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ABSTRACT

We establish a theoretical and empirical connection between Hebbian Winner-
Take-All (WTA) learning with anti-Hebbian updates and tied-weight sparse au-
toencoders (SAEs), offering a framework to explain the high selectivity of neu-
rons to patterns induced by biologically inspired learning rules. By training a
SAE on token embeddings of a small language model using a gradient-free Heb-
bian WTA rule with competitive anti-Hebbian plasticity, we demonstrate that such
methods implicitly optimize SAE objectives. However, they underperform back-
propagation SAEs in reconstruction due to gradient approximations. Hebbian up-
dates approximate reconstruction error (MSE) minimization under tied weights,
while anti-Hebbian updates enforce sparsity/feature orthogonality, akin to explicit
L1/L2 penalties in standard SAEs. This alignment with the superposition hy-
pothesis (Elhage et al., 2022) reveals how Hebbian rules disentangle features in
overcomplete latent spaces, marking the first application of Hebbian learning to
SAEs for language model interpretability.

1 INTRODUCTION

Despite the long history of biologically inspired learning mechanisms, Hebbian WTA training aug-
mented with anti-Hebbian (negative) updates lacks a comprehendible explanation and a connection
to modern machine learning (Földiák, 1990; Pehlevan & Chklovskii, 2014). These rules are notable
for their rapid convergence, adversarial robustness, and high selectivity of neurons to input patterns
(Krotov & Hopfield, 2019; Journé et al., 2023). While prior work, such as SoftHebb (Moraitis et al.,
2022), finds explanation in Bayesian inference, the underlying principles remain partially opaque.
As shown in Krotov & Hopfield (2019), the weights of a fully-connected layer trained with their
algorithm stores an image prototype or exactly the input images in its weight vectors. We conjec-
ture that this neuronal selectivity is analogous to the feature selectivity exhibited by SAEs used for
language model (LM) mechanistic interpretability research (Bricken et al., 2023; Yun et al., 2023;
Gao et al., 2024).

We propose a novel perspective: framing Hebbian WTA learning with anti-Hebbian updates
as a form of tied-weight SAE training (Cunningham et al., 2023). This connection not only demys-
tifies the mechanism behind neuronal selectivity, but also aligns with the superposition hypothesis,
which posits that neural networks encode more features than their number of neurons through inter-
fering representations (Olah et al., 2020; Elhage et al., 2022). We shed light onto how Hebbian rules
approximate SAE objectives, thereby explaining their empirical advantages in interpretability and
efficiency. To validate our hypothesis, we conduct a comparison of SAEs trained via Hebbian WTA
rules and standard backpropagation. Our experiments demonstrate that Hebbian SAEs (HSAEs)
minimize reconstruction (MSE) and sparsity (L1) objectives akin to traditional SAEs, albeit with a
performance gap due to the approximation of gradients by Hebbian updates. Despite this limitation,
manual inspection reveals that HSAEs learn monosemantic latents (bottleneck neurons), activating
on distinct interpretable input patterns/concepts, mirroring the interpretability benefits of conven-
tional SAEs. Furthermore, we highlight theoretical connections between Hebbian WTA updates and
the anti-gradients of SAE objectives under the tied-weight constraint, revealing how anti-Hebbian
terms enforce sparsity and/or feature orthogonality, while Hebbian terms drive reconstruction. These
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insights advance the understanding of biologically plausible learning rules and connects them to the
on-going research in mechanistic interpretability and dictionary learning.

2 BACKGROUND

2.1 HEBBIAN LEARNING AND PRINCIPAL COMPONENT ANALYSIS

Hebbian learning (Hebb, 2005) is a learning principle that is often summarized as “neurons that
fire together wire together“. Unlike backpropagation, which requires global error signals, Hebbian
learning uses only local information: synaptic weights of neurons are adjusted based on the cor-
relation of pre- and post-synaptic activity, i.e. inputs and outputs of a layer. In terms of machine
learning, Hebbian rules are unsupervised representation learning methods that aim to extract useful
representations of the data for downstream tasks. The simplest Hebbian rule is ∆w = yxT , but
it makes the weight grow unboundedly. To solve that issue the well-known Oja’s rule (Oja, 1982)
incorporates the weight vector normalization into the update rule, resulting in the algorithm to ex-
tract the first principal component of the data. However, applying the Oja’s rule for more neurons in
a layer is not sufficient for finding later components, since there’s no interaction between neurons.
To handle this, methods like Sanger’s rule and (Oja’s) subspace algorithm were introduced (Sanger,
1989; Oja, 1989). The table with expressions of learning rules can be found in Table A.1. In such a
way, Hebbian learning has a tight connection to online PCA, formulated in an algorithmic fashion,
i.e. through weight updates. However, it can be rewritten in an optimization way, e.g. PCA can be
done with a linear reconstructing autoencoder (AE) (Plaut, 2018). Furthermore, Hebbian learning
can be performed in the modern deep learning framework, PyTorch, by formulating weight updates
in terms of loss functions (Miconi, 2021).

Hebbian Winner-Take-All (WTA) learning refers to a competitive learning approach, where weight
updates follow Hebbian rules, but only the most active neuron(s) receive Hebbian (positive) updates,
while other neurons may receive anti-Hebbian (negative) updates. For example, only the top-1
neuron, by its output value in a layer, updates its weight vector positively, or the top-5 neuron gets a
negative update, using a sign switch. This competitive mechanism enforces the selectivity of neurons
to patterns (Moraitis et al., 2022).

2.2 SPARSE DICTIONARY LEARNING

Sparse dictionary learning aims to represent input data in terms of a sparse linear combination of
basic dictionary elements (Olshausen & Field, 1997). Sparse autoencoder is one of such methods,
which is widely used in LM interpretability research to learn a dictionary of directions in activation
space (Bricken et al., 2023). It is trained to reconstruct activations of another neural network, e.g.
LM, through a bottleneck layer that is constrained to be sparse (typically via an L1 penalty on bot-
tleneck acivations or a k-sparse constraint). This sparsity prior encourages the network to discover
a distributed representation where each unit fires only for a limited set of patterns.

2.3 SAE FOR INTERPRETABILITY OF LANGUAGE MODELS

According to the superposition hypothesis language models tend to store more features inside of
their representations then they have dimensions. This is possible by representing a feature with a
linear combination of neurons, and due to the sparse activation of features themselves. SAE takes
these features out of superposition by bringing them into the overcomplete basis, the bottleneck
layer, where neurons can align with features one-to-one. Throughout this paper, we refer to neurons
in the bottleneck of an SAE as latents, akin to Lieberum et al. (2024).

3 METHODOLOGY

In our experiments, we employ a sparse autoencoder (SAE) of the form:

y = ReLU(Wencx+ benc), x̂ = Wdec y, (1)

with Wenc ∈ RK×d, Wdec ∈ Rd×K . The loss function is:

L = ‖x− x̂‖22 + α ‖y‖1, (2)
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where α is a hyperparameter that controls the strength of L1 penalty on the encoder output. A tied-
weight SAE means Wenc = W>

dec = W . We adapt a public SAE codebase1 and use a ReLU
encoder, zeroed decoder bias, and no orthonormal initialization on Wdec.

We integrate SoftHebb learning rule from Journé et al. (2023) for the encoder’s weights and bias
(HebbSoftKrotovLinear2). During a forward pass, the layer still computes a linear trans-
formation with ReLU activation applied, but weight updates follow the local Hebbian rule, with
Softmax activation function, instead of backpropagation. In SAE setups without tied weights, the
decoder matrix is trained via backpropagation. Otherwise, the decoding is made with W>

enc. If a
layer uses backpropagation, its Hebbian update is disabled; if it uses Hebbian learning, its parame-
ters are frozen for backpropagation updates.

We evaluate the mean-squared error (‖x− x̂‖22), L1 sparsity (‖y‖1), explained variance ratio (EVR)
(1 − ‖x−x̂‖2

2

‖x−x̄‖2
2

), average L0 norm of activations (‖y‖0), and effective dictionary size (number of
latents that activated at least once on the whole batch). The EVR quantifies how much better the
model’s prediction (reconstruction) x̂ compared to the baseline of always predicting mean dense
activations x̄. EVR close to 1 indicates near-perfect reconstruction, whereas a negative value implies
performance worse than predicting the mean. We compute metrics and losses on the same subset
used for training.

4 EXPERIMENTAL SETUP

For our experiments, we use the TinyStories dataset and extract LM activations from the
TinyStories-1M Transformer-based autoregressive language model, which is trained on
synthetic toy data (Eldan & Li, 2023). The token representations are gathered using
TransformerLens3 library from the model position blocks.4.hook_resid_pre, i.e.
from the residual stream. Each sample contains 512 embeddings of dimension 64, yielding 400K
samples (204.8M embeddings total).

The SAE hyperparameters are d = 64, K = 3200 and α = 10−2. We train for 5 epochs with batch
size 16384, repeating each setup under 5 seeds. All weight matrices follow the normal initialization
from Journé et al. (2023). The rest of the hyperparameters for the Hebbian learning can be found
in Appendix A.2. When backpropagation is applied, we use Adam with a learning rate of 10−2,
gradient norm clipping at 1.0, and α = 10−2 for sparsity. Additionally, we conduct an ablation study
in which the default PyTorch initialization is used in place of the normal initialization scheme4.

We compare the following setups:

1. BP: Both encoder and decoder trained with standard backprop.
2. BP Tied: Same as BP, but with one trainable matrix Wenc = W>

dec = W .
3. Hebbian Encoder + BP Decoder (BP Dec): Encoder weights updated by SoftHebb, de-

coder - by backprop.
4. Full Hebbian Tied (Hebb Tied): Encoder trained via SoftHebb, decoder is W>

enc (no
backpropagation-based training).

5 RESULTS

Table 1 summarizes our quantitative results on MSE reconstruction, explained variance (EVR), spar-
sity loss, samplewise L0 norm and effective dictionary size. As expected, the fully backpropagation-
trained baseline (BP) achieves the lowest MSE and sparsity loss. By contrast, our Hebbian-based
approach (Hebb Tied) yields a higher reconstruction error but preserves richer dictionary of active
units. Interestingly, the hybrid approach with a Hebbian encoder and backprop decoder (BP Dec)

1https://github.com/ApolloResearch/e2e_sae
2https://github.com/NeuromorphicComputing/SoftHebb
3https://github.com/TransformerLensOrg/TransformerLens
4Default PyTorch initialization uses parametrized Kaiming uniform distribution on the weights and uniform

on the bias.
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Table 1: Final evaluation metrics for each training setup. We report the mean (standard deviation)
over 5 runs. MSE is the mean-squared error of reconstruction; EVR is the explained variance ratio;
L1 is the average sparsity loss; L0 is the average count of active latent units; Dictionary Size is the
total number of latent units that become active at least once.

Setup MSE EVR L1 L0 Dict Size

BP 4.0× 10−5 (±7.3× 10−6) 0.929 (±0.012) 2.56× 10−3 (±8.9× 10−5) 32.4 (±2.08) 6.12× 102 (±17.5)
BP Tied 2.04× 10−4 (±4.3× 10−5) 0.391 (±0.271) 7.04× 10−3 (±8.5× 10−4) 12.0 (±2.40) 2.42× 101 (±5.7)
BP Dec 1.63× 10−4 (±5.8× 10−6) 0.615 (±0.025) 1.17× 10−2 (±7.6× 10−4) 22.3 (±1.96) 1.89× 103 (±53.8)
Hebb Tied 7.29× 10−3 (±1.75× 10−3) −0.520 (±0.110) 1.17× 10−2 (±7.6× 10−4) 22.3 (±1.96) 1.89× 103 (±53.8)

(a) MSE loss (b) EVR (c) L1 loss

Figure 1: MSE reconstruction loss, explained variance ratio (EVR), and L1 sparsity during SAE
training on TinyStories-1M activations. Error bars: mean ± std over 5 runs. Hebb Tied and BP
Dec setups overlap for (c).

provides a middle ground, achieving moderate reconstruction performance alongside reasonably
high sparsity. These results illustrate a trade-off between classical backpropagation performance
and the interpretability or biological plausibility conferred by Hebbian updates.

Figure 1 shows losses and EVR during training. For clarity, BP Tied’s high-variance regions (e.g.,
negative EVR, std > 1) are omitted. BP setup achieves the lowest MSE (Fig. 1a), aligning with
its direct MSE optimization, while Hebbian setups (e.g., Hebb Tied) show higher errors due to
gradient approximations. In Fig. 1b, BP maintains the greatest EVR ( ≈ 93%), BP Dec achieves
moderate EVR (≈ 61.5%) , and Hebb Tied’s EVR drops below zero (linked to high variance; see
Fig. 3 in Appendix). BP Tied hugely underperforms BP due to initialization sensitivity: switching
to PyTorch’s default initialization improves BP Tied’s EVR (>90%), but destabilizes Hebbian setups
(NaN outputs). The weight initialization ablation results can be seen in Appendix A.4.

Figure 1c depicts L1 sparsity loss during training. The BP setup achieves the lowest L1 loss, but
gradually increases post-MSE convergence. Hebbian setups overlap on the figure due to shared
encoder training. They exhibit the greatest L1 loss value, while BP Tied shows comparable L1 loss
with high variance. Figure 2 shows sparsity statistics. BP Dec and Hebb Tied setups overlap due to
shared encoder training. The left panel reveals the average L0 norm (active units per sample): BP and
Hebbian setups initially activate similar counts, but BP’s L0/L1 norms grow post-MSE convergence.
BP Tied exhibits the sparsest activations. The right panel highlights effective dictionary size: BP
Tied collapses to near-zero rapidly (incompatible with normal initialization), while Hebbian setups
activate more dictionary entries, likely due to slower convergence and no implicit L1 minimization.

Manual inspection of the latents’ activations reveals the presence of monosemantic interpretable
concepts for the corner case setups, BP and Hebb Tied. See Appendix A.4.1 for details and exam-
ples. Our inspection shows that Hebbian WTA learning can induce neuron selectivity comparable to
that observed in sparse autoencoders.

6 DISCUSSION

We believe the explanation of pattern selectivity and SAE objectives minimization of Hebbian WTA
learning with anti-Hebbian updates is twofold. The Hebbian, positive, weight updates are the trun-
cated anti-gradients of the MSE loss function of the reconstructing tied weight AE (see Table A.1).
Since the SoftHebb (Journé et al., 2023) is based on the Oja’s rule, the difference from the default

4



New Frontiers in Associative Memory workshop at ICLR 2025

Figure 2: Sparsity statistics: (left) average L0 norm of SAE latents; (right) dictionary size (unique
latents that ever activate). Hebb Tied and BP Dec setups overlap.

MSE gradients are the absence of Wdec gradient term and the diagonalization of the autocorrelation
matrix of y. The anti-Hebbian, negative, weight updates are the modified anti-gradients of the L2/L1

loss (applied to the activations in the bottleneck). The modification is the orthogonalization of x to
w, or the Gram-Schmidt orthogonalization. This makes the weight updates orthogonal to the weight
vector itself. For small learning rate and/or sparsity coefficient it can be thought of as rotating the
weight vector away from the input. This results in the weight vector becoming less tuned to the
input, and the corresponding neuron activation decaying. The anti-Hebbian update of SoftHebb re-
sembles the anti-gradient of L2 loss on the latents, while the rule from Krotov & Hopfield (2019)
to L1 loss. This distinction likely explains the larger effective dictionary size observed in SoftHebb
encoders compared to encoders in backpropagation only setups.

Formerly, Elhage et al. (2022) connected vulnerability to adversarial examples to the formation of
superposition inside of a network. We believe the adversarial robustness of MLP models trained
with SoftHebb is connected to the reduced superposition in features compared to BP training, as
seen in SAE bottleneck representations.

7 CONCLUSION

We have established a novel theoretical and empirical connection between Hebbian Winner-Take-
All (WTA) learning with anti-Hebbian updates and tied-weight sparse autoencoders (SAEs), demon-
strating that interpretable, monosemantic features can be learned in LM activation spaces using bio-
logically inspired rules. By framing Hebbian WTA mechanisms as an implicit optimization of SAE
objectives - reconstruction (MSE) via Hebbian updates and sparsity/orthogonality via anti-Hebbian
updates and competition - we bridge the gap between neuroscience-inspired learning and modern
mechanistic interpretability research.

LIMITATIONS AND FUTURE WORK

Although the proposed Hebbian approach underperforms standard backpropagation on direct recon-
struction metrics, it offers compelling benefits in terms of biologically inspired mechanisms and
potential interpretability. Future work could cover the extension the method to larger architectures
and image domain, comprehensive ablation study, and scaling interpretation analysis with autoint-
erpretability score.
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A APPENDIX

A.1 LEARNING RULES

Table 2: Weight update rules for a fully-connected layer: bio-inspired rules and tied weights au-
toencoder anti-gradient. The bias terms are omitted. For the fast AI implementation of (Krotov &
Hopfield, 2018), i is the hyperparameter. diag is a function leaves only elements on the main di-
agonal, LT() is a function that sets elements above the main diagonal to zero, SM() is the Softmax
activation function.

Method Weight update
Simple Hebbian rule ∆W = yxT

Oja’s rule ∆W = yxT − diag(yyT )W 5

Sanger’s rule ∆W = yxT − LT(yyT )W

Oja’s subspace algorithm ∆W = yxT − yyTW

Tied weight linear AE
(L = MSE)

∆W =
[
yxT − yyTW

]
+

[
y(x−W Ty)T

]
SoftHebb (Moraitis et al.,
2022)

∆wk =

{
SM(yk)(x− ykwk), if k = argmax

k
yk

−SM(yk)(x− ykwk), otherwise

Fast AI implementation of
(Krotov & Hopfield, 2018)

∆wk =


(x− ykwk), if k = argmax

k
yk

−∆(x− ykwk), if k = i (hyperparameter)
0, otherwise

A.2 EXPERIMENTAL DETAILS

During training, we use 32 batches of 512 embeddings, but metrics and losses are averaged over all
of them, i.e. all 214, so we report the total batch size. For simplicity, we do not initialize the decoder
weight vectors in an SAE to be orthonormal and do not normalize them before making a forward
pass.

A.2.1 HEBBIAN LAYER DETAILS

We use the following hyperparameters of the hebbian layer in our training:

• layer_type = HebbSoftKrotovLinear

• lebesgue_p = 2

• weight_distribution = normal
• weight_offset = 0

• t_invert (τ ) = 50

• bias = True
• lr_bias = 0.1

• activation_fn = exp

The hyperparameters for the learning scheduler in a hebbian layer:

• lr = 10−2

• adaptive = True
5Oja’s rule is frequently written in the vector form for k-th output layer’s neuron (∆wk = yk(x− ykwk))

and the scalar form for a weight from i-th input neuron to the k-th output neuron (∆wik = yk(xi − ykwik)).
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Figure 3: Standard deviation estimate for EVR during training.

• nb_epochs = 0

• ratio = 1

• speed = 0

• div = 100

• decay = constant
• power_lr = 0.2

For SoftHebb, the bias term vector of a linear layer is initialized with a constant value τ
log 1

#neurons

.

We do not use the learning scheduler, but employ the weight-norm-dependent adaptive learning rate
from Journé et al. (2023) for the output neurons in the layer. It means that the learning rate is not the
same for all neurons. The bias learning rate is set to lr_bias

τ . We noticed the original repository not
utilizing the lr_bias hyperparameter, but rather setting bias learning rate to 1

τ , so we modified it.

The change of a k-th bias term in a layer is computed according to the official repository of Journé
et al. (2023):

∆bk =
yk − ebk/τ · batch_size

ebk/τ
(3)

The derivation of the update was considered in Moraitis et al. (2022).

A.3 ADDITIONAL EXPERIMENTAL RESULTS

Along with calculating the mean EVR, we analyze standard deviation of the samplewise evaluations,
see Figure 3

A.4 ABLATION OF WEIGHT INITIALIZATION

The tied-weight backpropagation SAE setup (BP Tied) shows high variance across runs and hugely
underperforms compared to BP setup. We find the reason to be the normal weight initialization
adopted from Journé et al. (2023). Ablating the weight initialization of SAE training setups to the
default PyTorch scheme, i.e. parametrized Kaiming uniform distribution on the weights and uniform
on the bias terms, recovers the performance of BP Tied, see Figure 4 and Figure 5. However, the
Hebbian setups degenerated to NaN values, and are not shown on the figures.

A.4.1 INSPECTION OF LATENTS’ ACTIVATIONS

We provide a few examples of latent’s activations on token embeddings from acquired with the same
model our SAEs were trained on. The dataset used for this evaluation is NeelNanda/pile-10k,
which is different from the training one.
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(a) MSE loss (b) EVR (c) L1 loss

Figure 4: Ablation of SAE setups to default PyTorch weight initialization scheme. MSE reconstruc-
tion loss, explained variance ratio (EVR), and L1 sparsity during SAE training on TinyStories-
1M activations. Error bars: mean ± std over 5 runs.

Figure 5: Ablation of SAE setups to default PyTorch weight initialization scheme. Sparsity statistics:
(left) average L0 norm of SAE latents; (right) dictionary size (unique latents that ever activate).

Table 3: Examples of top samples and their contexts that activate latents in Hebbian tied weight SAE,
Hebb Tied setup. The activating tokens are highlighted in orange, and the color opacity indicates
activation strength.

Latent Pattern Activating examples from the top (descending order)

HB_tied/27 Token "edd"
\nOverlooking the Senedd from the glassed-

A mile east of Beddgelert, this mine
the first ever eisteddfod in 1176

HB_tied/19 Token "tr"
arrived in the gold-trimmed Irish State Coach

or any other non-trusted user) does not
we implement full ray-tracing to calculate $\k

HB_tied/9 Closing ">" before "</value"
wiki/Astrovirus> (accessed July 2019

</value>\n
.</string> </value>\n

HB_tied/86
Context of religious themes and
Christian theology, particularly

tokens " God" and " Him"

our sins were placed on Him, and He took the
this was in accordance with God’s plan, for God

to feel at one with Him, to melt into Divinity

HB_tied/81 Intensifiers (" extremely", " so",
" very") paired with adjectives

rm c}$ is extremely sensitive to details of the
mood, but she was so busy with life that,

, but the tour is very much an outdoor one through
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Table 4: Examples of top samples and their contexts that activate latents in regular SAE trained with
backpropagation, BP setup. The activating tokens are highlighted in orange, and the color opacity
indicates activation strength.

Latent Pattern Activating examples from the top (descending order)

BP/10 Token "OO" in "GOOGLE"
MAP GOOGLE MAP ) ;
MAP GOOGLE MAP ) )

Island Life ( GOOGLE MAP ) ;

BP/16 Token " resolution"
responding to a mass resolution of $1.4

relaxation times obtained from high resolution scans (not reported)
the assay without adding significant resolution to the essence of the

BP/157 Tokens " good", " great"
wrong all tournament. As good as Celia Å

sulfur and it wasn’t good. When we got home
of them talked about how great the policy was, an

BP/160 Tokens " trying",
" suggesting", " intended"

size\n\nI am trying to change font family and
Myr), massive clusters, suggesting that discs may have survived

Galafold is not intended for concomitant use

BP/487
The verb "to be" in

different forms: " were",
" are", rarely " was".

good hiding place. Where were you?"\n\n"
back out. "Where are you going?"\n\n

in the distance. Where was the low hill I remembered
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