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Abstract

Multi-modal large language models (MLLMs) are trained based on large language models
(LLM), with an enhanced capability to comprehend multi-modal inputs and generate textual
responses. While they excel in multi-modal tasks, the conventional view within the machine
learning community has often undervalued/overlooked their capabilities in pure natural
language processing. This paper aims to get out of the box and showcase an intriguing
characteristic of multi-modal trained LLMs — our preliminary results suggest that visual
instruction tuning, a prevailing strategy to integrate vision knowledge into the LLMs,
unexpectedly and interestingly helps models attain both improved truthfulness and ethical
alignment in the pure NLP context. For example, a visual-instruction-tuned LLaMA2 7B
model surpasses the performance of the LLaMA2-chat 7B model, fine-tuned with over one
million human annotations, on TruthfulQA and Ethics benchmarks. Similarly, the latest
LLaMA3 series also shows consistent performance gains by 0.6% on average following visual-
instruction tuning. Another example is that two versions of proprietary model GPT-4V-turbo,
which incorporates visual information, surpasses its LLM-only counterpart GPT-4-turbo by
around 1.6% on both aspects. Further analysis reveals that the improved alignment can be
attributed to the superior instruction quality inherent to visual-text data. By presenting
those findings, we advocate for a broader exploration into visual-text synergies, positing that
such multi-modal interactions could be pivotal in advancing alignment research.

1 Introduction

Enhancing truthfulness and reducing hallucinations of Large Language Models (LLMs) is one the paramount
challenges in the domain of artificial intelligence. This paper introduces a new perspective on this research
topic, advocating for the integration of multi-modal data into LLM training as a strategy to significantly
improve their truthfulness and alignment with human values.

Our stance is informed by empirical evidence demonstrating the beneficial impact of diverse data sources on
LLM capabilities. For example, the inclusion of code data has been shown to improve the reasoning ability of
LLMs (Ma et al., 2024). Building upon this premise, this paper aims to explore the potential benefits of an
even more diverse data source – multi-modal data, particularly images, in enhancing the capabilities of LLMs.

Most modern MLLMs leverage LLMs as their core, setting the aim to bridge the gap between language and
visual tokens (Liu et al., 2023b; Li et al., 2023a; Ye et al., 2023). While language tokens often capture much
of the real-world context, visual information is essential to share richer real-world details that connect to
the factual knowledge in human experience (Harnad, 1990; Bisk et al., 2020; Tu et al., 2023b), particularly
in areas related to truthfulness and ethics. Consequently, guiding LLMs to integrate and process visual
tokens enhances the model’s performance in dimensions such as ethics and truthfulness. Our claim is
firmly grounded in our experimental evidence. In our preliminary explorations, we tune LLaMA series
models (Touvron et al., 2023a;b) with the visual instruction data from LLaVA (Liu et al., 2023b;a). The
results of these experiments are intriguing: for a vanilla LLaMA2 7B model, visual instruction tuning can
register impressive scores of 46.0% on TruthfulQA-mc (+7.1%) (Lin et al., 2022) and 65.4% on Ethics
(+19.6%) (Hendrycks et al., 2020), depending on the specific tuning approach. It is particularly noteworthy
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Figure 1: Visual instruction tuning substantially improves the truthfulness and ethics of LLMs. We observe
tuning LLMs with only 80k multi-modal data can yield stronger results on truthfulness and ethics than those
with over one million human-annotated RLHF data. Note that these LLMs employ images only during the
visual instruction tuning and are tested without images for NLP tasks.

that, even without engineering efforts that explicitly elicit ethical or truthful behaviors, the performance
of the visual instruction-tuned model already outperforms that of the LLaMA2-chat 7B variant, which is
heavily tuned with over a million human annotations (Touvron et al., 2023b).

In proposing this novel perspective, we aim to spur a possible paradigm upgrade or even a complete shift
to the ongoing dialogue within the machine learning community. We contend that broadening the data
diversity for LLMs, beyond traditional text-based inputs, is a pivotal step towards developing models that
more accurately reflect, interpret, and respond to the complexities of real-world information (Ma et al., 2023).
This paper seeks to engage the community in a discussion about this evolving approach, underlining its
potential impact on the ethical and responsible aspects of AI development.

In summary, our insights accentuate the promise of visual instruction tuning in fostering the ethical and
truthful alignment of LLMs. It is our hope that this paper will serve as a catalyst for a new wave of research,
one that embraces the rich possibilities offered by multi-modal data and paves the way for more aligned and
responsible AI systems.

2 Tuning LLMs with Multi-Modal Data

This section introduces our strategies to tune LLMs using multi-modal datasets. A standard MLLM typically
contains three key components: 1) a vision encoder tasked with encoding visual inputs, 2) a vision-language
connector that translates visual tokens into the linguistic space, and 3) an LLM for decoding the transcribed
visual information. We strictly adhere to the setups in LLaVA (Liu et al., 2023b) for fine-tuning LLMs on
visual instruction tuning data.

Model Architecture. We incorporate the pre-trained visual branch of CLIP ViT-L/14 (Radford et al.,
2021) as our vision encoder. Additionally, a trainable linear layer is employed to project visual tokens into
the language embedding space. Regarding the choice of LLM, we take the widely recognized open-sourced
LLaMA models (Touvron et al., 2023a;b; Geng & Liu, 2023) for this study. Specifically, our investigation
focuses on the following six models, containing three latest LLMs and their corresponding instruction-tuned
variants:

• Pre-trained LLM: OpenLLaMA-3B (Geng & Liu, 2023), LLaMA-7B (Touvron et al., 2023a), LLaMA2-
7B (Touvron et al., 2023b).

• Instruction-tuned LLM: OpenAlpaca-3B (Su et al., 2023), LLaMA2-chat-7B (Touvron et al., 2023b),
the Vicuna family (Vicuna-7B, Vicuna-v1.5-7B, Vicuna-v1.5-13B) (Zheng et al., 2023), the LLaMA-
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3-Instruct family (LLaMA3-8B, LLaMA-3.1-8B, LLaMA-3.2-11B) (Dubey et al., 2024), the OpenAI’s
GPT-4 family (GPT-4-turbo, GPT-4V-turbo) (Achiam et al., 2023a;b).

As listed above, our study is centered on two model scales: 3B and 7B. While the 3B LLaMA model is sourced
from the OpenLM project (Geng & Liu, 2023), the 7B LLaMA models are directly released by Meta (Touvron
et al., 2023a;b); additionally, our investigation extends to the instruction-tuned variants of these base LLMs.
Concretely, OpenAlpaca-3B is fine-tuned on the Alpaca data (Taori et al., 2023) using OpenLLaMA-3B as its
backbone; Vicuna-7B is the v1.1 model from FastChat (Zheng et al., 2023), which is crafted upon LLaMA-7B
and employs 125K conversational data from ShareGPT (ShareGPT) during tuning; LLaMA2-chat-7B is
well-engineered for human alignment, undergoing its training on publicly available instruction datasets and
one million human-annotated examples using RLHF techniques. The LLaMA3 series is the most recently
released open-weight model family with powerful NLP abilities. For LLaMA3.2-11B, we only take the LLM
part in the model for experiments. Note that we test 7B/8B LLM variants by default, and indicate 3B models
by the suffix “-3B”.

Training Procedure. The MLLM training unfolds in two stages. First, we exclusively tune the weight of
the vision-language connector, with both the visual encoder and the LLM remaining frozen. In the second
phase, we fine-tune the weights of both the connector and the LLM. Data-wise, we adhere to the protocols set
by LLaVA (Liu et al., 2023b): the connector is initially trained using 595k image-text pairings filtered from
CC3M (Changpinyo et al., 2021); the subsequent stage that requires LLM training utilizes 158k instructions-
following data from LLaVA with 80k unique images, which contains image-grounded conversation, image
descriptions, and image-based complex reasoning tasks. To investigate the factors driving the improvements
in visual instruction tuning, we also explore tuning the model using only text-based instruction data. We
utilize three types of text-only data (sampled to equal sizes): visual instruction tuning data without images,
Alpaca data (Taori et al., 2023), and Orca data (Lian et al., 2023). The Alpaca dataset is derived from
prompting OpenAI’s GPT model with a variety of real-world questions and scenarios, while the Orca dataset
comprises FLAN-augmented examples (Longpre et al., 2023), which have been shown to empower open-source
13B LLMs to excel across multiple benchmarks. (Lian et al., 2023). As for the training strategy, we probe
the effects of both full fine-tuning and LoRA fine-tuning (Hu et al., 2021).

Evaluation Protocols. We conduct our evaluation using a publicly available and widely used pipeline (Gao
et al., 2021). Specifically, for the Ethics benchmark, we use accuracy as the evaluation metric. For
TruthfulQA, we follow the official repository and use Rouge and/or BLEU accuracy for generation tasks,
along with single-true (mc1) and multi-true (mc2) metrics for question-answering. Other NLP tasks are
evaluated with accuracy or F1 score, following the original work. For multi-modal tasks, we use accuracy for
question-answering benchmarks and CIDEr (Vedantam et al., 2015) for generation tasks. Further details on
multi-modal benchmark metrics will be presented in Section 3.4.

3 Evaluations Results and Analysis

3.1 Truthfulness and Ethics of MLLMs

We report the evaluation results on the TruthfulQA and Ethics benchmarks, designed for measuring LLMs’
truthfulness and ethical alignment. During this evaluation, we utilize the weights exclusively from the
visual-instruction-tuned LLMs, intentionally omitting the visual encoders and vision-language connectors
introduced during the fine-tuning process. The results are presented in table 1.

Visual Instruction Tuning Improves Truthfulness and Ethics. Our observations suggest that, rather
unexpectedly, visual instruction tuning tends to enhance the truthfulness of LLMs. A compelling observation
emerges when comparing between LLaMA2 and LLaMA3 variants: visual-instruction-tuned models, especially
LLaMA2 with MM-lora, surpass the LLaMA2-chat model in performance metrics on both TruthfulQA-mc1
(32.1% vs. 29.5%) and TruthfulQA-mc2 (46.0% vs. 44.6%). Furthermore, as one of the leading open-weight
LLMs, the LLaMA3 series shows noticeable performance gains when visual instruction data is integrated,
with average improvements of 0.6% and 0.9% on the Ethics and TruthfulQA-gen, respectively.
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Models Ethics
Acc.

TruthfulQA-gen
Rouge Acc.

TruthfulQA-mc1
Acc.

TruthfulQA-mc2
Acc.

Delphi 60.1% - - -
TA (LLaMA2-chat) - - - 45.2%
TA (Vicuna-v1.5-7B) - - - 50.0%

LLaMA-7B 50.4% 27.5% 22.0% 34.1%
MM-ft 59.1% (+8.7%) 29.4% (+1.8%) 23.6% (+1.6%) 35.8% (+1.7%)

LLaMA-3B 45.6% 25.3% 21.3% 34.6%
MM-ft 58.1% (+12.5%) 26.4% (+1.1%) 21.4% (+0.1%) 32.9% (-1.7%)
MM-lora 45.7% (+0.1%) 25.2% (-0.1%) 23.0% (+1.7%) 35.6% (+1.0%)

Alpaca-3B 44.0% 28.6% 22.4% 34.2%
MM-ft 46.8% (+2.8%) 28.2% (-0.4%) 23.1% (+0.7%) 34.2% (+0.0%)
MM-lora 44.0% (+0.0%) 28.6% (+0.0%) 24.6% (+2.2%) 38.0% (+3.8%)

LLaMA2 45.8% 32.3% 25.2% 38.9%
MM-ft 65.4% (+19.6%) 31.5% (-0.9%) 27.8% (+2.6%) 40.2% (+1.3%)
MM-lora 46.1% (+0.3%) 37.9% (+5.6%) 32.1% (+6.9%) 46.0% (+7.1%)

LLaMA2-chat 58.5% 43.3% 29.5% 44.6%
MM-ft 65.2% (+6.7%) 35.5% (-7.8%) 27.7% (-1.8%) 41.0% (-3.6%)
MM-lora 58.6% (+0.1%) 44.6% (+1.2%) 29.4% (-0.1%) 44.6% (+0.0%)

Vicuna-v1.5-7B 62.1% 40.6% 28.9% 45.4%
MM-ft 69.1% (+7.0%) 40.8% (+0.2%) 30.8% (+1.9%) 45.9% (+0.5%)
MM-lora 64.5% (+2.4%) 44.6% (+4.0%) 31.8% (+2.9%) 47.6% (+2.2%)

Vicuna-v1.5-13B 69.1% 39.0% 30.1% 45.9%
MM-ft 73.9% (+4.8%) 38.8% (-0.2%) 29.4% (-0.7%) 42.5% (-3.4%)
MM-lora 69.8% (+0.6%) 42.2% (+3.2%) 29.4% (-0.7%) 46.3% (+0.4%)

LLaMA3-8B 67.6% 47.7% 36.1% 51.5%
MM-ft 68.1% (+0.5%) 47.3% (-0.4%) 36.7% (+0.6%) 51.5% (-0.5%)
MM-lora 67.4% (-0.2%) 48.3% (+0.6%) 36.8% (+0.7%) 51.9% (+0.4%)

LLaMA3.1 66.9% 60.6% 36.7% 54.0%
LLaMA3.2* 68.5% (+1.6%) 63.0% (+2.4%) 37.7% (+1.0%) 54.9% (+0.9%)

Table 1: Comparison on the original LLMs and the multi-modal fine-tuned ones on Ethics (Hendrycks et al.,
2020) and TruthfulQA (Lin et al., 2022). ‘-ft’ represents full parameter fine-tuning and ‘-lora’ indicates LoRA
tuning. We report Rouge-L accuracy for TruthfulQA-gen and accuracy for the rest. Note that LLaMA3.2*
denotes a model with visual capabilities built on LLaMA3.1. Note that we take the Delphi (Jiang et al., 2021)
and the Trustworthy-Alignment (TA) (Zhang et al., 2024) to provide baseline numbers for these two tasks.

From table 1, we also observe visual instruction tuning leads to substantial improvements on the Ethics task.
Echoing the trend in the TruthfulQA evaluations, visual-instruction-tuned models, specifically the MM-ft
versions of both LLaMA2, consistently outpace their instruction-tuned counterparts, such as LLaMA2-chat
and Alpaca-3B. For example, the performance enhancements observed for LLaMA2 on the Ethics task
amounted to increments of 19.6%, outperforming LLaMA2-chat and Alpaca-3B by margins of 6.9% and
11.3%. Another straightforward observation is that, models with larger parameter scale generally perform
better in these two aspects (e.g., 13B vs. 7B vs. 3B LLMs), as stronger base LLMs are more capable during
the multi-modal tuning process.

For more recent LLMs like the Vicuna-v1.5 and LLaMA3 family, we also have the observation that the
visual-instruction-tuned MLLMs perform better than its language-only counterparts by 2.2% and 0.8% across
all Vicuna-v1.5 and LLaMA3 models on Ethics and TruthfulQA, respectively. While finetuning the LLM
part in MLLM with full parameter activation leads to better multi-modal performance, which has also been
validated by other works, it generally underperforms LoRA-tuned MLLMs in TruthfulQA task (i.e., 2.2%,
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Data Ethics
Acc.

TruthfulQA
BLEU Acc.

TruthfulQA
Rouge Acc.

GPT-4-turbo (0515) 87.0% 55.0% 55.3%
GPT-4V-turbo (0515) 87.4% (+0.4%) 55.5% (+0.5%) 54.9% (-0.4%)

GPT-4-turbo (1201) 87.3% 54.0% 54.8%
GPT-4V-turbo (1201) 88.0% (+1.3%) 54.6% (+0.6%) 54.4% (-0.4%)

Table 2: Comparison on GPT-4-turbo and its multi-modal variant GPT-4V-turbo on Ethics and TruthfulQA
generation. We report results of GPT-4-turbo models with different timestamps (e.g., 0515, 1201). For
TruthfulQA, we use BLEU and Rouge-L accuracy on its generation task.

2.4%, and 2.6% improvement of LoRA tuning compared with finetuning for Vicuna-1.5-7B, Vicuna-1.5-13B,
LLaMA-3.1, respectively). But LoRA-tuned MLLM lags behind finetuned ones on Ethics by an average
of 7.2% across 7 model variants. This observation suggests that the ethics aspect aligns better with the
multi-modal objective in visual instruction tuning than the truthfulness aspect as discussed in Section 3.1.

For recent LLMs like Vicuna-v1.5 and the LLaMA3 family, we observe that visual-instruction-tuned MLLMs
outperform their language-only counterparts, with gains of 2.2% and 0.8% on the Ethics and TruthfulQA
benchmarks, respectively, across all Vicuna-v1.5 and LLaMA3 models. While finetuning the full LLM
component in MLLMs enhances multi-modal performance (Liu et al., 2023b; Li et al., 2023a)—it generally
underperforms compared to LoRA-tuned MLLMs on the TruthfulQA task. Specifically, LoRA tuning yields
improvements of 2.2%, 2.4%, and 2.6% over finetuning for Vicuna-1.5-7B, Vicuna-1.5-13B, and LLaMA-3.1,
respectively. However, LoRA-tuned MLLMs fall behind finetuned ones by an average of 7.2% on the Ethics
benchmark across seven model variants. This suggests that alignment with the multi-modal objective in
visual instruction tuning may be stronger for ethics-related dimensions than for truthfulness, we will dive
into this aspect and discuss more later.

It should be noted that the employed visual instruction tuning data (that requires LLM parameter update)
is the 158k dataset derived from LLaVA (Liu et al., 2023b), which does not contain special designs
for aligning models to human preferences. Remarkably, despite this, visual instruction tuning is able
to yield empirical advantages that surpass those from RLHF, which heavily utilizes a substantial corpus of
human-annotated data dedicated to LLM alignment. This observation strongly attests to the potential that
visual instruction tuning holds in addressing AI alignment challenges.

However, it is not a silver bullet — our experiments also show that visual instruction tuning is limited at
enhancing the alignment of models previously fine-tuned via instruction tuning (e.g., models like Vicuna,
LLaMA2-chat), indicating variability in its efficacy.

We also report model performance of two versions of proprietary GPT-4-turbo series on these two NLP tasks
in table 2. The GPT-4V model is regarded as an upgrade of GPT-4-turbo, with the visual understanding
ability. The GPT-4V demonstrates improved performance on Ethics by an average of 0.9%, as well as on the
TruthfulQA generation task under BLEU accuracy, further supporting our claim in bringing visual knowledge
to enhance LLMs’ ethical and truthful awareness.

Effects of Modalities in Visual Instruction-Tuning Data on LLM Alignment. Next, we seek to
understand how different modalities in the visual instruction data contribute to the alignment of LLMs.
Specifically, we design a set of ablations where we only utilize the text part of the visual instruction tuning
data to tune the LLMs, and draw a comparison with the models tuned with both the visual inputs and the
corresponding texts.

As shown in fig. 2, we observe that models with text-only visual instruction tuning can largely attain
comparable alignment performance with the vanilla visual instruction tuning baseline where both images and
texts are used. While additionally including visual inputs yields seemingly “modest” alignment improvements,
we stress that these gains are consistent across different LLMs, tuning methods, and alignment tasks. For
example, this can be verified across three model variants, resulting in an average accuracy improvement of
2.5% across three sub-tasks presented in fig. 2.
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Figure 2: Performance of visual-instruction-tuned LLaMA2 models and text instruction tuned ones on Ethics
and TruthfulQA benchmarks. The text-only visual instruction data is taken directly from LLaVA, but
without the paired images.
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Figure 3: Results of different data components on Ethics and TruthfulQA of visual-instruction-tuned LLMs.
We utilize 20K of different forms of data (Conversation, Details, Reasoning), and additionally sample 20K
data out of the original 80K training instances (Random 20K) for comparison.

This observation leads to our hypothesis that there exists a promising avenue in leveraging visual data to
construct enhanced instruction-tuning datasets. Although textual information plays a significant role in
alignment, it is crucial to recognize that this text is inherently grounded in its corresponding real-world visual
content; therefore, utilizing such paired information is integral to ensuring strong alignment in LLMs. These
findings underscore the multifaceted benefits of visual data: it not only enhances alignment quality but also
contributes significantly to the creation of more accurate instruction-tuning datasets.

Types of Visual Instruction Data Matters. We further extend our investigation to understand how
varying types of visual instruction-tuning data affect LLM alignment. Specifically, we utilize data from
LLaVA (Liu et al., 2023b), which categorizes visual instruction tuning data into three groups: Conversation,
Details, and Reasoning. Each group comprises 20k data points, sampled from the original training splits.
For a fair comparison, we also take a uniform sample of 20k from the full 80k visual instructions to form the
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Figure 4: Results of three MLLMs on Ethics (left) and TruthfulQA-mc1 (right) during MLLM visual
instruction tuning.

Models MMLU (Acc.) GSM8K (Acc.) MathQA (Acc.) sQuAD (F1.) BoolQ (Acc.)

LLaMA 36.8% 8.0% 27.7% 19.5% 75.1%
MM-ft 27.7% (-9.0%) 0.9% (-7.1%) 28.5% (+0.8%) 9.1% (-10.4%) 47.5% (-27.6%)

Vicuna 47.2% 10.0% 29.0% 19.3% 78.1%
MM-ft 44.0% (-3.2%) 5.4% (-4.6%) 29.4% (+0.4%) 10.1% (-9.2%) 52.5% (-25.6%)

LLaMA-3B 26.7% 2.4% 26.4% 20.7% 65.6%
MM-ft 26.5% (-0.2%) 1.7% (-0.6%) 25.8% (-0.6%) 8.6% (-12.1%) 53.6% (-12.0%)
MM-lora 26.8% (+0.1%) 3.1% (+0.7%) 26.3% (-0.1%) 18.8% (-1.9%) 66.3% (+0.7%)

Alpaca-3B 24.9% 0.1% 24.6% 28.2% 71.1%
MM-ft 24.5% (-0.4%) 0.0% (-0.1%) 25.6% (+1.0%) 12.1% (-16.1%) 69.0% (-2.1%)
MM-lora 24.3% (-0.6%) 0.1% (+0.0%) 25.4% (+0.8%) 24.2% (-4.1%) 71.1% (+0.0%)

LLaMA2 45.9% 13.7% 30.1% 26.3% 77.7%
MM-ft 39.4% (-6.5%) 5.5% (-8.2%) 29.6% (-0.5%) 8.5% (-17.8%) 56.3% (-21.4%)
MM-lora 46.6% (+0.7%) 15.0% (+1.3%) 30.4% (+0.3%) 20.1% (-6.2%) 77.6% (-0.1%)

LLaMA2-chat 45.8% 18.2% 31.1% 20.1% 80.7%
MM-ft 45.2% (-0.6%) 6.2% (-12.0%) 30.0% (-1.1%) 10.2% (-9.3%) 67.0% (-13.7%)
MM-lora 45.9% (+0.2%) 17.1% (-1.1%) 30.8% (-0.3%) 25.5% (+5.4%) 81.5% (+0.8%)

Vicuna-v1.5-7B 50.0% 18.0% 30.0% 16.9% 82.1%
MM-ft 50.6% (+0.5%) 17.4% (-0.6%) 29.2% (-0.8%) 18.2% (+1.3%) 78.3% (-3.8%)
MM-lora 50.4% (+0.4%) 16.5% (-1.5%) 29.4% (-0.6%) 12.5% (-4.4%) 82.8% (+0.7%)

Vicuna-v1.5-13B 55.8% 31.9% 33.8% 16.3% 86.2%
MM-ft 56.0% (+0.2%) 27.5% (-4.4%) 33.0% (-0.8%) 18.6% (+2.3%) 85.1% (-1.1%)
MM-lora 55.7% (-0.1%) 26.1% (-5.8%) 32.5% (-1.3%) 11.8% (-4.5%) 86.7% (+0.5%)

LLaMA3-8B 65.7% 75.7% 42.2% 42.6% 86.7%
MM-ft 56.7% (-9.0%) 71.2% (-4.5%) 37.6% (-4.6%) 14.4% (-28.2%) 71.9% (-14.3%)
MM-lora 64.7% (-1.0%) 72.2% (-3.5%) 42.5% (-0.8%) 35.1% (-7.5%) 87.5% (+0.8%)

LLaMA3.1 68.2% 77.7% 43.9% 38.4% 87.2%
LLaMA3.2* 68.0% (-0.2%) 76.9% (-0.8%) 43.6% (-0.2%) 38.3% (-0.1%) 86.8% (-0.4%)

Table 3: Performances of both the vanilla LLMs and visual-instruction-tuned LLMs on five NLP capabilities
benchmarks. Note that LLaMA3.2* denotes a model with visual capabilities built on LLaMA3.1.

baseline group. We tune LLaMA2 and LLaMA2-chat with each data group (of 20k data points) separately,
and report the results in fig. 3.

Our analysis reveals that, in general, conversational data has a greater impact on improving LLMs’ performance
on the Ethics task, resulting in an improvement of ∼15% on MM-LLaMA2-ft and ∼3% on MM-LLaMA2-chat-
ft. Conversely, reasoning and details data tend to be more effective in improving performance on TruthfulQA,
yielding gains of more than 2% and 6% on these two models. This suggests that a targeted approach,
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leveraging the unique strengths of each data type, can facilitate more nuanced and effective instruction tuning
for LLM alignment.

Imperfect Match Between Multi-Modal and NLP Objectives. The incorporation of visual information
has shown to benefit the ethical and truthful aspects of LLMs. In fig. 4, we present the model performance
on the Ethics and TruthfulQA tasks during the multi-modal LLM finetuning stage. At the initial stage of
visual instruction tuning, there is a noticeable improvement in most models for both aspects within the first
1000 training steps. Specifically, the scores on Ethics task continue to increase as more visual knowledge
is incorporated, indicating a well-aligned training objective between visual instruction training and ethical
awareness. However, the alignment between incorporating visual perception into LLMs and enhancing model
truthfulness may not be optimal, as the scores for truthfulness degenerate with more training steps considered
(e.g., two LLaMA2 models achieve their highest TruthfulQA-mc1 scores at the 1000th training step). This
finding is consistent with our previous observation that the model’s awareness of truthfulness shows less
improvement compared to its ethical alignment.

By analyzing the trajectory of model performance on these tasks, we observe that the optimization goals
between multi-modal ability and the improved truthfulness and ethics are not perfectly aligned. Though
LLMs trained on full visual tuning steps surpass the vanilla LLMs on ethics and truthfulness, the same
training budgets designed for multi-modal tasks might not be optimal for models’ NLP abilities.

3.2 Standard NLP Abilities

Given these LLMs are further fine-tuned with multi-modal data, it might be intuitively expected that their
standard NLP capabilities could degrade. Such a phenomenon is commonly referred to as catastrophic
forgetting (Kirkpatrick et al., 2017) or in the AI alignment community — the alignment tax (Christiano,
2019; Jensen et al., 2023).

Interestingly, contrary to these assumptions, our results presented in table 3 show that MM-lora (marked
in the gray background) results in only an average 0.17% performance decrease across five NLP capability
benchmarks and four models, after applying visual instruction tuning. More notably, in certain instances,
MM-lora even modestly improves performance on these benchmarks. However, the visually-tuned LLaMA3
series shows an average score drop of 4.5% across these tasks while maintain high scores on Ethics and
TruthfulQA in Table 1. Notably, LLaMA3.2 — a visually-enhanced LLM tuned by Meta (Dubey et al., 2024)
— demonstrates highly consistent performance with our trained models on Ethics, TruthfulQA, and other
NLP benchmarks, further supporting our claim that visual instruction tuning enhances LLMs in ethics and
truthfulness.

Additionally, MLLMs with a more advanced or larger LLM component tend to perform better on NLP
benchmarks. For instance, the multi-modal-tuned Vicuna-v1.5-13B outperforms its 7B variant and the v1.3
counterpart by an average of 5.3% and 15.8% across five NLP tasks, respectively.

In conjunction with the insights from Section 3.1, these observations altogether highlight the ability of
visual-instruction-tuned LLMs in both maintaining the strong capability on standard NLP benchmarks and
aligning better with human values, not to mention the additional capability of recognizing visual inputs. Such
findings pave new avenues for both academic exploration and practical implementations within multi-modal
domains. We believe these insights should catalyze further investigations into the tuning of LLMs with
multi-modal interactions.

3.3 Tuning on Different Vision-Language Data

To better explain the benefit of visual text tuning in the process, we present the results of LLaMA2 finetuned
on Alpaca data (Taori et al., 2023), text-only visual instruction data (text-VI), visual instruction data (VI),
and Orca data (Lian et al., 2023) in Table 4. To keep the fair comparison, we randomly sample 80K data
from Alpaca and Orca data respectively for the training.

We can observe that the visual instruction tuning 1) surpasses Alpaca and text-VI data tuned models in
most cases, i.e., average 6.7% and 2.8% improvements over Alpaca on two benchmarks, and 0.2%, -1.5%
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Models Ethics TruthfulQA-gen TruthfulQA-mc1 TruthfulQA-mc2
LLaMA2 45.8% 32.3% 25.2% 38.9%
Alpaca 52.1% (+6.3%) 29.6% (-2.7%) 27.3% (+2.1%) 41.6% (+2.7%)
text-VI 65.1% (+19.3%) 31.2% (-1.1%) 27.7% (+2.5%) 39.5% (+0.6%)

VI 65.4% (+19.6%) 31.5% (-0.9%) 27.8% (+2.6%) 40.2% (+1.3%)
Orca 62.9% (+17.1%) 41.6% (+9.3%) 33.8% (+8.6%) 49.3% (+10.4%)

Table 4: Results of LLaMA2 finetuned on Alpaca data, text-only visual instruction data (text-VI), visual
instruction tuning data (VI), and Orca data.

Models Unicorn
oodcv / sketch MMECS MMEPS COCO Flickr30k

POPE
R / A / P

MM-LLaMA-ft 45.2 / 80.9 199.3 510.5 59.2 27.1 65.7 / 57.8 / 59.9
MM-Vicuna-ft 58.4 / 82.7 270.7 625.2 57.5 24.6 76.5 / 66.5 / 73.8
MM-LLaMA2-ft 55.0 / 83.6 237.1 661.3 65.1 31.6 65.0 / 55.4 / 56.3
MM-LLaMA2-lora 52.3 / 79.6 200.0 395.0 52.0 26.2 50.8 / 50.4 / 50.6
MM-LLaMA2-chat-ft 54.5 / 80.9 234.6 805.4 57.4 26.7 69.8 / 57.9 / 60.3
MM-LLaMA2-chat-lora 53.1 / 82.8 228.6 709.8 43.4 23.0 65.9 / 56.8 / 59.2
MM-Vicuna-v1.5-7B 58.4 / 80.4 320.4 1182.0 98.5 62.8 89.3 / 79.7/ 85.5
MM-Vicuna-v1.5-13B 59.7 / 87.8 287.9 1213.3 84.0 51.3 87.4 / 78.7 / 84.1

Table 5: Performances of our MLLM family on five widely employed multi-modal benchmarks. We test models
on oodcv and sketch sub-tasks in the Unicorn benchmark (Tu et al., 2023a) and Random (R), Adversarial
(A), and Popular (P) in POPE (Li et al., 2023c).

over text-VI; 2) but lags behind the Orca-tuned model by 1.1% and 16.3% on Ethics and TruthfulQA
benchmarks. Considering that the Orca dataset includes Chain-of-Thought (CoT) and complex, nuanced
instruction-following data from a diverse array of tasks within the FLAN collection (Longpre et al., 2023),
the observed performance gain is reasonable. The CoT reasoning and complex instruction-following examples
in Orca offer richer contextual understanding and problem-solving patterns. This observation indicates the
insight that upgrading text quality within the visual instruction data could further enhance the model’s
ethical and truthful reasoning, opening a promising avenue for refining these abilities.

3.4 Analysis on Multi-Modal Benchmarks

In this section, we test the visual-instruction tuned models on recent multi-modal evaluation benchmarks,
where five multi-modal benchmarks are deployed: Unicorn benchmark (Tu et al., 2023a) dedicates evaluating
the MLLM ability in safety scenarios, we take two OODCV-VQA tasks and Sketchy-VQA tasks for testing whether
models can well handle OOD visual/text input and sketch images, respectively. MME (Fu et al., 2023) consists
of two evaluation aspects, i.e., cognition (CS) and perception (PS) with total 14 VQA tasks;1 MSCOCO (Lin
et al., 2014) and Flickr30k (Young et al., 2014) captioning tasks are commonly used benchmarks in the
field of image caption generation. We report the zero-shot CIDEr (Vedantam et al., 2015) scores (with three
text-only QA examples) on the test set from the Karpathy split (Karpathy & Fei-Fei, 2015). POPE (Li et al.,
2023c) is used to evaluate the level of object hallucinations in MLLMs, which consists of three versions of
balanced yes/no VQA tasks considering objects in the given image. It is built upon MSCOCO-2017 dataset (Lin
et al., 2014). Additionally, We also make use of the image corruptions proposed in ImageNet-C (Hendrycks &
Dietterich, 2019) to measure the performance of the MLLMs on corrupted images for MSCOCO task (denoted
as MSCOCO-C).2.

Enhanced MLLMs Expand NLP Capabilities. Is a better visual reasoner also a better NLP task solver?
In fig. 5, we illustrate the correlation between model performance in multi-modal and NLP tasks. The

1We exclude landmark and artwork tasks to accelerate the evaluation process.
2For corrupted images, we report the average results of tested models on four noises (gaussian noise, defocus blur, contrast,

brightness) across three severity levels (1, 3, 5)
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Figure 5: Results of eight different MLLMs on two multi-modal and four NLP tasks.

Models COCO (CIDEr) COCO-C (CIDEr)

MM-LLaMA-ft 59.2 48.6 (-17.9%)
MM-Vicuna-ft 57.5 46.0 (-20.0%)
MM-LLaMA2-ft 65.1 54.6 (-16.1%)
MM-LLaMA2-lora 52.0 43.2 (-16.9%)
MM-LLaMA2-chat-ft 57.4 47.5 (-17.2%)
MM-LLaMA2-chat-lora 43.4 33.8 (-22.1%)

Table 6: Performances of the MLLM family on MSCOCO (Lin et al., 2014) with corrupted visual inputs.

results reveal positive correlations across tasks from different domains, suggesting that the visual reasoning
abilities of the eight models analyzed contribute to their improved performance on NLP benchmarks. Notably,
the average coefficient of determination score across these eight scenarios is 0.482, indicating a moderate
correlation. In specific cases, such as pairing MME (PS) with Ethics and MMLU, both of the coefficient scores
exceed 0.72, indicating a very strong correlation between these tasks. This evident correlation explains our
finding of stronger MLLMs can lead to expanded NLP capacities. But unlike the misaligned objectives
observed between MLLM multi-modal and NLP abilities during training in Sec. 3.1, this finding might not be
surprising, as MLLMs rely heavily on language to reasoning and expression. It is plausible that an improved
LLM (i.e. better training data, larger model scale) could enhance the expressive abilities of an MLLM,
resulting in a close correlation between abilities across different modalities.

Potential Inconsistency in Current Multi-Modal Benchmarks. In table 5, MLLMs incorporating
aligned LLMs have demonstrated superior performance in comprehensive and challenging tasks such as
Unicorn, MME and POPE. Specifically, MM-Vicuna-ft and MM-LLaMA-chat-ft outperform their corresponding
vanilla MLLM counterparts by an average of 164.9 on MME and 7.5% on POPE. However, despite the incorporation
of text-aligned LLMs, MLLMs exhibit unexpected shortcomings in comparison to models leveraging vanilla
LLMs when evaluated on three traditional vision-text tasks (e.g., an average 4.2 CIDEr score drop on two
captioning tasks). The inconsistent performance across these benchmarks highlights the imperative for
improving evaluation techniques within multi-modal benchmarks.

Need for Studying Multi-Modal Alignments. Despite the effectiveness of text-aligned models like
Vicuna and LLaMA2-chat, their MLLM variants exhibit poor performance on corrupted images as shown
in table 6. These models not only lag behind MLLMs without instruction-tuned LLMs, but also demonstrate
performance drops of over 17% when evaluated on corrupted images compared to clean ones, which are higher
than drops observed for MM-LLaMA-ft and MM-LLaMA2-ft. This observation indicates that though visual
instruction tuning improves the truthfulness and ethics of LLMs in the language domain, these MLLMs still
face their unique challenges in the multi-modal domain.
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4 Related Work

Alignments. The alignment of AI systems to human values is an important topic for today’s advanced AI
systems, from testing model robustness to out-of-distribution shifts (Hendrycks & Dietterich, 2019; Hendrycks
et al., 2021a; Zhao et al., 2022) to adversarial attacks (Hendrycks et al., 2021b; Eykholt et al., 2018; Xie
et al., 2020), many works have been proposed. The recent development of LLMs has revolutionized natural
language processing and has been widely adopted in various applications. Thus, concerns regarding the
honesty and truthfulness of these models have also emerged, prompting alignment researchers to investigate
the ethical implications and potential risks associated with their deployment. TruthfulQA (Lin et al., 2022)
is proposed to measure how LLMs imitate human misconceptions. And Ethics (Hendrycks et al., 2020) is
used to assess a language model’s knowledge of basic concepts of morality.

Advanced techniques for aligning language models with human preference are also popular these days, from
RLHF (Ouyang et al., 2022) to DPO (Rafailov et al., 2023) optimization, the alignment training paradigms
have shifted fast recently. Reinforcement learning as one of the most popular solutions to enhance the truthful
and ethical awareness of LLMs have long been discussed. Recent works explored various approaches for such
purpose, including progressive rewarding (Gao et al., 2024), optimized RL reward function (Bai et al., 2022),
and applications as well as benchmarking (Zhang et al., 2024; Li et al., 2024). The concept of LLM alignment
has also gradually switched from human-supervised (Ouyang et al., 2022) to the paradigm of incorporating
other AI model supervisions (Lee et al., 2023), and to most recently the employment of weak signals (Burns
et al., 2023). Given the popularity of the use of large language models, adversarial attacks on LLMs have also
been explored (Zou et al., 2023). In this work, we present our findings on how visual instruction tuning can
help the LLMs align with human values, our results show impressive performance boost on these datasets
without explicit prompting such behaviors.

Multi-Modal and Large Language Models. Multi-modality has long been a hot topic, CLIP (Radford
et al., 2021) proposes to align representations of both images and text, and later works proposed more
techniques for this aim (Yu et al., 2022; Mu et al., 2022; Zhao et al., 2023). In light of the rapid evolvement
of large language models (LLMs), recent studies about multi-modal systems have turned their focuses from
incorporating fine-grained multi-modal data (Liang et al., 2021; Tu et al., 2023b) to integrating powerful
LLMs with few-shot capability. More recently, some instruction-tuned MLLMs have emerged, showing
excellent generalization ability in unseen VL tasks (Zhu et al., 2023; Liu et al., 2023b; Ye et al., 2023; Li
et al., 2023a; Dai et al., 2023). For example, MiniGPT4 (Zhu et al., 2023) is built upon QFormer (Li et al.,
2023a) and Vicuna (Zheng et al., 2023) and only activates the linear layer connecting the vision encoder
and LLM. LLaVA (Liu et al., 2023b;a) projects the output of a vision encoder to word tokens and trains
both the VL connector and the LLM on synthetic data. mPLUG-owl (Ye et al., 2023) tunes LLaMA with a
query-based VL connector using both text-only and vision-language instruction data. InstructBLIP (Dai
et al., 2023) uses BLIP2 (Li et al., 2023a) as the backbone but is additionally instruction-tuned on a collection
of VL datasets. Other multi-modal LLMs in a vast range of modalities sparkles insights and deployment in
real-world applications (Zhang et al., 2023c; Bai et al., 2023; Bavishi et al., 2023; Zhang et al., 2023a; Liu
et al., 2024).

Despite the rapid growth in this domain, recent benchmark works have shown that current multi-modal large
language models still suffer from problems like being unable to handle counterfactual statements (Zhang
et al., 2023b; Wu et al., 2023; Yu et al., 2023), hallucination (Li et al., 2023b; Zhou et al., 2023), and simple
answer set permutations (Zong et al., 2023). In our work, we demonstrate a new perspective on these MLLMs
– tuning LLMs with multi-modal data greatly helps align them with human values.

5 Discussion, Conclusion, and Future Work

More Aligned Objectives between Multi-Modal and NLP Abilities. Our exploration shows that
training on multi-modal instruction tuning data can also benefit the LLMs’ factual accuracy and ethics.
In fig. 4, we have shown that these alignment-focused metrics improve while training proceeds on multi-modal.
However, current multi-modal data is not designed for alignment, the main focus is still eliciting language
models with multi-modal perception. Our results demonstrate a promising new avenue for developing models
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to understand and interact with the world more truthfully, and also suggest the need for exploration to
identify appropriate tasks that can effectively improve these two aspects simultaneously. And we hope our
paper could inspire discussions on this direction.

Exploring the Training Framework. In our pilot study, we have shown the results of using image-based
instruction fine-tuning data to support our findings that leveraging multi-modal interactions could yield more
aligned models. Based on our results, it is reasonable to assume that introducing multi-modal data to the
pre-training stage could also yield more aligned models. For example, the Gemini family models could be an
interesting case for study (Gemini Team, 2023). Understanding how to instruction fine-tune the base model
for multi-modal ability and alignment is another direction worthy of exploration. Our study explores full
parameter fine-tuning as well as LoRA parameter efficient fine-tuning. It can be beneficial to study how
varies types of parameter-efficient fine-tuning techniques helps (Kopiczko et al., 2024; Zhao et al., 2024).
Besides the training techniques, the training data can also be explored, how should we create a mixture of
data for fine-tuning, how to determine the ratio of multi-modal data to text-only data (Ye et al., 2023; Liu
et al., 2023a), and how to extend to other modalities other than images. These exploration could help gives a
more practical and comprehensive guide.

Conclusion. In this study, we offer preliminary findings that underscore the potential of enhancing the
truthfulness and ethical alignment of LLMs through visual instruction tuning. Remarkably, even without
prompts tailored for truthfulness or ethical behaviors, our approach to tuning LLM weights using visual
instruction datasets yielded significant improvements in both the TruthfulQA and Ethics benchmarks.
Notably, such improvements are even stronger than that of RLHF, which tunes LLMs with a huge corpus of
human-aligned data points. The follow-up analysis demonstrates the importance of instruction data quality
for improving aligned values in MLLMs, as well as specific types of data models employed for applying to
different alignment tasks.

Future Work. In light of our findings, we advocate for future research endeavors to focus on devising
innovative methodologies for crafting visual instruction data that can more effectively align LLMs. Exploring
novel MLLM architectures could also be a fruitful avenue. We hope fostering LLM interactions with real-world
environments may emerge as a pivotal strategy for achieving superior model alignment.
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