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ABSTRACT The implementation of the Linear Quadratic Gaussian (LQG) scheme is often considered
problematic as it requires a dynamic model of the system as a whole. The challenges come from state
variables without a physical representation and the interference factors that affect the reading process.
This paper presents and assesses a combination of methods to adapt the LQG scheme to a discrete-time
linear system. The method KalmanNet constructed by the Long-Short Term Memory architecture (LSTM)
is employed to replace the role of Kalman Filter (KF). The Value Iteration (VI) algorithm supersedes the role
of the Linear Quadratic Regulator (LQR) controller in solving quadratic regulation issues. The assessment
of the proposed algorithm on a cart-pole system and batch distillation column with a disturbance factor in
uncorrelated Gaussian white noise is carried out in a simulated way under a discrete-time linear system.
The result indicates that the solving of regulation problems through the conventional LQG method is not
conclusive as the output response oscillation is still in progress. The combination of the KalmanNet and VI
algorithm, as aforementioned, provides better results as it proves to solve the regulation problem as well as
to compel the system output to converge.

INDEX TERMS optimal control, LQG, LSTM, state estimation, reinforcement learning

I. INTRODUCTION
Optimal control refers to a scientific application that is
developed to find the optimal control strategy of a system
through an optimization of its objective function [1] [2]. The
traditional optimal control involves a plant model to generate
the Algebraic Riccati Equation (ARE) [3]. The performance
of the controller is heavily dependent on the model [4]. A
paradigm shift has begun to emerge due to several weak-
nesses in the model-based control approach when viewed
from an optimal control perspective.

The data driven scheme is classified into two types; model-
based and model-free. The former involves directly searching
the controller parameters based on cost values without any
attempts at the model dynamics. While the latter involves
data measurement to approximate the underlying dynamics
[5]. Practically, the system model is often unknown, thereby
it is necessary to identify the system using the input and
output signal measurement data of the system. This scheme
is referred to as a two-step control procedure for its design of
new controllers as this enables an execution after the system
identification stage [6] [7].

Linear Quadratic Gaussian (LQG) refers to a method that
applies the principle of separation between state estimates
and optimal controllers [1] [2]. The principle of separation
states that the solution to the LQG problem is to utilize an
observer based controller, which consists of Kalman Filter
(KF) and Linear Quadratic Regulator (LQR) solutions. LQG
combines the role of the KF and LQR as estimators and con-
trollers [1] [8] [9]. The combination of these methods is able
to handle the problem of regulation of linear systems with
disturbance factors with statistical properties in the form of
Gaussian. The traditional LQG method is known to possess
a flaw of the system dynamics being linear and known. In
addition, the system disturbance factor and measurements are
stochastic, with their statistical characteristics also known in
the form of a Gaussian distribution.

The development of machine learning methods progressed
quite rapidly. One of the common ones is the Reinforcement
Learning (RL). The terminology of RL is often referred to as
adaptive optimal control [1] [10]. Several approaches to the
RL method can be performed in order to produce an optimal
strategy. The main dichotomy of the RL method is model-
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based one and the one without a model. The model-based
RL method calculates the performance index by utilizing
information from the environment [11]. The RL methods
commonly employed to solve this problem are Policy Iter-
ation (PI) and Value Iteration (VI). The adoption of the VI
algorithm to solve linear quadratic problems based on the
Bellman Equation has been widely conducted [12] [13] [14]
[15]. These studies assume that all state information can be
obtained. Past studies conducted concerning the use of the
RL method in optimal control were mostly carried out under
deterministic systems [16] [17].

The application of the VI algorithm has been performed
to solve tracking problems in plants with unknown models
[13]. An Artificial Neural Network (ANN) is utilized for the
identification of the system to approximate the model. The
network output is presumably a state vector but all states are
assumed to be observable. The implementation proves to be
challenging due to the limitations of sensors in a control pro-
cess. In addition, the VI algorithm is also applied in systems
that utilize the role of input-output plant data to approximate
the control parameters [14]. They uses the Least-Square (LS)
method from measurement data sets to solve the Bellman
Equation online. The combination between KalmanNet and
a conventional LQR controller was also proposed by [18].
The LS method from measurement data sets is employed to
solve regulatory issues by utilizing plant input and output
measurement data. These data are processed by KalmanNet
to generate the estimated state x̂k. In comparison, the con-
troller designed in [18] remains non-causal and can only be
performed offline as it uses a conventional LQR solution.

This research proposes an algorithm specifically for a
data-driven environment, not a fully measurable state, and a
partially known dynamics model. Major contribution of this
study are listed below :

• We adapt the LQG scheme for discrete-time linear
system with Gaussian distribution of the disturbances
characteristic using KalmanNet and VI algorithm

• We replace the state estimation scheme in LQG using
KalmanNet. Meanwhwile, KalmanNet is a data-driven
optimal filtering based on Recurrent Neural Networks
(RNN) architecture

• We use the VI algorithm for controller design to solve
the regulation problem. The VI algorithm is a model-
based RL method that could solve the non-causality
problem that arise in LQR solution

The remaining section of this paper covers the develop-
ment of the proposed algorithm. Section II comprises the
definition of the problem. Section III discusses the new data-
driven LQG method as our proposed solution. The applica-
tion of the proposed solution to the design data driven LQG
control for cart-pole system and batch distillation column are
included in Section IV, which also covers the simulations
and evaluations of several test schemes. This arrangement is
aimed at empirically ensuring that our proposed algorithm
provides the most optimal results. Lastly, Section V contains

TABLE 1: Notation and abbreviations in this research

Symbol Description
The subscript k Time step
Z−1 Delay operator
(.)⊤ Matrix transpose operation
wk ,vk Process noise and measurement noise
Rww , Rvv Process noise and measurement

noise covariance matrices
x̂−
k ,Σ−

k Prior estimated state and error
covariance (before including the
measurement yk)

ŷ−k ,Ξ−
k Prior estimated observed output and

error covariance (before including
the measurement yk)

x̂k ,Σk Posterior estimated state and error
covariance (after including the
measurement yk)

ŷk ,Ξk Posterior estimated observed output
and error covariance (after including
the measurement yk)

xk ,uk ,yk State, control, and output vectors
n,m,p State, control signal, and output

dimensions
N Final time
nh Number of hidden unit
Q,R Weigh cost function on state

trajectory and control signal
Hk ,λk Hamilton function and Lagrange

multiplier
γ Discount factor

the conclusions of this research. The notations presented in
this research are listed in Table 1.

II. PROBLEM FORMULATION
In the implementation of the control system, there is a lim-
itation of the number of sensors used, consequently not all
state information from the plant can be obtained. In addition,
the data measurement process also often contains noise. As
a result, implementing an optimal control scheme proves to
be difficult. In order to solve the regulator problem, a system
affected by disturbance factors, a scheme is required to be
implemented to deal with this situation. This section covers
the complete model information requirements on KF as a
state estimation method and the non-causality that appears in
conventional LQR solutions. These problems can affect the
LQG controller design process. In this research, we classify
three method combinations (see Problem 1-3 in Section II.C)
to adapt the LQG controller scheme to deal with the issue
above.

A. KF
The dynamics of a discrete-time linear system can be ex-
pressed as in Eq. (1) with xk ∈ Rn, uk ∈ Rm, and
yk ∈ Rp are vectors of state variables, control signals, and
measured output signals, respectively. Meanwhile, wk and
vk are uncorrelated white Gaussian noise with the covariance
matrix denoted as Rww and Rvv , respectively.

xk+1 = Axk +Buk + wk, wk ∼ N (0, Rww)

yk = Cxk + vk, vk ∼ N (0, Rvv)
(1)
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FIGURE 1: Kalman filter conventional

It is assumed that the system is observable. We can estimate
the state x̂k of the state xk based on observation of the
measured output yk. KF is a recursive linear MSE filter that
is also MSE optimal for the SS model in Eq. (1) [19]. From
Table 1, it can be concluded the abbreviations of KF. The KF
design is achieved through a two-step procedure : prediction
and update which illustrated in Fig. 1.

1) Prediction step : This step involves computing a prior
first and second order moment moments from the state
trajectory using Eq. (2) and (3) respectively.

x̂−k = Ax̂k−1 +Buk−1 (2)

Σ−
k = AΣk−1A

⊤ +Rww (3)

In this step, we compute a prior first and second order
moments from observed output using Eq. (4) and (5).

ŷ−k = Cx̂−k (4)

Ξ−
k = CΣ−

k C
⊤ +Rvv (5)

2) Update step : This step processes a posterior first order
moments using Eq. (6) where the ∆yk is defined in Eq.
(7).

x̂k = x̂−k + Lk∆yk (6)

∆yk = yk − Cx̂−k (7)

The propagation of posterior second order moments is
computed with Eq.(8). Meanwhile the Eq. (9) is used
to compute the Kalman gain.

Σk = Σ−
k − LkΞ

−
k L

⊤
k (8)

Lk = Σ−
k C

⊤(Ξ−
k

)−1
(9)

It is practically a demanding task to design and implement
the optimal estimator since the system dynamics and noise
statistics are unknown [20].

B. LQR
The second problem arises in the LQR problem. LRQ re-
quires the solution of a Riccati equation given as a function of
the plant’s state-space model [4]. Additionally, the solution
of the HJB equation for the LQR problem is non-causal.
Furthermore, the VI method can be employed to solve the
HJB equation for optimal control problems online [20].

In [1] [8], the performance index is the quadratic function
as formulated in Eq. (10).

Jk =
1

2

[
x⊤NQNxN +

N−1∑
i=k

xTi Qxi + uTi Rui

]
(10)

xk ∈ Rn and uk ∈ Rm are respectively system state
and control input. The cost-weighting matrices QN , Q,R
are symmetric positive semi-definite matrices. The objective
of the regulator problem is to find an uk policy capable of
minimizing the performance index in Eq. (10) during the
system trajectory(1).

We begin with the Hamiltonian function (see Eq. (11).

Hk =
1

2

(
x⊤k Qxk +u⊤k Ruk

)
+λ⊤k+1

(
Axk +Buk

)
(11)

Hamiltonian function refers to an approach adopted for an-
alyzing the optimization of the performance index [1]. The
λ is a Lagrange multiplier chosen to solve the constraint
optimization problem [1] [2]. The necessary condition for
a minimum point of performance index that also fulfills
the constraint system is represented in Eq. (12)-(14). The
Eq. (12) and Eq. (13) are known as the state and co-state
equation. While the Eq. (14) is a stationary condition [1].

∂Hk

∂λk+1
= Axk +Buk (12)

∂Hk

∂xk
= Qxk +A⊤λk+1 (13)

0 =
∂Hk

∂uk
= Ruk +B⊤λk+1 (14)

From the stationary condition in Eq. (14), the control signal
is obtained through Eq. (15)

uk = −R−1
B⊤λk+1 (15)

Assume that a linear relation for the co-state and state equa-
tion in Eq. (16) where Pk is an intermediate sequence of n×n
matrices.

λk = Pkxk (16)

Then proceed to substitute the linear relation in Eq. (16) to
co-state equation in Eq. (12) became Eq. (17).

Pkxk = Qxk +A⊤Pk+1xk+1 (17)

The backward recursion for Pk using matrix inversion lemma
is obtained through Eq. (18) [1].

Pk = A⊤[Pk+1 +BR
−1
B⊤]−1

A+Q (18)
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Substitute the Eq. (18) to (16), thus the control signal in Eq.
(15) became Eq. (19).

uk = −R−1
B⊤
(
A⊤[Pk+1 +BR

−1
B⊤]−1

A+Q

)
xk (19)

The control gain is defined in Eq. (20)

Kk = R
−1
B⊤Pk (20)

It is conclude that the Eq. (18) is the Riccati equation solution
that is computed and stored in the computer memory before
the control is applied to the plant [1] [20]. Consequently, this
conventional method is unfeasible to be implemented online.

C. LQG
The performance index with weight matrix Q and R are
positive semi-definite and positive definite, respectively, as
in Eq. (21). This research focuses on optimizing the cost
function Eq. (21) which is the E{.} represent the expected
value.

J(xk, uk) =
1

2
E
{
x⊤NQNxN +

N−1∑
k=1

x⊤k Qxk + u⊤k Ruk

}
(21)

In this research, the close-loop dynamics is jointly described
by Eq. (22)

ζk+1 = Λkζk + Γkµk (22)

In which ζ = [x⊤x̃⊤]⊤ ∈ Rq consists of the state and
estimation error. Meanwhile, the µ = [w⊤v⊤]⊤ is the white
noise, and Λ ∈ Rq×q is the close-loop matrix is given as in
Eq. (23).[

xk+1

x̃k+1

]
=

[
A−BKk BKk

0 A− LkC

] [
xk
x̃k

]
+[

I 0
I −Lk

] [
wk

vk

] (23)

The calculation of the Kk and Lk matrices are formulated as
in Eq. (20) and (9).We proceed to test our combined method
with four types of combinations. The first, second and third
combinations are defined in Problem 1, 2, and 3, correspond-
ingly. Problems 1 to 3 are similar to the conventional LQG
problems, the difference lies in the methods used in designing
the observer and controller.
Problem 1: Consider the dynamical system in Eq. (1). De-
sign the observer gain Lk and controller gain Kk so as to
minimize the performance index in Eq. (21). The observer
gain is obtained from the KF method. Consequently, it is
required to process the tuning of the covariance matrix of
measurement noiseRvv . At the same time, the controller gain
Kk is obtained through the VI algorithm.
Problem 2: Consider the dynamical system in Eq. (1). De-
sign the observer gain Lk and controller gain Kk so as to
minimize the performance index in Eq. (21). The observer
gain is obtained through KalmanNet. In consequence, it is
required to process the tuning of the LSTM parameters,
namely optimization method, number of hidden states, and

the activation function. The controller gain Kk is obtained
through the LQR method.
Problem 3: Consider the dynamical system in Eq. (1). De-
sign the observer gain Lk and controller gain Kk so as to
minimize the performance index in Eq. (21). The observer
gain is obtained through the KalmanNet. Consequently, it
is required to process the tuning of the LSTM parameters,
namely optimization method, number of hidden states, and
the activation function. The controller gain Kk is obtained
through the VI algorithm.
In Problem 1, the conventional KF method is employed to
produce an estimated state. This study assumes that the value
of the measurement noise covariance matrix is greater than
that of the process noise. The tuning of the covariance matrix
parameter Rvv consequently has a more excellent value than
that of Rww. Next in the controller design, the implemented
program in the Algorithm 2 is operated to calculate the
controller gain value online (not backwards-in-time) similar
to a conventional LQR solution.

The solution to Problem 2 and Problem 3 involves the
role of KalmanNet to generate an estimated state of x̂k.
KalmanNet adapts the conventional KF method based on
ANN. ANN is utilized to predict the Kalman gain value based
on input and output plant measurement data only without the
requirement of information about the statistical characteris-
tics of measurement of process noise. However, the tuning
scheme is devised when using KalmanNet to compare the
hyper parameters in ANN. Hyper parameter tuning is used
in this study to vary the optimizer type, mini-batch size, and
activation function to further compare system performances.

III. ADAPTATION LQG METHOD
The combination of methods proposed in this study adapt a
finite-time LQG scheme to solve regulatory problems. The
adaptation scheme is operated to utilize the role of ANN for
replacing the function of the KF as a state estimation method.
The RL method returns the conventional optimal controller
designed using the LQR method. Additionally, stability anal-
ysis based on the evolution of the eigenvalues of a closed-
loop system is performed to ensure the system’s stability
when controlled through a model-based RL method. The
proposed algorithm is as shown in Fig. 2, as in this study there
are two subsystems, namely the estimator and the controller.
A more detailed discussion of the estimator proposed in this
study is presented in Section III.A. In contrast, the discussion
regarding the controller is presented in Section III.B.

A. KALMANNET
The calculation of the Kalman gain previously discussed in
[19] indicates that the calculations are based on a system’s
model. KalmanNet is a Kalman gain calculation mecha-
nism processed in a hybrid of model-based and data-based,
combining the ANN with the conventional KF. The first
in implementing KalmanNet is to build the SS model to
design a recursive filter that operates as a KF. At this stage,
it is assumed that the constants of the state matrix A, the
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FIGURE 2: Proposed algorithm scheme

input matrix B, and the measurement model C are known,
although not accurately. The covariance matrices Rww and
Rvv need not be known. The problem is to change the
statistical process of the state propagation, as shown in Fig.
3, to obtain a Kalman gain (L) via ANN. Some questions
arising before designing KalmanNet include (i) What input
signal does ANN need to learn the Kalman gain value? (ii)
What is the required ANN architecture to supersede the role
of the KF? (iii) How can the ANN do the learning from data
only? [19].

In the traditional KF, the Kalman gain (L) is not dependent
on the current observation data yk, not is it a function of the
estimated state x̂k. The process of calculating the Kalman
gain (L) through the KF method is based on the second-
order statistical moment Σk. Therefore, the implementation
of KalmanNet requires using the ANN, which has a memory
element [19]. This follows the Long Short-Term Memory
(LSTM) to adapt the KalmanNet scheme. This scheme is
successfully implemented as a state estimation method on the
batch distillation column system [21].

KalmanNet’s learning process is carried out offline (in a
supervised learning manner) using training data. Then, the
model obtained from the training process will be used to
calculate the Kalman gain value. In KalmanNet, the pre-
vious posterior estimated state x̂k−1 and delayed control
signal uk−1 are used to calculate the prior estimated state
x̂−k based on the system dynamics model. Meanwhile, the
control signal in this research is obtained from LQR and VI
algorithms (details in Section III.B). The estimated state x̂−k
is subsequently used to make predictions for the next prior
observed output ŷ−k . The calculation of the observation error
denoted as ∆yk is based on the measured output yk and the
previous prior observed output ŷ−k . The process of calculating
the posterior estimated state update x̂k+1 employs Kalman
gain L and ∆yk.

The KalmanNet scheme adopted in this study is slightly
different from that in [19]. Fig. 4 denotes the KalmanNet
scheme adopted in this research, consisting of three subsys-
tems. The first subsystem combines information from the
current observation data yk and the estimated state x̂k into
an input signal denoted as φk. The output of an LSTM
layer is the hidden state hk. The hidden state represents the

covariance matrices in the sense of KF [19]. The subsystem
is a fully connected layer. This layer is responsible for recon-
structing the Kalman gain dimension (L). The KalmanNet
scheme proposed in this study is stated in more detail in the
Algorithm 1.

The structure of a single LSTM represented in [22].
LSTMs are designed to block the long-term dependency
problems arising in typical RNN structures. The LSTM pri-
mary key is in the cell state. Three gates aimed at deleting
or adding information to the next cell are inside a cell. The
three gates consists of forget, input, and output gates. Each
gate produces an output in the range of values 0 to 1. If the
gate outputs is 0, no information is sent to the next cell, and
vice versa.

From Fig. 4 we could conclude that the φk is input vector
at time k for LSTM. Weights in LSTM layer defined below:

• Input weights : Wf , Wi,Wc, Wo ∈ Rnh×(n+p)

• Recurrent weights : Rf , Ri,Rc, Ro ∈ Rnh×nh

• Bias weights : bf , bi, bo
In forget and input gate which denoted as fk and ιk, the
formula are respectively described in Eq. (24) and (25). Input
data and recurrent from the previous state are added up. A
Hadamard product of two vectors is represented by ⃝• . The
function g(.) in Eq. (26) and (29) are hyperbolic tangent
function.

fk = σ
(
Wfφk +Rfhk−1 + bf

)
(24)

ιk = σ
(
Wiφk +Rihk−1 + bi

)
(25)

C̃k = g
(
Wcφk +Rchk−1

)
(26)

Connections between the cell to all gates are added to the
architecture to make precise timing easy to learn [22]. Eq.
(27) describes the formulation in a cell.

ck = ιk⃝• C̃k + fk⃝•ck−1 (27)

The output gate denoted as ok, formulation represented in Eq.
(28). Meanwhile the block output was denoted in Eq.(29) and
the hk is representing the output of LSTM network.

ok = σ
(
Woφk +Rohk−1⃝•ck + bo

)
(28)

hk = ok⃝•g
(
ck
)

(29)

This scheme for training the LSTM is an extension of
the standard back-propagation algorithm known as Back-
Propagation Through Time (BPPT) [22].

B. VALUE ITERATION ALGORITHM
The proposed algorithm in this research, specifically for the
VI algorithm, is inspired by [13] [14] [15], developing the VI
algorithm for Linear Quadratic Tracking (LQT) problem. In
this subsection, the VI algorithm is formulated for the LQR
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FIGURE 3: KalmanNet block diagram

FIGURE 4: KalmanNet-LSTM architecture

problem. The performance index or value function for LQR
problem is formulated as in Eq. (30).

V (xk) =
1

2

(
xTkQxk+u

T
kRuk+

∞∑
i=k+1

[
xTi Qxi+u

T
i Rui

])
(30)

which also generates the LQR Bellman equation in Eq. (31)

V (xk) =
1

2

(
xTkQxk + uTkRuk

)
+ V (xk+1) (31)

With the assumption that the performance index value along
the xk trajectory is quadratic in order that the performance
index can be expressed as Eq. (32) through the Kernel matrix
P .

V (xk) =
1

2
xTk Pxk (32)

The substitution of Eq. (31) and (32) for Eq. (33) occurs to
form the Bellman Equation on the LQR problem. Assuming a
constant state feedback control signal uk = −Kx̂k for some
stabilizing gain [14].

xTk Pxk = xTkQxk+u
T
kRuk+x

T
k (A−BK)TP (A−BK)xk

(33)

It then proceeds to substitute the Bellman equation with DT
LQR, which is called the Lyapunnov Equation [14] in Eq.
(32) in which the performance index Vk is dependent on the
estimated current state x̂k and control inputs uk.

(A−BK)TP (A−BK)− P +Q+KTRK = 0 (34)

The Hamilton function of the DT LQR system is formulated
in Eq. (35).

H(xk, uk) =x
T
kQxk + uTkRuk

+ (Axk +Buk)
TP (Axk +Buk)− xTk Pxk

(35)

The first derivative of Hamiltonian function leading to the
necessary condition of optimality is represented in Eq. (36).

∂H(xk, uk)

∂uk
= (R+BTPB)uk +BTPAxk = 0 (36)

From the Eq. (36), we could compute the control signal such
as Eq. (37) is computed by inserting it to Eq. (33) to generate
the Eq. (38), which is simply called DT ARE.

uk = −(R+BTPB)−1BTPAxk (37)
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Algorithm 1 LSTM for KalmanNet

Initialization: Some parameters such as :
(1) Number of epoch
(2) Parameter of LSTM
(3) Define the dataset (φ)
φ =

[
x̂ y

]
, where x̂ and y are estimated state and

measurement data, respectively.
(4) x : true hidden state vectors
(5) ψ : the threshold of MSE value

Output: L : Kalman gain
Pre-processing data : Split the dataset into training and
testing data
while iteration ≤ number of epoch do

Compute the hk using Eq.(29)
Compute the Kalman gain (L) by reconstruct the out-

put layer hk using fully connected layer into the dimension
of Kalman gain [19]
end while
Test the KalmanNet model using testing dataset
Compute MSE value
if MSE value≤ ψ then

Re-train
else

Stop
end if

ATPA−P+Q−ATPB(BTPB+R)−1BTPA = 0 (38)

From Eq. (34), it can be concluded that it represents the Bell-
man optimality equation. It is possible to adopt this equation
in implementing the VI algorithm. The VI Algorithm format
is simply a Lyapunov recursion that converges to the solution
of the Riccati equation [14]. In this study, the offline VI
algorithm is employed to solve the LQR problem. For that
reason, complete knowledge of the system dynamics (A,B)
is highly necessary.

C. IMPLEMENTATION OF DISCOUNT FACTOR

The problem that occurs when implementing the VI algo-
rithm is how to generate a stabilizing control policy [23].
From [15] and [14], it is concluded that a discount factor
influences the stability. γ is a discount factor with the value
range of γ ∈ (0, 1) which provides the weight of the
performance index. The effect of the discount factor is to
provide weight to the performance index with a constant
that is time-varying decaying [24]. Based on the Bellman
Equation for the infinite horizon, discounted LQR problem
can be formulated as Eq. (39).

V (xk) =
1

2

(
x⊤k Qxk + u⊤k Ruk +

∞∑
i=k+1

γi−k

(
x⊤i Qxi + u⊤i Rui

)) (39)

Eq. (39) which generates the LQR Bellman equation in Eq.
(40).

V (xk) =
1

2

(
x⊤k Qxk + u⊤k Ruk + γV

(
xk+1

))
(40)

Proceed to substitute Eq. 32 with the value function repre-
sented in Eq. (40) to obtain Eq. (41).

x⊤k Pxk = x⊤k Qxk + u⊤k Ruk + γx⊤k+1Pxk+1 (41)

The initial idea of Theorem 1 is based on the research [14]],
with an addition of modification. The system dynamics we
use in this study are Ā and B̄, as they function to solve
regulatory problems. Whereas in [14], the system dynamics
used are T̄ and B̄1, the augmentation matrices of state and
reference.
Theorem 1: The ARE solution of the VI algorithm could be
formulated in Eq. (42).

Q−P+Ā⊤PĀ−Ā⊤PB̄

(
R+B̄⊤PB̄

)
−1
B̄⊤PĀ = 0 (42)

The assumptions used in Theorem 1 are as follows:
(A,B) can be stabilized (stabilizable) then (Ā, B̄), can also
be stabilized (stabilizable) where Ā = γ1/2A and B̄ =
γ1/2B.
The Hamiltonian function for the discounted linear regulator
problem and using the assumption in Theorem 1 would be
formulated in Eq. (43).

H(xk, uk) = x⊤k Qxk + u⊤k Ruk + γ

(
Āxk + B̄uk

)⊤

P(
Āxk + B̄uk

)
− x⊤k Pxk = 0

(43)

The first derivative results from Eq. (43) is formulated in Eq.
(44).

∂H(xk, uk)

∂uk
=

(
R+γB̄⊤PB̄

)
uk+γB̄

⊤PĀxk = 0 (44)

The calculation of the control signal uk is based on the Eq.
(44) could be obtained in Eq. (45)

uk = −Kxk (45)

where K is formulated in Eq. (46)

K =
(
R+ γB̄⊤PB̄

)−1
γB̄⊤PĀ (46)

From [15] [14], we use the iterative algorithms to solve the
discounted LQR problem (see Algorithm 2).

The control problem that we examine in this study is a
problem with finite time or finite horizon. Therefore, we
will not discuss the dynamical characteristics of the system
at times outside the finite horizon we define. Before we
state the stability definition, recall that we use the notation
of Φ(k, 0) to indicate the evolution operator of Eq. (22).
Therefore we adapt Willem’s definition of stability [25] to
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Algorithm 2 VI for Discounted LQR Solution

Initialization: Start with a control policy K = 0
while 0 < j < N do

1. Policy Evaluation, solve the computation of Pj+1

using Eq. (47)

Pj+1 = Q+K⊤
j RKj+γ(Ā−B̄Kj)

⊤Pj(Ā−B̄Kj) (47)

2. Policy Improvement

Kj+1 =
(
R+ γB̄⊤Pj+1B̄

)−1
γB̄⊤Pj+1Ā (48)

end while

a similar definition of stability, but in the context of a finite
time horizon.
Definition 1: The system Eq. (22) with µ ≡ 0 is called:
stable in a finite horizon k = 0, 1, . . . , (N − 1), if there
exists a bound c > 0 (which may depend on k0) such that
||Φ(k, 0)|| ≤ c holds for all k = 0, 1, . . . , (N − 1).
A necessary and sufficient condition for stable in a finite
horizon, is given by the following proposition
Proposition 2: The system (22) with µ ≡ 0 is stable in a
finite horizon k = 0, 1, . . . , (N − 1), if and only if ||Λk|| is
bounded for all k = 0, 1, . . . , (N − 1) [26].
Proof 1: It is obvious from the definition of the evolution
operator Φ(k, 0).
Furthermore, by observing the design process that we carried
out, both KF and KalmanNet, LQR and VI, it is impossible
to produce unbounded gain filter or gain regulator results,
then by using the necessary and sufficient condition given
in Proposition 2, we can conclude that all the closed-loop
system will be stable in the defined finite horizon, namely
k = 0, 1, . . . , (N − 1), in the sense according to Definition
1.

IV. SIMULATION STUDY
This simulation study comprises two linear system case stud-
ies namely cart-pole system and batch distillation column.
All these simulations are uploaded in 1 using MATLAB. The
parameters used in this study are as follow :

• wk and vk used in this simulation are uncorrelated white
noise Gaussian

• Covariance matricesRww andRvv respectively equal to
0.01 and 0.1, respectively

• Weight matrices Q and R respectively equal to 0.01 and
0.1, respectively.

• Time index (N) = 100
• The proposed KalmanNet solution uses the LSTM ar-

chitecture with the ADAM optimizer, 3 hidden units,
and the number of mini-batch sizes used is 8

• γ = 0.01.
• Initial condition x(0) = 0.1

1) Cart-Pole System
One of the classic control problems was a cart-pole

1https://github.com/adinovitarini/Adaptation_LQG_method_by_data

TABLE 2: Nomenclature of Cart-Pole system

Symbol Description Value Unit
g Gravity 9.8 m/s2

l Pole length 0.5 m
mp Pole’s mass 0.1 kg
mc Cart’s mass 1 kg
mt Total mass 1.1 kg

system. The objective of this case study is to apply the
forces uk to a cart moving along a track and keep the
pole hinged to the cart. This model is chosen deliber-
ately simple to demonstrate the aims of this research.
The dynamics of the cart-pole system represented in
Eq. (49) with the parameter value was summarized
in Table 2 from the technical detail in 2. The plant
dynamics would be formulated in Eq. (49) where the
state variables x1, x2, x3, and x4 are cart’s position,
cart’s velocity, pole’s position, and pole’s velocity.

xk+1 =


0 1 0 0
0 0

mp

mc
g 0

0 0 0 1

0 0
mp+mc

lmc
g 0

xk +


0
1
mc

0
1

lmc

u+ wk

yk =
[
0 1 0 1

]
xk + vk

(49)

Our proposed algorithm for the first case study was
already published on [27].

2) Batch Distillation Column
The operation of the batch distillation process could
be reviewed in Fig. 5. The boiler consists of a certain
amount of solvent (water and ethanol) which is denoted
as the amount of solvent (MB), concentration (XB),
and composition of steam in boiler (YB) [28]. The
temperature in the boiler will be increased to a certain
value, wherein in this study the temperature in the
boiler was set to around 780 to 800 Celsius. This is
because the purpose of this heating is to separate the
vapor phase of ethanol from water. Where the boiling
point of ethanol is at 780. Then the solvent vapor has
then flowed into condenser 1 and condenser 2. In the
initial phase, ethanol with a lower boiling point will
evaporate more than water. The amount of ethanol will
decrease as the boiling point of the solvent continues to
rise and only water will remain in the boiler. Whereas,
the distillate concentration which remains in the prod-
uct tank is denoted with XD. To regulate the amount
of reversal mixture which is distributed to the distillate,
we have to control the reflux valve. It could be done by
controlling the amount of on or off (duty cycle) of the
reflux valve. To implement this idea of the closed-loop
system, a controller is needed in this system to keep
the results of the distillate concentration as desired. In
the schematic above, vapor (V ), reflux (R), distillate

2https://github.com/openai/gym/blob/master/gym/envs/classic_control/
cartpole.py
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FIGURE 5: Batch distillation column schematic diagram

(D), R0 (constant) is the initial condition for reflux
flow rate when the valve is closed. The reflux ratio is
developed with a range of 0 − 1 which represents the
0% until 100% PWM. The identification system for the
second case study was already published on [21].The
state, input, and output matrices is define in Eq.(50).

xk+1 = Axk +Buk + wk

yk = Cxk + vk
(50)

The state, input, and output matrices denoted as A, B,
and C are defined in Eq. (51).

A =


1.14 −0.78 −0.41 −0.93 0
1.05 1.02 0.52 0.55 0
−0.77 0.74 −0.83 2.68e− 03 0
1.18 0.95 −0.65 −0.79 0
0 0 0 0 1



B =


−1.37
0.45
1.08
−0.38

1


C =

[
0.73 −0.78 0.97 −0.34 1

]
(51)

In Section IV.A, we compare the performance of KF and
KalmanNet as state estimation method. Section IV.B will be
contain the comparison of the convergence of four scenarios
that have been done to convince our proposed algorithm.

A. KF VS KALMANNET
Based on the comparison between KalmanNet and KF as
shown in Table 3, we find that the MSE value of the estimated
state x̂ with the original state x generated by KalmanNet is
much smaller than KF. In addition, in this study, the control
signal uk obtained from LQR produces a smaller MSE when
compared to the VI Algorithm. Therefore, the KalmanNet
model used in this study uses control signals from LQR. In
addition, there is no need to process equation parameter in
KalmanNet as it is required in the KF method. This results
has some implications for the use of KalmanNet method,

TABLE 3: Performance Comparison of KalmanNet and KF

Control methods Methods Case Study
1 2

LQR KalmanNet 1.65E-05 1.07E-04
KF 1.0409 1.2625

VI KalmanNet 6.72E-05 1.87E-04
KF 3.3787 1.5504

TABLE 4: Performance comparison of four scenarios testing

Performance Methods Case Study
1 2

||u||
KF-VI 2.48E-01 1.14E-02

KN-LQR 8.00E-03 3.40E-03
KN-VI 1.38E-02 1.83E-02
LQG 1.60E-02 8.80E-03

J

KF-VI 4.90E-02 1.59E-01
KN-LQR 2.85E-02 3.55E-02
KN-VI 2.94E-02 3.55E-02
LQG 5.86E-02 1.46E-01

CT (time-step)

KF-VI Still oscillate Still oscillate
KN-LQR 8 6
KN-VI 10 8
LQG Still oscillate Still oscillate

Time Elapsed (sec) KF-VI 1.53E-02 1.71E-02
KN-LQR 1.50E-03 1.50E-03
KN-VI 2.30E-03 2.20E-03
LQG 1.55E-01 1.47E-01

which is more efficient than KF as the state estimation
method.

B. COMPARISON FOUR SCENARIOS
This section examines four scenarios and review the control
signals’ norm values, the performance indices, Convergence
Time (CT) in time-step domain, and Time elapsed in second
domain which summarized in Table 4. The use for the sec-
ond scenario has a control signal norm value as well as a
performance index, faster CT, and faster computation time.
The control signal (K), obtained using VI, requires a longer
computation time when compared to the LQR solution. This
is because the initialization of the control signal parameters in
the algorithm is distributed randomly. However, it is impor-
tant to note that in this method, the LQR solutions performed
contain non causality.

If we look at the time elapsed, representing computation
time, the second scenario has the fastest computation time.
However, based on testing we also found that using the VI
algorithm also requires computation time that is not too far
from the second scenario. The CT test results can be seen
in Table 4 found from the control signal trajectory in Fig. 6
and 7. In the test results, we found that the use of the first
and fourth scenarios has not been able to make a convergent
control signal trajectory. Therefore, as a trade-off, the use of
the third method, the KalmanNet-VI, is adequately efficient
to adapt the LQG controller scheme.

V. CONCLUSION
Our proposed algorithm empirically shows that it can solve
regulatory problems in discrete-time linear systems affected
by uncorrelated Gaussian white noise. The results of the tests
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FIGURE 6: Control signal plot for 1st case study
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FIGURE 7: Control signal plot for 2nd case study

that have been carried out show that the use of conventional
KF has not been able to produce a trajectory of the control
signal uk that converges to a zero value during a certain time-
horizon. Meanwhile, the use of KalmanNet is able to produce
a trajectory of the control signal uk that converges to a zero
value. This is because both KF and KalmanNet are used to
generate the estimated state x̂k which is used to build the
control signal uk. Meanwhile, the use of the VI algorithm
can solve regulatory problems. However, it can make the
convergence of the control signal evolution longer than con-
ventional LQR solutions. The VI algorithm has advantageous
because the ARE solution is done iteratively. Thus, it does
not require backward-in-time calculations like the traditional
solution of LQR. In this research, the first and second case
study’s control signal was able to converge to a value of zero
at the 8-th and 6-th time-steps when implementing the 2-
nd scheme, respectively. Nevertheless, first and second case
study’s control signal was able to converge in the 10-th
and 8-th time-steps when we implemented the 3-rd scenario,
respectively. Future research is to use a combination of these
methods in different case studies. Case studies can be in
robotics systems or complex systems in industrial processes.
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