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Abstract001

One of the most reliable ways to create deploy-002
able models for specialized tasks is to obtain an003
adequate amount of high-quality task-specific004
data. However, for specialized tasks, often005
such datasets do not exist. Existing methods006
address this by creating such data from large007
language models (LLMs) and then distilling008
such knowledge into smaller models. How-009
ever, these methods are limited by the qual-010
ity of the LLMs output, and tend to gener-011
ate repetitive or incorrect data. In this work,012
we present Retrieval Based Distillation (Re-013
Base), a method that first retrieves data from014
rich online sources and then transforms them015
into domain-specific data. This method greatly016
enhances data diversity. Moreover, ReBase gen-017
erates Chain-of-Thought reasoning and distills018
the reasoning capacity of LLMs. We test our019
method on 4 benchmarks and results show that020
our method significantly improves performance021
by up to 7.8% on SQuAD, 1.37% on MNLI,022
and 1.94% on BigBench-Hard.023

1 Introduction024

How can we effectively obtain high-quality mod-025

els for specific tasks? Large Language Models026

(LLMs) have shown impressive generalization abil-027

ities and can, to some extent, perform specific tasks028

using only the task instructions and few-shot in-029

context examples (OpenAI, 2023; Bubeck et al.,030

2023; AI@Meta, 2024). However, these models031

can contain tens or hundreds of billions of param-032

eters, making them computationally expensive to033

use in practice, and in many cases these models034

underperform smaller models fine-tuned on task-035

specific data (Mosbach et al., 2023; Viswanathan036

et al., 2023a; Bertsch et al., 2024). One bottleneck037

to creating such fine-tuned models is the lack of038

large corpora of task-specific data (Villalobos et al.,039

2022; Zhao et al., 2024a). Therefore, a key issue for040

this problem is how to obtain adequate high quality041

data that meets the user’s need. Recent works have042
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Figure 1: Motivation of ReBase. Previous methods ei-
ther uses manually annotated data or LLMs to generate
synthetic data. This is either too costly or lacks diversi-
ty/quality. ReBase retrieves data from existing examples
then uses an LLM to create new domain-specific data
based on the retrieved content.

used distillation from LLMs to generate synthetic 043

training data (Ye et al., 2022b,a; Gao et al., 2023; 044

Jung et al., 2024; Viswanathan et al., 2023b; Yu 045

et al., 2023a; He et al., 2023; Hu et al., 2024; Hon- 046

ovich et al., 2022; Xiao et al., 2024; Chen et al., 047

2024; Yu et al., 2023b; Wang et al., 2023a; Zhao 048

et al., 2024b). These methods use the user’s instruc- 049

tion and a small number of in-context examples as 050

the prompt to let LLMs generate labeled, domain- 051

specific data. These data are then used to finetune 052

the models to be deployed. Such methods have 053

shown potential to improve a small model’s ability 054

to follow a specific set of instructions. However, 055

these methods often suffer from diversity issues: 056

the generated examples tend to be very similar, re- 057

ducing performance of the fine-tuned models (Ye 058

et al., 2022b,a). In response to these challenges, 059

we propose Retrieval Based Distillation (ReBase). 060

As shown in Figure 1, ReBase is a framework that 061

first retrieves data from an abundant and reliable 062

labeled data source, then transforms them into the 063
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content and format necessary for the user’s task.064

This data is then used to train a domain-specific065

model. Initially, ReBase scrapes online data and066

encodes them into a large datastore. Then, ReBase067

uses the user’s instruction and the user’s provided068

examples to retrieve the most relevant items from069

the large datastore. Finally, using an LLM, ReBase070

transforms the retrieved data point into a data that071

contains a query and an answer field for the spe-072

cific task, this includes transforming the content073

and transforming the format. Different from previ-074

ous methods, ReBase can effectively retrieve data075

from multiple dataset sources, enhancing the data’s076

content diversity and avoids the issue where one077

or a few datasets do not contain sufficient informa-078

tion to fulfill the task’s requirements. Moreover,079

ReBase adds a Chain-of-Thought transformation080

phase (Wei et al., 2022) where the LLM transforms081

the output into a step-by-step reasoning. This en-082

ables the small model to be trained on the reasoning083

generation by the large model, which is especially084

useful for reasoning tasks (Suzgun et al., 2022).085

We test ReBase on a variety of benchmarks,086

including the BBH (Suzgun et al., 2022) bench-087

mark, the MNLI (Williams et al., 2018) benchmark,088

SQuAD (Rajpurkar et al., 2016), and MCoNaLa089

code generation (Wang et al., 2023b). We found090

that ReBase improves the performance on BBH091

for 1.94%, on SQuAD for 7.8%, and on MNLI092

for 1.37% over previous methods. Our method093

suggests the benefit of using data retrieved from094

multiple sources to train a specific model.095

2 Problem Formulation096

We formulate the problem as follows: Input: The097

input contains an instruction of a task and few-shot098

examples. Output: The output contains a new099

dataset with the field (query, answer) that could be100

used to directly finetune a model. It also contains101

a task-expert model trained for this task. Objec-102

tive: Our high-level objective is to generate a high-103

quality dataset that effectively boosts a model’s per-104

formance on this task. Specifically, we assume that105

we have access to the abundant existing datasets on-106

line and access to LLMs. Our goal is to effectively107

harness the ability of LLMs and use the rich con-108

tent of the existing datasets to create a high-quality109

dataset for the new task. Then use this dataset to110

train a task-expert model.111

3 Method 112

In this section, we introduce the steps of Re- 113

Base: datastore construction, datastore retrieval, 114

and dataset transformation. An overview of our 115

method pipeline is shown in Figure 2. 116

3.1 Datastore Construction 117

Our datastore construction process begins with 118

collecting datasets from Hugging Face Datasets 119

(Lhoest et al., 2021), which consists of over 75,000 120

datasets. A Hugging Face dataset contains a dataset 121

description that describes the purpose of the dataset. 122

It also contains multiple rows entries and columns. 123

Each row represents a data entry, and each column 124

represents a specific attribute of that data entry. (eg. 125

row_id, content, source_url, label) 126

For each row in these datasets, we do not di- 127

rectly encode the entire row entry because some 128

attributes are redundant and may introduce noise 129

(eg. attributes such as row_id or url are often not 130

useful.) Instead, we encode each column separately. 131

Specifically, for the jth row entry in dataset i, we 132

iterate through each column c in the row entry and 133

encode it into a vector: 134

vi,j,c = Encode (column_value) . 135

This vector has a unique identifier in the format: 136

{dataset_id, row_num, col_name} 137

We then add the key-value pair ((i, j, c), vi,j,c) to 138

the datastore. Additionally, for each dataset i, we 139

encode its corresponding dataset description: 140

vi = Encode (dataset_description) . 141

This value is identified by the dataset id i. We put 142

the key-value pair ((i), vi) into the datastore. 143

3.2 Datastore Retrieval 144

In the datastore retrieval phase, our goal is to find 145

relevant data across the different datasets. This pro- 146

cess involves several steps to ensure the selection 147

of the most relevant data. 148

First, we encode the user-provided instructions 149

into vI using the same encoder used for the datas- 150

tore. Then, we encode the user-provided examples. 151

Each example should contain two fields: The query 152

q and the answer ans. We encode them separately 153

into vq and vans. 154

Then, for each item vi,j,c in the datastore, we 155

compute a cosine similarity between vq and vi,j,c 156
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1. Datastore Construction 2. Data Retrieval 3. Data Transformation

Multiple 
Datasets

Single 
Encoded 

Datastore

Instruction: Given a Japanese Instruction, 
write a python code.

Example: Input:データベースの設定を表示する
Output:print(settings.DATABASES)

Retrieved Data:
1. {‘dataset_id’:‘mbpp’,‘config_id’:‘sanitized’,‘row_id’:‘2’}

“Write a function to reverse words seperated by spaces 
in a given string.”, "def reverse_words(s):\n return ' 
'.join(reversed(s.split()))”

2. {‘dataset_id’: ‘mbpp’,‘config_id’:‘sanitized’,‘row_id’:‘26’}
…

LLM 
Transformer

Transformed Data:
1. {Input: “以下は、与えられた⽂字列内の
空⽩で区切られた単語を逆順にする関数
です”, Output: "def reverse_words(s):\n 
return ' '.join(reversed(s.split()))”}

2. …

Figure 2: Pipeline of ReBase. First, ReBase iterates over a large number of datasets available on Hugging Face
Datasets and encodes each item in this datasets to build a large datastore. Then, ReBase uses the instruction and
few-shot examples provided by the new task to retrieve the relevant items from the datastore. Finally, ReBase uses
an LLM to generate new data for the target task from the retrieved data.

to obtain a query score S(i,j,c)
query for the item (i, j, c).157

Similarly, we compute a cosine similarity between158

vans and vi,j,c to obtain an answer score S(i,j,c)
ans159

for the key (i, j, c). If the user provides multiple160

examples, denote Qquery and Qans as the sets of161

encoded vectors for all user-provided query and162

answer examples, respectively. Then, for each item163

vi,j,c in the datastore, the query and answer scores164

for the key (i, j, c) are calculated as:165

S(i,j,c)
query =

1

|Qquery|
∑

q∈Qquery

cos_sim(q, vi,j,c)166

S(i,j,c)
ans =

1

|Qans|
∑

q∈Qans

cos_sim(q, vi,j,c)167

Next, for each row (i, j), we define the query168

score and answer score for the row entry as the max-169

imum query and answer scores across all columns:170

S(i,j)
query = max

c
S(i,j,c)

query171

S(i,j)
ans = max

c
S(i,j,c)

ans172

Additionally, for each dataset i, we calculate173

a dataset score based on the cosine similarity be-174

tween the encoded dataset description vi and the175

encoded task instruction vI :176

S(i)
dataset = cos_sim(vi, vI)177

The final score for each row (i, j) in the datas-178

tore is calculated as the average of its query score,179

answer score, and dataset score:180

S(i,j)
final =

1

3
(S(i,j)

query + S(i,j)
ans + S(i)

dataset)181

Finally, we sort all rows (i, j) based on their fi- 182

nal scores in descending order and select the top N 183

items with the highest scores. Using the selected 184

(i, j) identifiers, we query the original jth row in 185

dataset i and retrieve the original rows entry con- 186

taining all the columns. This approach ensures that 187

the selected data is highly relevant to the user’s 188

task, considering both the alignment on the user 189

provided examples and the overall dataset context. 190

3.3 Data Transformation 191

After retrieving the relevant data, we employ a 192

large language model (LLM) to transform the data 193

into a format and content suitable for the spe- 194

cific task. This transformation process includes 195

the following steps: 1. Salient Field Classifica- 196

tion: The LLM identifies the relevant fields in 197

each retrieved row based on the domain-specific 198

requirements. 2. Content Adaptation: The LLM 199

transforms the content to align with the target do- 200

main, ensuring it meets the specific needs of the 201

task. 3. Chain-of-Thought (CoT) Generation: 202

For reasoning-intensive tasks, the LLM generates 203

outputs using CoT, providing detailed step-by-step 204

reasoning to enhance the quality and accuracy of 205

the transformed data. 206

In our experiments, we use Claude 3 Haiku (An- 207

thropic., 2024) as the LLM underlying the dataset 208

transformer due to its competitive performance / 209

cost tradeoff. The detailed prompt used to instruct 210

the LLM is provided in the Appendix B. For tasks 211

that require complex reasoning, such as the BIG- 212

Bench Hard tasks, previous works have shown that 213

Chain-of-Thought (CoT) (Wei et al., 2022) reason- 214

ing can greatly improve the model’s performance 215
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BBH-Snarks

Retrieved Row Item: "{'dataset_id': 
'hate_speech_portuguese', 'row_id': '520’}”

Retrieved Row Content: { "text": "@mdaring Não 
importa. Pode colocar no outro exemplo uma crítica 
tb q não fale de 'vitimismo' que dá no mesmo. ”
(English translation: “@mdaring It doesn't matter. In 
the other example, you can also put a criticism that 
doesn't talk about 'victimism' which amounts to the 
same thing”), "label": "no-hate"}

Re
tr
ie
ve
d

Query:  Which statement is sarcastic? Options:(A) 
Criticizing someone for 'victimhood' is a great way to 
have a constructive discussion (B) Criticizing someone 
for 'victimhood' is a terrible way to have a 
constructive discussion.

Answer: Let’s think step by step. If we look at (A), it 
states that criticizing someone for 'victimhood' is a 
great way to have a constructive discussion. […]
The answer is (A).

Tr
an

sf
or
m
ed

Figure 3: Examples of ReBase transformations on
BBH. In the data transformation stage, ReBase takes
in the original full row of the retrieved data and use
the content to generate a new data with the field query
and answer. The LLM need to identify the necessary
fields in the row. For the BBH task, the transformation
contains chain-of-thought reasoning.

on reasoning tasks (Suzgun et al., 2022) and fine-216

tuning on CoT data can further boost the reasoning217

ability (Chung et al., 2024) and can distill the rea-218

soning capacity in LLMs to smaller models (Ho219

et al., 2022). Therefore, we leverage Chain-of-220

Thought generation. For these tasks, we prompt221

the LLM to generate a CoT reasoning followed222

by the final for the answer part instead of directly223

generating the final answer. The generated CoT224

data is then used for further training to improve225

the downstream model’s performance as well. We226

demonstrate the transformation process in Figure227

3. Our transformation approach ensures that the228

transformed data is tailored to the new task in terms229

of both content and format and can be directly used230

for further finetuning. This process also incorpo-231

rates the reasoning process of LLMs and distills232

such reasoning capacities to the task expert model.233

4 Experiments234

In this section, we present our experiment settings,235

experiment results, analysis, and ablations.236

4.1 Experiment Settings237

Datasets The datasets we used in this work in-238

clude: (i) MultiNLI (MNLI) (Williams et al.,239

2018) to test the method’s performance on tradi- 240

tional language understanding. (ii) SQuAD (Ra- 241

jpurkar et al., 2016) to test on reading compre- 242

hension. (iii) MCoNaLa (Wang et al., 2023b) 243

Japanese-to-Python subtask to test on generating 244

code from multi-lingual natural language intents 245

with no task-specific annotated data available. (IV) 246

BIG-Bench Hard (BBH) (Suzgun et al., 2022) to 247

tests on highly challenging reasoning tasks. We re- 248

port ChrF++ (Popović, 2015) score for MCoNaLa 249

following (Viswanathan et al., 2023b). For MNLI, 250

we report accuracy. For SQuAD, we use exact 251

match metric and F1 metric in (Rajpurkar et al., 252

2016). For BBH, we use the evaluation script 253

from (Yue et al., 2023) to report the accuracy. 254

Baselines (1) Prompt2Model (Viswanathan 255

et al., 2023b) This method retrieves a model from 256

Hugging Face, then finetunes this model using 257

both synthesized and retrieved datasets (without 258

transforming the latter). (2) Synthesized Data We 259

use the dataset generation method described by 260

Prompt2Model to obtain synthesized data and use 261

it to finetune a LLM. This generation process uses 262

dynamic temperature and prompt sampling to in- 263

crease the synthesized data’s diversity and demon- 264

strates impressive data synthesize ability. (3) Zero- 265

Gen This method uses pretrained LLMs to directly 266

generate datasets under zero-shot setting. (4) Few- 267

Shot Prompting For this, we directly prompt the 268

pretrained LLM with few-shot examples without 269

any finetuning. We report Claude Haiku which is 270

used as our dataset generator and transformer. We 271

also report GPT-4 as a strong upper bound model. 272

We provide more experiment implementation de- 273

tails in Appendix D 274

4.2 Results 275

Quantitative Results We present our main re- 276

sults in Table 1. For MNLI, BBH, SQuAD, and 277

MCoNaLa ReBase outperforms the data synthe- 278

sis method by 1.37%, 1.94%, 7.8%, 1.2% respec- 279

tively. Specifically on BBH, ReBase outperforms 280

by 1.39% on the BBH-NLP split and 2.37% on 281

the BBH-Alg split. On the question answering 282

benchmark SQuAD, ReBase outperforms synthe- 283

sized method by 7.8%. These results demonstrate 284

the ReBase’s effectiveness by retrieving then trans- 285

forming the data compared with directly generating 286

all the data using LLM. 287

Qualitative Results We present the qualitative 288

results in Figure 4 to demonstrate the data obtained 289
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Table 1: Main quantatitive results. We test on the MNLI, MCoNaLa, SQuAD, and BBH benchmarks. We also
report the BBH-NLP and BBH-Algorithm which contains different subsets of BBH. We found that training on
ReBase transformed data attains the best performance across theses tasks.

Model Data MNLI MCoNaLa SQuAD(EM) SQuAD(F1) BBH BBH-NLP BBH-Alg

Retrieved Prompt2Model - 13.1 50.5 63.0 - - -
Claude-Haiku 3-shot Prompting 35.15 18.0 4.8 7.5 73.7 - -
GPT-4 3-shot Prompting 87.81 41.6 74.3 87.1 83.1 - -

Llama3-8B 3-shot Prompting 44.4 28.4 43.2 54.1 56.8 65.3 50.0
Llama3-8B ZeroGen 67.7 - 8.0 28.0 - - -
Llama3-8B Prompt2Model 72.9 37.0 50.3 63.1 65.0 68.1 62.5
Llama3-8B ReBase 74.3 38.2 58.1 71.7 66.9 69.5 64.9

through ReBase and the data obtained through syn-290

thesized method in the MCoNaLa benchmark and291

SQuAD benchmark. In MCoNaLa, the task is to292

generate data with a Japanese instruction as input293

and a corresponding python program as output. We294

found that ReBase outputs data samples that con-295

tains more programs with higher diversity and pro-296

grams that require more complicated reasoning pro-297

cess such as dynamic programming whereas syn-298

thesized method only gives simple instructions that299

require a few lines of codes. In SQuAD, the task300

is to generate data with a question and a context as301

input and an answer to the question as output. We302

found that ReBase greatly increases the question303

diversity in terms of content and creates questions304

that require more complicated reasoning where as305

the synthesized data only asks questions that are306

simpler, more well known, and more straightfor-307

ward. Interestingly, we found that ReBase does not308

increase the length of the context part in the data309

compared with synthesized data. We provide more310

results in Appendix F.311

4.3 Analysis312

Dataset Source One of the benefits of construct-313

ing the database is that the model can retrieve from314

multiple dataset sources to get the relevant items315

from each of them. To analysis how this effects316

the data for each task, we analyzed the number317

of different datasets in its retrieved data for each318

task. We present the result in Table 2. The re-319

sults demonstrate that all the tasks retrieves from320

at least 20 different dataset sources. MCoNaLa321

and SQuAD retrieves from more than 50 different322

datasets. BBH tasks retrieves from 35 datasets on323

average. MNLI retrieves from 20 datasets. We324

provide a more detailed analysis in Appendix A.325

Dataset Diversity Previous works have shown326

that synthesized data lacks in diversity (Ye et al.,327

2022a) and sometimes produces near-duplicate328

Benchmark # of Sources

MCoNaLa 67
MNLI 20
SQuAD 55

BBH (total) 35
BBH-NLP 36
BBH-Alg 46

Table 2: Dataset source analysis. The number of
unique datasets that ReBase retrieves from. Each bench-
mark above retrieves from at least 20 different datasets.

samples (Gandhi et al., 2024). We study whether 329

ReBase increases the datasets’ diversity. We follow 330

DataTune (Gandhi et al., 2024) to conduct diversity 331

analysis on MCoNaLa, MNLI, and SQuAD. First, 332

we calculate the uniqueness of the dataset sam- 333

ples on these three benchmarks. We use ROUGE- 334

L (Lin, 2004) to determine whether a sentence is 335

unique in the dataset (Wang et al., 2022). Specif- 336

ically, for a sentence s, if the ROUGE-L score 337

between s and every other sentence s′ is smaller 338

than a threshhold T , we decide this sentence to 339

be unique. In our experiment, we use the thresh- 340

hold 0.7. The results are shown in the Unique Per- 341

centage column of Table 3, we found that ReBase 342

significantly increases the percentage of unique 343

samples in the dataset compared with synthesized 344

data. The synthesized data yields less than 50% 345

of non-duplicate samples across the three bench- 346

marks, while ReBase results in more than 70% 347

non-duplicate samples across the three benchmarks. 348

We also calculate the average unique unigrams, and 349

unique bigrams per created example to measure the 350

lexical difference. The results are demonstrated in 351

Table 3. ReBase significantly increases the average 352

unique unigrams and bigrams. 353

Embedding Visualization We conduct embed- 354

ding visualization on SQuAD and MNLI to visual- 355

ize the datasets. We use MiniLM v2 (Wang et al., 356

2021) to encode each sentence and then project the 357

embeddings into a 2D space using t-SNE (van der 358
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MCoNaLa: Given a Japanese instruction, write code

配列`nums`の中にある重複する要素をす
べて削除する

SQuAD: Answer a question based on a context

(Remove duplicate elements in array `nums`)

Question: What is the largest mammal in the world? 
Context: Mammals are a group of vertebrate 
animals that are characterized by  […]

Answer: Blue whale

Question: On which river is the city that hosted the 1900 
Summer Olympics located?
Context: The 1900 Summer Olympics, officially known as 
the [..] were celebrated in Paris, France.

Answer: Seine River

Question: How many of the nine regions of England are 
surrounded by the waters of the Atlantic Ocean?
Context: The nine regions of England are […]

Answer: One

Question: What is the largest planet in our solar system? 
Context: The solar system consists of the Sun and 
everything that orbits around it, including planets […]

Answer:Jupiter

nums = list(set(nums))

配列 `A`, `B`, `C`から、それぞれ3つの要素を
選び、その合計が最⼩になるようにする
(Select three elements each from arrays `A`, `B`, 
and `C` so that their sum is the minimum)

def soln(A, B, C):
a, b, c = A[0], B[0], C[0]
min_sum = abs(a - b + \

abs(b - c) + abs(c - a)
for i in range(len(A)):
for j in range(len(B)):

for k in range(len(C)):
curr_sum = abs(A[i]- B[j]) + \

abs(B[j] - C[k]) + \
abs(C[k] - A[i])

if curr_sum < min_sum:
min_sum = curr_sum

a, b, c = A[i], B[j], C[k]
return a, b, c
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Figure 4: Qualitative Examples on ReBase (Transformed) compared to directly synthesized data (Generated).
ReBase outputs more diverse data while directly synthesized data tend to be simpler and replicate. In MCoNaLa,
ReBase generates samples that contains dynamic programming, counting, mathematical calculations whereas
synthesized dataset is limited to simpler commands such as printing or simple list operation. In SQuAD, ReBase
generates samples that contain diverse and harder logics whereas directly synthesized data asks simple facts.

Maaten and Hinton, 2008). The results are shown359

in Figure 5. We found that the data generated by360

ReBase are more widely scattered across the em-361

bedding space compared to the synthesized data,362

which have smaller coverage. Additionally, we363

observed that the total coverage of ReBase and syn-364

thesized data is greater, indicating the potential for365

further combining ReBase and synthesized data to366

create a more powerful dataset.
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Figure 5: Embedding Visualization on MNLI and
SQuAD. ReBase data is more widely scattered across
the embedding space compared to the synthesized data.

367

4.4 Ablations368

Ablations on Filtering We noticed that for some369

tasks that are not associated with very relevant370

documents in the datastore, the transformed data371

contains noise that may impair the data quality.372

Table 3: Dataset Diversity Analysis. ReBase signifi-
cantly promotes data diversity.

Task Method Unique Unique Unique
Unigrams Bigrams Percent

MCo
NaLa

Syn 0.56 0.36 25.90%
ReBase 1.85 1.99 75.42%

MNLI Syn 0.62 2.00 21.61%
ReBase 3.28 12.21 71.05%

SQuAD Syn 2.20 10.94 37.69%
ReBase 6.31 29.33 96.56%

Table 4: Ablation on data filtering. Filtering doesn’t
increase overall performance, suggesting that dataset
size, in addition to noise, also impacts performance.

BBH BBH-NLP BBH-Alg MCoNaLa

Filtered 65.71 69.15 62.96 37.24
ReBase 66.90 69.45 64.85 38.24

Training on such data may reduce the performance 373

and make the model underperform the pretrained 374

model. Therefore, we conduct experiments on us- 375

ing an LLM as a filterer and filter out the data that 376

doesn’t comply to the format or contains irrelevant 377

noise in the content. The detailed prompt used to 378

instruct the LLM is provided in the Appendix B. 379

We use GPT-3.5-turbo as the filterer and then use 380

the filtered data to train Llama3-8B on the 27 tasks 381
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Figure 6: The bars represent the percentage of remaining data after filtering for each BBH task. The shaded area in
the figure indicates the range of pretrained scores, transformed scores, and filtered data training scores for each task.
The full names of the abbreviated task names are in Appendix E

on BBH and MCoNaLA, the results are shown in382

Table 4. We found that filtering doesn’t increase383

the overall performance on BBH and MCoNaLa.384

While filtering can enhance performance on certain385

tasks where training on ReBase harms performance,386

it decreases performance on others. Such perfor-387

mance drop is potentially due to the decrease in388

dataset size. Figure 6 shows the percentage of re-389

maining data after filtering for each BBH task and390

the effect of filtering on the scores. We provide391

details on filtering in Appendix C.392

Ablating on Data Size In our experiments, we393

use a data size of 1k for both ReBase and synthe-394

sized data. In this experiment, we study the effect395

of data size by varying the amount of data we use396

to train the model. Specifically, we vary the data397

size by 200, 400, 600, 800, and 1000 and then test398

on BBH. For experiment on dataset size K, we use399

the retrieved data with the top K highest scores. We400

report the results in Table 5. The results show that401

using 1k data achieves the best performance. In402

general, scaling up the dataset size enhances the403

performance. This highlights the importance of404

obtaining adequate data for a given task.405

Ablating the Data Generation Model In out ex-406

periments, up to this point we have mainly used407

Claude 3 Haiku (Anthropic., 2024) for the trans-408

formation and data synthesis. In this experiment,409

we test the effect of using a different, more ex-410

pensive model, GPT-4, instead. We use data size411

1k for MCoNala and 200 for BBH and report the412

Table 5: Ablation on dataset size. Generally, increas-
ing the dataset size boosts performance, suggesting the
importance of obtaining adequate data for a task.

Data Size BBH BBH-NLP BBH-Alg

200 59.19 61.17 57.60
400 64.70 68.36 61.76
600 62.40 65.36 60.03
800 65.65 68.52 63.36
1000 66.90 69.45 64.85

performance in Table 6. For MCoNaLa, interest- 413

ingly, GPT-4 significantly outperforms Haiku with 414

synthesized data, but with ReBase the gap closes 415

significantly, demonstrating that ReBase may al- 416

low more computationally efficient models to serve 417

as teachers for data distillation. In fact, Haiku 418

with ReBase outperforms GPT-4 without ReBase, 419

at nearly two orders of magnitude less cost. For 420

BBH, we found that GPT-4 with synthesized data 421

outperforms ReBase whereas when using Claude 422

3 Haiku, synthesized data underperforms ReBase. 423

This shows that ReBase may be useful to better 424

unleash the CoT reasoning ability of cheaper mod- 425

els, but less effective in further promoting the CoT 426

reasoning of expensive and powerful models. 427

Ablating on Retrieval Score We provide abla- 428

tion analysis on the retrieval method. In ReBase, 429

we use the average score of the input, output, and 430

dataset similarity. In this ablation, we tried to (1) 431

use the dataset score only and (2) use the average of 432

the output score and the input score. The result is 433
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Table 6: Ablation on LLM used during transforma-
tion. Using GPT-4 boosts performance for both meth-
ods, but also costs 100 times more than Claude-3-Haiku.

GPT-4 Claude3-Haiku
Method Acc Cost Acc Cost

MCo-
-NaLa

Syn 37.88 $9.53 36.98 $0.11
ReBase 38.48 $8.03 38.24 $0.11

BBH Syn 65.43 - 57.22 -
ReBase 64.95 - 59.19 -

shown in Table 7, we found that using the average434

of the three scores attains the best performance.

Table 7: Ablation on retrieval method. Retrieving
with all the three scores attains the best performance.

Dataset Score Input-Output Score ReBase

MCoNaLa 19.20 24.30 38.24

435

Ablating on Chain-of-Thought We con-436

duct ablation experiment on CoT by running437

Prompt2Model with CoT synthesized data (etc.438

using both directly retrieved data and also syn-439

thesized CoT data) and running ReBase without440

CoT. The result is shown in Table 8. We found441

that Prompt2Model with CoT under-performs442

ReBase, this is likely due to that for BBH tasks,443

the retrieved data have a large domain gap with444

the target task, and using directly retrieved data445

would introduce noise in the training phase, thus446

reducing the performance. ReBase without CoT447

underperforms the other methods with CoT. This448

aligns with previous findings that CoT distillation449

helps performance on BBH reasoning tasks. It also450

suggests that ReBase is compatible with the CoT451

distillation method.452

Ablating on Domain Gap We conduct exper-453

iment on introducing different levels of domain454

shifts. On MCoNaLa, we manually delete the top-1455

and top-2 relevant datasets (the dataset with the456

highest dataset score) during retrieval. The result is457

shown in Table 9. We found that the performance458

drops as the domain gap increases, suggesting that459

it is easier for the model to transform data from460

similar domain into the target domain.461

Table 9: Ablation on Domain Gap. We found it is eas-
ier for the model to transform data from similar domains
into the target domain.

All Domain Del Top 1 Del Top 2

MCoNaLa 38.24 36.71 35.14

Table 8: Ablation Results on CoT. We compare ReBase
w/ and w/o CoT with Prompt2Model on 3 BBH tasks.

Method Boolean Expr. Date Und. Obj. Count.

ReBase w/o CoT 68.0 - -
P2M w/ CoT 83.2 53.2 57.6
ReBase w/ CoT 94.0 77.6 72.0

5 Related Work 462

Retrieval-Augmented Generation (RAG) 463

Retrieval-Augmented Generation (RAG) (Lewis 464

et al., 2020; Gao et al., 2024; Asai et al., 2023; 465

Chen et al., 2017) retrieves from external knowl- 466

edge to help the LLM answer open-domain 467

questions. Recent works demonstrate that RAG 468

can greatly boost the reasoning ability of LLMs 469

(Jiang et al., 2023; Shao et al., 2023). IAG (Zhang 470

et al., 2023) leverages both retrieved knowledge 471

and inductive knowledge derived from LLMs to 472

answer open-domain questions. Inspired by the 473

success of RAG, we study how retrieving from 474

external knowledge improves dataset quality and 475

further improves model performance. 476

Data Synthesis Recent studies use LLMs as 477

dataset generators (Patel et al., 2024; Song et al., 478

2024) and focus on improving the generated data’s 479

quality. Zerogen (Ye et al., 2022b) uses pretrained 480

LLMs to generate datasets directly under zero-shot 481

setting. Progen (Ye et al., 2022a), Sungen (Gao 482

et al., 2023), and Impossible Distillation (Jung 483

et al., 2024) uses feedback from smaller models to 484

distill the generated data. AttrPrompt (Yu et al., 485

2023a) improves data quality by improving the 486

prompt. Unnatural Instructions (Honovich et al., 487

2022), ReGen (Yu et al., 2023b), and S3 (Wang 488

et al., 2023a) improves the data quality by using 489

other datasets as reference. We explores the use of 490

both RAG and LLM’s generation ability to create a 491

diverse and reliable dataset for specific tasks. 492

6 Conclusion 493

In this paper, we present ReBase, a framework that 494

uses retrieval and transformation to create diverse 495

and high-quality domain-specific dataset to train 496

task-expert models. Our method shows significant 497

improvement over conventional dataset generation 498

methods. We establish the benefit of leveraging 499

examples retrieved from a large, heterogenous data- 500

store to create task-specific training data. We be- 501

lieve this work motivates future work on retrieving 502

labeled examples from a prompt; improved exam- 503

ple retrieval could lead to significantly improved 504

retrieval-based distillation. 505
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Limitations506

Our work has several limitations that we must ac-507

knowledge. First, due to the relative high quality508

of proprietary data generator models (e.g. Claude509

3 Haiku and GPT-4), we solely used these in our510

experiments. Thus it remains unclear to what ex-511

tent that ReBase could work for other LMs, such512

as open-source LMs. Similarly, by using propri-513

etary data generator models, we cannot know for514

sure what the size of these models is. We there-515

fore cannot make any claims about the ability to do516

dataset transformation in compute-constrained set-517

tings where models like Claude 3 Haiku or GPT-4518

are computationally or financially infeasible. Fi-519

nally, our method is restricted to searching against520

dataset rows from Hugging Face Datasets. While521

this represents a large amount of data, we could522

likely broaden the applicability of our work by523

searching over larger, noisy collections of text524

(such as Common Crawl or Dolma (Soldaini et al.,525

2024)). We leave this as an important next step for526

future work.527

Ethics Statement528

Our work raises three key ethical concerns.529

The first is that, by improving the ability to syn-530

thetically generate training data for a variety of531

tasks, our work could increase the accessibility532

of language technologies for those with the in-533

tention to do harm. We argue that this harm is534

outweighed by the possible benefits of widening535

access to highly-effective language modeling to536

practitioners who are unable to deploy very large537

LMs themselves. Nonetheless, we hope that users538

of our research will take care to write and vali-539

date prompts for dataset generation to minimize540

the harms of the resultant data.541

Second, the development of automated dataset542

curation methods for model training are provid-543

ing a method for model developers to create, use,544

and distribute training data that has never been545

vetted by human annotators. We hope that prac-546

titioners will take care to manually sample and547

inspect generated data before training and deploy-548

ing user-facing models. Similarly, our experiments549

use proprietary language models for transforming550

retrieved examples into task-specific data. Training551

on this task-specific data may amplify biases from552

these language models.553

Finally, if our work was adopted at a large scale,554

this could affect the important role that crowdwork-555

ers play in the AI development ecosystem. System- 556

atically disincentivizing the participation of crowd- 557

workers in the AI economy could have long-term 558

effects that need to be studied in future work. 559
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A BBH Data Source Details809

In this section, we provide a detailed analysis of810

BBH tasks dataset source. In the main text, we811

report the number of different data sources (the812

number of distince (dataset, dataset_config) pairs)813

that each task retrieves from. In this part, we report814

the number of different datasets. We report the av-815

erage of all the BBH tasks and present the statistics816

in Table 11. In Figure 7, we demonstrate the num-817

ber of data sources for each BBH task. We found818

that most tasks retrieves from 30 data sources. Ob-819

ject Counting and Word Counting retrieves from820

up to 120 data sources while Boolean Expressions821

retrieves from 4 data sources. This suggests that822

the number of dataset sources can greatly vary de-823

pending on the task type.824

B Prompts825

We present the prompt that we used to transform a826

retrieved row entry and the prompt we used to filter827

the data.828

B.1 Transform Prompt829

“‘ I would like you to create questions for a test.830

The directions for the test are:831

'''832

{ t a s k _ d e s c r i p t i o n }833

'''834

The format should be in json like this:835

{ example }836

Now I will provide you with a JSON file from a837

different dataset. Please create a question where838

the format and type of question is similar to the ex-839

amples provided above, but the content is inspired840

by the example provided below. You need to decide841

which part of the dataset to use.842

{ d a t a s e t _ r o w }843

Your response MUST be a JSON with exactly 2844

fields: "input" and "output".845

Response (JSON ONLY): ”’846

B.2 Filter Prompt847

“‘ You will be given a task description. Your task is848

to determine whether a data is fitful for this task.849

# Instruction:850

{ t a s k _ d e s c r i p t i o n }851

# Fitful Examples that meet the task’s request:852

{ example } 853

Now, there is a new data. Your task is to determine 854

whether this data is fitful for this task. 855

New Data: 856

{{ 857

" i n p u t " : "{ i n p u t _ d a t a } " , 858

" o u t p u t " : "{ o u t p u t _ d a t a } " , 859

}} 860

Response (Yes or No): ”’ 861

C Ablation on Filtering 862

C.1 Pipeline 863

A filter pipeline is demonstrated in Figure 8 where 864

the LLM filters out the samples that contain noise 865

or are unanswerable given the task instruction and 866

few-shot examples. 867

Task Instruction + Examples

Today is the first day of January 2023. 
What is the date of the last day of the year 
in MM/DD/YYYY?
Options:
(A) 12/31/2022(B) 12/31/2023(C) 
01/01/2023(D) 12/31/2024(E) 01/01/2024

The flowering plant tulip releases oxygen 
during the day but not during the night. 
What is the date 30 days before today in 
MM/DD/YYYY?
Options:
(A) 04/12/2022 (B) 11/12/2021 (C) 
11/22/2021 (D) 11/12/2020 (E) 
11/12/2019 (F) 11/12/2018

Given a small set of sentences about a 
particular date, answer the provided question.

Yes

No

Figure 8: Filter Pipeline. We instruct the LLM to filter
with task instruction and few examples. Then, we input
the current example to the model and let the model
choose whether the current example can be used to train
a model for the task.

C.2 Analysis 868

We observed that most tasks maintain a high per- 869

centage of data after filtering. Most tasks retain 870

over 80% or even 90% of the original data. This 871

suggests that ReBase transformed data is generally 872

plausible and usable for downstream finetuning and 873

the filtering process does not substantially reduce 874

the dataset size. However, there are some excep- 875

tions. For date_understanding, formal_fallacies , 876

sports_understanding, dyck_languages, navigate, 877

and web_of_lies, the percentage of the remaining 878

data drops below 50% or even under 20%. 879

We observed that filtering can be beneficial 880

in certain cases but not always. When the fil- 881
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Table 10: BBH task abbreviation clarification. We show the mapping between the original BBH task name and
the abbreviation that we used in our paper.

Task Name Abbreviation

multistep_arithmetic_two multi_arith_2
salient_translation_error_detection salient_trans_err_detect
tracking_shuffled_objects_three_objects track_shuffled_3_obj
tracking_shuffled_objects_five_objects track_shuffled_5_obj
tracking_shuffled_objects_seven_objects track_shuffled_7_obj
logical_deduction_three_objects logical_deduction_3_obj
logical_deduction_five_objects logical_deduction_5_obj
logical_deduction_seven_objects logical_deduction_7_obj

Table 11: Detailed BBH dataset source. We also report
the number of unique datasets for each task. On a dataset
level, the BBH retrieves from 24 different datasets on
average, suggesting that the retrieved data comes from
very diverse sources.

Task # of Dataset # of Dataset Source

BBH (total) 24 42
BBH-NLP 21 36
BBH-Alg 27 46

tering removes a large amount of data, perfor-882

mance tends to decline. For instance, tasks883

such as date_understanding, formal_fallacies,884

dyck_languages, and navigate decline after filter-885

ing. However, sports_understanding shows im-886

provement in performance after filtering nearly887

50% of the data.888

D Implementation Details889

We use a pretrained model1 from the Sentence890

Transformers toolkit (Reimers and Gurevych,891

2019) to encode all data in the datastore construc-892

tion phase. We use 3K examples for MNLI and893

SQuAD and 1K for MCoNaLa and each BBH task.894

We use Claude 3 Haiku model to transform the895

data. To more accurately simulate the case in896

which we are tackling a new task without train-897

ing data, we prevent the retriever from retrieving898

any data from the target task’s original training899

set. For model training, we use LLM Llama3-900

8B (AI@Meta, 2024) as the base model for both901

the synthesized method and ReBase. We train the902

model using QLoRA (Dettmers et al., 2023) which903

requires only one NVIDIA A6000 48GB GPU. The904

base model is meta-llama/Meta-Llama-3-8B. We905

finetune the base model for 1 epoch using a learning906

rate of 3e-4, a batch size of 2 per device, warmup907

1distiluse-base-multilingual-cased

steps of 20, and gradient accumulation steps of 908

4. We use 8-bit AdamW optimizer with a weight 909

decay of 0.001 and a linear learning rate scheduler. 910

E BBH Task Abbreviation 911

Due to the length of some task names, abbrevia- 912

tions are used in the figure. The full names can be 913

found in Table 10. 914

F Additional Qualitative Results 915

In Figure 9, we show more examples of the data 916

generated by ReBase and the synthesized data. We 917

found that ReBase generates data that contains com- 918

plicated math calculaitons and dynmaic program- 919

ming. Whereas synthesized data is limited to sim- 920

ple operations. 921
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Figure 7: The number of Dataset Sources for each BBH task. The bars represent the number of unique data
sources retrieved for BBH tasks (This is calculated as the number of unique (dataset, config) pairs of the retrieved
data). We found that most BBH tasks retrieve data from around 30 sources, demonstrating the diversity data source
of ReBase. Among the BBH tasks, Object Counting and Word Sorting retrieves from more than 120 sources while
Boolean Expression retrieves from only 4 sources. The suggests that the amount of dataset sources is largely relevant
to the task.

MCoNaLa: Given a Japanese instruction, write code

⽂字列 'hello' を3回繰り返して表示する

(Display the string 'hello' repeatedly three times)

print('hello' * 3)

整数 n, a, b, c を受け取り、n を a, b, c 
の⻑さの最⼤の分割数に分割する関
数を作成する

(Write a function that takes integers n, a, b, c 
and divides n into the largest number of 
divisions of length a, b, c.)

def maximum_segments(n, a, b, c):
    dp = [0] * (n + 1)
    for i in range(1, n + 1):
        dp[i] = max(dp[i - a] + 1 if i >= a else 0, 
                   dp[i - b] + 1 if i >= b else 0,
                   dp[i - c] + 1 if i >= c else 0)
    return dp[n]

Tr
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sf
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m
ed

G
en
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ed

MCoNaLa: Given a Japanese instruction, write code

ファイル‘sample.txt’の内容を⾏ごとに
読み込み、各⾏の単語数を表示する

(Read the file 'sample.txt' line by line and 
display the number of words in each line.)

with open('sample.txt', 'r') as f:
    for line in f:
        print(len(line.split()))

nCr mod pの値を計算する関数を書い
てください

def nCr_mod_p(n, r, p):
if (r > n - r):

r = n - r
C = [0 for i in range(r + 1)]
C[0] = 1
for i in range(1, n + 1):

for j in range(min(i, r), 0, -1):
C[j] = (C[j] + C[j-1]) % p

return C[r]
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(Write a function to calculate the value of nCr mod p)

Figure 9: Additional Qualitative Examples on ReBase compared to directly synthesized data. In MCoNaLa,
ReBase outputs math modula and dynamic programming programs whereas synthesized method is limited to simple
operations.
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