludes our proof.

E.8. Proof of Proposition 2

First we consider the following entropy-regularized RL prob-
lem where we try to maximize the following objective for
some α > 0:

max
π

Vα(r∗, π) := Eπ,P∗
[H∑
h=1

r∗h(sh, ah)− α log πh(ah|sh)
]
.

From the literature (Nachum et al., 2017; Cen et al., 2022),
we know that we can define corresponding optimal regular-
ized value function and Q function as follows:

Q∗α,h(s, a) = r∗h(s, a) + Esh+1∼P∗h (·|s,a)

[
V ∗α,h+1

]
,

V ∗α,h(s) = max
πh

Eah∼πh(·|s)
[
Q∗α,h(s, ah)− α log πh(ah|s)

]
,

where V ∗α,H+1(s) = 0 for all s ∈ S. Note that we have
V ∗α,h(s) ≤ H(1 + α log |A|) for all s ∈ S and h ∈ [H].
The global optimal regularized policy is therefore

π∗α,h(a|s) =
exp(Q∗α,h(s, a)/α)∑
a′ exp(Q∗α,h(s, a′)/α)

.

In particular, in linear MDPs, we have

Q∗α,h(s, a) = φh(s, a)>
(
θ∗h +

∫
s∈S

µ∗h(s)V ∗α,h+1(s)ds

)
.

Therefore, Q∗α,h(s, a) = φh(s, a)>w∗α,h where

‖w∗α,h‖ ≤ B +H(1 + α log |A|)
√
d.

This implies that π∗α belongs to the log-linear policy class
Π with W = (B +H(1 + α log |A|)

√
d)/α.

On the other hand, let πg denote the global unregularized
optimal policy, then

V ∗(r∗, πg)−max
π∈Π

V (r∗, π) ≤ V ∗(r∗, πg)− V (r∗, π∗α)

=
(
V ∗(r∗, πg)− V ∗α (r∗, πg)

)
+
(
V ∗α (r∗, πg)− V ∗α (r∗, π∗α)

)
+
(
V ∗α (r∗, π∗α)− V ∗(r∗, π∗α)

)
≤ V ∗α (r∗, π∗α)− V ∗(r∗, π∗α) ≤ αH log |A|.

Therefore we only need to let α = ε
H log |A| to ensure

V (r∗, πg)−maxπ∈Π V (r∗, π) ≤ ε.

19

How to Query Human Feedback Efficiently in RL?

F. Proof of Theorem 4
First from performance difference lemma (Lemma 10), we
have

V r
∗,π̂ − V r

∗,∗ =

H∑
h=1

Esh∼dπ̂h [Q∗h(sh, π̂)−Q∗h(sh, π
∗)]

=

H∑
h=1

Esh∼dπ̂h [Q∗h(sh, π̂)− Âh(sh, π̂)]

+ Esh∼dπ̂h [Âh(sh, π̂)− Âh(sh, π
∗)]

+ Esh∼dπ̂h [Âh(sh, π
∗)−Q∗h(sh, π

∗)]

≥
H∑
h=1

Esh∼dπ̂h [Q∗h(sh, π̂)− Âh(sh, π̂)]

+ Esh∼dπ̂h [Âh(sh, π
∗)−Q∗h(sh, π

∗)]

=

H∑
h=1

Esh∼dπ̂h [A∗h(sh, π̂)− Âh(sh, π̂)

+ Âh(sh, π
∗)−A∗h(sh, π

∗)]

=

H∑
h=1

Esh∼dπ̂h [〈φh(sh, π̂), ξ∗h − ξ̂h〉

− 〈φh(sh, π
∗), ξ∗h − ξ̂h〉]

=

H∑
h=1

Esh∼dπ̂h [〈φh(sh, π̂)− φh(sh, π
∗), ξ∗h − ξ̂h〉]

≥ −
H∑
h=1

‖Esh∼dπ̂h [φh(sh, π̂)− φh(sh, π
∗)]‖Σ−1

h,N+1

· ‖ξ∗h − ξ̂h‖Σh,N+1
. (28)

Next we will bound ‖Esh∼dπ̂h [φh(sh, π̂) −
φh(sh, π

∗)]‖Σ−1
h,N+1

and ‖ξ∗ − ξ̂‖Σh,N+1
respectively.

First for ‖Esh∼dπ̂h [φh(sh, π̂)− φh(sh, π
∗)]‖Σ−1

h,N+1
, notice

that Σh,N+1 � Σh,n for all n ∈ [N + 1], which implies

‖Esh∼dπ̂h [φh(sh, π̂)− φh(sh, π
∗)]‖Σ−1

h,N+1

≤ 1

N

N∑
n=1

‖Esh∼dπ̂h [φh(sh, π̂)− φh(sh, π
∗)]‖Σ−1

h,n

≤ 1

N

N∑
n=1

‖Esh∼πh,n,0 [φh(sh, π
h,n,0)− φh(sh, π

h,n,1)]‖Σ−1
h,n

≤ 1√
N

√√√√ N∑
n=1

‖Esh∼πh,n,0 [φh(sh, πh,n,0)− φh(sh, πh,n,1)]‖2
Σ−1
h,n

≤
√

2d log(1 +N/d)

N
, (29)

where the third step comes from the definition of πh,n,0

and πh,n,1 and the last step comes from Elliptical Potential
Lemma (Lemma 1) and the fact that λ ≥ 4R2.

For ‖ξ∗h − ξ̂h‖Σh,N+1
, let Σ̃h,n de-

note λI +
∑n−1
i=1 (φh(sh,n, ah,n,0) −

φh(sh,n, ah,n,1))(φh(sh,n, ah,n,0) − φh(sh,n, ah,n,1))> .
Then similar to Lemma 3, we have with probability at least
1− δ/2,

‖ξ∗h − ξ̂h‖2Σh,N+1
≤ 2‖ξ∗h − ξ̂h‖2Σ̃h,N+1

+ 2CCONdR
2B2 log(N/δ).

(30)

On the other hand, similar to Lemma 2, MLE guarantees us
that with probability at least 1− δ/2,

‖ξ̂h − ξ∗h‖Σ̃h,N+1
≤ 2CMLE ·

√
κ2

adv(d+ log(1/δ)) + λB2,

(31)

where κadv = 2 + exp(2Badv) + exp(−2Badv).

Therefore combining (30) and (31), we have with probabil-
ity at least 1− δ,

‖ξ∗ − ξ̂h‖Σh,N+1
≤ O

(
κadvBR

√
λd log(N/δ)

)
. (32)

Thus combining (28), (29) and (32) via union bound, we
have V ∗(r∗)− V (r∗, π̂) ≤ ε with probability at least 1− δ
as long as

N ≥ Õ
(λκ2

advB
2R2H2d2 log(1/δ)

ε2

)
.

G. Auxiliary Lemmas
Lemma 14 ((Jin et al., 2020b)[Lemma D.1]). Let Λ =
λI +

∑K
i=1 φiφ

>
i where φi ∈ Rd and λ > 0, then we have∑K

i=1 φ
>
i Λ−1φi ≤ d.

20

	Introduction
	Related Works

	Preliminaries
	MDPs with Linear Reward Parametrization
	Reinforcement Learning with Human Feedback

	Algorithm: REGIME
	Algorithm
	Analysis

	REGIME in Linear MDPs
	Algorithm
	Analysis

	Omit details in Section 4
	Log-Linear Policy Class

	REGIME with Action-Based Comparison
	Algorithm
	Analysis

	Proof of Theorem 1 With Known Transitions
	Proof of Lemma 1
	Proof of Lemma 2

	Proofs in Section 3
	Proof of Theorem 1
	Proof of Lemma 5
	Proof of Lemma 6
	Proof of Lemma 7

	Proofs in Section 4 and Appendix A
	Proof of Theorem 3
	Proof of Lemma 8
	Proof of Lemma 9
	Proof of Lemma 10
	Proof of Lemma 11
	Proof of Lemma 13
	Proof of Proposition 1
	Proof of Proposition 2

	Proof of Theorem 4
	Auxiliary Lemmas

