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Abstract Understanding and translating humorous wordplay often re-
quires recognition of implicit cultural references, knowledge of word
formation processes, and discernment of double meanings – issues which
pose challenges for humans and computers alike. This paper introduces
the CLEF 2023 JOKER track, which takes an interdisciplinary approach
to the creation of reusable test collections, evaluation metrics, and meth-
ods for the automatic processing of wordplay. We describe the track’s
interconnected shared tasks for the detection, location, interpretation, and
translation of puns. We also describe associated data sets and evaluation
methodologies, and invite contributions making further use of our data.

Keywords: Wordplay · Puns · Humour · Wordplay interpretation ·
Wordplay detection · Wordplay generation · Machine translation.

1 Introduction

Humour remains one of the most thorny aspects of intercultural communication.
Understanding humour often requires recognition of implicit cultural references
or, especially in the case of wordplay, knowledge of word formation processes and
discernment of double meanings. These issues raise the question not only of how
to translate humour across cultures and languages, but also how to even recognise
it in the first place. Such tasks are challenging for humans and computers alike.

The goal of the JOKER track series at the Conference and Labs of the
Evaluation Forum (CLEF) is to bring together linguists, translators, and computer
scientists in order to create reusable test collections for benchmarking and to
explore new methods and evaluation metrics for the automatic processing of
wordplay. In the 2022 edition of JOKER (see Section 2), we introduced pilot
shared tasks for the classification, interpretation, and translation of wordplay
in English and French, and made our data available for an unshared task [9].6

6 In a shared task, the organisers define the evaluation criteria for an open problem
in AI and produce a human-annotated data set for training and testing purposes;
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For JOKER-2023, we intend to expand the set of languages in our tasks to
include Spanish. We also somewhat simplify and streamline the slate of shared
tasks, more closely patterning them after the high-level process used by human
translators and focusing them on one type of wordplay – puns.

We choose to focus on puns because, despite recent improvements in the
quality of machine translation based on machine learning, puns are often held
to be untranslatable by statistical or neural approaches [33,1,26]. Punning jokes
are a common source of data in computational humour research, in part because
of their widespread availability and in part because the underlying linguistic
mechanisms are well understood. However, past pun detection data sets [29,39]
are problematic because they draw their positive and negative examples from
texts in different domains. In JOKER-2023 we attempt to avoid this problem
by generating our negative examples by using naïve literal translations, or by
slightly editing our positive examples, a technique pioneered by Unfun.me [38].

The three shared tasks of JOKER-2023 can be summarised as follows:

1. Detection and location of puns in English, French, and Spanish;
2. Interpretation of puns in English, French, and Spanish; and
3. Translation of puns from English to French and Spanish.

The unshared task of JOKER-2022 saw its data used for a pun generation task
potentially aimed at improving interlocutor engagement in dialogue systems.
JOKER-2023 will likewise have an unshared task that aims at attracting runs
with other, possibly novel, use cases, such as pun generation or humorousness
evaluation.

While JOKER-2022 proved to be challenging (with only 13% of evaluated
translations being judged successful), this round’s larger data set and more con-
strained, interconnected tasks may present opportunities for better performance.

2 JOKER-2022: Results and Lessons Learnt

Forty-nine teams registered for JOKER-2022, 42 downloaded the data and seven
submitted official runs for its shared tasks: nine for Task 1 on classification
and interpretation of wordplay [10], four for Task 2 on wordplay translation in
named entities [8], and six for Task 3 on pun translation [11]. One additional run
was submitted for Task 1 after the deadline. Two runs were submitted for the
unshared task, and new classifications were proposed by participants.

Participants’ scores on the wordplay classification part of Task 1 were uni-
formly high, which we attribute to the insufficient expressiveness of our typology
and the class imbalance of our data. Due to the expense involved in revising
the typology and applying it to new data, we have decided to drop wordplay

task participants then use the publically released training data to develop systems
for solving the problem, which the organisers evaluate on the unpublished test data.
In an unshared task, the organisers provide annotated data without a particular
problem in mind, and participants are invited to use this data to propose and solve
novel problems.
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classification from JOKER-2023. However, the interpretation part of the task –
which required participants to determine both the location and (double) meaning
of the wordplay instances – proved to be more challenging, and provoked great
interest from the participants. Besides this, we note that providing the location
and interpretation of a play on words may be more relevant for downstream
processing tasks such as translation [24, p. 86]. For this reason, this part of the
task will be repeated in JOKER-2023, albeit with new data.

JOKER-2022’s Task 2, on named entity translation, did not see much variety
in the participants’ approaches, and their low success rates may be due to a lack
of context in the data that would be too expensive for us to source. For these
reasons, we have opted to discontinue this task for JOKER-2023.

Like Task 1, Task 3 of JOKER-2022 proved to be both popular and challenging,
and so we are rerunning it in JOKER-2023 with new data. Task 3 moreover had
the side-effect of producing a French-language corpus with positive and negative
examples of wordplay, which some participants endeavoured to use for wordplay
generation in French (following methods developed for English). The corpus was
also reused by the French Association for Artificial Intelligence to organise a jam
on wordplay generation in French during a week-long conference [3]. Of particular
interest is how humans perceive the generated wordplay. Participants in the jam,
for example, raised questions about how to evaluate the humorousness of the
system output. Furthermore, a curated selection of sentences generated using our
corpus with a large language model7 was used by some of the present authors
during an outreach event, where a public audience was asked to guess if a given
humorous sentence was created by an AI or a human. In JOKER-2023, we thus
encourage unshared task submissions describing the use of our data for user
perception studies and wordplay generation.

3 Shared Tasks

3.1 Task 1: Pun Detection and Location

Description A pun is a form of wordplay in which a word or phrase evokes the
meaning of another word or phrase with a similar or identical pronunciation [19].
Pun detection is a binary classification task where the goal is to distinguish
between texts containing a pun and texts not containing a pun. Pun location is
a finer-grained task, where the goal is to identify which words carry the double
meaning in a text known a priori to contain a pun.

For example, the first of the following sentences contains a pun where the
word propane evokes the similar-sounding word profane, and the second sentence
contains a pun exploiting two distinct meanings of the word interest :

7 The corpus provides numerous instances of particular wellerisms, and thus lends
itself well to prompt engineering using large language models. (Wellerisms are a type
of humour in which a proverb, idiom, or other well-known saying is subverted, for
example by resegmenting it or by reinterpreting it literally.)
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(1) When the church bought gas for their annual barbecue, proceeds went
from the sacred to the propane.

(2) I used to be a banker but I lost interest.

For the pun detection task, the correct answer for these two instances would
be “true”, and for the pun location task, the correct answers are respectively
“propane” and “interest”.

Data The positive examples for Task 1, which will be used for both the detection
and location subtasks, consist of short jokes (one-liners), each containing a single
pun. These positive examples will be drawn from previously constructed corpora
as well as collections that may not have been used in previous shared tasks.8 In
contrast to previously published punning data sets, our negative examples will be
generated by the data augmentation technique of manually or semi-automatically
editing positive examples in such a way that the wordplay is lost but most
of the rest of the meaning remains.9 In this way, we hope to better minimise
the differences in length, vocabulary, style, etc. that were seen in previous pun
detection data sets and that could be picked up on by today’s neural approaches.
Negative examples will be used only for the pun detection subtask.

As usual with shared tasks, data for all tasks will be split into training and
test sets, with the training set (including gold-standard labels) published as soon
as available, and the test data withheld until evaluation phase.

English. Our training data will include positive examples from the corpora
of SemEval-2017 Task 7 [29], SemEval-2021 Task 12 [35], and various other
collections. Positive examples in the test data will be drawn, to the extent
possible, from jokes not present in past data sets. As mentioned above, negative
examples in both the training and test data will be produced by slightly perturbing
the positive examples via data augmentation.

French. In 2022, we created a corpus for wordplay detection in French [9,11] based
on the translation of the corpus of English puns introduced at SemEval-2017
Task 7 [29]. Some of the translations were machine translations, and others were
human translations sourced from a contest or from native francophone students
translators. The majority of human translations (90%) preserved wordplay in
some form, while only 13% of the machine translations did so. The resulting corpus
is homogeneous, across positive and negative examples, in terms of vocabulary

8 Admittedly, it may be impossible for us to source positive examples that are not
discoverable online, unless we pay experienced comedians to produce a large collection
of completely novel jokes, which is costly. We will have to rely on participants’ good
faith that their systems will not detect punning jokes by matching them against a
database of web-scraped examples.

9 The data augmentation technique will be fully described in the task overview paper in
the CLEF 2023 proceedings; we hold off on presenting the details here to discourage
participants from reverse-engineering it in their classifiers.
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and text length, and it maintains the class balance of the original. However, there
was an imbalance across the training and test sets with respect to machine vs.
human translations, with more machine translations in the test set. This corpus
will be improved and extended for use with JOKER-2023. In particular, we will
correct the machine vs. human translation imbalance by sourcing additional,
manually verified machine translations for the training set. We will also source
new positive examples for our test set, and will apply the same data augmentation
technique used for our English data.

Spanish. Our Spanish data set is collected from various web sources (blogs, joke
compilations, humour forums, etc.) to which we apply the same data augmentation
techniques as for the English data.

Evaluation We follow (and thereby facilitate comparison with) SemEval-2017
Task 7 [29] by evaluating pun detection using the precision, recall, accuracy, and
F-score measures as used in information retrieval (IR) [25, Section 8.3], and pun
location using the corresponding variants of precision, recall, and F-score from
word sense disambiguation (WSD) [31].10

3.2 Task 2: Pun Interpretation

Description In pun interpretation, systems must indicate the two meanings
of the pun. The pun interpretation task at SemEval-2017 required systems
to annotate the pun with senses from WordNet, and JOKER-2022 expected
annotations according to a relatively complex, structured notation scheme. In
JOKER-2023, semantic annotations will be in the form of a pair of lemmatised
word sets. Following the practice used in lexical substitution data sets [27], these
word sets will contain the synonyms (or absent any, the hypernyms) of the two
words involved in the pun, excepting any synonyms/hypernyms that happen to
share a spelling with the pun as written.11 This annotation scheme removes the
need for participating systems to directly rely on a particular sense inventory or
notation scheme.

For example, for the punning joke introduced in Example 1 above, the
word sets are {gas, fuel} and {profane}, and for Example 2, the word sets are
{involvement} and {fixed charge, fixed cost, fixed costs}.

Data The data will be drawn from the positive examples of Task 1, with the
pun word annotated with two sets of words, one for each sense of the pun. Each
set of words will contain synonyms or hypernyms of the sense or (in the case of
heterographic puns) the latent target word.
10 The difference between IR-style and WSD-style metrics is that the former require

the system to make a prediction for every instance in the data set, whereas the latter
do not. IR-style accuracy is equivalent to WSD-style recall.

11 Synonyms and hypernyms will be sourced preferentially from WordNet (or similar
resources for data sets in other languages), and via manual annotation for those
words not present in WordNet.
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Evaluation Task 2 will be evaluated with the precision, recall, and F-score
metrics as used in word sense disambiguation [31], except that each instance will
be scored as the average score for each of its senses. Systems need guess only one
word for each sense of the pun; a guess will be considered correct if it matches
any of the words in the gold-standard set. For example, a system guessing {fuel},
{profane} would receive a score of 1 for Example 1, and a system guessing {fuel},
{prophet} would receive a score of 1/2.

3.3 Task 3: Pun Translation

Description The goal of this task is to translate English punning jokes into
French and Spanish. The translations should aim to preserve, to the extent
possible, both the form and meaning of the original wordplay – that is, to
implement the pun→pun strategy described in Delabastita’s typology of pun
translation strategies [5,6]. For example, Example 2 might be rendered into French
as J’ai été banquier mais j’en ai perdu tout l’intérêt. This fairly straightforward
translation happens to preserve the pun, since interest and intérêt share the same
ambiguity. Needless to say, this is coincidence does not hold for the majority of
punning jokes in our data set (or generally, for that matter).

Data We will provide an updated training and test set of English–French
translations of punning jokes, and new sets of English–Spanish ones, similar to
English–French data sets we produced for JOKER-2022 [11,9].

Evaluation As we have previously argued [11,9], vocabulary overlap metrics such
as BLEU are unsuitable for evaluating wordplay translations. We will therefore
continue JOKER-2022’s practice of having trained experts manually evaluate
system translations according to features such as lexical field preservation, sense
preservation, wordplay form preservation, style shift, humorousness shift, etc.
and the presence of errors in syntax, word choice, etc. The runs will be ranked
according to the number of successful translations – i.e., translations preserving,
to the extent possible, both the form and sense of the original wordplay. We will
also experiment with other semi-automatic metrics.

4 State of the Art

Humour is part of social coexistence and therefore is part of interpersonal
interactions. This places it in a complicated position, since the perception of
humour can be somewhat ambiguous and depends on a number of subjective
factors. Thus, dealing with humour, even in its written form, becomes a rather
complex undertaking, even for those (computational) tasks that at the first sight
seem trivial. Various studies have addressed these tasks, including the detection,
classification, and translation of humour, and also determining whether the
intention or interpretability of the translated humour is maintained. Some of the
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present authors have even designed evaluation campaigns for some of these tasks
(e.g., [29,35,10,8,11]), aiming not just to support traditional NLP applications,
but also to gain a broader knowledge of the structure and nuances of verbal
humour.

Nevertheless, relatively few studies have been carried out on the machine
translation (MT) of wordplay. One of the earliest of these [12] proposed a
pragmatic-based approach to MT, but no working system was implemented. An
interactive method for the computer-assisted translation of puns was recently
implemented [24], but it cannot be directly applied for MT. Four teams parti-
cipated in the pun translation task of JOKER-2022 [7,16,14]; their approaches
relied variously on applications of transformer-based models or on DeepL.

Automatic humour recognition has become an emerging trend with the rise of
conversational agents and the need for social media analysis [30,15,22,23,34,18,13].
While some systems have achieved decent performance on humour detection,
location, and classification tasks [29,10], the lack of high-quality training data has
been a limiting factor for further progress, and especially in case of languages other
than English [9]. As with translation, many of the JOKER-2022 classification
task participants [16,2] favoured applications of large language models such as
Google T5 and Jurassic-1.

Other popular application areas in computational humour include humour
generation and humorousness evaluation. Recent work in the former area includes
template-based approaches for pun generation in English and French [36,20,17],
as well as injecting humour into existing non-humorous English texts [37]. Though
these tasks have been studied in a monolingual setting, it may be possible to
adapt them for a translation task. Work in humorousness evaluation covers
methods that attempt to quantify the level of humour in a text, or to rank
texts according to their level of humour [40,32,21,4,28]. Such methods also have
possible applications in humour translation (e.g., by verifying that a translated
joke preserves the level of humour of the original).

5 Conclusion

This paper has described the prospective setup of the CLEF 2023 JOKER
track, which features shared tasks on pun detection, location, interpretation, and
translation. We will also welcome submissions using our data for other tasks,
such as pun generation, offensive joke detection, or humour perception. Please
visit the JOKER website at http://joker-project.com for further details on
the track.
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