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Abstract

Numerous recent techniques for text style trans-001
fer characterize their approaches as variants002
of reinforcement learning and preference opti-003
mization. In this work, we consider the relation-004
ship between these approaches and a class of005
optimization approaches developed primarily006
for (non-neural) statistical machine translation,007
formerly known as ‘tuning’. Inspired by these008
techniques from the past, we improve upon es-009
tablished preference optimization approaches,010
incorporating multiple iterations of exploration011
and optimization, and choosing contrastive ex-012
amples by following a ‘hope’ vs ‘fear’ sam-013
pling strategy. Cognizant of the difference be-014
tween machine translation and style transfer,015
however, we further tailor our framework with016
a new pseudo-parallel generation method and a017
dynamic weighted reward aggregation method018
to tackle the lack of parallel data and the need019
for a multi-objective reward. We evaluate our020
model on two commonly used text style trans-021
fer datasets. Through automatic and human022
evaluation results we show the effectiveness023
and the superiority of our model compared to024
state-of-the-art baselines.025

1 Introduction026

Text style transfer aims to rewrite a given text to027

match a specific target style while preserving the028

original meaning. This task has drawn significant029

attention recently due to its broad range of appli-030

cations, such as text simplification (Laban et al.,031

2021), formality transfer (Rao and Tetreault, 2018;032

Liu et al., 2022), text detoxification (Dale et al.,033

2021; Hallinan et al., 2023b), authorship transfer034

(Patel et al., 2023; Liu et al., 2024), and author-035

ship anonymization (Shetty et al., 2018; Bo et al.,036

2021). Recent approaches have focused on pseudo-037

parallel data generation (Krishna et al., 2020; Riley038

et al., 2021) and policy optimization (Gong et al.,039

2019; Liu et al., 2021b). STEER (Hallinan et al.,040

2023a) and ASTRAPOP (Liu et al., 2024) combine 041

the two and achieve state-of-the-art performance 042

on text style transfer and authorship style transfer, 043

respectively. 044

In this work, we seek to advance the frontier 045

of text style transfer, drawing inspiration from the 046

optimization techniques developed in the era of sta- 047

tistical phrasal machine translation, in which the 048

lack of correlation between the log-linear model ob- 049

jective and the desired evaluation metric, typically 050

BLEU (Papineni et al., 2002), was observed (Och, 051

2003). Approaches to align1 the two objectives 052

came to be known as tuning,2 beginning with Och 053

(2003), and evolving into online variants (Chiang 054

et al., 2008), rank-based approaches (Hopkins and 055

May, 2011), batch-based approaches (Cherry and 056

Foster, 2012), and several others. Tuning methods 057

follow a generate-and-optimize pattern: a model 058

is used to generate multiple candidate hypotheses 059

per input, and then parameters are adjusted such 060

that the argmax according to the model score also 061

maximizes the evaluation metric. In this regard, 062

tuning methods resemble approaches taken in the 063

application of policy optimization algorithms, such 064

as PPO (Schulman et al., 2017), to generative lan- 065

guage modeling (Ouyang et al., 2022). More recent 066

algorithms, such as DPO (Rafailov et al., 2023) 067

and CPO (Xu et al., 2024a), which replace rein- 068

forcement learning (RL) in PPO with preference 069

optimization (PO), are reminiscent of the pairwise 070

ranking optimization approach to tuning (Hopkins 071

and May, 2011). Given this close relationship be- 072

tween these approaches, we can consider whether 073

other techniques developed to improve MT tuning 074

could be applied to optimization for style transfer. 075

In this work, we propose Style TrAnsfer with 076

Multi-iteration Preference optimization (STAMP), 077

a two-phase PO training framework, in which we 078

1not to be confused with word alignment.
2not to be confused with parameter fine-tuning.
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Figure 1: An overview of STAMP, in which we first train a unified style transfer model using supervised fine-tuning
on pseudo-parallel data generated from non-parallel data, and then further train the model using multi-iteration
preference optimization on preference pairs constructed with hope-and-fear sampling.

first use supervised fine-tuning to build a reference079

model from pseudo-parallel data and then train the080

reference model using PO. STAMP is similar to081

STEER and ASTRAPOP at a high level but is en-082

hanced with two techniques borrowed from MT083

tuning and two modifications that further adapt it084

for text style transfer. First, we include multiple085

iterations of preference pair generation followed086

by model optimization (Och, 2003), which has al-087

ready been shown to be effective on other Seq2Seq088

tasks such as mathematical and scientific reasoning089

(Chen et al., 2024; Pang et al., 2024; Song et al.,090

2024b; Yuan et al., 2024). Second, following the091

hope-and-fear sampling in Chiang (2012), for PO,092

we over-generate outputs using the reference model093

and construct preference pairs using samples with094

high model scores and extreme (high or low) task095

objective scores, in order to avoid dangerous gen-096

eration and encourage reachable good generation.097

To improve the quality of the reference model and098

the balance across the multiple training objectives,099

we additionally design a new two-step end-to-end100

pseudo-parallel data generation method and a dy-101

namic reward aggregation method.102

We evaluate our model on two popular text style103

transfer datasets, Grammarly’s Yahoo Answers For-104

mality Corpus (GYAFC) (Rao and Tetreault, 2018)105

and the Corpus of Diverse Styles (CDS) (Krishna106

et al., 2020). Extensive experiments show that our107

model performs well on both in-domain and out-108

of-domain text style transfer, and outperforms all109

state-of-the-art baselines on both datasets.110

Our main contributions are:111

• We propose a multi-iteration contrastive pref- 112

erence optimization training framework with 113

hope-and-fear preference pair construction for 114

text style transfer. 115

• We design a new pseudo-parallel generation 116

strategy and a dynamic weighted rewarded 117

aggregation method to enhance the training 118

framework for text style transfer. 119

• We show that, with the enhancements, our 120

training framework produces style transfer 121

models that achieve state-of-the-art perfor- 122

mance on two popular text style transfer 123

datasets.3 124

2 Methodology 125

In this section, we formalize the text style trans- 126

fer task and introduce our training framework, 127

STAMP. 128

2.1 Task Definition 129

Given a source text x and a desired target style 130

s, the goal of text style transfer is to generate 131

a fluent rewrite of x, denoted as x→s, that has 132

the same meaning as x but is in style s. In this 133

work, we focus on high-resource text style transfer 134

in which we have access to a reasonable number 135

of texts4 for each target style. Specifically, we 136

have a set of texts with style labels, denoted as 137

D = {(x1, s1), · · · , (xn, sn)}, where xi and si re- 138

3We will release our code, models, and data to enable
reproduction studies.

4In this work, we assume at least 2000 texts per style.
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fer to the ith text and its style, respectively. For con-139

venience, we adopt notations from Hallinan et al.140

(2023a) and denote the fluency of a text xi as F(xi),141

the meaning similarity between two texts xi and142

xj as MS(xi, xj), and the target style strength of143

a text xi w.r.t. a target style s as TSS(xi, s). Thus,144

given D, we aim to build a text style transfer sys-145

tem that maximizes three independent objectives:146

F(x→s), MS(x, x→s), and TSS(x→s, s).5147

2.2 Framework Overview148

STAMP is a preference optimization-based training149

framework that contains two main stages, a super-150

vised fine-tuning (SFT) stage and a multi-iteration151

preference optimization (PO) stage. In the SFT152

stage, we first generate a dataset Dtrf of end-to-end153

pseudo-parallel style transfer pairs from the (non-154

parallel) dataset D and then train a style transfer155

model fSFT on Dtrf using supervised fine-tuning. In156

the PO stage, we train a model initialized to fSFT157

using multi-iteration PO6 to directly maximize the158

three objectives, TSS, MS, and F, and obtain our159

final transfer model fPO.160

2.3 Supervised Fine-tuning161

Due to a lack of parallel data, we adopt the tech-162

nique described by Krishna et al. (2020), in which163

style-oriented paraphrasing is used to generate164

pseudo-parallel transfer data for each target style.165

Specifically, we paraphrase the texts in D using a166

general paraphraser fpara similar to Krishna et al.167

(2020) and Hallinan et al. (2023a). To ensure mean-168

ing similarity preservation of the paraphrases, we169

generate kpara paraphrases for each text xi ∈ D and170

select the one with the highest meaning similarity171

to the original text, denoting it pi. We then obtain a172

dataset of paraphrases Dpara = {p1, · · · ,pn}. For173

each target style s, we train a Seq2Seq model f→s
inv

7174

on {(pi → xi) | 0 ≤ i ≤ n and si = s} to maxi-175

mize176

p(x | p) =
|x|∏
i=1

p(x[i] | p, x[<i]) (1)177

where x[i] and x[<i] represent the ith token in x and178

tokens preceding the ith token in x, respectively.179

Following Krishna et al. (2020), we can transfer180

the style of a text x to a style s through181

x→s = f→s
inv (fpara(x)) (2)182

5For brevity, we omit the arguments where unambiguous.
6See § 3.5 for details on the choice of PO used here.
7‘inverse’ due to data provenance, c.f. (Krishna et al., 2020)

where x→s is the transferred text. However, the 183

two-step generation breaks the gradient connection 184

between x and x→s which is needed in the PO stage 185

to maximize the meaning similarity between x and 186

x→s. Therefore, we need an end-to-end pseudo- 187

parallel dataset Dtrf to train a model that directly 188

transfers a source text to each target style with no 189

intermediate step. 190

To obtain Dtrf, we transfer the texts in D using 191

fpara and f→s
inv for each target style s. Specifically, 192

for each target style s, we transfer the texts in other 193

styles in D using Eq. 2 and obtain a dataset of style 194

transfer pairs D→s
trf = {(xi → ti, s) | (xi, si) ∈ 195

D and si ̸= s}, where ti = f→s
inv (fpara(xi)) is a 196

transfer of xi in style s. To obtain high-quality 197

transferred texts, we generate ksft transfers for each 198

source text and select the one with the highest 199

F · MSτms · TSS, where τms > 1 is a temperature 200

hyperparameter incorporated into the MS term to 201

emphasize meaning similarity. We then construct 202

Dtrf by combining D→s
trf for all target styles and 203

train an end-to-end style transfer model fSFT on the 204

combined data Dtrf to maximize 205

p(t | x) =
|t|∏
i=1

p(t[i] | x, t[<i], s) (3) 206

Note that unlike Eq. 2, the probability in Eq. 3 is 207

also conditioned on s because we adopt the unified 208

model setting in (Hallinan et al., 2023a). That is, 209

we have a single transfer model for all target styles 210

and control the target style with control codes. 211

2.4 Multi-iteration Preference Optimization 212

We further train the SFT model fSFT from the pre- 213

vious stage with multi-iteration PO to directly opti- 214

mize the model on the style transfer objectives: F, 215

MS, and TSS. To apply PO (Rafailov et al., 2023; 216

Xu et al., 2024a) we first generate paired prefer- 217

ence data from a reference model fref and then 218

train a model on this offline preference data in 219

a contrastive manner starting from the reference 220

model. Inspired by Och (2003) and recent stud- 221

ies in iterative PO, such as Yuan et al. (2024) and 222

Chen et al. (2024), we perform PO for multiple 223

iterations to improve over the offline-only training, 224

updating the reference model between iterations. 225

Specifically, in iteration i, we construct preference 226

dataset Di
PO by transferring texts drawn from D, 227

using reference model f i
ref. We use PO (Rafailov 228

et al., 2023; Xu et al., 2024a) to train a model ini- 229

tialized to f i
ref to match the preferences in Di

PO; we 230
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call the resulting model f i
PO. We define f1

ref to be231

fSFT and in all other cases we define f i
ref to be f i−1

PO .232

We next detail how the preference pairs in Di
PO are233

constructed and the reward function used in this234

process.235

2.4.1 PO Data Generation236

We construct the preference dataset from D us-237

ing the hope-and-fear sampling strategy in Chiang238

(2012). While that work used BLEU (Papineni239

et al., 2002) as a preference metric, we instead use240

our style transfer reward R which is detailed in241

§ 2.4.2. Specifically, for each style s, we generate242

kPO rewrites of each text xi in D, whose initial style243

si ̸= s, into style s and select the preference pair244

from the rewrites based on both the reward scores245

R and the model scores M of the rewrites, where246

M is the average token-level probability w.r.t. fref.247

We select the rewrite with the highest MτM +R248

as the “winning” rewrite twi and the rewrite with249

the highest MτM −R as the “losing” rewrite8 tli,250

where τM is the temperature controlling the weight251

of model score.9 We then obtain a new dataset252

D→s
PO = {(xi → (twi , tli), s) | (xi, si) ∈ D} for253

each style s. Combining D→s
PO for all styles, we254

finally obtain the PO dataset DPO.255

2.4.2 Reward Function256

To directly maximize the three objectives, F, MS,257

and, TSS, we use an aggregation of them as the258

reward function R. The most straightforward ag-259

gregation is to take the product of the three as in260

Hallinan et al. (2023a). However, since the three261

objectives are independent, the probability of gen-262

erating samples that have high scores in all three ob-263

jectives is very low. Our preliminary experiments264

show that samples with high total rewards can also265

have low single-objective scores, which naturally266

results in preference pairs in which the “winning”267

outputs have lower single-objective scores. We268

refer to these as reversed single-objective scores.269

When the percentage of reversed single-objective270

scores is high, we observe a degradation in the271

corresponding objective after PO. To prevent the272

degradation in any objective, we propose to use a273

weighted product, which is given by274

R = TSSα · MSβ · Fγ (4)275

8also called “chosen” and “rejected” rewrites in PO litera-
ture (e.g., Rafailov et al., 2023).

9In practice, we find using model score does not benefit
performance, so we drop this term for STAMP, which reduces
the preference pair selection criteria to the sample with the
highest R and −R; a detailed comparison is shown in § 4.3.

where α, β, and γ are temperatures for each objec- 276

tive. 277

We dynamically calculate α, β, and γ based on 278

the number of reversed single-objective scores in 279

the preference pairs for each iteration. For conve- 280

nience, we denote the number of reversed single- 281

objective scores for each objective as rTSS, rMS, 282

and rF.10 We first set β = γ = 1 and set α to be 283

the smallest positive integer such that rTSS < rMS 284

and rTSS < rF. Then, we fix α and γ and set β to 285

be the largest positive integer such that rMS > rTSS. 286

Finally, we fix α and β and set γ to be the largest 287

positive integer such that rF > rTSS and rF > rMS. 288

We set an upper bound τmax to α, β, and γ to pre- 289

vent R from leaning too much to any objective. 290

3 Experiments 291

We evaluate STAMP on two text style transfer 292

datasets in both in-domain and out-of-domain set- 293

tings and compare STAMP with the state-of-the-art 294

baseline approaches. In this section, we detail the 295

experimental setup and the model implementation. 296

3.1 Datasets 297

We use two style transfer datasets in this work: (1) 298

Corpus of Diverse Styles (CDS) (Krishna et al., 299

2020), which contains non-parallel texts in 11 dif- 300

ferent styles, such as Shakespeare and English 301

Tweets, and (2) Grammarly’s Yahoo Answers 302

Formality Corpus (GYAFC) (Rao and Tetreault, 303

2018), which contains non-parallel formal and in- 304

formal texts for training and a small number of 305

parallel transfer pairs for tuning and test. In this 306

work, we only use non-parallel texts with style la- 307

bels for training, validation, and test. 308

To reduce computational costs, we use a subset 309

of each dataset. Specifically, we sample 2000 texts 310

per style for training, and 200 per style for valida- 311

tion. For CDS we sample 200 per style for test, 312

while for GYAFC we sample 1000 per style. When 313

constructing the end-to-end pseudo-parallel dataset 314

Dtrf, for each target style, we sample 200 and 20 315

source texts from each of the other styles for train- 316

ing and validation, respectively. In the in-domain 317

testing, we transfer the test texts in each style to all 318

other styles in the same dataset and calculate the 319

total average scores and average scores grouped by 320

the target style. In the out-of-domain testing, we 321

transfer all test texts in each dataset to all styles in 322

10rTSS, rMS, and rF are functions of α, β, and γ, so we
recalculate r’s each time we change the value of α, β, or γ.
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the other dataset and calculate the same scores. We323

elaborate on metric scores in § 3.4.1.324

Besides the style transfer datasets, we also use a325

paraphrase dataset, ParaNMT (Wieting and Gim-326

pel, 2018) to train the paraphraser used for pseudo-327

parallel data generation. Specifically, we use the328

filtered version containing 75k paraphrase pairs in329

Krishna et al. (2020).330

3.2 Reward Models331

We have a reward model for each of the three objec-332

tives, TSS, MS, and F. For convenience, we use the333

same notations to refer to the objective functions334

and the corresponding reward models in this paper.335

Target Style Strength (TSS) We use a single336

style classifier, fcls with multiple binary sigmoid337

classification heads to calculate the TSS for each338

target style. We train fcls from the pre-trained339

RoBERTa-large model (Liu et al., 2019b) on the340

same training and validation splits as discussed in341

§ 3.1. We simply use the sigmoid outputs from the342

classification heads as the TSS scores which range343

from 0 to 1.344

Meaning Similarity (MS) We assess the mean-345

ing similarity between the source text and the trans-346

ferred text using the cosine similarity between the347

semantic embeddings of the two texts. The se-348

mantic embeddings are calculated using SBERT11349

(Reimers and Gurevych, 2019). Technically, the350

cosine similarity of two embeddings ranges from351

-1 to 1, but negative cosine similarity is very rare352

in our experiments since we always the similarity353

between two paraphrases. Following Hallinan et al.354

(2023a), we clip negative values to 0 to ensure that355

MS ranges from 0 to 1.356

Fluency (F) To measure the fluency of a text,357

we use a text classifier12 trained on the Corpus of358

Linguistic Acceptability (CoLA) (Warstadt et al.,359

2019). The softmax score of the “grammatical”360

class is used as the F score which also ranges from361

0 to 1.362

3.3 Baseline Approaches363

We compare STAMP with 4 strong baselines: GPT364

prompting (Reif et al., 2022), STRAP (Krishna365

et al., 2020), STEER (Hallinan et al., 2023a), and366

ASTRAPOP (Liu et al., 2024).367

11We use the variant with the best sentence embedding
performance, which is all-mpnet-base-v2.

12https://huggingface.co/cointegrated/
roberta-large-cola-krishna2020

GPT prompting uses the zero- and few-shot ca- 368

pability of GPT-3.5-turbo to transfer texts to the 369

target style given just the name of the style and 370

5 target style exemplars (5-shot) or no exemplars 371

(zero-shot). 372

STRAP transfers a text by paraphrasing the text 373

with a diverse paraphraser followed by an inverse 374

paraphraser trained on pseudo-parallel transfer data 375

generated by the diverse paraphraser. 376

STEER generates pseudo-parallel data using an 377

expert-guided generation technique (Liu et al., 378

2021a), and trains an end-to-end style transfer 379

model on the generated data using a reinforcement 380

learning algorithm (Lu et al., 2022). 381

ASTRAPOP adopts the same paraphrase-and- 382

inverse-paraphrase pipeline as STRAP but trains 383

the inverse paraphraser using policy optimization 384

or PO to directly maximize the target style strength, 385

which achieves better performance on both low- 386

resource and high-resource authorship style trans- 387

fer. It does not use multi-iteration optimization, nor 388

the overgeneration strategies we describe. 389

3.4 Evaluation Metrics 390

3.4.1 Automatic Evaluation 391

We evaluate the approaches on the three objectives, 392

TSS, MS, and F, using the same reward models 393

introduced in § 3.2. To assess overall performance, 394

we use a single aggregate score Agg. = TSS·MS·F. 395

Note that the reward models described in § 3.2 396

calculate scores for single transfer pairs, while the 397

final scores used for evaluation are averages over 398

all transfer pairs in the test set. 399

3.4.2 Human Evaluation 400

In addition to the automatic evaluation, we con- 401

duct a human evaluation to assess the model perfor- 402

mance on the three style transfer objectives: TSSh, 403

MSh, and Fh.13 For TSSh, we show 5 exemplars 404

for the style of the input text and 5 exemplars for 405

the target style, and ask the annotator to select the 406

style of the transferred text out of these two styles. 407

The sample gets a score of 1 if the target style is 408

selected, and 0 otherwise. For MSh and Fh, we 409

ask whether the transferred text has a similar mean- 410

ing to the input text and whether the transferred 411

is fluent, respectively, and collect the answers us- 412

ing a three-level Likert scale ranging from 0 to 2. 413

See § B.5 for the detailed instructions used in the 414

human evaluation. 415

13We use the subscript h to distinguish human metrics from
automatic metrics.
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Approach
CDS GYFAC

TSS MS F Agg. TSS MS F Agg.

GPT zero-shot 0.189‡ 0.705‡ 0.803† 0.104‡ 0.672‡ 0.788‡ 0.968 0.489‡

GPT 5-shot 0.199‡ 0.735† 0.805† 0.112‡ 0.667‡ 0.800† 0.965 0.495‡

STRAP 0.382‡ 0.626‡ 0.759‡ 0.158‡ 0.618‡ 0.735‡ 0.913‡ 0.409‡

STEER 0.654† 0.672‡ 0.905 0.395† 0.951 0.776‡ 0.930‡ 0.686†

ASTRAPOP 0.542‡ 0.600‡ 0.755‡ 0.221‡ 0.783‡ 0.734‡ 0.924‡ 0.525‡

STAMP 0.746 0.801 0.801† 0.474 0.958 0.921 0.941‡ 0.828

Table 1: The automatic evaluation results on in-domain inputs on the CDS and the GYAFC datasets. The best and
the 2nd best scores in each column are shown in bold and underline, respectively. “†” and “‡” indicate the score is
significantly (p < 0.05) worse than the best score and the top 2 scores in the same column, respectively, determined
by resampling t-test.

3.5 Implementation Details416

We implement all Seq2Seq models in STAMP, in-417

cluding the paraphraser and all transfer models, as418

decoder-only Seq2Seq models (Wolf et al., 2019)419

based on pre-trained LLaMA-2-7B (Touvron et al.,420

2023). The input and output are concatenated to-421

gether with a separator token “[SEP].” For the uni-422

fied transfer model fSFT, we prepend a style code423

for the target style (e.g., “[SHAKESPEARE]” and424

“[FORMAL]”) to the input to control the output425

style. We use CPO (Xu et al., 2024a) in the multi-426

iteration PO stage. We choose CPO instead of427

the most popular PO algorithm, DPO (Rafailov428

et al., 2023), since CPO has been shown to be429

more efficient and effective (Xu et al., 2024a; Liu430

et al., 2024). Also, compared to DPO, CPO has431

an additional negative log-likelihood term that is432

found to be significant for multi-iteration prefer-433

ence optimization (Pang et al., 2024). We stop434

PO training at the iteration where the validation435

TSS starts to decrease and use the model from the436

previous iteration as the final model. For fairness,437

all non-GPT baselines are also implemented based438

on LLaMA-2-7B and use the same paraphraser as439

STAMP. We use gpt-3.5-turbo-0125 for all GPT-440

based approaches. See § B for hyperparameters441

and GPT zero- and few-shot prompts.442

4 Results443

In this section, we present the quantitative experi-444

mental results. A qualitative case study is in § A.3.445

Because of the limited resources, we conduct all446

experiments for a single run and perform t-tests on447

the results.14448

14See § B.1 for details.

4.1 Automatic Evaluation 449

Automatic evaluation results on in-domain input 450

are shown in Table 1. According to the aggregated 451

score (Agg.), STAMP outperforms all baselines 452

on the overall performance by a large margin on 453

both datasets. Looking at the per-objective scores, 454

STAMP has the best target style strength (TSS) and 455

meaning similarity (MS), but its fluency (F) is rela- 456

tively lower, and this disadvantage is more obvious 457

on the CDS dataset. STEER has the best overall 458

performance (Agg.) among the baselines on both 459

datasets, while the overall performance of other 460

baselines are mixed across the two datasets. The 461

results on the out-of-domain style transfer experi- 462

ments are generally consistent with the in-domain 463

results. See § A.1 for details. 464

Approach TSS MSh/2 Fh/2 Agg.∼h

GPT 5-shot 0.16 0.75 0.90 0.11
STEER 0.58 0.62 0.92 0.33
STAMP 0.79 0.75 0.80 0.47

Table 2: The human evaluation results on in-domain
inputs on the CDS datasets. The best and the 2nd best
scores in each column are shown in bold and underline,
respectively.

4.2 Human Evaluation 465

We conduct a human evaluation on the CDS dataset 466

for STAMP, the best-performing baseline (STEER), 467

and the best GPT-prompting baseline (GPT 5-shot). 468

We randomly choose 5 samples from each of the 469

11 target styles for each of the three models, which 470

yields 165 samples in total, and collect up to three 471

annotations for each sample. Seven volunteer NLP 472

experts are recruited for annotation. We perform 473

an independent sample t-test on the annotation re- 474

sults and find statistically significant differences 475

6



Approach
CDS GYFAC

TSS MS F Agg. TSS MS F Agg.

STAMP 0.746 0.801‡ 0.801† 0.474 0.958‡ 0.921† 0.941† 0.828

τM = 0.1 0.720† 0.796‡ 0.800† 0.454† 0.965 0.910‡ 0.943† 0.826
kPO = 2 0.745 0.688‡ 0.816 0.411‡ 0.970 0.878‡ 0.947 0.804‡

Random tl 0.640‡ 0.836 0.780‡ 0.412‡ 0.950‡ 0.924† 0.937 0.822
High tl 0.592‡ 0.826† 0.796† 0.384‡ 0.928‡ 0.936 0.932‡ 0.810‡

Table 3: Hope-and-fear sampling ablations, evaluated automatically on in-domain inputs on the CDS and the
GYAFC datasets. The best and the 2nd best scores in each column are shown in bold and underline, respectively.
“†” and “‡” indicate the score is significantly (p < 0.05) worse than the best score and the top 2 scores in the same
column, respectively, determined by resampling t-test.

in MSh and Fh but not in TSSh,15 which is in line476

with our expectation since the style classification477

has been found to be hard for untrained humans478

(Krishna et al., 2020; Hallinan et al., 2023a). There-479

fore, following Krishna et al. (2020) and Hallinan480

et al. (2023a), we calculate the quasi aggregated481

score Agg.∼h using TSS,16 MSh, and Fh. Formally,482

Agg.∼h = TSS · MSh
2 · Fh

2 , where we divide MSh483

and Fh by 2 to scale them to the [0, 1] range so484

that Agg.∼h also ranges from 0 to 1. As shown485

in Table 2, STAMP has the best meaning similar-486

ity (MSh) and overall performance (Agg.∼h), but487

its fluency is worse than STEER and GPT 5-shot488

transfer, which is consistent with the automatic489

evaluation results.490

4.3 Ablation Studies491

In this section, we demonstrate the effects of our492

four main contributions in STAMP: multi-iteration493

PO, hope-and-fear sampling, weighted reward ag-494

gregation, and end-to-end pseudo-parallel data gen-495

eration.496

Multi-iteration PO & Weighted R We show497

the performance evolution of STAMP and STAMP498

with unweighted R over the multi-iteration PO499

training in Figure 2. In general, the overall per-500

formance (Agg.) of both models keeps increas-501

ing over the iterations, which indicates the effec-502

tiveness of multi-iteration optimization. STAMP503

with unweighted R performs slightly better than504

STAMP, but it has a severe degradation in meaning505

similarity (MS), and the scores in the three objec-506

tives have a substantial difference after training.507

In contrast, with the weighted reward aggregation,508

STAMP shows a higher stability in all scores. Only509

15See § A.2 for the raw human evaluation scores and the
result of the t-test.

16which is calculated from the human study samples using
the automatic TSS metric.

fluency (F) exhibits a slight decrease, and scores in 510

all three objectives converge to a similar value at 511

the end of the training. 512
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Figure 2: The value of iterative CPO on performance
in STAMP and STAMP with unweighted R, shown on
the CDS dataset (test split). Iteration 0 refers to the SFT
model before PO.

Hope-and-fear Sampling The results of hope- 513

and-fear sampling ablation are shown in Table 3. 514

As mentioned in § 2.4.2, we do not use the model 515

score term in hope-and-fear sampling for prefer- 516

ence pair construction since it does not improve 517

the performance, which can be observed from the 518

“τM = 0.1” row in Table 3. The last three rows in 519

Table 3 show that both dropping over-generation 520

(kPO = 2) and using a random other sample (Ran- 521

dom tl) or the sample with the second highest re- 522

ward (High tl) as the “losing” sample undermine 523

the overall performance of STAMP. 524

Pseudo-parallel Data Generation We demon- 525

strate the superiority of our two-step end-to-end 526

pseudo-parallel data generation method by com- 527

paring the STAMP SFT model, fSFT, with the 528

best-performing baseline SFT style transfer model, 529

STRAP. The overall performance (Agg.) of the two 530

7



models is shown in Table 4. With our method, the531

overall performance of fSFT is much higher than532

STRAP on both datasets, which provides a better533

starting point for PO.534

CDS GYAFC

STRAP 0.158 0.409
fSFT 0.264 0.657

Table 4: The overall performance (Agg.) of STRAP and
the STAMP SFT model (fSFT ) on CDS and GYAFC.
The best score in each column is shown in bold.

5 Related Work535

Text Style Transfer Due to the lack of parallel536

style transfer data, only a limited number of studies537

address this task as a supervised or semi-supervised538

Seq2Seq task, which requires a certain amount of539

parallel data for training and/or tuning (Zhu et al.,540

2010; Rao and Tetreault, 2018; Wang et al., 2019;541

Shang et al., 2019; Xu et al., 2019; Zhang et al.,542

2020; Kim et al., 2022; Raheja et al., 2023). Al-543

though these approaches work well when parallel544

data is available, none generalize well to styles545

with no parallel data. As a result, most works in546

this area focus on unsupervised approaches that re-547

quire only non-parallel data or even no data. These548

works mainly approach the task via latent represen-549

tation disentanglement and manipulation (Lample550

et al., 2019; Liu et al., 2019a; John et al., 2019; Jin551

et al., 2020), style-related pattern editing (Madaan552

et al., 2020; Malmi et al., 2020; Reid and Zhong,553

2021; Luo et al., 2023), pseudo-parallel transfer554

data construction (Krishna et al., 2020; Riley et al.,555

2021), policy optimization (Gong et al., 2019; Liu556

et al., 2021b; Deng et al., 2022; Hallinan et al.,557

2023a; Liu et al., 2024), and LLM zero- or few-558

shot prompting (Reif et al., 2022; Suzgun et al.,559

2022; Patel et al., 2023).560

Among these approaches, two of the policy opti-561

mization based approaches, STEER (Hallinan et al.,562

2023a) and ASTRAPOP (Liu et al., 2024) achieve563

the best performance on text style transfer and au-564

thorship style transfer, respectively. Their high-565

level training frameworks both combine pseudo-566

parallel data generation and policy optimization,567

but their specific approaches differ. For pseudo-568

parallel data generation, STEER uses a paraphraser569

guided by an expert and an anti-expert, while AS-570

TRAPOP simply paraphrases the texts in the target571

style and uses these paraphrase-to-target transfer572

pairs. For policy optimization, STEER uses an RL573

algorithm, Quark, while ASTRAPOP tries three 574

options: one RL algorithm, PPO (Schulman et al., 575

2017), and two PO algorithms, DPO (Rafailov 576

et al., 2023) and CPO (Xu et al., 2024a). Our 577

framework shares the same high-level procedure 578

with STEER and ASTRAPOP, but we design a new 579

pseudo-parallel data generation method and also 580

enhance the PO stage with multi-iteration training, 581

weighted reward aggregation, and hope-and-fear 582

preference pair construction, These enhancements 583

dramatically improve the performance of STAMP 584

over STEER and ASTRAPOP. 585

Preference Optimization PO (Rafailov et al., 586

2023; Song et al., 2024a; Xu et al., 2024a) is a 587

class of RL-free policy optimization algorithms 588

which has been broadly applied to train generative 589

language models on direct task objectives instead 590

of the language modeling loss and is closely re- 591

lated to (pre-neural) machine translation objective 592

‘tuning’ (Och, 2003; Chiang et al., 2008; Hopkins 593

and May, 2011). Rafailov et al. (2023) show that 594

PO is more stable and efficient than traditional RL- 595

based algorithms on sentiment generation and text 596

summarization (Rafailov et al., 2023). It has also 597

been successfully applied to many other NLP tasks, 598

such as training helpful and harmless assistants 599

(Song et al., 2024a), machine translation (Xu et al., 600

2024a), and authorship style transfer (Liu et al., 601

2024). Later works (Xiong et al., 2023; Xu et al., 602

2024b; Yuan et al., 2024; Chen et al., 2024; Pang 603

et al., 2024; Song et al., 2024b) extend the offline 604

PO algorithms by performing the optimization for 605

multiple iterations and further improve the perfor- 606

mance of the models. In this work, we adopt the 607

multi-iteration PO for STAMP and enhance it with 608

weighted reward aggregation and hope-and-fear 609

preference pair construction, which improve the 610

effectiveness of multi-iteration PO training. 611

6 Conclusion 612

We present STAMP, a multi-iteration preference op- 613

timization training framework for text style transfer, 614

in which an end-to-end pseudo-parallel data gener- 615

ation pipeline provides a strong reference model, a 616

preference pair construction strategy improves the 617

effectiveness of PO training, and weighted reward 618

aggregation ensures balance across multiple ob- 619

jectives over multi-iteration training. We evaluate 620

STAMP on two commonly used text style transfer 621

datasets; demonstrating superior performance over 622

all state-of-the-art style transfer approaches. 623
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Limitations624

Although achieving the state-of-the-art perfor-625

mance on two text style transfer datasets, STAMP626

has two main limitations. First, we observe rep-627

etitions and hallucinations in some transferred628

texts. The potential reason is that PO training in-629

creases the peakiness of the model, which means630

the probability of generating the tokens that are631

frequent in the target style increases dispropor-632

tionately (Choshen et al., 2020; Kiegeland and633

Kreutzer, 2021). The occurrence of repetitions and634

hallucinations also indicates that our reward model635

cannot fully capture all aspects of the desired ob-636

jectives. Two possible solutions are developing PO637

algorithms that are less vulnerable to the increased638

peakiness and developing better reward models.639

These are two promising directions for future stud-640

ies but are out of the scope of the current work641

which focuses on the multi-iteration extension of642

existing preference optimization algorithms and the643

strategies for preference pair construction.644

Second, as discussed in § 4.3, the weighted re-645

ward aggregation method is effective on the CDS646

dataset but is not very useful on the GYAFC dataset647

because formality transfer is a relatively easier task,648

and it is more likely to generate high-quality sam-649

ples with balanced single-objective scores. It could650

be useful to add a control mechanism to determine651

when using the weighted aggregation is beneficial652

to prevent overbalanced single-objective scores on653

easy tasks.654

Ethical Considerations655

As a general text style transfer framework, STAMP656

can transfer texts to any target style given an ade-657

quate amount of non-parallel data, which means it658

can potentially be used to generate unethical texts659

such as transferring normal texts into an offensive660

or profane style. Moreover, although STAMP is661

not specifically designed for authorship transfer, it662

can still serve that purpose by transferring the texts663

into the style of a particular author, which can be664

unethical if used without authorization. However,665

privatization of an author’s style can also be used666

to enable oppressed people to communicate freely667

without the fear of recrimination. In any case, as668

we and others show, the state of the art of style669

transfer is not yet advanced for either privacy or670

mimicry to be a significant concern in a deployed671

system. Our work is strictly intended for research672

and personal use on public or authorized data.673

Some texts in the datasets used in this work 674

(though collected and released elsewhere) contain 675

words or ideas that may cause harm to others. We 676

do not generally filter out those texts, so that we 677

may maximally preserve the characteristics of dif- 678

ferent styles. However, for human studies, we 679

remove all texts with personal identifiable infor- 680

mation (PII) to ensure privacy and remove texts 681

that contain profane language to minimize harm 682

to human subjects. We exclude these texts in- 683

stead of masking out PII or profane tokens, since 684

masks may influence annotators’ judgments regard- 685

ing meaning similarity and fluency. The protocols 686

of our human studies have been approved by an 687

institutional review board. 688
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Approach
CDS GYFAC

TSS MS F Agg. TSS MS F Agg.

GPT zero-shot 0.246‡ 0.657‡ 0.855‡ 0.138‡ 0.672‡ 0.752† 0.909 0.455‡

GPT 5-shot 0.289‡ 0.708† 0.868† 0.175‡ 0.722‡ 0.752† 0.902 0.486‡

STRAP 0.426‡ 0.629‡ 0.810‡ 0.194‡ 0.692‡ 0.689‡ 0.852‡ 0.402‡

STEER 0.654† 0.706† 0.927 0.426† 0.850† 0.734‡ 0.875 0.544†

ASTRAPOP 0.579‡ 0.606‡ 0.808‡ 0.259‡ 0.816† 0.685‡ 0.863‡ 0.479‡

STAMP 0.787 0.816 0.877† 0.562 0.964 0.864 0.827‡ 0.687

Table 5: The automatic evaluation results on out-of-domain inputs on the CDS and the GYAFC datasets. The best
and the 2nd best scores in each column are shown in bold and underline, respectively. “†” and “‡” indicate the
score is significantly (p < 0.05) worse than the best score and the top 2 scores in the same column, respectively,
determined by resampling t-test.

which we transfer the texts in each dataset to the1069

styles in the other dataset, in order to determine1070

whether our results hold up when transferring be-1071

tween styles of different provenance. They do; the1072

out-of-domain results are generally consistent with1073

the in-domain results. The best model in each col-1074

umn in Table 5 is the same as Table 1, which is also1075

true for the second best model in most columns.1076

Also, STAMP still has the best TSS, MS, and1077

aggregated score (Agg.) among all approaches,1078

and STEER still has the best overall performance1079

(Agg.) among the baselines.1080

A.2 More Human Evaluation Results1081

Approach TSSh MSh Fh

GPT 5-shot 0.59 1.48 1.79
STEER 0.69 1.24‡ 1.84
STAMP 0.64 1.48 1.57‡

Table 6: Raw human evaluation scores on in-domain
inputs on the CDS datasets. The best and 2nd best scores
in each column are shown in bold and underline, respec-
tively. “‡” indicates a statistically significant difference
(p < 0.05) between the top two models determined by
independent sample t-test. No significant difference is
found in any other model pairs.

The raw scores from the human evaluation and1082

the result of the t-test are shown in Table 6. No1083

significant difference is found between any model1084

pairs in TSSh
17, but MSh and Fh are generally1085

consistent with the automatic evaluation results.1086

Specifically, STAMP and GPT 5-shot transfer are1087

significantly better than STEER in meaning simi-1088

17which is expected since style classification is difficult
for human annotators (Krishna et al., 2020; Hallinan et al.,
2023a).

larity (MS), and STEER and GPT 5-shot transfer 1089

are significantly better than STAMP in fluency (F). 1090

A.3 Case Study 1091

We show an example from the CDS test set in Ta- 1092

ble 7 as a case study. In this example, we transfer 1093

a text in the style of music lyrics into the style 1094

of Shakespeare using STAMP and all baseline ap- 1095

proaches. STAMP maximally preserves the mean- 1096

ing of the original sentence and accurately reflects 1097

the target style using the words "’tis" and "o’er". 1098

Other approaches either fail to generate strong tar- 1099

get style indicators or change the meaning of the 1100

original sentence to some extent. 1101

B More Implementation Details 1102

B.1 Statistical Significance Test 1103

We conduct a resampling paired t-test for the auto- 1104

matic evaluation results and an independent t-test 1105

for the human evaluation results. For the resam- 1106

pling paired t-test, we randomly select 10 subsets 1107

of 100 samples from the test set and perform a 1108

paired t-test on the mean scores of the subsets be- 1109

tween each pair of models. For the independent 1110

t-test, we use all available samples from the human 1111

study without resampling. 1112

B.2 Hyperparameters 1113

We sample same-sized training and validation sub- 1114

sets for CDS and GYAFC, and use the same hyper- 1115

parameters to train STAMP on the two datasets to 1116

reduce the cost for more hyperparameter searching. 1117

We list all hyperparameters for STAMP in Table 8, 1118

Table 9, Table 10, Table 11, and Table 12. 1119
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Original I’m not sorry that it’s over

GPT zero-shot I doth not lament the end that hath befallen us.
GPT 5-shot I doth not lament the ending of this tale.
STRAP I am not sorry That he is gone.
ASTRAPOP Now is the winter of our discontent Made glorious summer by this sun of York.
STEER I do not regret that it is done.
STAMP I am not sorry That ’tis o’er.

Table 7: A style transfer example from the style of music lyrics to the style of Shakespeare.

Parameter fcls fpara fp→t fs→t

learning rate 5e-5 5e-5 5e-5 5e-5
batch size 32 32 8 16
# epochs 6 10 6 12

Table 8: Training hyperparameters for all supervised
fine-tuned models.

Parameter fPO

learning rate 2e-6
β 0.1
batch size 32
# epochs 16
kPO 10
Niter 10

Table 9: Training hyperparameters for iterative prefer-
ence optimization.

Parameter

target modules q_proj, v_proj
rank 16
α 32
dropout 0.05

Table 10: LoRA Hyperparameters.

Parameter Dp→t Ds→t DPO

top p 1.0 1.0 1.0
temperature 0.5 0.7 1.0
kpara/sft/po 20 90 10
τtextMS/max - 8 6

Table 11: Generation hyperparameters for dataset con-
struction.

Parameter Evaluation

top p 1.0
temperature 0.7

Table 12: Generation hyperparameters for dataset evalu-
ation.

B.3 GPT prompt templates 1120

We elaborate on the prompts used for GPT zero- 1121

and 5-shot style transfer on CDS and GYAFC in 1122

Table 13 and Table 14, respectively. 1123

B.4 Hardware and Runtime 1124

We train all components of STAMP using Nvidia 1125

A40-48GB GPUs. The number of GPUs and time 1126

used to train each model on each dataset are shown 1127

in Table 15. 1128

B.5 Human Evaluation Instructions 1129

The instructions used in the human evaluation for 1130

all three objectives are shown in Table 17 including 1131

the questions asked and the detailed explanation 1132

for each level in the Likert scale. 1133

C Scientific Artifacts 1134

C.1 Use of Existing Artifacts 1135

The existing artifacts used in this work and their 1136

licenses are listed in Table 16. Our use of the ex- 1137

isting artifacts is consistent with their intended use 1138

specificed by their licenses. 1139

C.2 Created Artifacts 1140

We create a new text style transfer training frame- 1141

work, STAMP, and release the code under the MIT 1142

license. Considering ethical implications, STAMP 1143

is only intended for research purposes, which is 1144

compatible with the original access conditions of 1145

all existing artifacts used in STAMP. 1146

14



Zero-shot
Rewrite the following sentence into the style of [target style].
Original Sentence: [input text]
Rewritten Sentence:

5-shot

Here are some examples of sentences in the style of [target style]:
[example 1]
......
[example 5]
Rewrite the following sentence into the style of [target style].
Original Sentence: [input text]
Rewritten Sentence:

Table 13: GPT zero- and 5-shot prompts for style transfer on CDS.

Zero-shot
Rewrite the following sentence in a(n) (in)formal style.
Original Sentence: [input text]
Rewritten Sentence:

5-shot

Here are some examples of sentences in a(n) (in)formal style:
[example 1]
......
[example 5]
Rewrite the following sentence in a(n) (in)formal style.
Original Sentence: [input text]
Rewritten Sentence:

Table 14: GPT zero- and 5-shot prompts for style transfer on GYAFC.

ParaNMT CDS GYAFC

fpara fcls fp→t fs→t fPO fcls fp→t fs→t fPO

# GPUs (A40s) ×2 ×2 ×2 ×2 ×4 ×2 ×2 ×2 ×2
Times (hrs) 3.4 0.4 1.1 1.0 35.2 0.1 0.2 0.2 7.4

Table 15: Training hardware and runtime for each component in STAMP on CDS and GYAFC.

Type Name License

Dataset
CDS: Corpus of Diverse Styles MIT
GYAFC: Grammarly’s Yahoo Answers Formality Corpus Custom (research-only)

Model

LLaMA-2-7B (6.7B) Meta
GPT-3.5-turbo-0125 (-) MIT
RoBERTa-large (355M) MIT
RoBERTa-large CoLA Classifier (355M) MIT
SBERT all-mpnet-base-v2 (109M) Apache-2.0

Library

Transformers Apache-2.0
PEFT Apache-2.0
TRL Apache-2.0
Sentence Transformers Apache-2.0

Table 16: Datasets, models, and software libraries used in this work. The number of parameters of each model is
indicated in the parentheses next to the model name.
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https://platform.openai.com/docs/models/gpt-3-5-turbo
https://huggingface.co/FacebookAI/roberta-large
https://huggingface.co/cointegrated/roberta-large-cola-krishna2020
https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://github.com/huggingface/transformers
https://github.com/huggingface/peft
https://github.com/huggingface/trl
https://github.com/UKPLab/sentence-transformers


TSSh Question Based on the examples above, what is the style of the following text?

MSh

Similar Most of the meaning (75% or more) of the two passages is the same.

Somewhat Similar Large portions (50-75%) of the passages are the same, but there are
significant sections that differ or are present in only one passage.

Not Similar Only small portions (less than 50%) of the passages are the same.

Question How similar are the following two texts?

Fh

Fluent Very clear, grammatical english (need not be formal); the meaning of the
sentence is well understood. A small number of errors are ok.

Somewhat Fluent There are grammatical errors, possibly numerous, but the meaning can
be understood.

Not Fluent The grammatical errors make it very difficult to understand the meaning.

Question How fluent is the following text?

Table 17: Instructions used in the human evaluation.
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