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Abstract

Despite the evolving reasoning ability many
large language models (LLMs) have performed,
they are reported to hold attestation bias in in-
ference tasks. Instead of focusing on entailment
signals between a premise and a hypothesis,
LLMs are easily misled by whether the hypoth-
esis is factual in the models’ knowledge. To
further study this bias and mitigate its negative
effect, in this paper, we propose the sentence-
level explicit inductive inference pipeline. By
testing our pipeline on three NLI datasets with
four mainstream LLMs, we demonstrate that
although the attestation bias is still a severe
problem, it can be exploited to improve LLMs’
inference performance and mitigate the bias
itself.!

1 Introduction

While many contemporary large language models
(LLMs) claim to have strong reasoning ability, re-
cent studies have shown that they are subjected
to severe attestation bias in fundamental natural
language inference tasks (McKenna et al., 2023).
When a model is asked to predict whether a premise
entails a hypothesis, instead of focusing on the in-
ference signal, an LLM can be easily distracted
by the hypothesis’ out-of-context factuality. As
a result, LLLMs usually perform worse when the
entailment label between premise and hypothesis
disagrees with the attestation (factuality) label of
the hypothesis.

As a solution to this, previous work has proposed
the idea of explicit inductive inference. By doing in-
ference on alternative entailment inquiries that are
created by LLMs themselves, the attestation bias
can be utilized to mitigate itself, and therefore im-
prove LLMs’ performance on triple-level inference
tasks (Liu et al., 2024). However, in most main-
stream natural language inference (NLI) challenges

'Our codes and data will be released upon publication.

and downstream applications, entailment inquiries
are often not presented as pairs of well-structured
triples. An inference model is usually expected to
pick up the entailment structure between sentences
on its own, which limits the scenario where this
pipeline can be used.

On the other hand, inference signals do not
always lie between triples or predicates. When
put into a general sentence-level inference task,
whether attestation bias can still be exploited re-
mains an open question. More and more LLMs
with improved reasoning capability have been up-
dated rapidly in recent years. This encourages us
to further examine if the attestation bias is still
harmful to the latest LLMs.

Based on these motivations, in this paper,
we follow the idea of exploiting the attestation
bias to do explicit inductive inference, and ex-
pand that methodology to present a more ro-
bust Sentence-Level Explicit Inductive Inference
(SLEII) pipeline that works on general sentence-
level inference tasks. We demonstrate that this
pipeline substantially improves state-of-the-art
LLMs’ performance on general inference tasks.
Then we analysis the attestation bias hidden in lat-
est LLMs, and show that our pipeline is also an
effective solution against this bias.

2 Related work

It is widely observed that LLMs accumulate a bias
towards facts that they memorized from a vast
amount of pre-training corpus (Roberts et al., 2020;
Carlini et al., 2022; Yan et al., 2022). In specific rea-
soning scenarios like solving math problems, this
bias causes LLMs to perform worse even when only
variable names are changed (Gulati et al., 2024).
For inference tasks, McKenna et al. (2023) de-
signed a list of experiments specifically focused
on the attestation bias, and showed that it causes
LLMs to expose a significant performance drop at



inference time. The following works have also con-
firmed that this bias keeps affecting the inference
performance of newer LLMs (Liu et al., 2024).

Other works proposed different ways to alleviate
the negative effect of the attestation bias by present-
ing models with counterfactual examples (Wang
etal., 2022; Zhou et al., 2023; Wang et al., 2023) or
using type labels to mask the entities (Zhou et al.,
2024).

For LLMs, Liu et al. (2024) proposed a novel
explicit inductive inference pipeline that can utilize
the attestation bias to mitigate itself. On triple-
level inference tasks, they argue that if the premise
can be controlled to be attested, the attestation la-
bel of the hypothesis will then statistically align
with the entailment label between the premise and
the hypothesis, which makes the attestation bias
unharmful. Although this idea brings an interest-
ing possibility, whether it can be applied to more
complex circumstances remains an open question,
which we will try to answer in this paper.

3 Sentence-Level Explicit Inductive
Inference pipeline

The methodology of the SLEII pipeline is to ex-
plicitly help an LLM to expand a single entailment
inquiry to more similar variant cases, and induc-
tively draw a more reliable conclusion from all
of them. Following this idea, the SLEII pipeline
first leads the LLM to create a list of variations of
one original entailment inquiry by replacing its se-
mantic components. Then, the LLM will generate
entailment prediction scores for these new varia-
tions as evidence to support answering the original
entailment inquiry.

Each original entailment inquiry, namely a pair
of one premise and one hypothesis, will go through
four different modules. To better present the func-
tion of each module, we take the following pair
of sentences as an example to illustrate how this
pipeline works:

Premise: John is eating chocolate after
meeting Mary.

Hypothesis: He received some chocolate
as a gift.

Now we introduce the four modules one by one.

3.1 Alignment

This module determines which part of the sentences
should be substituted. By creating variations of the

original sentence pair, we aim to alter the meaning
of the sentences within a reasonable range while
keeping the entailment label between the sentences
unchanged. To achieve this, we only replace those
entities that appear in both sentences. This module
locates these entities and tags them with type labels.

Type labels are necessary here to prevent ambi-
guity problems. While (X kills Y) entails (X is a
cure of Y) when X is medicine and Y is a disease,
in most of the other cases their meaning is entirely
opposite. To avoid this kind of undesirable substi-
tution, the alignment module is asked to provide
a contextualized type label for each entity. Here
different mentions of the same entity are allowed
to have different type labels.

We encourage this module to do reference res-
olution between the premise and the hypothesis.
A reference is counted as an entity but it may be
tagged with the type labels like "pronoun". For
instance, after going through this module, the ex-
ample will become:

Premise: [entity#1: person] is eating [en-
tity#2: food] after meeting Mary.

Hypothesis: [entity#1: pronoun] re-
ceived some [entity#2: food] as a gift.

3.2 Premise variation

Once we obtain the tagged premise and hypothesis,
we independently instantiate the premise into alter-
native variations. We encourage the LLM to write
factual sentences if possible. These new premises
are instantiated with entities that are more familiar
to the LLM, and therefore these premises are more
likely to be attested.

For each premise, we create k different new al-
ternatives. Now our example looks like this:

Premise]j: Jane is eating an apple after
meeting Mary.

Premise,: Steve is eating popcorn after
meeting Mary.

Premise),: Tom is eating chips after meet-
ing Mary.

An explanation of the mapping relations between
tags and entities will be generated and passed to
the next module.



3.3 Hypothesis instantiation

This module then derives the alternative hypothe-
ses, based on the mapping information received
from the previous module on how entities in the
corresponding premise are replaced. Now we have
a list of k variations of new sentence pairs. The
example will look like this:

Premise): Jane is eating an apple after
meeting Mary.

Hypothesis]: She received some apples
as a gift.

Premise),: Tom is eating chips after meet-
ing Mary.

Hypothesis) : He received some chips as
a gift.

3.4 Prediction

Finally, based on each alternative pair of (Premisez,
Hypothesis},), this module queries the LLM to get
an alternative score sj. Note the score of the origi-
nal entry as s, the final weighted SLEII score .Sy,
is calculated with a weight parameter w:

k
Sw:(l—w)so+w25i (1)
i=0

4 Experimental setup

4.1 Dataset

To evaluate our pipeline on sentence-level infer-
ence tasks, we test the SLEII pipeline on three NLI
datasets.

SNLI The Stanford Natural Language Inference
dataset (Bowman et al., 2015) is a classic NLI
dataset that provides three-way classification (en-
tailment/contradiction/neutral) entailment inquiries.
It contains 570k human-written sentence pairs with
crowd-sourced labels, and is widely used for NLI
evaluation. Results are reported on the test set.

RTE The Recognizing Textual Entailment
dataset from GLUE (Wang et al., 2019) integrate
the data from the RTE challenge series. The texts
are derived from real-world corpus like news and
scientific articles, which makes them a suitable
source of potential attestation bias. In this dataset,
the "neutral" and "contradiction" labels are merged
into the "not_entailment" label. Since the labels of
the test set are not accessible for RTE, we report
our results on the validation set.

MNLI The Multi-Genre Natural Language In-
ference dataset (Williams et al., 2018) is also a
widely used dataset formatted the same as SNLI
but with sentences from more diverse corpus like
transcribed speech, fiction, and government reports.
The test set’s golden labels are also not directly
available. We report results on the "dev_matched"
development set.

For all datasets, we learn the best value of the
weight parameter w on the training set under each
setup and then use it to yield results on the testing
sets. Due to the sheer volume of the test sets against
our limited testing resources, results on the SNLI
and MNLI datasets are reported for only the first
1,000 entries.?

4.2 Large language models

We aim to cover the latest state-of-the-art LLMs
from various sources. In this paper, our pipeline is
tested with 4 mainstream LLMs that are claimed to
have robust reasoning abilities.

GPT-40 mini (OpenAl, 2024) is a cost-efficient
variant of OpenAI’s GPT-4 architecture. It claims
to have powerful reasoning abilities over many nat-
ural language understanding benchmarks. The ver-
sion that we use is "gpt-40-mini-2024-07-18".

LLama 3 (Meta, 2024) is an open-source LLM
published by Microsoft. In our experiment, we
choose the "Llama3-8B-Instruct” version, a smaller
version with 8 billion parameters.

Gemini 2.0 Flash (Google, 2024) is an enhanced
comprehensive model published by Google. The
version we used in our experiments is "gemini-2.0-
flash".

Claude 3.5 Haiku (Anthropic, 2024) is an up-
dated version of Anthropic’s fastest LLM. The
model version that we use is "claude-3-5-haiku-
20241022" .

When we need to collect the probability of
choices, if the LLM provides token probability ac-
cess, we use the probability at the output choice
mark token (A, B, or C) to represent the choice
probability. When the token probabilities are not
accessible, we assign 1 to the returned choice and
0 to the others.

To guarantee replicable results, whenever we
query one of the LLMs, either the temperature pa-
rameter is set to 0, or the "do_sample" flag is turned
off.

’Results on more data will be included upon publication.



4.3 Prompts

In each module, the content of the prompts may
affect the final results. We tried different prompt
variations in our pilot studies on the training sets,
and fixed the prompts that we use before doing final
experiments on the test sets.

Following Liu et al. (2024), we set the num-
ber of variations & to 10 in our experiments. For
alignment, premise variation, and hypothesis in-
stantiation module, we give few-shot examples to
guarantee expected results. For the prediction and
factuality determination module, we use zero-shot
prompts to avoid instability from prompt engineer-
ing. The actual prompts that are used in this paper
are too lengthy to include here. We present them
in a separate file in our published repository.

5 Results and discussion

In this section, we test the performance of the
SLEII pipeline with various experimental settings.
We first illustrate an overall improvement, and then
we present further analysis against the attestation
bias.

5.1 Overall performance

Table 1 shows the overall performance of the SLEII
pipeline. In addition to a common AUC score
that indicates the area under the precision-recall
curve, following McKenna et al. (2023) and Liu
et al. (2024), we also calculate the normalized area-
under-curve (AUC,,,m) scores. This metric mea-
sures how well a model performs over a dummy
model that predicts "entailment" to every entry. We
compare our results to the baseline where we di-
rectly prompt an LLM with the original entailment
inquiry.

The SLEII;,, marks the results when the weight
parameter w in equation 1 is set to the best value
learned from training sets. The pure SLEII scores
are calculated by setting w to 1, which means it
does not look at the original entailment inquiry at
all.

It can be observed that SLEII;,, outperform the
pure SLEII pipeline and the raw baseline under
every combination of LLM and dataset. The only
exception turns up when GPT40-mini is tested on
the RTE dataset. These results indicate that with
a little training, the SLEII,, pipeline can be used
as a robust tool to improve LLMs’ performance on
various inference tasks.

Although in some cases, the performance of the

pure SLEII pipeline is worse than the baseline, their
combination SLEII,, instead outperforms the base-
line. This phenomenon indicates that the baseline
and the SLEII pipeline make up for each other’s
disadvantages. By reasoning on various alternative
scenarios, the combined pipeline can output more
robust predictions.

Now we discuss how well does SLEII pipeline
works against the attestation bias. We will only
present the AUC,,,,.,, scores for the following sec-
tions.

5.2 Determining attestation

To better understand the analysis of attestation bias,
we first inspect the distribution of the dataset in
terms of attestation. For each entry, we ask the
LLM to determine if the premise is factual (F), not
factual (NF), or if its factuality can not be deter-
mined (ND). Based on the answers, we further di-
vide each dataset into three subsets. Table 2 shows
the ratio of the subsets’ sizes and the AUC,,p;m
results under each circumstance.

There are considerable differences between the
LLMs’ judgement on factuality, which is good
proof of the distinction between "factuality" and
"attestation". In several cases, the proportion of
either the NF category or the ND category is lower
than 5%. This is intuitively understandable since
the boundary between "not factual" and "factuality
can not be determined" is hard to define.

We do not draw any conclusion from this table.
The only reason we present these AUC,, ., SCOres
is to set a comparison with the results in the next
section. We want to emphasize that the attestation
bias does not come from the attestation label itself.
There is no pattern appearing when we divide the
data according to their attestation category. The
damage that the attestation bias causes can only be
observed if we focus on the relation between the
attestation labels and the entailment labels.

With this preparation, we now present the analy-
sis of the attestation bias.

5.3 Against the attestation bias

Following McKenna et al. (2023) and Liu et al.
(2024), under each setting, we divide the dataset
into the attestation-consistent subset (cons.) and
the attestation-adversarial (adv.) subsets, accord-
ing to whether the entailment label of one entry is
the same as the factuality label of its hypothesis.
Here we only accept the factual and not factual
hypotheses, but discard any entry if the factuality



Model Pipeline Dataset
SNLI RTE MNLI
AUC  AUCporm | AUC  AUCporm | AUC  AUCporm
Llama3-8B - 85.8 784 89.9 78.8 76.2 63.9
SLEIl | 68.1 51.5 83.9 66.2 71.8 573
SLEIL,, | 86.5 79.5w=0.12) | 90.4 79.8(w=0.01) | 76.3 64.2(w=0.23)
GPT40-mini - 96.0 93.9 95.9 91.5 89.8 84.5
SLEIl | 89.5 84.0 91.3 81.7 88.1 81.9
SLEIl,, | 96.3 94.4w=0.04) | 959  91L5w=0) | 90.0 84.8(w=0.36)
Gemini-2.0 - 89.8 84.4 88.5 75.8 83.1 74.3
SLEIl | 91.9 87.7 89.9 78.7 85.2 71.5
SLEIl,, | 92.6 88.8(w=0.28) | 90.8 80.6(w=0.54) | 85.5 78.0(w=0.46)
Claude-3.5 - 86.4 79.4 87.4 735 83.8 722
SLEIl | 87.3 80.7 87.3 73.2 86.7 713
SLEIL,, | 89.7 84.4(w=0.44) | 88.7 76.1(w=0.61) | 87.5 78.6(w=0.57)

Table 1: The overall pipeline performance under each setup in terms of the area under the precision-recall curve
(AUC) and the normalized area-under-curve (AUC,, 5,1, ). SLEII},,, marks the results using the best w value learned
from the training set under the same setting. The best results under each setting are highlighted.

Model Pipeline Dataset
SNLI RTE MNLI
| F NF ND| F NF ND| F NF ND
(dataratio) | 83% 16% 0% | 91% 8% 0% | 56% 42% 1%
Llama3-8B - 785 858 - [792 704 - | 714 567 -
SLEII 489 763 - | 669 554 - | 634 526 @ -
SLEIl,, | 793 848 - |804 704 - |712 575 -
5% 90% 4% | 17% 58% 25% | 39% 42% 18%
GPT4o-mini - 917 944 - 903 910 927|805 89.1 855
SLEIl 836 844 - | 821 821 838 |8l1 834 833
SLEI, | 905 951 - |903 91.0 927|838 876 836
20% 1%  80% | 65% 22% 12% | 31% 13% 54%
Gemini-2.0 - 80.1 - 858|765 743 750|731 725 756
SLEII 858 - 882|804 727 781|755 785 787
SLEIl,, |875 - 89.0|81.8 774 786|763 785 793
47% 1% 51% | 61% 13% 36% | 24% 4%  72%
Claude-3.5 - 77.8 - 808|726 770 776|789 - 705
SLEIl 80.1 - 812|705 750 783|806 - 7713
SLEI, | 8.1 - 847|752 774 820|849 - 781

Table 2: Conditional pipeline performance when the premise is determined by the LLM to be factual (F), not factual
(NF), or its factuality can not be determined (ND). All results are measured by the normalized area under the
precision-recall curve (%).



Model Pipeline Dataset
SNLI RTE MNLI
cons. adv. diff. cons. adv. diff. cons. adv. diff.
Llama3-8B - 96.9 236 -73.3 | 941 398 -543 | 83.1 30.0 -53.1
SLEII 70.6 119 -58.7 | 785 31.8 -46.7 | 76.0 259 -50.1
SLEIl, | 955 292 -66.3 | 92.8 46.0 -46.8 | 82.0 312 -50.8
GPT40-mini - 659 97.6 +31.7 | 758 969 +21.1 | 77.7 88.8 +11.1
SLEIL 3577 922 4565 | 541 933 4392 | 745 864 +11.9
SLEIl, | 71.8 97.5 +425.7 | 75.8 969 +21.1 | 784 889 +10.5
Gemini-2.0 - 99.1 517 -474 | 856 670 -18.6 | 789 659 -13.0
SLEII 98.9 541 -448 | 824 819 -05 | 8.8 71.2 -9.6
SLEIl, | 99.0 546 -444 | 851 820 -3.1 | 80.8 71.7 9.1
Claude-3.5 - 953 504 -449 | 953 400 -553 | 92.1 68.2 -239
SLEII 91.1 482 -429 | 89.8 465 -433 | 878 73.6 -142
SLEIly, | 945 50.1 -444 | 944 436 -50.8 | 934 724 -21.0

Table 3: AUC,,,-m (%) scores on attestation-consistent (cons.) and attestation-adversarial (adv.) subsets. The diff.
column marks the difference from cons. to adv. The lowest diff. value under each setting is highlighted.

of their hypothesis can not be determined. For en-
tailment labels, the "neutral" and "contradiction"
labels are all treated as "not_entailment" labels.
In addition, we add the diff. columns to display
the performance drop between the cons. and adv.
columns.

Table 3 shows the results on these two kinds of
subsets. Under each setting, the lowest value in the
diff. columns is in boldface. To avoid misleading
the LLMs, we discard the "If premise then hypothe-
sis, is that true?" prompt that McKenna et al. (2023)
and Liu et al. (2024) used, which were suspected
to be one reason why the LL.Ms are distracted by
factuality. However, even when our baseline results
have excluded that factor, the negative values in the
diff. columns are still significantly high.

For Llama, Gemini and Claude, a huge per-
formance drop shows up in the baseline setting,
which exposes the severe attestation bias these
SOTA LLMs hold within their reasoning mech-
anism. While new generations of LLMs are achiev-
ing higher scores at various benchmarks constantly,
their inference inability caused by the attestation
bias has still been proved hard to resolve. We
hope these results can raise more attention from the
LLMs evaluation community.

GPT40-mini appears to be an interesting excep-
tion in this experiment, as it surprisingly shows
a reversal performance improvement against the
attestation bias. That means this model performs

even better when the entailment label contradicts
the attestation label of one entry. More curiously,
the SLEII pipeline can still alleviate this bias to-
wards zero, but now in the opposite direction. Due
to the black-box nature of this model’s training pro-
cess, we can not yet offer a convincing explanation
for this.

For the other LLMs, the baseline always yields
worse performance drops compared to using the
SLEII pipeline. This comparison supports the con-
clusion that the attestation bias can be exploited
to mitigate itself, even in general sentence-level
inference cases. By applying the SLEII pipeline,
an LLM can now give a more accurate prediction
when the entailment inquiries are against the attes-
tation bias.

6 Conclusion

In this paper, we apply the idea of explicit induc-
tive inference to sentence-level inference tasks and
propose the SLEII pipeline. By demonstrating the
performance of our pipeline with four latest LLMs
on three typical NLI datasets, we make two points
in summary:

The attestation bias is still a severe problem
existing within many SOTA LLMs. In general
inference tasks, this bias substantially undermines
LLMs’ inference performance and restricts their
reasoning ability in a way that is hard to notice. We



call for more attention to both further studying this
bias and finding more solutions to this challenge.

The sentence-level explicit inductive inference
pipeline works on general inference tasks. By
creating variations of one entailment inquiry as
extra evidence and making inferences on them,
an LLM can improve its general reasoning per-
formance, and output more robust entailment pre-
diction against the attestation bias.

Limitations

For some modules in this paper, it is possible that
prompt engineering may substantially affect the
outcome. For example, the variation that appeared
in section 5.2 may possibly be controlled by adding
few-shot examples in the input prompt. These may
require future work.

Using the SLEII pipeline to do inference on k
extra variations results in k£ times of extra resource
spent. This method may not be suitable for cases
where a model needs to process a large amount of
entries.
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A Computational cost

Our experiments on Llama3-8B-Instruct are ap-
plied on one A6000 GPU. For every 1,000 entries
(10 variations for each entry), the average time of
running through the entire pipeline is 6 hours.

Other experiments are executed with online
APIs. Typical consumed time for every 1,000 en-
tries: 9 hours for GPT 40-mini, 6 hours for Gemini
2.0 Flash, 21 hours for Claude 3.5 Haiku.
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