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Abstract

Despite the evolving reasoning ability many001
large language models (LLMs) have performed,002
they are reported to hold attestation bias in in-003
ference tasks. Instead of focusing on entailment004
signals between a premise and a hypothesis,005
LLMs are easily misled by whether the hypoth-006
esis is factual in the models’ knowledge. To007
further study this bias and mitigate its negative008
effect, in this paper, we propose the sentence-009
level explicit inductive inference pipeline. By010
testing our pipeline on three NLI datasets with011
four mainstream LLMs, we demonstrate that012
although the attestation bias is still a severe013
problem, it can be exploited to improve LLMs’014
inference performance and mitigate the bias015
itself.1016

1 Introduction017

While many contemporary large language models018

(LLMs) claim to have strong reasoning ability, re-019

cent studies have shown that they are subjected020

to severe attestation bias in fundamental natural021

language inference tasks (McKenna et al., 2023).022

When a model is asked to predict whether a premise023

entails a hypothesis, instead of focusing on the in-024

ference signal, an LLM can be easily distracted025

by the hypothesis’ out-of-context factuality. As026

a result, LLMs usually perform worse when the027

entailment label between premise and hypothesis028

disagrees with the attestation (factuality) label of029

the hypothesis.030

As a solution to this, previous work has proposed031

the idea of explicit inductive inference. By doing in-032

ference on alternative entailment inquiries that are033

created by LLMs themselves, the attestation bias034

can be utilized to mitigate itself, and therefore im-035

prove LLMs’ performance on triple-level inference036

tasks (Liu et al., 2024). However, in most main-037

stream natural language inference (NLI) challenges038

1Our codes and data will be released upon publication.

and downstream applications, entailment inquiries 039

are often not presented as pairs of well-structured 040

triples. An inference model is usually expected to 041

pick up the entailment structure between sentences 042

on its own, which limits the scenario where this 043

pipeline can be used. 044

On the other hand, inference signals do not 045

always lie between triples or predicates. When 046

put into a general sentence-level inference task, 047

whether attestation bias can still be exploited re- 048

mains an open question. More and more LLMs 049

with improved reasoning capability have been up- 050

dated rapidly in recent years. This encourages us 051

to further examine if the attestation bias is still 052

harmful to the latest LLMs. 053

Based on these motivations, in this paper, 054

we follow the idea of exploiting the attestation 055

bias to do explicit inductive inference, and ex- 056

pand that methodology to present a more ro- 057

bust Sentence-Level Explicit Inductive Inference 058

(SLEII) pipeline that works on general sentence- 059

level inference tasks. We demonstrate that this 060

pipeline substantially improves state-of-the-art 061

LLMs’ performance on general inference tasks. 062

Then we analysis the attestation bias hidden in lat- 063

est LLMs, and show that our pipeline is also an 064

effective solution against this bias. 065

2 Related work 066

It is widely observed that LLMs accumulate a bias 067

towards facts that they memorized from a vast 068

amount of pre-training corpus (Roberts et al., 2020; 069

Carlini et al., 2022; Yan et al., 2022). In specific rea- 070

soning scenarios like solving math problems, this 071

bias causes LLMs to perform worse even when only 072

variable names are changed (Gulati et al., 2024). 073

For inference tasks, McKenna et al. (2023) de- 074

signed a list of experiments specifically focused 075

on the attestation bias, and showed that it causes 076

LLMs to expose a significant performance drop at 077
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inference time. The following works have also con-078

firmed that this bias keeps affecting the inference079

performance of newer LLMs (Liu et al., 2024).080

Other works proposed different ways to alleviate081

the negative effect of the attestation bias by present-082

ing models with counterfactual examples (Wang083

et al., 2022; Zhou et al., 2023; Wang et al., 2023) or084

using type labels to mask the entities (Zhou et al.,085

2024).086

For LLMs, Liu et al. (2024) proposed a novel087

explicit inductive inference pipeline that can utilize088

the attestation bias to mitigate itself. On triple-089

level inference tasks, they argue that if the premise090

can be controlled to be attested, the attestation la-091

bel of the hypothesis will then statistically align092

with the entailment label between the premise and093

the hypothesis, which makes the attestation bias094

unharmful. Although this idea brings an interest-095

ing possibility, whether it can be applied to more096

complex circumstances remains an open question,097

which we will try to answer in this paper.098

3 Sentence-Level Explicit Inductive099

Inference pipeline100

The methodology of the SLEII pipeline is to ex-101

plicitly help an LLM to expand a single entailment102

inquiry to more similar variant cases, and induc-103

tively draw a more reliable conclusion from all104

of them. Following this idea, the SLEII pipeline105

first leads the LLM to create a list of variations of106

one original entailment inquiry by replacing its se-107

mantic components. Then, the LLM will generate108

entailment prediction scores for these new varia-109

tions as evidence to support answering the original110

entailment inquiry.111

Each original entailment inquiry, namely a pair112

of one premise and one hypothesis, will go through113

four different modules. To better present the func-114

tion of each module, we take the following pair115

of sentences as an example to illustrate how this116

pipeline works:117

Premise: John is eating chocolate after118

meeting Mary.119

Hypothesis: He received some chocolate120

as a gift.121

Now we introduce the four modules one by one.122

3.1 Alignment123

This module determines which part of the sentences124

should be substituted. By creating variations of the125

original sentence pair, we aim to alter the meaning 126

of the sentences within a reasonable range while 127

keeping the entailment label between the sentences 128

unchanged. To achieve this, we only replace those 129

entities that appear in both sentences. This module 130

locates these entities and tags them with type labels. 131

Type labels are necessary here to prevent ambi- 132

guity problems. While (X kills Y) entails (X is a 133

cure of Y) when X is medicine and Y is a disease, 134

in most of the other cases their meaning is entirely 135

opposite. To avoid this kind of undesirable substi- 136

tution, the alignment module is asked to provide 137

a contextualized type label for each entity. Here 138

different mentions of the same entity are allowed 139

to have different type labels. 140

We encourage this module to do reference res- 141

olution between the premise and the hypothesis. 142

A reference is counted as an entity but it may be 143

tagged with the type labels like "pronoun". For 144

instance, after going through this module, the ex- 145

ample will become: 146

Premise: [entity#1: person] is eating [en- 147

tity#2: food] after meeting Mary. 148

Hypothesis: [entity#1: pronoun] re- 149

ceived some [entity#2: food] as a gift. 150

3.2 Premise variation 151

Once we obtain the tagged premise and hypothesis, 152

we independently instantiate the premise into alter- 153

native variations. We encourage the LLM to write 154

factual sentences if possible. These new premises 155

are instantiated with entities that are more familiar 156

to the LLM, and therefore these premises are more 157

likely to be attested. 158

For each premise, we create k different new al- 159

ternatives. Now our example looks like this: 160

Premise′1: Jane is eating an apple after 161

meeting Mary. 162

Premise′2: Steve is eating popcorn after 163

meeting Mary. 164

...... 165

Premise′k: Tom is eating chips after meet- 166

ing Mary. 167

An explanation of the mapping relations between 168

tags and entities will be generated and passed to 169

the next module. 170
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3.3 Hypothesis instantiation171

This module then derives the alternative hypothe-172

ses, based on the mapping information received173

from the previous module on how entities in the174

corresponding premise are replaced. Now we have175

a list of k variations of new sentence pairs. The176

example will look like this:177

Premise′1: Jane is eating an apple after178

meeting Mary.179

Hypothesis′1: She received some apples180

as a gift.181

......182

Premise′k: Tom is eating chips after meet-183

ing Mary.184

Hypothesis′k: He received some chips as185

a gift.186

3.4 Prediction187

Finally, based on each alternative pair of (Premise′k,188

Hypothesis′k), this module queries the LLM to get189

an alternative score sk. Note the score of the origi-190

nal entry as s0, the final weighted SLEII score Sw191

is calculated with a weight parameter w:192

Sw = (1− w)s0 + w
k∑

i=0

si (1)193

4 Experimental setup194

4.1 Dataset195

To evaluate our pipeline on sentence-level infer-196

ence tasks, we test the SLEII pipeline on three NLI197

datasets.198

SNLI The Stanford Natural Language Inference199

dataset (Bowman et al., 2015) is a classic NLI200

dataset that provides three-way classification (en-201

tailment/contradiction/neutral) entailment inquiries.202

It contains 570k human-written sentence pairs with203

crowd-sourced labels, and is widely used for NLI204

evaluation. Results are reported on the test set.205

RTE The Recognizing Textual Entailment206

dataset from GLUE (Wang et al., 2019) integrate207

the data from the RTE challenge series. The texts208

are derived from real-world corpus like news and209

scientific articles, which makes them a suitable210

source of potential attestation bias. In this dataset,211

the "neutral" and "contradiction" labels are merged212

into the "not_entailment" label. Since the labels of213

the test set are not accessible for RTE, we report214

our results on the validation set.215

MNLI The Multi-Genre Natural Language In- 216

ference dataset (Williams et al., 2018) is also a 217

widely used dataset formatted the same as SNLI 218

but with sentences from more diverse corpus like 219

transcribed speech, fiction, and government reports. 220

The test set’s golden labels are also not directly 221

available. We report results on the "dev_matched" 222

development set. 223

For all datasets, we learn the best value of the 224

weight parameter w on the training set under each 225

setup and then use it to yield results on the testing 226

sets. Due to the sheer volume of the test sets against 227

our limited testing resources, results on the SNLI 228

and MNLI datasets are reported for only the first 229

1,000 entries.2 230

4.2 Large language models 231

We aim to cover the latest state-of-the-art LLMs 232

from various sources. In this paper, our pipeline is 233

tested with 4 mainstream LLMs that are claimed to 234

have robust reasoning abilities. 235

GPT-4o mini (OpenAI, 2024) is a cost-efficient 236

variant of OpenAI’s GPT-4 architecture. It claims 237

to have powerful reasoning abilities over many nat- 238

ural language understanding benchmarks. The ver- 239

sion that we use is "gpt-4o-mini-2024-07-18". 240

LLama 3 (Meta, 2024) is an open-source LLM 241

published by Microsoft. In our experiment, we 242

choose the "Llama3-8B-Instruct" version, a smaller 243

version with 8 billion parameters. 244

Gemini 2.0 Flash (Google, 2024) is an enhanced 245

comprehensive model published by Google. The 246

version we used in our experiments is "gemini-2.0- 247

flash". 248

Claude 3.5 Haiku (Anthropic, 2024) is an up- 249

dated version of Anthropic’s fastest LLM. The 250

model version that we use is "claude-3-5-haiku- 251

20241022" . 252

When we need to collect the probability of 253

choices, if the LLM provides token probability ac- 254

cess, we use the probability at the output choice 255

mark token (A, B, or C) to represent the choice 256

probability. When the token probabilities are not 257

accessible, we assign 1 to the returned choice and 258

0 to the others. 259

To guarantee replicable results, whenever we 260

query one of the LLMs, either the temperature pa- 261

rameter is set to 0, or the "do_sample" flag is turned 262

off. 263

2Results on more data will be included upon publication.
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4.3 Prompts264

In each module, the content of the prompts may265

affect the final results. We tried different prompt266

variations in our pilot studies on the training sets,267

and fixed the prompts that we use before doing final268

experiments on the test sets.269

Following Liu et al. (2024), we set the num-270

ber of variations k to 10 in our experiments. For271

alignment, premise variation, and hypothesis in-272

stantiation module, we give few-shot examples to273

guarantee expected results. For the prediction and274

factuality determination module, we use zero-shot275

prompts to avoid instability from prompt engineer-276

ing. The actual prompts that are used in this paper277

are too lengthy to include here. We present them278

in a separate file in our published repository.279

5 Results and discussion280

In this section, we test the performance of the281

SLEII pipeline with various experimental settings.282

We first illustrate an overall improvement, and then283

we present further analysis against the attestation284

bias.285

5.1 Overall performance286

Table 1 shows the overall performance of the SLEII287

pipeline. In addition to a common AUC score288

that indicates the area under the precision-recall289

curve, following McKenna et al. (2023) and Liu290

et al. (2024), we also calculate the normalized area-291

under-curve (AUCnorm) scores. This metric mea-292

sures how well a model performs over a dummy293

model that predicts "entailment" to every entry. We294

compare our results to the baseline where we di-295

rectly prompt an LLM with the original entailment296

inquiry.297

The SLEIIbw marks the results when the weight298

parameter w in equation 1 is set to the best value299

learned from training sets. The pure SLEII scores300

are calculated by setting w to 1, which means it301

does not look at the original entailment inquiry at302

all.303

It can be observed that SLEIIbw outperform the304

pure SLEII pipeline and the raw baseline under305

every combination of LLM and dataset. The only306

exception turns up when GPT4o-mini is tested on307

the RTE dataset. These results indicate that with308

a little training, the SLEIIbw pipeline can be used309

as a robust tool to improve LLMs’ performance on310

various inference tasks.311

Although in some cases, the performance of the312

pure SLEII pipeline is worse than the baseline, their 313

combination SLEIIbw instead outperforms the base- 314

line. This phenomenon indicates that the baseline 315

and the SLEII pipeline make up for each other’s 316

disadvantages. By reasoning on various alternative 317

scenarios, the combined pipeline can output more 318

robust predictions. 319

Now we discuss how well does SLEII pipeline 320

works against the attestation bias. We will only 321

present the AUCnorm scores for the following sec- 322

tions. 323

5.2 Determining attestation 324

To better understand the analysis of attestation bias, 325

we first inspect the distribution of the dataset in 326

terms of attestation. For each entry, we ask the 327

LLM to determine if the premise is factual (F), not 328

factual (NF), or if its factuality can not be deter- 329

mined (ND). Based on the answers, we further di- 330

vide each dataset into three subsets. Table 2 shows 331

the ratio of the subsets’ sizes and the AUCnorm 332

results under each circumstance. 333

There are considerable differences between the 334

LLMs’ judgement on factuality, which is good 335

proof of the distinction between "factuality" and 336

"attestation". In several cases, the proportion of 337

either the NF category or the ND category is lower 338

than 5%. This is intuitively understandable since 339

the boundary between "not factual" and "factuality 340

can not be determined" is hard to define. 341

We do not draw any conclusion from this table. 342

The only reason we present these AUCnorm scores 343

is to set a comparison with the results in the next 344

section. We want to emphasize that the attestation 345

bias does not come from the attestation label itself. 346

There is no pattern appearing when we divide the 347

data according to their attestation category. The 348

damage that the attestation bias causes can only be 349

observed if we focus on the relation between the 350

attestation labels and the entailment labels. 351

With this preparation, we now present the analy- 352

sis of the attestation bias. 353

5.3 Against the attestation bias 354

Following McKenna et al. (2023) and Liu et al. 355

(2024), under each setting, we divide the dataset 356

into the attestation-consistent subset (cons.) and 357

the attestation-adversarial (adv.) subsets, accord- 358

ing to whether the entailment label of one entry is 359

the same as the factuality label of its hypothesis. 360

Here we only accept the factual and not factual 361

hypotheses, but discard any entry if the factuality 362
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Model Pipeline Dataset

SNLI RTE MNLI

AUC AUCnorm AUC AUCnorm AUC AUCnorm

Llama3-8B - 85.8 78.4 89.9 78.8 76.2 63.9
SLEII 68.1 51.5 83.9 66.2 71.8 57.3
SLEIIbw 86.5 79.5(w=0.12) 90.4 79.8(w=0.01) 76.3 64.2(w=0.23)

GPT4o-mini - 96.0 93.9 95.9 91.5 89.8 84.5
SLEII 89.5 84.0 91.3 81.7 88.1 81.9
SLEIIbw 96.3 94.4(w=0.04) 95.9 91.5(w=0) 90.0 84.8(w=0.36)

Gemini-2.0 - 89.8 84.4 88.5 75.8 83.1 74.3
SLEII 91.9 87.7 89.9 78.7 85.2 77.5
SLEIIbw 92.6 88.8(w=0.28) 90.8 80.6(w=0.54) 85.5 78.0(w=0.46)

Claude-3.5 - 86.4 79.4 87.4 73.5 83.8 72.2
SLEII 87.3 80.7 87.3 73.2 86.7 77.3
SLEIIbw 89.7 84.4(w=0.44) 88.7 76.1(w=0.61) 87.5 78.6(w=0.57)

Table 1: The overall pipeline performance under each setup in terms of the area under the precision-recall curve
(AUC) and the normalized area-under-curve (AUCnorm). SLEIIbw marks the results using the best w value learned
from the training set under the same setting. The best results under each setting are highlighted.

Model Pipeline Dataset

SNLI RTE MNLI

F NF ND F NF ND F NF ND

(data ratio) 83% 16% 0% 91% 8% 0% 56% 42% 1%

Llama3-8B - 78.5 85.8 - 79.2 70.4 - 71.4 56.7 -
SLEII 48.9 76.3 - 66.9 55.4 - 63.4 52.6 -
SLEIIbw 79.3 84.8 - 80.4 70.4 - 71.2 57.5 -

5% 90% 4% 17% 58% 25% 39% 42% 18%

GPT4o-mini - 91.7 94.4 - 90.3 91.0 92.7 80.5 89.1 85.5
SLEII 83.6 84.4 - 82.1 82.1 83.8 81.1 83.4 83.3
SLEIIbw 90.5 95.1 - 90.3 91.0 92.7 83.8 87.6 83.6

20% 1% 80% 65% 22% 12% 31% 13% 54%

Gemini-2.0 - 80.1 - 85.8 76.5 74.3 75.0 73.1 72.5 75.6
SLEII 85.8 - 88.2 80.4 72.7 78.1 75.5 78.5 78.7
SLEIIbw 87.5 - 89.0 81.8 77.4 78.6 76.3 78.5 79.3

47% 1% 51% 61% 13% 36% 24% 4% 72%

Claude-3.5 - 77.8 - 80.8 72.6 77.0 77.6 78.9 - 70.5
SLEII 80.1 - 81.2 70.5 75.0 78.3 80.6 - 77.3
SLEIIbw 84.1 - 84.7 75.2 77.4 82.0 84.9 - 78.1

Table 2: Conditional pipeline performance when the premise is determined by the LLM to be factual (F), not factual
(NF), or its factuality can not be determined (ND). All results are measured by the normalized area under the
precision-recall curve (%).
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Model Pipeline Dataset

SNLI RTE MNLI

cons. adv. diff. cons. adv. diff. cons. adv. diff.

Llama3-8B - 96.9 23.6 -73.3 94.1 39.8 -54.3 83.1 30.0 -53.1
SLEII 70.6 11.9 -58.7 78.5 31.8 -46.7 76.0 25.9 -50.1
SLEIIbw 95.5 29.2 -66.3 92.8 46.0 -46.8 82.0 31.2 -50.8

GPT4o-mini - 65.9 97.6 +31.7 75.8 96.9 +21.1 77.7 88.8 +11.1
SLEII 35.7 92.2 +56.5 54.1 93.3 +39.2 74.5 86.4 +11.9
SLEIIbw 71.8 97.5 +25.7 75.8 96.9 +21.1 78.4 88.9 +10.5

Gemini-2.0 - 99.1 51.7 -47.4 85.6 67.0 -18.6 78.9 65.9 -13.0
SLEII 98.9 54.1 -44.8 82.4 81.9 -0.5 80.8 71.2 -9.6
SLEIIbw 99.0 54.6 -44.4 85.1 82.0 -3.1 80.8 71.7 -9.1

Claude-3.5 - 95.3 50.4 -44.9 95.3 40.0 -55.3 92.1 68.2 -23.9
SLEII 91.1 48.2 -42.9 89.8 46.5 -43.3 87.8 73.6 -14.2
SLEIIbw 94.5 50.1 -44.4 94.4 43.6 -50.8 93.4 72.4 -21.0

Table 3: AUCnorm (%) scores on attestation-consistent (cons.) and attestation-adversarial (adv.) subsets. The diff.
column marks the difference from cons. to adv. The lowest diff. value under each setting is highlighted.

of their hypothesis can not be determined. For en-363

tailment labels, the "neutral" and "contradiction"364

labels are all treated as "not_entailment" labels.365

In addition, we add the diff. columns to display366

the performance drop between the cons. and adv.367

columns.368

Table 3 shows the results on these two kinds of369

subsets. Under each setting, the lowest value in the370

diff. columns is in boldface. To avoid misleading371

the LLMs, we discard the "If premise then hypothe-372

sis, is that true?" prompt that McKenna et al. (2023)373

and Liu et al. (2024) used, which were suspected374

to be one reason why the LLMs are distracted by375

factuality. However, even when our baseline results376

have excluded that factor, the negative values in the377

diff. columns are still significantly high.378

For Llama, Gemini and Claude, a huge per-379

formance drop shows up in the baseline setting,380

which exposes the severe attestation bias these381

SOTA LLMs hold within their reasoning mech-382

anism. While new generations of LLMs are achiev-383

ing higher scores at various benchmarks constantly,384

their inference inability caused by the attestation385

bias has still been proved hard to resolve. We386

hope these results can raise more attention from the387

LLMs evaluation community.388

GPT4o-mini appears to be an interesting excep-389

tion in this experiment, as it surprisingly shows390

a reversal performance improvement against the391

attestation bias. That means this model performs392

even better when the entailment label contradicts 393

the attestation label of one entry. More curiously, 394

the SLEII pipeline can still alleviate this bias to- 395

wards zero, but now in the opposite direction. Due 396

to the black-box nature of this model’s training pro- 397

cess, we can not yet offer a convincing explanation 398

for this. 399

For the other LLMs, the baseline always yields 400

worse performance drops compared to using the 401

SLEII pipeline. This comparison supports the con- 402

clusion that the attestation bias can be exploited 403

to mitigate itself, even in general sentence-level 404

inference cases. By applying the SLEII pipeline, 405

an LLM can now give a more accurate prediction 406

when the entailment inquiries are against the attes- 407

tation bias. 408

6 Conclusion 409

In this paper, we apply the idea of explicit induc- 410

tive inference to sentence-level inference tasks and 411

propose the SLEII pipeline. By demonstrating the 412

performance of our pipeline with four latest LLMs 413

on three typical NLI datasets, we make two points 414

in summary: 415

The attestation bias is still a severe problem 416

existing within many SOTA LLMs. In general 417

inference tasks, this bias substantially undermines 418

LLMs’ inference performance and restricts their 419

reasoning ability in a way that is hard to notice. We 420
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call for more attention to both further studying this421

bias and finding more solutions to this challenge.422

The sentence-level explicit inductive inference423

pipeline works on general inference tasks. By424

creating variations of one entailment inquiry as425

extra evidence and making inferences on them,426

an LLM can improve its general reasoning per-427

formance, and output more robust entailment pre-428

diction against the attestation bias.429

Limitations430

For some modules in this paper, it is possible that431

prompt engineering may substantially affect the432

outcome. For example, the variation that appeared433

in section 5.2 may possibly be controlled by adding434

few-shot examples in the input prompt. These may435

require future work.436

Using the SLEII pipeline to do inference on k437

extra variations results in k times of extra resource438

spent. This method may not be suitable for cases439

where a model needs to process a large amount of440

entries.441
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