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ABSTRACT

Reinforcement learning with verifiable rewards (RLVR) has recently emerged
as the leading approach for enhancing the reasoning capabilities of large lan-
guage models (LLMs). However, RLVR is prone to entropy collapse, where the
LLM quickly converges to a near-deterministic form, hindering exploration and
progress during prolonged RL training. In this work, we reveal that the clipping
mechanism in PPO and GRPO induces biases on entropy. Through theoretical
and empirical analyses, we show that clip-low increases entropy, while clip-high
decreases it. Further, under standard clipping parameters, the effect of clip-high
dominates, resulting in an overall entropy reduction even when purely random
rewards are provided to the RL algorithm. Our findings highlight an overlooked
confounding factor in RLVR: independent of the reward signal, the clipping mech-
anism influences entropy, which in turn affects the reasoning behavior. Further-
more, our analysis demonstrates that clipping can be deliberately used to control
entropy. Specifically, with a more aggressive clip-low value, one can increase
entropy, promote exploration, and ultimately prevent entropy collapse in RLVR
training.

1 INTRODUCTION

Reinforcement learning with verifiable rewards (RLVR) has recently emerged as the leading ap-
proach for enhancing the reasoning capabilities of large language models (LLMs), especially in the
domain of mathematical reasoning (Guo et al., 2025; Lambert et al., 2024; Luong et al., 2024; Yang
et al., 2025). However, RLVR is prone to entropy collapse: a phenomenon where the LLM quickly
converges to a near-deterministic form, hindering exploration and progress during prolonged RL
training (Yu et al., 2025).

Recent studies have reported this effect and continue to debate whether it is an inevitable byproduct
of improved performance (Yue et al., 2025; Cui et al., 2025; Wu et al., 2025). A number of works
have proposed heuristic interventions to mitigate entropy collapse, such as tuning training hyperpa-
rameters (Yu et al., 2025) or explicitly incorporating a KL.-divergence loss term (Liu et al., 2025a).
Although these approaches can increase policy entropy to some extent, they fall short of providing
a mechanistic understanding of why and how entropy evolves during RL training for LLMs.

Contribution. In this paper, we elucidate this poorly understood entropy dynamics during RL
training of LLMs. First, we theoretically analyze a toy setting where the reward is random, i.e.,
independent of the policy distribution, and we prove that the clipping mechanism used in PPO
(Schulman et al., 2017) or GRPO (Shao et al., 2024) induces biases on entropy. Specifically, the
lower clip (‘clip-low’) on negative advantages increases entropy, while the upper clip (‘clip-high’)
on positive advantages decreases entropy. Next, we empirically demonstrate that the theoretical
results extend to general RLVR settings for mathematical reasoning tasks. By simply tuning the
clipping hyperparameters, we can effectively control the entropy dynamics during RLVR, thereby
preventing entropy collapse. Moreover, we show that this entropy-controlled training preserves the
base model’s exploration capability without compromising its performance, providing a practical
tool for stable and prolonged RLVR training.
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1.1 RELATED WORKS

Mitigating Entropy collapse in RLVR. A growing line of work has investigated studied the en-
tropy collapse phenomenon. DAPO (Yu et al., 2025) argued that the clip-high component in PPO
(Schulman et al., 2017) and GRPO (Shao et al., 2024) prevents the ‘exploration tokens’ from being
pushed up, accelerating entropy decay. To counter this, they propose ‘clip-higher’, an asymmetric
clipping rule that reduces the clip-high events by setting epnigh > €1ow. ProRL (Liu et al., 2025a)
adopts clip-higher and further emphasizes the use of KL divergence loss for stabilizing entropy;
they monitor the training process and manually hard reset the optimization states and reference pol-
icy for KL divergence term multiple times to enable prolonged RLVR training. Another popular
approach is to use reward shaping to promote exploration (Cheng et al., 2025; Gao et al., 2025a)
, which could be understood largely as methods motivated by conventional reinforcement learning
algorithms (Haarnoja et al., 2018; Burda et al., 2019). On the other hand, Cui et al. (2025) conducted
an extensive search and provided a different viewpoint that the decreasing entropy during training
could actually be understood as a tradeoff with peformance, framing entropy collapse as an expected
byproduct of training (Deng et al., 2025).

Exploration of LLMs during RLVR. There is an active debates about whether RLVR elicits gen-
uinely novel reasoning or merely reweights reasoning paths already latent in the base moel. On one
side, recent analyses contend RLVR largely reshapes sampling distributions over pre-existing chain
of thought. These works highlight the degradation of the pass@k metric during RLVR training(He
et al., 2025), and show that post-trained LLMs could underperform the base model when k is large
(Yue et al., 2025; Wu et al., 2025). On the other hand, conflicting evidence indicates that RLVR can
induce capabilities not present in base models (Wen et al., 2025). For example, carefully reshaping
the reward function and deploying an ehanced training schedule has shown to be effective in im-
proving exploration during RLVR (Chen et al., 2025; Song et al., 2025). Notbaly, Liu et al. (2025a)
reports cases where RLVR enables solutions to logical tasks that the base model misses even at large
k. Our findings strengthen this latter perspective: we show that deliberately maintaining higher en-
tropy through controlled clipping could improve pass@k without degrading mean@k, suggesting
that exploration degradation of LLMs is not a inherent limitation of RLVR.

Random reward for RL. Counterintuitively, recent studies report that RL can improve LLM
benchmark scores even with weak, noisy, or entirely random rewards (Wang et al., 2025; Lv et al.,
2025; Zhu et al., 2025). This line of research include methods that utilize entropy minimization
of the policy model (Zhao et al., 2025; Agarwal et al., 2025; Gao et al., 2025b). The work most
closely related to ours is (Shao et al., 2025), where the authors train with purely random rewards and
observe gains primarily for models in the Qwen family (Yang et al., 2025). We show that, under the
hood, entropy minimization is the consistent driver when training with random rewrads, and that this
mechanism is appears across a broad set of model families rather than being Qwen-specific. This
reframes “random-reward improvements” as a predictable consequence of how the clipped RLVR
objectives bias policies toward lower-entropy, even when the reward signal provides no information.

1.2 NOTATION AND PRELIMINARIES

Consider the setup where given a prompt x, an LLM 7y generates a response y = (y1, ..., yr) and
a reward function r(y) evaluates it. The objective is to maximize expected reward:

maxiemize J(0) := zLED [r(y)], (1)

y~mo (-|z)
where D denotes the training distribution of prompts.

We formulate this optimization problem into an RL problem. Specifically, consider the MDP with
a discrete state space S and a finite action space A is the finite action space. The state is defined as
st = (x,y1,...,y:—1) and action a; is the next token to generate, and the transition dynamics is a
deterministic one in which the generated token is appended to the state. Finally, the language model
my is regarded as the policy, and we refer to this as the reinforcement learning of large language
models (RL-LLM) setup.
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Given a policy (language model) 7, we define its state visitation measure as

d™(s) = iP(St = s) = E[i 1St:s},

where the probability and expectation is with respect to so = & ~ D and a; ~ w(-|s;) for t =
0,1,....

REINFORCE. The classical REINFORCE policy gradient estimator (Williams, 1992) is given by

T
VoJ(0)= E_ | > Velogma(ye|y<r, ) Ay, )

yr~mo (o) L =1
where y<; = (y1,...,y:—1) and A; is an advantage estimate derived from the trajectory-level

rewards, such as A; = r(yr).

Although it is possible to perform stochastic gradient descent (ascent) using the stochastic gradients
from Equation 2 (and doing so would avoid the clipping bias that we identify in this work), such
an approach is typically less sample-efficient and less stable. Therefore, methods such as PPO
(Schulman et al., 2017) and GRPO (Shao et al., 2024) are preferred in the RL-LLM setting.

Group Relative Policy Optimization (GRPO). GRPO (Shao et al., 2024) is a variant of proxi-
mal policy optimization (PPO) (Schulman et al., 2017) adapted for trajectory-level rewards. Given
a current policy parameter 6,4, the algorithm samples a prompt x ~ D and K responses
yW .y ) ~ g (- | x). Then, the parameter update to 6 is obtained by performing stochastic
gradient steps to solve the subproblem

K T
1 i D) e (i i
mini@mize E 0 E min (r,( )(9) A,E ), chp(r§ )(0), 1 — €low, 1 + €nign) Ag ))
i=1 t=1

with
mo(y” | y4), )
Tho1a (yt(Z) ‘ y(<11)5’ CC)

fort=1,...,TDandi=1,... K.

rt(i) 0) = , A,Ei) = 7(y¥) — mean (r(y(l)), . 7r(y(K)))

The clipping mechanism, whose strength is controlled by the hyperparameters €14y, and epigh, origi-
nates from trust-region policy optimization (TRPO) (Schulman et al., 2015). Its purpose is to prevent
the optimization for the subproblem from deviating too far from the reference policy mg_,, that gen-
erated the responses. Concretely, the importance sampling ratio rt(z)(ﬁ) is clipped to lie within the

range [1 — €low, 1 + €nigh] depending on the sign of Agi). The main thesis of this paper is that the

two clipping mechanisms induce biases on entropy.

old

To be precise, the version of GRPO we present here is more closely aligned with the variant called

DAPO (Yu et al., 2025). While the original GRPO formulation (Shao et al., 2024) normalizes AEZ)
by the standard deviation of the rewards, we follow the prescription of Dr. GRPO (Liu et al., 2025b)
and omit this normalization. In addition, whereas the original PPO and GRPO employ a symmetric
clipping parameter with €15y = €high, DAPO introduces asymmetric clipping with €1y < Ephigh.

Policy entropy. For any state s;, the token-level (state-conditional) Shannon entropy of the policy
Ty is defined as
7—[(7r9|st):—Zm(a|st)log7r9(a|st), 3)
acA
where A (note, |A| < oo) is the LLM vocabulary. In practice, we report the average token en-
tropy over responses, evaluated over states encountered under the old policy distribution 7g. For a
minibatch of size N, we estimate the entropy with the following formula

7@

1 i
7 2 M s, ))]. )
t=1

N

H(mg) = —% Z

=1
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2 THEORETICAL ANALYSIS OF CLIPPING WITH RANDOM REWARDS

Following the formulation of Shao et al. (2025), we consider the setting of random rewards for the
sake of theoretical analysis and scientific inquiry. Specifically, the random rewards are assumed to
be statistically independent of both the prompt and the response generated by the LLM, and to have
a symmetric distribution (e.g., a reward that takes values 0 and 1 with equal probability is symmetric
about 1/2), which in turn leads to GRPO-style advantage estimates having a zero-mean, symmetric
distribution.

By construction, such random rewards and the corresponding advantage estimates computed from
them contain no learning signal. Indeed, the associated REINFORCE-type policy gradient estimator
has zero expectation:

T
Z Vo log mo(ye|y<i) A

t=1

T
Z Vo log T (ytly<t)

t=1

E

xz~D
ye~mo (|y<it,x)
A

= E
xz~D
ye~vmo (ly<it,x)

E[A] = 0.

However, GRPO and its variants crucially employ a clipping mechanism, and in this section, we
show that this clipping mechanism induces biases on entropy.

2.1 SETUP FOR THE THEORETICAL ANALYSIS

Consider the objective function of the GRPO subproblem:

. _ Ye |y<t,®) (Yt |y<e,x)
J(m 7o) = B Zml (noldéh e A dip(ZE e 1 Slows 1+ hign) A)
v~

We assume the advantage A is independent of of x and y and satisfies
E[A]=0, P(A>0)=PA<0)=v, E[A|A>0=pu

The actual GRPO algorithm performs a limited number of optimization steps on the objective 7,
typically using AdamW, which is difficult to model and analyze directly. For the sake of analytical
tractability, we assume the use of full batch gradients and consider two simplified formulations: the
policy gradient and natural policy gradient algorithms applied to 7. Namely, the first algorithm is
the policy gradient algorithm

Or1 = Ok +nVoJT (70, Tola), )

where 7,14 is an older version of 7, that is updated by the outer loop of GRPO and 7y is parame-
terized as a tabular softmax policy

exp(0s,q)
Y weaexp(fs.a)

with state space S, finite action space A, and trainable parameter # € RIS/*IAl The second algo-
rithm is the natural policy gradient algorithm (Kakade, 2001)

forseS,ac A

mg(als) =

Tht1 O Tk 0 exp (V2 T (k3 Toa)) (6)

where again 7,4 is an older version of 7, that is updated by the outer loop of GRPO and o denotes
element-wise multiplication. As we will see, our analysis of the two algorithms yields results that
differ slightly but are qualitatively aligned. Since the two algorithms are considered models of the
true GRPO update, this consistency lends further credibility to the qualitative conclusions drawn
from our analysis.

Now, define the following probabilistic events

Xi(s) = {event such that Z(als) 1 slow} :{event such that clip-low happens}

mola(als)

Yi(s) = {event such that ”"(?lfs)) >14 ahigh}:{event such that clip-high happens}.

Whether events X (s) and Yy (s) hold is determined by the action a ~ 7o (- | 8).
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2.2  FIRST-ORDER ANALYSIS OF ENTROPY CHANGE

We first present our analysis of the entropy change of the policy gradient algorithm.

Theorem 1. Consider the setup described in Section 2.1 and the policy gradient algorithm given by
Equation 5. Then, the change in entropy at state s admits the first-order approximation

H(Orr1|s) = H(Ok | s) = pwon d™* (pu(E[Q] — E[Q| Xi]) — ax(E[Q] — E[Q|Y2]) ) + O(1)

clip-low contribution clip-high contribution

where Q = mi(a|s)(logmi(al|s) + H(0%|5)), pr = P(Xk), g = P(Yy), d™ is the state vis-
itation measure, and the expectation E is taken with respect to a ~ (- |s). To clarify, all the
terms on the right-hand side depend on s, and it would be more precise to write them as d™(s),
Q(s), Xk(s), Yi(s), pr(s), and qi(s). However, we suppress the dependence on s for notational
simplicity.

We defer the proof to Appendix A.

Theorem 1 separates the contributions of clip-low and clip-high. Decreasing ¢;,,, leads to a larger
pr = P(X}), thereby amplifying the clip-low term, and vice-versa for clip-high. Moreover, if either
clip-low or clip-high is turned off, p;, = 0 or g = 0, and only the other term remains.

If the following condition holds:
ElQ] - E[Q|Xk] >0 and E[Q] - E[Q|Yx] >0, (7

then the claim that clip-low increases entropy and clip-high decreases entropy is substantiated. In-
equalities 7, however, are not guaranteed to hold universally, and counterexamples can be con-
structed where the condition fails. Nevertheless, we empirically observe that Inequalities 7 are
typically satisfied in practice. In particular, Figure 1 shows that empirical estimates consistently
meet these conditions.

Qwen2.5-1.5B-Instruct Llama3.2-1B-Instruct

0.6

0.4

200 300 400 0 100 200 300 400
Training Step Training Step

Figure 1: Empirical estimates of E[Q] — E[Q]|Xx] and E[Q] — E[Q|Y%] throughout
RL training with random rewards for (Left) Qwen2.5-1.5B-Instruct and (Right)
Llama3.2-1B-Instruct. We observe that the values are always positive.

Next, we present our analysis of the entropy change of the natural policy gradient algorithm.

Theorem 2. Consider the setup described in Section 2.1 and the natural policy gradient algorithm
given by Equation 6. Then, the change in entropy at state s admits the first-order approximation

H(mptr [ 8) — H(me | s)
= pvn d™ (pi(E[—log mg | Xi] — H(mk | 5)) — qr(E[—log 7| Ya] — H(mk | 5)) ) + O(n?),

clip-low contribution clip-high contribution

where pr, = P(Xy), qr = P(Yy), d™!? is the state visitation measure, and the expectation E is
taken with respect to a ~ (- | s). To clarify, all the terms on the right-hand side depend on s, and
it would be more precise to write them as d™'*(s), X (s), Yi(s), pr(s), and qx(s). However, we
suppress the dependence on s for notational simplicity.
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We defer the proof to Appendix B.

Theorem 2 again separates the contributions of clip-low and clip-high. If the following condition
holds:

E[—logmg | Xi] — H(mk|s) >0 and E[—lognm|Yy] — H(mg|s) >0, ®)

then the claim that clip-low increases entropy and clip-high decreases entropy is substantiated.
Again, we empirically observe that Inequalities 8 are typically satisfied in practice. In particular,
Figure 2 shows that empirical estimates consistently meet these conditions.

Qwen2.5-1.5B-Instruct Llama3.2-1B-Instruct

als)[Xe] — H(0"]s)

Is — E[~logmi(als)| Xy — H(0¥|s)
als)|Yi] — H(6¥|s) 41

—— E[-logm.(als)|Yi] — H(6"]s)

— E[-logm

(
— E[-log m(

| J ) I'WIW 'llhu'wmm \ml}'%-l*lu"‘

0 100 200 300 400 0 100 200 300 400
Training Step Training Step

Figure 2: Estimated values of equation 8 throughout RL training with random rewards averaged
over 3 runs. (left) Qwen2.5-1.5B-Instruct and (right) L1ama3.2-1.5B-Instruct. We
observe that the values are always positive.

2.3  EMPIRICAL VALIDATION

In this section, we present an empirical validation of our theory.

Setting. We use the verl framework (Sheng et al., 2025) for all experiments. The models
are trained with the GSM8K dataset (Cobbe et al., 2021) but the rewards are randomly drawn
from a Bernoulli distribution with 0.5 probability. We use the GRPO algorithm and, follow-
ing Dr. GRPO (Liu et al.,, 2025b), we do not normalize rewards by the standard deviation
in the advantage calculation. We use the Qwen2.5-3B-Instruct (Yang et al., 2024) and
Llama3-8B-Instruct models as our base models. We use a GRPO batch size of 512, and an
optimizer batch size of 256. Neither the KL divergence loss nor an explicit entropy loss is applied.
For each rollout, we generate 8 prompts with temperature 7' = 1. We use the AdamW optimizer with
a constant learning rate of 5 - 10~7. During validation rollout, we use temperature 7' = 0.6. We
defer further implementation details to Appendix C.1.

[ etion = . €10w = 02 (clip-high off) Enigh = 0.15, £ = 0.2

—— &high="0.2, €10y = 0.2

—— Ehigh = 0.2, Ejow = 1.0 (clip-low off) 0.40 4
—— €ngn=0.2, 10w =0.15

14— €non=02,80,=02

6 5'0 160 1%0 2(']0 2;0 360 6 1(’)0 260 360 4(')0
Training Step Training Step
Figure 3: Change of policy entropy during RL training the Qwen2.5-1.5B-Instruct model

with random rewards with different clipping settings. We observe that both clip-high and clip-low
influence the entropy, consistent with our theoretical predictions.
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Results. The experimental results are consistent with our theoretical predictions. Figure 3 shows
that decreasing/increasing €.y, (making clip-low stronger/weaker) increases/decreases entropy, and
decreasing/increasing epign (making clip-high stronger/weaker) decreases/increases entropy.

Moreover, we find that with symmetric clipping parameters (€1ow = €nigh = 0.2), the effect of
clip-high dominates that of clip-low, leading to a reduction in entropy. However, by appropriately
decreasing € (making clip-low stronger), we can counterbalance the competing effects and main-
tain the entropy level.

—— Olmo2-1B ] Bernoulli p=0.7
1.2 4 —— Llama3.2-1B ~——— Bernoullip=0.3
—— Qwen2.5-1.5B 0.35 4 —— Gaussian

Normalized Entropy

«‘! u‘m ‘2LII() :((Im 4(I|u 0 100 200 300 400
Training Step Training Step

Figure 4: (Left) Entropy change of different base models when trained with random rewards under
symmetric clipping €iow = €nigh. (Right) Entropy change of Qwen2.5-1.5B-Instruct model
with random rewards sampled from various probability distributions. Details of the experiments are
provided in Appendix C.2.

Noisy and spurious rewards reduce entropy. Prior work has investigated whether RLVR can
enhance LLM reasoning even in the presence of noisy rewards (Wang et al., 2025; Lv et al., 2025)
or random (spurious) rewards (Shao et al., 2025). In particular, Shao et al. (2025) find that GRPO-
based training with clipping yields clear improvements for Qwen-based models, but little to no
benefit for L1ama- or O1lmo-based models. By contrast, Figure 4 shows that training with random
rewards consistently reduces policy entropy across Qwen, L1ama, and O1lmo. This pattern suggests
that the primary effect may be entropy minimization, which in turn influences reasoning behavior as
recently suggested in (Agarwal et al., 2025; Gao et al., 2025b).

3 EMPIRICAL ANALYSIS OF CLIPPING WITH RLVR

In this section, we extend the theoretical insights from the random reward setting of Section 2 to
the general (true reward) RLVR setting through empirical analysis. Our results demonstrate that the
clipping parameters, epign and €10y, provide effective control over policy entropy in RLVR for math-
ematical reasoning tasks. Moreover, such entropy control improves the exploration (as measured by
pass@8) while preserving reasoning performance (as measured by mean@8). Specifically, the

—— &high = 0.2, €low = 0.2 Ehigh = ®, Elow = 0.1
0.30 —— Enigh =, €low = 0.2 (clip-high off) —— €high =, €low = 0.15
—— &nigh = 0.2, €ow = 1.0 (clip-low off) 20— €high=,€0h=02

0.5 4

0 100 200 300 400 0 100 200 300 400
Training Step Training Step

Figure 5: Entropy change during (true reward) RLVR with GSM8K and Qwen2.5-3B-Instruct.
(left) Ablating the clipping mechanisms. (right) Controlling entropy without clip-high. The clip-
low value €1, = 0.15 balances entropy, preventing entropy collapse and entropy explosion.
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pass@8 metric measures whether at least one of the 8 sampled responses yields the correct solu-
tion (Chen et al., 2021), while mean@8 reflects the average single-response accuracy (pass@1)
across those 8 responses.

3.1 EXPERIMENTAL SETUP

Again, we use the verl framework (Sheng et al., 2025) for the RL training and GSM8K (Cobbe
et al., 2021) and the DAPO-Math-17k (Yu et al., 2025) for the mathematical reasoning training
data. For GSM8K, we use Qwen2.5-3B-Instruct and Llama3-8B-Instruct as base mod-
els, and for the DAPO-Math-17k dataset, we use Qwen2 .5-7B-Instruct as the base model.
We use the same configurations for the GRPO algorithm as in our random reward experiments of
Section 2.3. Refer to Appendix C.1 for further training details.

Qwen2.5-3B-Instruct
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0.2 (clip-high off)
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0 100 200 300 100 0 100 200 300 400
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Figure 6: Performance of LLM during RLVR training with GSM8K dataset measured by the
(left) mean@8 metric and (right) pass@8 metric for (up) Qwen2.5-3B-Instruct model
and (down) Llama3-8B-Instruct model. While all settings configurations show compara-
ble mean@8 performance, training setups with high entropy show higher pass@8 performance,
implying enhanced exploration.

3.2 EXPERIMENTS: MATH REASONING TASKS

Clip-high decreases entropy and clip-low increases entropy. We begin with an ablation study
of the clipping mechanisms. Specifically, we disable the clip-low mechanism (by setting €joy, =
1.0) and the clip-high mechanism (by setting €pig, = 00). As shown in Figure 5 (left), removing
clip-high increases entropy, while removing clip-low decreases it, in qualitative agreement with the
theoretical analysis for the random reward setting in Section 2.

Entropy control via Clip-Lower Unlike the random reward setting, RLVR training with true
rewards has an entropy-reduction effect, which can be attributed to RLVR’s suppression of incorrect
reasoning paths. For example, while the configuration epigh = oo (clip-high off) and €15, = 0.2
increased entropy in the random reward setting (Figure 3, left), the same configuration leads to
reduced entropy in the true reward RLVR setup (Figure 5).
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To counteract RLVR’s natural entropy reduction, turn off clip-high (enign = o0) and adjust the
clip-low parameter €)y, to a smaller value. As shown in Figure 5 (right), decreasing €.y, increases
entropy during training—sometimes to the extreme of entropy explosion. For this particular setup,
we find that the configuration (ephigh = 00, €1ow = 0.15) achieves a balance, preventing both entropy
collapse and entropy explosion.

Entropy control leads to improved exploration. While RLVR enhances the reasoning perfor-
mance of LLMs, prior work (Yue et al., 2025; Song et al., 2025) has shown that it also narrows
the range of reasoning trajectories the model can explore, also referred to as the reasoning bound-
ary. Consistent with this, Figures 6 and 7 shows that training with the standard symmetric clipping
parameters (€4, = Enigh = 0.2) causes the pass@8 metric to decline over the course of training.

However, when entropy is controlled through clipping (entropy is shown in Figure 5), the pass@8
metric is preserved without sacrificing the mean@8 performance as shown in Figure 6. Moreover,
Figure 7 shows that the clipping mechanisms can be tuned to simultaneously improve the mean@8
and pass@8 performances. These results demonstrate that entropy collapse can be avoided through
appropriate clipping parameter choices, even without a KL penalty. Moreover, they confirm that this
entropy control does genuinely correspond to exploration.

AMC

Ehigh = ®, Eiow = 0.15 (clip-high off) 0.850
= 0.2 (clip-high off)
ow = 1.0 (clip-low off)

Enign = 0.2, E1ow =02
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0 50 100 150 200 250 0 50 100 150 200 250
Training Step Training Step
MATH-500
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°
3
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®
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0.72 {—— g, = @, £iow = 0.15 (clip-high off)
=0.2 (clip-high off)

6 5‘0 160 1.;:0 260 2.%0 [I] 5‘0 160 15;0 Z(IJO 2_":0
Training Step Training Step
Figure 7: Performance measured by the mean@32 metric (left) and pass@32 metric (right) metric
during RLVR for the Qwen2.5-7B-Instruct model trained with DAPO-Math-17k dataset,
evaluated on the AMC and MATH-500 datasets.

4 CONCLUSION

In this work, we reveal that the clipping mechanism in PPO and GRPO induces biases on entropy,
thereby highlighting an overlooked confounding factor in RLVR. Furthermore, we demonstrate that
the entropy can be controlled by appropriately setting the clip-low and clip-high values.

Our findings open up several promising avenues for future research. One is to expand the theory
by relaxing the assumptions and filling in the theoretical gaps. Another is to empirically investigate
how clipping can be utilized to maximize performance. Notably, such performance optimization
may correlate with, but is not equivalent to, simply maintaining an appropriate level of entropy.
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A ANALYSIS OF POLICY GRADIENT: PROOF OF THEOREM 1

Here we present the proof for Theorem 1.

Proof. We first analyze the first-order Taylor expansion of entropy relative to logit change (Af; , =
9’;‘;1 - 9’;(1). This first step is closely inspired by Liu (2025). We can Taylor expand the entropy
with respect to Af:

H(OF]s) = H(0%|s) + (VoH(0"]s), AG) + O((A0)?)
The gradient of policy entropy is

VoH(b]s) = Vo (_EGN‘H'Q(“S) [log 779(“‘3)])
= —Eqmr,(|s) [Volog mg(als) +log mg(als) Vg log mg(als)]
= _EGNTFQ(-|S) [10g7r9(a|s)V9 log 7'&'9(CL|S)] .

Therefore, we have

(VoH(0"s),0"*! = 0") = = (Bqrrm,(|s) [log Tk (als) Vg log mg(als)], 0"+ — 67)
= _anﬂ'k(-\s) [log’nk(a|8) <v0 log ﬂ—k(a‘|s)7 9k+1 - 9k>]

dlog . (a
= —Eank(.‘s) logﬂk(a|5) Z A (9§+;/ - Qk )

s’€S,a’c A aes,’a/
Olog i (als

= - Z Ea~‘n’k('|8) |:10g 7Tk(a|8) : 601(/|):| (ef+(11’ - ek )

s’€S,a’c A shHa

01
= — Z (0’“,“ 9k ) a~7rk( B) log 7T/€(a| ) M
S5a 893/ a’

s’e€S,a’e A ’
©_ Z <9§,+al, - Qf,,a,) ygmey - mr(a]s) (1og T (a']s) — Bamry(-1s)[10g 7Tk(CL|S)])

s’eS,a’e A

where the final equation holds from the derivation below.

Olog my(als 0
an-rrk(<|s) IOg 7Tk(CL|S) : giem = ]EG.NTI']C(-|S) IOg Wk(a|s) Y as,a - IOg Z exp{as,a}
805170/ 895/,a/ aeA
= an'frk(~|s) [IOg T‘—k(a’|s) . 1{3:5/} . (1{a:a’} - Wk(a/‘s))]
=1y Eoory(gs) [logmi(als) - (Ljamary — mi(d’]s))]
= 1(s=y - [mi(d’|s) log my(a']s) — mx(a]5) - Eqmry (-1s) [log T (als)]] -

Hence, we obtain the first-order Taylor expansion of policy entropy:

H(9k+1|s) —’H(Ok'|s) = —Eqmry(-]s) [(9k+1 Gfﬁa) (log mr(als) + ’H(Gk|s))] +(’)((A9)2). 9)
For our next step (and this is where the technical novelty of our analysis begins), we express the
logit change A# in terms of clipping events. Consider the clipped surrogate objective

T

Z Tt7At

t=0

j(e) =Ezop Y~Tora (-

7o (Ytly<e,x)
Totd(Ytly<e,x) "
since mg(als) is a function of 6. 5, C(ry, A¢) is a constant with respect to 65 , unless s = (Y, ).

where r; = Now we compute the partial derivative of 7 (6) over each 6, ,. Here
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Therefore

) 1 0
89‘5@ j(o) = E]JN'D,TNTFOld(‘ll'),A ?Wsa Z Cs(rta At)
= EZN'D TNTrDld( T 89 S}C (Tta At)

9
= Eon yonmora(ly<e,e), Ao [Kkﬂ7ﬂ89 CU%AJ

0

aTmCE(r(s, a’), A)}

= d™(s) x Eo/mora(-ls),A [

where d7°!4 () is the state-visiting probability under the policy 7,;4. Thus we can write

_9
aas,a

1 0
drea(s) 90% ,

\7(9) - Ewa,a’Nﬂ'O;d(-\s),A |: CE(T(57 CL/), A):|

0

0. C-(r(s,a’),A) | A< O}

0
=P(A > 0)Eq/ o, [39 Ce(r(s,a’),A) | A > O} +P(A < O0)Eqr, u(]s),4 [
0

WCE(T‘(S,(LI),A) |A>0,1—¢e<r(s,d) <1 +5}

=P(A>0,1—¢c<r(s,a) <1+&)Egr,,u(ls),A [

C-(r(s,a’),A) | A>0,1+e< r(s,a')}

0
P(A>0,14¢<r(s, al))Ea’Nﬂozd('ls)aA {89

IP(A > 0,0 < ?"(57 a') <1-— E)Ea’Nwold(-|s),A |:89605(7’(S’ a/), A) | A> O, 0 < T'(S7 a') <1-— €:|
P(A<0,1—e<r(s,a') <1+e)Eyr,,. L%? C.(r(s,a’),A) | A<0,0<r(s,d) <1 —6]
P(A<0,1+¢e<7r(s,a)Eqrm,u(|s) [896’ Ce(r(s,a’),A) | A<0,1+¢e<r(s, a’)}

P(A<0,0<r(s,a) <1—e)Eaiun,u(|s),A [ Co(r(s,a’),A) | A<0,0<r(s,a')<1— 5]

9
00, 4

+ IP)(A = O)Ealwﬂ.old(.‘sLA [ CE(T(87(1/)7 A) ‘ A= 0]

9
00, 4

=PA>0,1—¢e<r(s,d) < 1+5)]Ea’~7rom(~|s),A[ a)-A|A>0,1—¢e<r(s,d) < 1+5}

9 s
895,@ ’

IP(A > 07 1+e< T(Sv a,))EU/Nﬂ-old("S)7A |:808 (1 + 5) A | A > 0, l+e< 7’(5, a,):|

P(A> 0,0 <r(s,a’) <1—e)Epr,,u r(s,a’)-A| A>0,0<r(sa) <1—6:|

0
0.4

P(A<0,1—e<r(s,a') <1+€)Eur,,ucls r(s 7a’)~A|A<O,1—5§7‘(s,a’)<1+<€]

B
9050

/ 8 / /
P(A<0,1+e<7(s,a)Ewmm,a(s), [% ma%A|A<&1+e<M&aﬂ

0
P(A<0,0 <r(s,a’) <1—€)Euom,u(ls [30 (1-¢)-A]A<0,0<r(s,d') < 1—5]
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Note that A is independent of 74, and that E[A] = 0. Denote E[A|A > 0] = u = —E[4]A < 0]
and P(A > 0) = P(A < 0) = v. Then the symmetric terms cross out, resulting in

0
005

s

J0) =P(A>0,0<7(s,0) <1—=¢6)Equn,u(ls)A [ (s,a)-A] A>0,0<r(s,a) <1 —5]

o r
;4
0
+P(A<0,14+¢<r(s,a)Equn,u(ls),A 8TT(S7G) CA|A<O0,14¢e<7r(s,a)
0
=P <r(s,a) <1—¢)Equr,u(|s) 8Tr(s,a) |0 <r(s,a)<1l—¢

— pP(1 4+ <7(s,0))Eqmrmyiu(ls) { (s,a) | 14+e <r(s, a)}

9.,
00, 4

Recall that with r (s, a) = ”"(“‘SS)), the probabilistic events corresponding to clipping are denoted

as: Tora(al
Xi(s) ={a € A(s) | re(s,a) <1 —€low}
Yi(s) = {a € A(s) | ri(s,a) > 1+ enign }-

Then the above expression simplifies into

0
0054

0 ( i (d’|s)

JO%) = pvd™ ' (8)Eqr o a(-1s) {89 m)(lxk(s)(a’) _ 1yk(s)(a/))

where 1o(x) is the indicator function of set C. Note that the derivative of 7(als) =
exp(0s,a)/ D gen €P(0s,ar) = exp(0s,q)/Z w.rt. 0 is

exp(0s o exp(20s o .
dmg(a'ls’) li=sy - ( p(Z e) _ p(Zz : )) ifa =a
es,a —1{5251} . (78)([)(95;;-98,(1/)) if a’ 7é a

eXp(as,a) exp(os,a + es,a/)
= Lie=sy - (1{a':a} A 7 )

=1ys=s) - (1{a':a}779(a|8) — mo(als) 'We(a/|$)>

= 1q—s} mo(als) (1{a/:a} - 7T9(a’|8))

Hence,
0 & ' 7 (als) i (a’|s) , ,
= Mo E,, 1, n—m"— — _— 1 -1
805@‘7(0 ) = pvd ™ (8)Egror,u(-)s) {afa}%zd(a’Is) m(a|s)7r01d(a,|s) (Ix,(s)(a") = Ly, (s (a"))

= N’Vdﬂ-om(s) Z [(1{a=a’}7rk(a‘5) - ’/Tk(a/|8)) (1Xk(s) (a/) - ]-Yk(s)(a/))}
a’€A(s)

— ™14 (s) [ (als) (L, (al3) — Ly 5)(@)) — 7 01) By oy (L (9)(@) = Ty (@)
= pvd™(s) - mi(als) [hr(als) = Eqrmmy(s)hi(@]s)]
where we define hi(als) = 1x,(s)(a) — Ly, (s)(a).

Recall that as we are assuming gradient descent updates, we update the logits via the policy gradient
with respect to the clipped objective

95,—;1 - 9?(1 j(ek)a

1 0.,
obtaining the following logit change formula.

Ot — 080 =y ™) my(als) (h(als) = Eqrom, (1) hi(@]s))
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Now we can plug this this back into equation 9. By direct calculation, we conclude our proof.
H(OM|s) — H(6"]s)
~Earm, (s [(058" = 65 ,) (log mi(als) + H(0"]s))] + O((A6)?)
= — v A7 (8)Eqrrm, (1) [T(als) (hre(als) = Eorary (1) [k (a']5)]) log Ty (als) + H(6"]s)] + O(n?)
= —pwn d™(s) [Ewrk( 1) [ (als) log mi (als) A (als)] + Eamm, (1) [Tk (als) bk (als)]H (6" |s)
[Tk (als) log mi(als)|Eqmr,(.s) [P (als)]
= Earorm, (1) [Tk (0l 8) Ean, (1) [ (al)]H(0%|5) | + O ()

Eonmy(-1s)

= —pvn d™(s) {kaEaNﬁk(.|Xk(s))[Wk(a\s) log m (als)| Xk (8)] = @rEamm, (|vi(s)) [Tr(als) log Tx(als)| Y (s)]
+ P () Eamr, (10 () (T8 (a]8)| Xk () H(0%[5) = @hBarm, (v (s)) [Tk (a]5) Vi () H(6F]5)
— Pk(5)(8) Bamrmy (-15) [ (al 8) log Tk (als)] + Eqmry (-15) [ (al )| H (6" ]5))
+ @1 (8) (B, (1) [Tk (a]5) log T (a])] + B, (1) [Tk (al )] (6% ]s)) | +O(°)

= pvn d™ (s) (pr(s)(E[Q(a, 5)] — E[Q(a, )| Xi(s)]) — ai(s)(E[Q(a, 5)] — E[Q(a, 5)[Yi(s)])) + O(n?)
where we define pi(s) = anIE(.p)(Xk(S))’ qr(s) = aNWI,ED(.\s)(Yk(S))’ and Q(a,s) =
mi(als)(log 7k (als) + H(6"]s)). 0

B ANALYSIS OF NATURAL POLICY GRADIENT: PROOF OF THEOREM 2

Here we present the proof for Theorem 2

Proof. We first obtain the first-order Taylor expansion of policy entropy relative to the policy change
A = my1(s) — m(s) = (Trr1(als) — mr(als))aea(s). The prior work Cui et al. (2025) has
carried out analyses similar to this first step.

H(m1ls) = H(mels) = (mrsa(s) = mi(s), VaH(mls)) + O(||Ax]|?)

9 2
— GEZA%S)(TFk—&-l(aS) — Wk(a‘s))awk(ab) (—7r(als) log mx(als)) + O(||Ax||?)
== Y (mrs1(als) — mi(als))(log mx(als) + 1) + +O(||Ax||?)
acA(s)
== Y (mrsi(als) — mi(als)) logme(als) = > (msa(als) — mi(als)) + O(||Ax[f?)
a€A(s) acA(s)
=— mrra(als) og mi(als 7||?
~ Fuemscro [ () - 1 togmgals)| + olanl) o)

For our next step (and this is where the technical novelty of our analysis begins), we express the pol-

icy ratio ”fr:(lé"ls‘)s ) in terms of clipping events. As we are using the natural policy gradient algorithm,

the policy is updated as

mira(als) _ exp (7Y x(afs) T (k)
7 (als) Darca(s) Th(d]s) exp (NVr(ar1)T (k)

where J is the clipped surrogate objective

j(ﬂ-) = EIND,UNTFOZd (+|z),A

1 T
T Z Ca Tt, At
t=0
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with ry = % Now we can simplify this as
0
=E ~D, T~ |z C 7A
Fr(als) ) (™) = Banpanmatiaa | 7 87r Z (re. Ay
=Eop, romoa(l2),4 Z aw Li(yer,o)=s} Lyi=a} Ce(re, At)
0
= EwN’D,ytwwold(‘|y<t,m),At 1{(y<t,$):s}mcs(rta Af)

0
(als)

= d™(s)moa(als) x E4 |:a7r(aa|s)cs(7“(8, a)»A):|

= JTold (3) X Egror o1a(-]s), A |:1{a '=a} AT p C. (7‘(8, a’)’ A):|

where d7°!4 () is the state-visiting probability under the policy 7,;4. Now expanding C.(r, A) as
Ce(r,A) =1a>0-A-(r- Liciye +(146) - Lisage) +laco- A (- Lisi—e + (1 —€) - Lrci—)

we have

(%anca(r(s,a), A)} =Eq |:1A20 A (1r<1+6 : 37325)> +1laco-A (1r>1—5 : 697;?(;3))}

:IP’(A>0)-EAK1T<HE)>~A‘A>O] +P(A<0)-]EAK1T>1€)> -A‘A<o}

Toa(als E—
- %{(1 — 1y (a)) — (1= 1x(5)(a)}
R Q) — "
N szd(als)(lx(S)( ) = 1y(s)(a))

Therefore we have

8 T,
Wﬂ(@) = pvd™(s5)(1x, (s)(a) — 1y, (s)(a))
and therefore the logit change can be written as
7Tk+1(a|5) ehrnd™eld (s)(1x, () (@) =Ly, () ()

mr(als) e e Th(als)err 1t ) Axi (0= o (@)

Now we can plug this this back into equation 9.

M1 19)-H(mals) = ~Banm i | (Y 1) g mu(als)| + O(1a1)

ehvnd™old (s)(1x, () (@) =1y (o) (@)

. 2
~Barmi(ls [(Z CA(s) i (a|s)err a1 (5)(x,. (o) (@) =1y, () (@) 1) logm(als)| + O(|Am(]%)

Here notice that

Z 7rk(a‘s)euwzcl”old(S)(lxw>(a)fly,c(s)(a)) - 6uund”0ld(8)p(Xk) + ewvnd"old(S)p(Yk) + (1 —P(Xy) — P(Y))
acA(s)

=7k (s)

, in other words this is a quantity determined soley by the portion of actions under s that clip-highed
and clip-lowed. Thus denoting this value as Z*(s), we can simplify this equation as:
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etwndTeld(s) _ 1

755) Eqrry(-1s)[log T (als)| Xk P(Xk)

H(mrta]s) — Himels) ~ - (

1— e—/tund“ﬂld(s)

Zk(s) Eorry (15 [l0g T (als) [Yi]P(Yy) + (1 -

o)

Now applying again the second order approximation e**79™'*(s) — 1 =~ pund™(s),

e~ tnd o (s) _ 1~ —pumd™(s) , we can simplify this relation to
H(r15) = H(¥]s) & 6 (P(X0) Bamr 1y 108 T4l Xo] + H(EE1)) = PY) Earne 1 Hog mel¥i] + H(¥]5))

where /2 represents first order approximation over 7, and 6 = pvnd™!4(s). O

C EXPERIMENTAL SETTINGS AND ADDITIONAL EXPERIMENTAL RESULTS

C.1 EXPERIMENTAL SETUP

For the random reward RL training experiments, we used the GSM8K dataset as the traning dataset,
and conducted experiments with base models Qwen2.5-1.5B-Instruct (Yang et al., 2024)
and Llama-3.2-1B-Instruct (Grattafiori et al., 2024). For general mathematical reasoning
tasks, we train the Qwen2 . 5-7B-Instruct model with the DAPO-Math-17k (Yu et al., 2025)
dataset, and validate it on MATH-500 (Hendrycks et al., 2021), AMC23 (AI-MO), AIME2024,
and ATME2025 datasets (HuggingFaceH4). We also train Qwen2.5-3B-Instruct and
Llama-3-8B-Instruct model with the GSMS8K dataset, and validate it on the GSMS8K (Cobbe
et al., 2021) test dataset. For validation, we perform string match for the last numerical value for
GSMS8K test datasets, and use the Math-Verify (HuggingFace, 2025) package.

We use different training configurations for the GSM8K and DAPO-MATH-1 7k dataset, and separate
them with /. In Table 1, we provide the training and generation details for the experiments in the
paper. For all experiments, KL divergence loss or entropy regularization loss were not deployed.

Hyperparameter Value
Optimizer AdamW
Learning rate 5x1077/1x 1076
GRPO batch size 512
Optimizer batch size 256

Policy updates per rollout 16

Group Size 8

Max response length 4096
Temperature (train) 1.0
Temperature (validation) 1.0

Top p (train) 1.0

Top p (validation) 0.95
Dynamic Sampling None / True
Overlong penalty factor None / 1.0

Table 1: Training configurations used for GSM8K dataset / DAPO-Math~-17k dataset.

C.2 RANDOM REWARD TRAINING ACROSS DIFFERENT SETTINGS

To corroborate that the entropy minimization effect of random rewards with symmetric clip-
ping €low = Enigh 1S Not a model-agnostic result, we conduct the same experiment with three
base models from different model families. In the left panel of Figure 4, we present the nor-
malized entropy of models Qwen2.5-1.5B-Instruct, Llama3.2-1B-Instruct, and
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OLMo-2-0425-1B-Instruct during RL training. We normalize the entropy of each model
by the entropy of the base model. Due to slow convergence, we set epigh = €low = 0.1 for 01lmo2,
and eyjgh = €low = 0.2 for other models. One can clearly observe a decreasing trend for all three
models.

Further, we wuse different random sources for the rewards for RL training of
Qwen2.5-1.5B-Instruct model. We test three random sources from which we sample
the rewards: Bernoulli random reward with p = 0.3 (‘Bernoulli p = 0.3) and p = 0.7 (‘Bernoulli
p = 0.7) where reward 1 is given for probability p and O for probability 1 — p, and standard normal
distribution (‘Gaussian’) so that r ~ A(0,1). As in other experiments, we use the GRPO algorithm
with group size 8. In the right panel of Figure 4, one can conclude that entropy minimization is
implicitly performed during the RL training, regardless of the distribution from which the reward is
sampled.

C.3 ADDITIONAL EXPERIMENTS FOR LLAMA BASE MODELS

In this section, we provide further experimental results that validate our findings. Specifically, we
reproduce the main figures in the paper with L1ama base models. In Figure 8 (a), we conduct
random reward experiments with base model L1ama3.2-1B-Instruct. As in the case with
Owen-based models, we can clearly observe the opposite effects of upper and lower clip on policy
entropy. Figure 8 (b) shows results for the same experiments for nonrandom rewards, trained on
the GSM8K dataset with the L1ama3—-8B-Instruct model. This is associated with the result in
Figure 8 (c) where the performance and pass rate estimated with £ = 8 for different clipping settings
are presented. We can again observe that RLVR proceeds and decreases entropy the pass@k rate
typically decreases. However, by aggressively utilizing clip-low configurations, the rate of pass@k
rate decreasing could be greatly mitigated without compromising the average reasoning ability.

C.4 ADDITIONAL EXPERIMENTS FOR DAPO-MATH—-17K TRAINING DATASET

Here, we present additional experimental results for Qwen2 . 5-7B-Instruct model trained with
the DAPO-Math-1 7k dataset. In Figure 9, we present the result of the clipping ablation experiment
observing the entropy dynamics. As expected, we can clearly observe the clipping bias on entropy.
In Figure 10, we further provide the validation results for the mean@32 and pass@32 metric.
Similar to other validation benchmark, deliberate clipping for increased policy entropy effectively
hinders exploration degradation throughout the training.
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Figure 8: Main experimental results with L1ama base models. Policy entropy change during RL
training with (a) random rewards for L1ama3.2-1B-Instruct and (b) general RLVR rewards
for Llama3-8B-Instruct model. For both random and nonrandom rewards, we observe a clear
trend of clip-low increasing entropy and clip-high decreasing it.
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Figure 9: Clip ablation study for the entropy dynamics of Qwen2.5-7B-Instruct trained on
the DAPO-Math-17k dataset.
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Figure 10: Performance measured by the mean@8 metric (left) and pass@8 metric (right) metric
during RLVR for the Qwen2.5-7B-Instruct model trained with DAPO-Math-17k dataset,
evaluated on the ATME 2024 and AIME 2025 datasets.
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