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Abstract. Synchronization involves the task of inferring unknown ver-
tex values (belonging to a group) in a graph, from edges labeled with
vertex relations. While many matrix groups (e.g., rotations or permuta-
tions) have received extensive attention in Computer Vision, a complete
solution for projectivities is lacking. Only the 3 × 3 case has been ad-
dressed so far, by mapping the problem onto the Special Linear Group,
but the 4 × 4 projective case has remained unexplored and is the focus
here. We propose novel strategies to address this task, and demonstrate
their e�ectiveness in synthetic experiments, as well as on an application
to projective Structure from Motion.
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1 Introduction

A powerful tool for modelling and solving problems in Computer Vision is rep-
resenting the associated entities (e.g., cameras or 3D point clouds) and their
pairwise relations as a graph, while enforcing global consistency: a process also
known as synchronization [4]. More precisely, let G = (V, E) be a connected graph
with vertex set V and edge set E . Supposing each vertex is associated with an
unknown value, and each edge with a measure of the ratio between the two inci-
dent vertices, and all these values belong to a group (e.g., the set of rotations or
permutations): the task is to infer the unknown values associated with vertices
in the graph. Assuming that such node values are denoted by X1, . . . , Xn and
Zij denotes the measure for edge (i, j), the consistency relation at the basis of
synchronization can be stated as:

Zij = XiX
−1
j . (1)

The problem has been studied for several matrix groups representing relevant
transformations in Computer Vision, including rotations, rigid transformations
and permutations (see [4] for a review). The minimal case is represented by a
spanning tree, in which case the solution can be found by sequential concate-
nation, thereby accumulating errors. In a general graph, instead, the idea is to
exploit redundant measures. Typically, the discrepancy between the left and the
right side in Eq. (1) is minimized with appropriate tools (see Sec. 2).
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(a) A viewing graph:
nodes correspond to
cameras and edges to the
fundamental matrices.

(b) The viewing graph is partitioned into
sub-graphs. In each sub-graph projective
SfM is solved: each reconstruction is up to
an unknown 4x4 projective transformation.

(c) Projectivity Syn-
chronization: nodes are
unknown 4× 4 projectiv-
ities and edges are the
relative projectivities
between partitions.

Fig. 1: Parititioned projective SfM and Projectivity Synchronization.

However, a general solution for the case of projectivities (also known as
collinearities, homographies or projective transformations) is still missing. In
this scenario, the consistency constraint takes the following form:

Zij ≃ XiX
−1
j (2)

where ≃ denotes equality up to a scale. In addition to typical challenges of
synchronization problems, such as the presence of outlier measures and missing
edges in the graph, the case of projectivities presents additional complexity due
to the scale ambiguity in Eq. 2. This problem has been studied only for 3 × 3
matrices and is solved satisfactorily in the Special Linear Group SL(3) [55] where
the projectivities are represented as matrices with unit determinant which has
the e�ect of eliminating the scale ambiguity, i.e., turning Eq. (2) into a standard
synchronization problem represented by Eq. (1). The case of 4 × 4 projective
transformations has not been addressed yet and is explored here. It is worth
mentioning that the trick used in [55] does not work for 4 × 4 matrices (see
Sec. 3), demanding a new paradigm for projectivity synchronization. To �ll in
this gap, we propose a new iterative framework for synchronizing projective
transformations in a graph. Inspired by [28], we propose to update each node
value in turn as the average of its neighbors. Note that de�ning a proper average
in projective space requires careful investigation. We analyze di�erent approaches
to accomplish such a task, namely: vectorizing projectivities and representing
them as directions; modelling projective transformations as points in the unit
sphere, analyzing both an instrinsic and an extrinsic solution.

Projectivity synchronization is related to projective (i.e., uncalibrated) struc-
ture from motion (SfM) [33,56], where the objective is to reconstruct the camera
matrices and 3D points, up to a projectivity. This problem lends itself to insight-
ful exploration when analyzed with the aid of the viewing graph [6, 37], where
the nodes correspond to images or cameras, while the edges denote the geo-
metric relationships (fundamental matrices) between them. Speci�cally, projec-
tivity synchronization has applications in partitioned projective SfM, where the
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viewing graph is partitioned into sub-graphs (for the sake of e�ciency) where
projective SfM is solved independently; therefore there are multiple indepen-
dent reconstructions, each in di�erent projective frames and synchronization of
projectivities becomes relevant in order to merge them into a single consistent
reconstruction (see Fig. 1). In this context, we have chosen to investigate a re-
cent approach for projective structure-from-motion named Gpsfm [33], which
represents a speci�c instance of partitioned projective SfM where the viewing
graph is partitioned into triplets. Such triplets are then stored in a triplet graph:
a graph whose nodes are triplets of cameras, which are connected by edges if
they share two cameras. The authors of Gpsfm recover a globally consistent
set of projection matrices by concatenating relative projective transformations
along a spanning tree of this triplet graph. We incorporate our method into
the Gpsfm pipeline by replacing this spanning tree based approach, with our
method described in Sec 4, and experimentally show that accuracy increases by
exploiting the redundancies in the triplet graph.

To summarize, our contributions are three-fold:

� we introduce a new problem named projectivity synchronization;
� we de�ne an e�ective iterative approach for such a task;
� we demonstrate the usefulness of our framework on synthetic graphs and

real data in the context of projective structure from motion.

2 Related Work

Many synchronization methods have been proposed so far, which can be cate-
gorized based on the speci�c problem that is being addressed. We focus here on
scenarios where the variables/unknowns can be represented as matrices.

Rotations. Several authors addressed synchronization of rotations [64], lever-
aging the rich mathematical structure of the rotation space (i.e., the Special Or-
thogonal Group) within the context of (calibrated) structure from motion [47].
Early works include approximate solutions where the entire rotation structure
is neglected while taking into account only a subset of the constraints, in order
to derive simpli�ed formulations (linear least squares [25, 42], spectral decom-
position [2, 59], semide�nite programming [2, 59], low-rank decomposition [7]).
A di�erent paradigm is employed in [28] where an iterative method is devel-
oped that updates each absolute rotation (i.e., node value) in turn based on
its neighbors (i.e., measures on adjacent edges). Other authors focus on devis-
ing a suitable optimization objective, which is then minimized using (e.g.) the
Levenberg-Marquardt algorithm [21] or Lie-group optimization [19,58]. More re-
cent works focus on global optimality [22, 23, 44, 49], including uncertainty into
the model [12, 72] or how to produce a good initialization for nonlinear opti-
mization [34]. Other authors also explored a deep learning framework either in
a supervised fashion (using graph neural networks [38, 40, 51, 70]) or in an un-
supervised way (in terms of deep matrix factorization [61]). Finally, there also
exist notable works providing theoretical analysis [16,29,67,68].
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Rigid Transformations. Synchronization of rigid transformations (that form
the Special Euclidean Group) has also received a lot of attention. Typical ap-
plications of this task are 3D point cloud registration [27] and simultaneous
localization and mapping [18]. Based on the observation that a rigid transfor-
mation can be decomposed into rotation and translation, most works propose
proper extensions of the methodologies and algorithms originally developed for
rotations: spectral decomposition [3,8,24,31,66]; Lie-group optimization [11,26];
iterative update based on neighbors [62]; semide�nite programming [32,52,53,69];
modelling uncertainty [15, 63]. A di�erent paradigm (named group contraction)
is used in [41, 46], where the d-dimensional group of rigid transformations is
approximated with the group of rotations in d+ 1 dimensions.

Permutations. Another example of synchronization is the case of permuta-
tions, which form the so-called Symmetric Group, which are a convenient and
compact way to represent matches (e.g., across multiple images). Several au-
thors investigated this task, proposing solutions based on spectral decomposi-
tion [10, 48, 57], Gauss-Seidel relaxation [71], distributed optimization [35], Rie-
mannian optimization [14] and quantum annealing [13]. Although synchroniza-
tion has a well-established theory for the case where unknowns/measures belong
to a group, speci�c routines can be developed when the variables belong to a
weaker structure, as in the case of partial permutations, that form the so-called
Symmetric Inverse Semigroup, which is used to model partiality (i.e., missing
correspondences) in the context of multi-view matching. Several works address
this problem, including generalizations of the spectral solution [43], semide�nite
programming [20], low-rank decomposition [36, 73], non-negative matrix factor-
ization [9] and message-passing [39].

Other Scenarios. Other synchronization problems involve binary matrices
in the context of motion segmentation [5, 30] and a�ne transformations with
application to color correction [54]. The scenario of a multi-graph has also been
studied in the literature [50, 60], namely the case where multiple measures are
available between two nodes. Finally, it is worth mentioning the task of image
mosaicking [55], which was cast to a synchronization problem by using 3 × 3
projective transformations, which in turn are converted into matrices with unit
determinant: this represents the most related method to our approach, which
will be reviewed in Sec. 3.

3 Problem Formulation and Motivation

Our objective is to address the problem of projectivity synchronization, namely,
to solve Zij ≃ XiX

−1
j where ≃ denotes equality up to the scale, X1, . . . , Xn rep-

resent unknown 4×4 projectivities and Zij represents the known 4×4 projectivity
associated to edge (i, j) ∈ E . The available measures are therefore represented as
edges in a graph G = (V, E) with n nodes. All these projective transformations
are invertible, i.e., they belong to the General Linear Group GL(4).
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In general, synchronization of d × d projective transformations can be cast
to a synchronization in SL(d) by normalizing the matrices to unit determinant.
This works perfectly well for planar homographies (i.e., elements of GL(3,R))
because any real 3×3 matrix can be normalized to unit determinant by dividing
it by the third root of its determinant, which is always real, thus ending up
in SL(3,R) [55]. Note that this operation is, in general, closed only in C: in
other words, for any dimension d, projectivity synchronization can be cast to a
synchronization in SL(d,C). Only for odd d this translates into a synchronization
in SL(d,R). When we consider, e.g., d = 4, then not all 4 × 4 matrices can be
brought to SL(4,R) by dividing by the 4-th root of the determinant, which
will be complex, in general, so this normalization would bring to SL(4,C). In
addition, there are four possible roots which may be di�erent in general.

In fact, as long as we get a �nal result that is real, intermediate results
may be complex. So one can � in principle � run spectral synchronization [3] in
SL(4,C) and use a complex scale factor at the end to force matrices to be real.
This is reminiscent of the projection step that is customarily taken when working
with subgroups of GL(d). We have empiric evidence that a unique complex scale
exists that makes all the entries of the resulting matrices real, in a noiseless case.
This property, however, gets disrupted by noise, and so this method is hardly
applicable in practice (see experiments in Sec. 5.2).

4 Proposed Method

In this section we derive a novel approach for projectivity synchronization that
is inspired by the iterative algorithm developed in [28] for rotations. The starting
point is rewriting Eq. (2) as

Xi ≃ ZijXj . (3)

Such an equation means that � if all node values were known except for Xi � then
we have multiple measures for Xi, one for each neighbor j connected to node
i through an edge. Speci�cally, such measures are given by ZijXj for varying
j ∈ N (i). We denote with Xi|j the estimate of Xi given neighbor Xj , namely
Xi|j = ZijXj . Hence the idea is to update each unknown projectivity in turn
as the �average� of its neighbors, where a suitable average operation has to be
de�ned to manage the scale ambiguity inherent to the problem.

The scheme is fairly simple and works on a graph:

1. select a node i for updating;
2. compute new estimates of Xi given each neighbour Xj , namely:

Xi|j = ZijXj ; (4)

3. average the Xi|j over j to obtain the new estimate of Xi;
4. repeat from Step 1.

This procedure is repeated for all the nodes until convergence or a maximum
number of iterations is reached. See Sec. 5.1 for implementation details. To
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complete the algorithm for the synchronization of projectivities, we need to
de�ne a suitable �average� operation (Step 3), namely a method to compute
a new estimate of Xi given the set of its neighbour estimates represented by
{Xi|j for j ∈ N (i)}, that takes into account the scale ambiguity.

This is an instance of the single averaging problem, with reference to the
terminology used in [29] for rotations. The task can be stated as follows in a
general form for projectivities: given multiple3 measures H1, . . . ,Hp ∈ GL(d)
�nd a unique C ∈ GL(d) (named centroid) that best satis�es ∀ k = 1, . . . , p:

Hk ≃ C ⇐⇒ hk ≃ c (5)

where hk = vec(Hk) and c = vec(C). Several options for this operation are
available, detailed in the next sections. Our proposals exploit di�erent strategies
for representing projective transformations and managing the scale ambiguity:

� by reasoning on the geometric meaning of parallel vectors, it is possible to
derive a set of equations that is equivalent to (5) but with equality instead of
equality up to scale, therefore resulting in a least-squares problem (Sec. 4.1);

� by representing vectorized projective transformations as points in the unit
sphere, the single averaging problem is tantamount to �nding the average on
the unit sphere, for which an iterative approach can be derived (Sec. 4.2);

� with reference to the previous strategy, it is also possible to represent projec-
tivities as points in the sphere, then ignore the sphere constraint and average
these measures as standard points in 16 dimensions (Sec. 4.3).

4.1 Direction-based Averaging

Note that hk ≃ c � see Eq. (5) � means that the two vectors have the same
direction. This can be rephrased into the property that the projection of c onto
the orthogonal complement of hk is zero. Hence:

hk ≃ c ⇐⇒
(
I16 −

hkh
⊤
k

h⊤
k hk

)
c = 0 (6)

because the matrix between parentheses is the projector onto the the orthogonal
complement of hk. Here I16 denotes the 16×16 identity matrix. Recall that hk is
the vectorized version of a 4×4 matrix, therefore it is a vector in 16 dimensions.

A solution can be found by stacking equations like (6) for k = 1, . . . , p and
solving for c (up to a scale). Speci�cally, in the presence of noise the solution
is computed in the least-squares sense, which can be derived as the eigenvector
corresponding to the minimum eigenvalue of the following matrix:

[
I16 − h1h

⊤
1

h⊤
1 h1

, . . . , I16 −
hph

⊤
p

h⊤
p hp

]
I16 − h1h

⊤
1

h⊤
1 h1

...

I16 −
hph

⊤
p

h⊤
p hp

 = pI16 −
p∑

ik1

hkh
⊤
k

h⊤
k hk

(7)

3 With reference to projectivity synchronization, the number of measures used for
updating a node Xi is equal to the degree of node i, that is the number of edges
having such a node as endpoint.
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which is the eigenvector4 corresponding to themaximum eigenvalue of the 16×16

matrix
∑p

k=1
hkh

⊤
k

h⊤
k hk

. Observe that this approach works with directions, i.e., it is

independent on the scale of a particular hk. Note also that antipodal points are
seamlessly dealt with, since the dyad hkh

⊤
k does not depends on the sign of hk.

4.2 Spherical Averaging

Instead of using a scale-invariant approach, as done in the previous section,
another strategy is explored here. The idea is to represent the measures to be
averaged as points on the unit sphere. Let S = {x ∈ R16 such that ∥x∥ = 1} be
the unit sphere, let γ(x,y) = arccos(x⊤y) denote the geodesic distance on the
sphere, and let h̄k ∈ S be the unit-norm representative of hk, i.e., h̄k = hk/||hk||.
In order to be consistent with this representation of projective transformations,
we need to identify antipodal points. This can be done by selecting one of the h̄k

(e.g., the �rst) and changing the sign of the others such that the scalar product
with the �rst is positive, bringing all of them to the same half-space.

The L1 geodesic mean is de�ned as the point c of minimum average geodesic
distance (it generalizes the concept of median), and can be found using the
method of Lagrange multipliers. Speci�cally, the task is to minimize the average
distance to the sought centroid c, which is given by 1

p

∑p
k=1 arccos

(
c⊤h̄k

)
. The

Lagrangian that constrains c to the unit sphere is given by

L(c, λ) =
1

p

p∑
k=1

arccos
(
c⊤h̄k

)
+ λ(1− c⊤c) (8)

and the partial derivatives are:

∂L

∂ch
(c, λ) = −

p∑
k=1

h̄hk√
1− (c⊤hk)2

− 2λch,
∂L

∂λ
(c, λ) = 1− c⊤c (9)

where h̄hk is the h-th coordinate of the k-th point. By zeroing these partial
derivatives we get:

c = α

p∑
i=1

h̄k√
1− (c⊤h̄k)2

(10)

where α is a normalizing constant so that c lies on the unit sphere. The sought
average c appears on both sides of the equation, so it is de�ned as a �xed point,
which can be estimated iteratively.

It is worth mentioning that spherical averaging is a well-studied topic that
counts notable works (such as [17]). We tested [17] and obtained comparable
results with respect to the method of Lagrangian multipliers described above,
therefore it is not included in our experiments.

4 It is easy to see that A and A − αI for any scalar α have the same eigenvectors.
Moreover, λ(A) = −λ(−A).
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4.3 Euclidean Averaging

Ignoring that the result of averaging unit vectors must be intrinsic (i.e. a unit
vector in turn), leads to a simpler solution. In other terms, we require the average
c to minimize the L1 distance in the Euclidean space (instead of geodesic) and
we do not impose any constraint on the result, so the objective becomes:

1

p

p∑
k=1

∥∥h̄k − c
∥∥ . (11)

A solution to this L1 optimization problem can be found using the classical
Weiszfeld algorithm [1]. The result � in general � will not belong to S, but can
be simply brought to the unit sphere by normalization at the end.

5 Experiments

In this section we report results on synthetic/real data and we also discuss
limitations of our approach. We ran all experiments on a Lenovo Legion 5 laptop,
with an AMD Ryzen 5 4600H processor and an 8GB RAM. The synchronization
framework and the synthetic experiments are implemented in Julia5, while the
experiments with the real datasets are in MATLAB, with a system call to Julia.
We analyzed the performance of our synchronization framework combined with
the three averaging methods discussed in Sec. 4, resulting in three variants of
our approach (named Direction, Sphere, Euclidean). Since our work is the
�rst that explicitly addresses synchronization of 4×4 projective transformations,
there are no competitors in the literature, apart from the spanning tree solution
(named Tree hereafter), that was used in [33] in the context of structure from
motion. In order to enrich the evaluation, we include an additional method in
the comparison, namely an extension of the Spectral method [55], that was
developed for 3× 3 projectivities, to manage 4× 4 matrices (see Sec. 3).

Observe that the solution to projectivity synchronization is de�ned up to a
global transformation. Therefore, in order to compare a solution (denoted by
X̂1, . . . , X̂n) with the ground-truth node projectivities (denoted by X1, . . . , Xn),
we have to �nd a homography C ∈ GL(4) such that X̂iC ≃ Xi for all i = 1, . . . , n.
Note that this is an averaging problem, with measures given by Hk = X̂−1

k Xk,
therefore it can be solved with an averaging method from Sec. 4. Then, the error
for node i is measured as the angular distance between the vectorized estimated
and ground truth projectivities, brought to a common projective frame, namely:

ei = min(ϕ, π − ϕ) where ϕ = arccos
(
vec(X̂iC), vec(Xi)

)
. (12)

5.1 Implementation details

We now specify some implementation details of our approach. The nodes are
initialized to I ∈ R4×4, and updated in descending order of their degree (i.e.,

5 https://github.com/rakshith95/projective_synchronization.jl

https://github.com/rakshith95/projective_synchronization.jl


Synchronization of Projective Transformations 9

the number of incident edges), based on the idea that the vertex with the highest
degree is the most stable and hence a good candidate to start the procedure.

Concerning robustness to outliers6, we propose to embed our synchroniza-
tion framework into an IRLS-like scheme, motivated by the fact that adapting
Iteratively Reweighted Least Squares (IRLS) to synchronization is a popular
choice also in other scenarios [3, 19]. The idea is to assign a weight wij to each
input transformation Zij . It is easy to see that all averaging strategies from
Sec. 4 can be straightforwardly extended to manage weighted measures. At the
beginning, all such weights are set to one. Then, after a complete round of pro-
jectivity synchronization, such weights are updated as follows: for each edge, we
compute the residual between the obtained node transformations and the input
relative one, namely rij = error(Zij , XiX

−1
j ); the error can be computed as

the angle in R16 between the vectorized matrices, similar to Eq. (12); then, we
set wij = f

(
min(rij , rji)

)
where f is a robust loss function (we used Cauchy

in our experiments) and the term min(rij , rji) is computed to guarantee sym-
metric weights in the graph. Hence we alternate between solving projectivity
synchronization in a weighted graph and updating the weights.

5.2 Synthetic Data

Given a value n for the number of nodes in the graph, we set up the syn-
thetic environment by generating random ground-truth projective transforma-
tions Xi ∈ GL(4) for i = 1, . . . n. Concerning the edge set E in the graph
G = (V, E), we remove from the complete graph a random fraction of edges
according to a �holes density� 0 ≤ ρ < 1, while ensuring connectivity (ρ = 0
produces a complete graph). For each edge (i, j) ∈ E , we compute its measure
as Zij = XiX

−1
j , which is then normalized and perturbed by noise. Speci�cally,

noise is introduced by perturbing vec(Zij) by some angle θij . This is done in
the space of the hyperplane tangent to S = {x ∈ R16 | ∥x∥ = 1} at the point
z̄ij = vec(Zij)/|| vec(Zij)||. In this tangent space, a vector tij is generated such
that ∥tij∥ = θ, which is then projected back to S with the exponential map [17].
Outliers are added by replacing Zij with a random Rij ∈ GL(4), with the frac-
tion of outlying edges determined by an outlier density γ. The edge measures
are given as input to all the analyzed methods. The IRLS scheme is used only
in experiments with outliers (i.e., γ > 0). For each con�guration, the test was
repeated 1000 times and median results were reported.

First, we test the e�ects of varying the number of nodes n, while keeping the
other parameters �xed (θ = 0.1 rad = 5.73◦, ρ = 0.5, γ = 0.0). Results are shown
in Fig. 2, reporting both the errors and execution times of the analyzed methods.
We can observe that, by increasing the number of nodes, the performance of all
methods except Tree improve, since there is more redundancy in the data. The

6 It is worth observing that both Sphere and Euclidean are robust to outliers (being
based on the L1 norm), whereas Direction is not (being based on the L2 norm).
Therefore, for the �rst two methods, the IRLS-like scheme has the e�ect of improving

robustness, whereas for the third approach it has the e�ect of gaining robustness.
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Fig. 2: Error (left) and execution times (right) for the analyzed methods with respect
to varying number of nodes in the graph, with θ = 5.73◦, ρ = 0.5, γ = 0.0.

Fig. 3: Error (left) and execution times (right) for the analyzed methods with respect
to varying holes density in the graph, with n = 25, θ = 5.73◦, γ = 0.0.

bad behaviour of the spanning tree approach is caused by the fact that it chains
relative transformation from the root to the leaves, resulting in increased error
accumulation for a bigger graph. In addition, we can observe that our frame-
work is signi�cantly better than Spectral, therefore justifying the need of a
speci�c approach for synchronization of 4 × 4 projective transformations � de-
veloped in this paper � as anticipated in Sec. 3. Among the di�erent variants
of our method, the best are Sphere and Euclidean, whereas Direction is
slightly worse, probably due to the fact that the latter is not robust in the aver-
aging phase. From the execution times in Fig. 2, as we would expect, the global
methods (Tree and Spectral) are signi�cantly faster than iterative methods
(Direction, Sphere and Euclidean). Direction performs the fastest out of
the latter, since the average is computed with a closed-form expression, while in
Sphere and Euclidean the average is obtained iteratively.

In a second experiment, we analyze the behaviour of the competing methods
with respect to varying the holes density ρ (with n = 25, θ = 5.73◦, γ = 0.0).
Results are given in Fig. 3, showing that the accuracy of our synchronization
methods get worse with increasing holes density, even reaching Tree on the
left-most scenario with 0.95 fraction of missing edges in the graph. This is an
expected behaviour, since synchronization naturally exploits redundant measures
to achieve error compensation. It is worth noting that Spectral is even worse
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Fig. 4: Error for the analyzed methods with respect to varying noise (left) and outliers
(right), with n = 25 and ρ = 0.5. In the left experiment there are no outliers (γ = 0.0)
whereas in the right experiment there is no noise (θ = 0◦).

than the spanning tree in most cases, further validating the intuition that it does
not represent a valid solution to projectivity synchronization. The most accurate
approaches are Sphere and Euclidean, as before. The global methods are the
fastest, while the iterative ones start orders of magnitude slower, but approach
the execution times of the global ones, as ρ increases (making the graph sparser).

In a third experiment, we test the e�ects of varying noise θ with n = 25, ρ =
0.5, γ = 0.0. Results are given in Fig. 4 (left), showing that all methods become
less accurate as the amount of noise increases, to di�erent extents. Speci�cally,
both Spectral and Tree are signi�cantly worse than our synchronization ap-
proach, and the best methods are Sphere and Euclidean (without signi�cative
di�erences), in agreement with our previous experiments.

In our last experiment, we test the e�ect of varying outlier density γ, with
n = 25, θ = 0.0, ρ = 0.5. In this scenario we do not consider Spectral and
Tree, since they have been shown to be inferior to our approach in the previous
experiments. Speci�cally, for each variant of our approach, we consider both
the plain method (without IRLS) and the one endowed with the IRLS scheme.
Results are given in Fig. 4 (right), showing the e�ectiveness of the IRLS approach
to manage outliers in the data. Note that Direction achieves the worst results
since it uses the L2 norm (which is not robust) in the averaging step, as already
observed previously; the IRLS scheme improves its robustness, but still it is not
comparable to methods that, by employing the L1 norm, are robust also in the
averaging phase (namely Sphere and Euclidean).

From the results of the synthetic experiments, we choose Sphere with the
IRLS-like scheme for the experiments with real data.

5.3 Application to Projective Structure from Motion

In order to show the practical bene�ts of projectivity synchronization, we con-
sider the scenario of projective structure from motion, with particular focus on a
method � named Gpsfm [33]� that recovers cameras from fundamental matrices
(represented as a viewing graph). Gpsfm employs several steps:
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1. A triplet graph is constructed from the viewing graph: each node in the triplet
graph corresponds to a triplet of cameras and an edge is present between
two nodes if the triplets share a pair of cameras;

2. Fundamental matrices are globally optimized by enforcing consistency over
triplets; then, cameras are estimated independently for each triplet;

3. Cameras are brought to a common projective frame as follows; a tree in the
triplet graph is constructed and a homography is found for each edge in the
tree, such that the common camera pair in the two triplets are aligned; such
projective transformations are then concatenated along the tree.

With reference to Step 2, note that in theory consistency over triplets implies
global consistency (see Theorem 2 in [33]). However, in practice such consis-
tency is not completely enforced, as the ADMM method (which is used for
such a task) employs soft constraints. For this reason, cameras estimated over
di�erent triplets may not be coherent, demanding a principled approach to com-
pensate for these errors. In this context, it is worth observing that Step 3 is
tantamount to solving a projectivity synchronization problem de�ned on the
triplet graph. Speci�cally, the method employed by the authors of [33] coincides
with Tree. We propose to replace this step, with our proposed pipeline with the
Sphere averaging combined with IRLS (see Fig. 5a for an example of a triplet
graph: Gpsfm uses only minimal edge measures, whereas our method would
additionally exploit available redundancies).

We �rst consider a synthetic scenario where a set of noisy fundamental matri-
ces are given as input. Speci�cally, we consider a full viewing graph and generate
the data as follows. First, n �nite 3×4 cameras Pi for i = 1, . . . , n are randomly
generated. For each pair (i, j) of cameras such that j > i, the corresponding
fundamental matrix is created as Fij = [eij ]×PjP

+
i , where P+

i denotes the
pesudo-inverse, eij represents the epipole (i.e., eij = Pjci with Pici = 0), and
[eij ]× denotes the skew-symmetric matrix that de�nes the cross-product. Then,
we add Gaussian noise N (0, σ) to the entries of Fij and project it to its rank-2

(a) A triplet graph from the House

dataset [45]. The edge values used by
Gpsfm are in Green, ignoring the ones
in Blue, while our method uses all edges.

(b) Error for the analyzed methods in cam-
era recovery in a complete viewing graph
with 20 nodes, with respect to varying noise
in the input fundamental matrices.

Fig. 5: Left: example of a triplet graph constructed by Gpsfm [33]. Right: synthetic
experiments on partitioned projective SfM.
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Table 1: Results on real structure from motion data [45, 65]. For each sequence, the
number of nodes in the triplet graph is reported in addition to its holes density. The
reprojection error [pixels] before bundle adjustment is reported for the competing meth-
ods. Times [seconds] refers only to the camera recovery step after optimization.

Dataset Nodes Density Error (px) Time (s)
Ours Gpsfm Ours Gpsfm

Dino 319 34 0.94 4.89 5.21 10.2 0.12
Dino 4983 34 0.93 1.59 1.59 11.0 0.12
Corridor 9 0.75 0.67 0.71 10.2 0.03
House 8 0.64 1.40 1.68 10.3 0.03
Gustav Vasa 17 0.88 1.99 1.99 10.2 0.06
Folke Filbyter 38 0.94 1.83 1.96 10.7 0.14
Park Gate 37 0.94 13.70 18.45 10.8 0.15
Nijo 18 0.88 25.83 29.85 10.7 0.08
Drinking Fountain 13 0.82 1.34 1.54 10.5 0.04
Golden Statue 16 0.85 0.90 0.95 10.7 0.05
Jonas Ahls 39 0.94 33.06 36.83 10.5 0.13
De Guerre 35 0.93 1.36 1.31 10.4 0.12
Dome 90 0.97 6.41 4.17 11.5 0.31
Alcatraz Courtyard 140 0.98 14.96 36.73 11.2 0.48
Alcatraz Water Tower 188 0.99 19.72 19.10 12.1 0.7
Cherub 66 0.96 14.98 16.87 10.3 0.25
Pumpkin 222 0.99 9.27 9.57 13.4 0.94
Sphinx 78 0.97 6.16 8.46 11.4 0.27
Toronto University 80 0.97 20.10 13.85 10.5 0.3
Sri Thendayuthapani 104 0.98 16.09 14.55 10.9 0.39
Porta San Donato 158 0.99 41.22 32.41 11.1 0.57
Buddah Tooth 172 0.99 19.07 25.49 11.9 0.67
Tsar Nikolai I 104 0.98 15.26 9.58 10.4 0.37
Smolny Cathedral 143 0.98 182.83 122.82 11.8 0.55
Skansen Kronan 141 0.98 9.75 13.71 11.5 0.52

approximation. For j < i we set Fij = FT
ji. We consider n = 20 and evaluate

the e�ects of increasing noise σ in Fig. 5b. The error between a solution and
the ground-truth is evaluated as the angle between the vectorized cameras, after
bringing them to a common projective frame, similarly to Eq. (12). Results show
that our synchronization framework outperforms Gpsfm thanks to the fact that
it considers the entire triplet graph for error compensation, in agreement with
the outcome of our previous experiments.

For the experiments with real structure-from-motion data, we test on the
same datasets used by the authors of Gpsfm [33]: a total of 25 image collec-
tions from [45, 65]7; for each dataset, the authors of [33] have made available
the fundamental matrices. We compare the mean reprojection error (in pixels)

7 The datasets can be downloaded from https://www.maths.lth.se/matematiklth/

personal/calle/dataset/dataset.html

https://www.maths.lth.se/matematiklth/personal/calle/dataset/dataset.html
https://www.maths.lth.se/matematiklth/personal/calle/dataset/dataset.html
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across all scene points, before Bundle Adjustment. Results are given in Tab. 1,
which also reports the execution times of the competing methods, con�rming the
outcome of our previous experiments. Despite the sparsity of the triplet graphs,
we are able to reduce the reprojection error in most of the datasets (15 out of
the 25) using Sphere in the IRLS-like scheme, in comparison to the method
used in [33]. In a few datasets, we see worse errors, which can be attributed
to the presence of outliers in graphs with high holes density (0.97 < ρ < 1.0)
where there are fewer redundancies to mitigate their in�uence; note also that the
high reprojection error achieved by both methods on these cases, con�rms the
di�culty of those sequences in terms of noise and outlier level. We do not report
results after Bundle Adjustment (BA), since in almost all cases the two methods
converge to the same values; the e�ect of the projectivity synchronization, in
this context, is in providing better starting estimates for the BA.

5.4 Limitations

The main limitation of our synchronization framework is that it requires redun-
dant measures to work well in practice. Performance might degrade signi�cantly
in the case of minimal data, especially if corrupted by outliers. In this respect,
the choice of the input graph might be critical in real scenarios. This is in line
with other synchronization tasks [4]. In addition, we do not, currently, claim a
proof on the local/global convergence of our iterative scheme.

6 Conclusion

In this paper we considered the problem of projectivity synchronization with fo-
cus on 4×4 matrices: considering a graph, the task is to �nd unknown projective
transformations (associated with nodes), starting from measures (up to scale)
of their pairwise ratios (associated with edges). Previous solutions are either
speci�c for 3 × 3 matrices [55] (and do not generalize to the 4 × 4 case) or do
not exploit the redundancy in the data [33]. Motivated by this, we presented a
novel framework to address the challenges of projectivity synchronization, based
on scale-invariant averaging of convenient representations of projective trans-
formations. We showed the e�ectiveness of our iterative method on a variety of
synthetic scenarios as well as on experiments using real datasets. For the latter,
we embedded our method into a pipeline for partitioned projective structure
from motion that recovers cameras from fundamental matrices by partitioning
the viewing graph, computing a reconstruction for each partition independently,
and �nally integrating them in a globally consistent reconstruction. We hope that
our preliminary results can serve as the basis for further research in projectivity
synchronization, both theoretical and in terms of new application scenarios.
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