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Abstract

In the last decades, the capacity to generate large amounts of data in science and1

engineering applications has been growing steadily. Meanwhile, the progress in2

machine learning has turned it into a suitable tool to process and utilise the available3

data. Nonetheless, many relevant scientific and engineering problems present4

challenges where current machine learning methods cannot yet efficiently leverage5

the available data and resources. For example, in scientific discovery, we are often6

faced with the problem of exploring very large, high-dimensional spaces, where7

querying a high fidelity, black-box objective function is very expensive. Progress8

in machine learning methods that can efficiently tackle such problems would help9

accelerate currently crucial areas such as drug and materials discovery. In this paper,10

we propose the use of GFlowNets for multi-fidelity active learning, where multiple11

approximations of the black-box function are available at lower fidelity and cost.12

GFlowNets are recently proposed methods for amortised probabilistic inference13

that have proven efficient for exploring large, high-dimensional spaces and can14

hence be practical in the multi-fidelity setting too. Here, we describe our algorithm15

for multi-fidelity active learning with GFlowNets and evaluate its performance in16

both well-studied synthetic tasks and practically relevant applications of molecular17

discovery. Our results show that multi-fidelity active learning with GFlowNets18

can efficiently leverage the availability of multiple oracles with different costs and19

fidelities to accelerate scientific discovery and engineering design.20

1 Introduction21

The current most pressing challenges for humanity, such as the climate crisis and the threat of22

pandemics or antibiotic resistance could be tackled, at least in part, with new scientific discoveries.23

By way of illustration, materials discovery can play an important role in improving the energy24

efficiency of energy production and storage; and reducing the costs and duration for drug discovery25

has the potential to more effectively and rapidly mitigate the consequences of new diseases. In26

recent years, researchers in materials science, biochemistry and other fields have increasingly adopted27

machine learning as a tool as it holds the promise to drastically accelerate scientific discovery28

[7, 67, 3, 12].29

Although machine learning has already made a positive impact in scientific discovery applications30

[55, 27], unleashing its full potential will require improving the current algorithms [1]. For example,31

typical tasks in potentially impactful applications in materials and drug discovery require exploring32

combinatorially large, high-dimensional spaces [46, 6], where only small, noisy data sets are available,33

and obtaining new annotations computationally or experimentally is very expensive. Such scenarios34

present serious challenges even for the most advanced current machine learning methods.35

In the search for a useful discovery, we typically define a quantitative proxy for usefulness, which we36

can view as a black-box function. One promising avenue for improvement is developing methods37

that more efficiently leverage the availability of multiple approximations of the target black-box38
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function at lower fidelity but much lower cost than the highest fidelity oracle [10, 14]. For example,39

the most accurate estimation of the properties of materials and molecules is only typically obtained40

via synthesis and characterisation in a laboratory. However, this is only feasible for a small number of41

promising candidates. Approximate quantum mechanics simulations of a larger amount of chemical42

compounds can be performed via Density Functional Theory (DFT) [41, 51]. However, DFT is43

still computationally too expensive for high-throughput exploration of large search spaces. Thus,44

large-scale exploration can only be achieved through cheaper but less accurate oracles. Nonetheless,45

solely relying on low-fidelity approximations is clearly suboptimal. Ideally, such tasks would be best46

tackled by methods that can efficiently and adaptively distribute the available computational budget47

between the multiple oracles depending on the already acquired information.48

The past decade has seen significant progress in multi-fidelity Bayesian optimisation (BO) [19, 53],49

including methods that leverage the potential of deep neural networks [36]. Although highly relevant50

for scientific discovery, standard BO is not perfectly suited for some of the challenges in materials and51

drug discovery tasks. First and foremost, BO’s ultimate goal is to find the optimum of an expensive52

black-box function. However, even the highest fidelity oracles in such problems are underspecified53

with respect to the actual, relevant, downstream applications. Therefore, it is imperative to develop54

methods that, instead of “simply” finding the optimum, discover a set of diverse, high-scoring55

candidates.56

Recently, generative flow networks (GFlowNets) [4] have demonstrated their capacity to find diverse57

candidates through discrete probabilistic modelling, with particularly promising results when embed-58

ded in an active learning loop [22]. Here, we propose to extend the applicability of GFlowNets for59

multi-fidelity active learning.60

In this paper, we present an algorithm for multi-fidelity active learning with GFlowNets. We provide61

empirical results in two synthetic benchmark tasks and four practically relevant tasks for biological62

sequence design and molecular modelling. As a main result, we demonstrate that multi-fidelity63

active learning with GFlowNets discovers diverse, high-scoring samples when multiple oracles with64

different fidelities and costs are available, with lower computational cost than its single-fidelity65

counterpart.66

2 Related Work67

Our work can be framed within the broad field of active learning (AL), a class of machine learning68

methods whose goal is to learn an efficient data sampling scheme to accelerate training [50]. For the69

bulk of the literature in AL, the goal is to train an accurate model h(x) of an unknown target function70

f(x), as in classical supervised learning. However, in certain scientific discovery problems, which is71

the motivation of our work, a desirable goal is often to discover multiple, diverse candidates x with72

high values of f(x). The reason is that the ultimate usefulness of a discovery is extremely expensive73

to quantify and we always rely on more or less accurate approximations. Since we generally have74

the option to consider more than one candidate solution, it is safer to generate a set of diverse and75

apparently good solutions, instead of focusing on the single global optimum of the wrong function.76

This distinctive goal is closely connected to related research areas such as Bayesian optimisation [19]77

and active search [20]. Bayesian optimisation (BO) is an approach grounded in Bayesian inference78

for the problem of optimising a black-box objective function f(x) that is expensive to evaluate. In79

contrast to the problem we address in this paper, standard BO typically considers continuous domains80

and works best in relatively low-dimensional spaces [18]. Nonetheless, in recent years, approaches81

for BO with structured data [13] and high-dimensional domains [21] have been proposed in the82

literature. The main difference between BO and the problem we tackle in this paper is that we are83

interested in finding multiple, diverse samples with high value of f and not only the optimum.84

This goal, as well as the discrete nature of the search space, is shared with active search, a variant of85

active learning in which the task is to efficiently find multiple samples of a valuable (binary) class86

from a discrete domain X [20]. This objective was already considered in the early 2000s by Warmuth87

et al. for drug discovery [59], and more formally analysed in later work [26, 25]. A recent branch of88

research in stochastic optimisation that considers diversity is so-called Quality-Diversity [9], which89

typically uses evolutionary algorithms that perform search in the latent space. All these and other90

problems such as multi-armed bandits [48] and the general framework of experimental design [8] all91
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share the objective of optimising or exploring an expensive black-box function. Formal connections92

between some of these areas have been established in the literature [54, 17, 23, 15].93

Multi-fidelity methods have been proposed in most of these related areas of research. An early94

survey on multi-fidelity methods for Bayesian optimisation was compiled by Peherstorfer et al. [42],95

and research on the subject has continued since [44, 53], with the proposal of specific acquisition96

functions [56] and the use of deep neural networks to improve the modelling [36]. Interestingly, the97

literature on multi-fidelity active learning [35] is scarcer than on Bayesian optimisation. Recently,98

works on multi-fidelity active search have also appeared in the literature [40]. Finally, multi-fidelity99

methods have recently started to be applied in scientific discovery problems [10, 14]. However, the100

literature is still scarce probably because most approaches do not tackle the specific needs in scientific101

discovery, such as the need for diverse samples. Here, we aim addressing this need with the use of102

GFlowNets [4, 24] for multi-fidelity active learning.103

3 Method104

3.1 Background105

GFlowNets Generative Flow Networks [GFlowNets; 4, 5] are amortised samplers designed for106

sampling from discrete high-dimensional distributions. Given a space of compositional objects X107

and a non-negative reward function R(x), GFlowNets are designed to learn a stochastic policy π that108

generates x ∈ X with a probability proportional to the reward, that is π(x) ∝ R(x). This distinctive109

property induces sampling diverse, high-reward objects, which is a desirable property for scientific110

discovery, among other applications [23].111

The objects x ∈ X are constructed sequentially by sampling transitions st→st+1 ∈ A between112

partially constructed objects (states) s ∈ S, which includes a unique empty state s0. The stochastic113

forward policy is typically parameterised by a neural network PF (st+1|st; θ), where θ denotes the114

learnable parameters, which models the distribution over transitions st→st+1 from the current state115

st to the next state st+1. The backward transitions are parameterised too and denoted PB(st|st+1; θ).116

The probability π(x) of generating an object x is given by PF and its sequential application:117

π(x) =
∑

τ :s|τ|−1→x∈τ

|τ |−1∏
t=0

PF (st+1|st; θ),

which sums over all trajectories τ with terminating state x, where τ = (s0 → s1 . . . → s|τ |) is a118

complete trajectory. To learn the parameters θ such that π(x) ∝ R(x) we use the trajectory balance119

learning objective [37]120

LTB(τ ; θ) =

(
log

Zθ

∏n
t=0 PF (st+1|st; θ)

R(x)
∏n

t=1 PB(st|st+1; θ)

)2

, (1)

where Zθ is an approximation of the partition function
∑

x∈X R(x) that is learned. The GFlowNet121

learning objective supports training from off-policy trajectories, so for training the trajectories are122

typically sampled from a mixture of the current policy with a uniform random policy. The reward is123

also tempered to make the policy focus on the modes.124

Active Learning In its simplest formulation, the active learning problem that we consider is as125

follows: we start with an initial data set D = {(xi, f(xi))} of samples x ∈ X and their evaluations126

by an expensive, black-box objective function (oracle) f : X → R, which we use to train a surrogate127

model h(x). A GFlowNet can then be trained to learn a generative policy πθ(x) using h(x) as reward128

function, that is R(x) = h(x). Optionally, we can instead train a probabilistic proxy p(f |D) and use129

as reward the output of an acquisition function α(x, p(f |D)) that considers the epistemic uncertainty130

of the surrogate model, as typically done in Bayesian optimisation. Finally, we use the policy π(x) to131

generate a batch of samples to be evaluated by the oracle f , we add them to our data set and repeat132

the process a number of active learning rounds.133

While much of the active learning literature [50] has focused on so-called pool-based active learning,134

where the learner selects samples from a pool of unlabelled data, we here consider the scenario of135

de novo query synthesis, where samples are selected from the entire object space X . This scenario136
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is particularly suited for scientific discovery [30, 62, 64, 33]. The ultimate goal pursued in active137

learning applications is also heterogeneous. Often, the goal is the same as in classical supervised138

machine learning: to train an accurate (proxy) model h(x) of the unknown target function f(x). For139

some problems in scientific discovery, we are usually not interested in the accuracy in the entire input140

space X , but rather in discovering new, diverse objects with high values of f . This is connected to141

other related problems such as Bayesian optimisation [19], active search [20] or experimental design142

[8], as reviewed in Section 2.143

3.2 Multi-Fidelity Active Learning144

We now consider the following active learning problem with multiple oracles of different fidelities.145

Our ultimate goal is to generate a batch of K samples x ∈ X according to the following desiderata:146

• The samples obtain a high value when evaluated by the objective function f : X → R+.147

• The samples in the batch should be distinct and diverse, that is cover distinct high-valued148

regions of f .149

Furthermore, we are constrained by a computational budget Λ that limits our capacity to evaluate f .150

While f is extremely expensive to evaluate, we have access to a discrete set of surrogate functions151

(oracles) {fm}1≤m≤M : X → R+, where m represents the fidelity index and each oracle has an152

associated cost λm. We assume fM = f because there may be even more accurate oracles for153

the true usefulness but we do not have access to them, which means that even when measured by154

f = fM , diversity remains an important objective. We also assume, without loss of generality, that155

the larger m, the higher the fidelity and that λ1 < λ2 < . . . < λM . This scenario resembles many156

practically relevant problems in scientific discovery, where the objective function fM is indicative but157

not a perfect proxy of the true usefulness of objects x—hence we want diversity—yet it is extremely158

expensive to evaluate—hence cheaper, approximate models are used in practice.159

In multi-fidelity active learning—as well as in multi-fidelity Bayesian optimisation—the iterative160

sampling scheme consists of not only selecting the next object x (or batch of objects) to evaluate, but161

also the level of fidelity m, such that the procedure is cost-effective.162

Our algorithm, MF-GFN, detailed in Algorithm 1, proceeds as follows: An active learning round j163

starts with a data set of annotated samples Dj = {(xi, fm(xi),mi)}1≤m≤M . The data set is used to164

fit a probabilistic multi-fidelity surrogate model h(x,m) of the posterior p(fm(x)|x,m,D). We use165

Gaussian Processes [47], as is common in Bayesian optimisation, to model the posterior, such that the166

model h predicts the conditional Gaussian distribution of fm(x) given (x,m) and the existing data167

set D. We implement a multi-fidelity GP kernel by combining a Matern kernel evaluated on x with a168

linear downsampling kernel over m [61]. In the higher dimensional problems, we use Deep Kernel169

Learning [60] to increase the expressivity of the surrogate models. The candidate x is modelled with170

the deep kernel while the fidelity m is modelled with the same linear downsamling kernel. The output171

of the proxy model is then used to compute the value of a multi-fidelity acquisition function α(x,m).172

In our experiments, we use the multi-fidelity version [56] of Max-Value Entropy Search (MES) [58],173

which is an information-theoretic acquisition function widely used in Bayesian optimization. MES174

aims to maximize the mutual information between the value of the queried x and the maximum value175

attained by the objective function, f⋆. The multi-fidelity variant is designed to select the candidate x176

and the fidelity m that maximize the mutual information between f⋆
M and the oracle at fidelity m,177

fm, weighted by the cost of the oracle:178

α(x,m) =
1

λm
I(f⋆

M ; fm|Dj). (2)

We provide further details about the acquisition function in Appendix A. A multi-fidelity acquisition179

function can be regarded as a cost-adjusted utility function. Therefore, in order to carry out a cost-180

aware search, we seek to sample diverse objects with high value of the acquisition function. In this181

paper, we propose to use a GFlowNet as a generative model trained for this purpose (see further182

details below in Section 3.3). An active learning round terminates by generating N objects from183

the sampler (here the GFlowNet policy π) and forming a batch with the best B objects, according184

to α. Note that N ≫ B, since sampling from a GFlowNet is relatively inexpensive. The selected185
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objects are annotated by the corresponding oracles and incorporated into the data set, such that186

Dj+1 = Dj ∪ {(x1, fm(x1),m1), . . . (xB , fm(xB),mB)}.187

Algorithm 1: MF-GFN: Multi-fidelity active learning with GFlowNets. See Section 4.1 for
quality (Top-K(D)) and diversity metrics.
Input: {(fm, λm)}: M oracles and their corresponding costs;
D0 = {(xi, fm(xi),mi)}: Initial dataset;
h(x,m): Multi-fidelity Gaussian Process proxy model;
α(x,m): Multi-fidelity acquisition function;
R(α(x), β): reward function to train the GFlowNet;
B: Batch size of oracles queries;
Λ: Maximum available budget;
K: Number of top-scoring candidates to be evaluated at termination;
Result: Top-K(D), Diversity
Initialization: Λj = 0, D = D0

while Λj < Λ do
• Fit h on dataset D;
• Train GFlowNet with reward R(α(x), β) to obtain policy πθ(x);
• Sample B tuples (xi,mi) ∼ πθ;
• Evaluate each tuple with the corresponding oracle to form batch
B = {(x1, fm(x1),m1), . . . , (xB , fm(xB),mB)};

• Update dataset D = D ∪ B;
end

3.3 Multi-Fidelity GFlowNets188

In order to use GFlowNets in the multi-fidelity active learning loop described above, we propose to189

make the GFlowNet sample the fidelity m for each object x ∈ X in addition to x itself. Formally,190

given a baseline GFlowNet with state and transition spaces S and A, we augment the state space with191

a new dimension for the fidelity M′ = {0, 1, 2, . . . ,M} (including m = 0, which corresponds to192

unset fidelity), such that the augmented, multi-fidelity space is SM′ = S ∪M′. The set of allowed193

transitions AM is augmented such that a fidelity m > 0 of a trajectory must be selected once, and194

only once, from any intermediate state.195

Intuitively, allowing the selection of the fidelity at any step in the trajectory should give flexibility for196

better generalisation. At the end, finished trajectories are the concatenation of an object x and the197

fidelity m, that is (x,m) ∈ XM = X ∪M. In summary, the proposed approach enables to jointly198

learn the policy that samples objects in a potentially very large, high-dimensional space, together199

with the level of fidelity, that maximise a given multi-fidelity acquisition function as reward.200

4 Empirical Evaluation201

In this section, we describe the evaluation metrics and experiments performed to assess the validity202

and performance of our proposed approach of multi-fidelity active learning with GFlowNets. Overall,203

the purpose of this empirical evaluation is to answer the following questions:204

• Question 1: Is our multi-fidelity active learning approach able to find high-scoring, diverse205

samples at lower cost than active learning with a single oracle?206

• Question 2: Does our proposed multi-fidelity GFlowNet, which learns to sample fidelities207

together with objects (x,m), provide any advantage over sampling only objects x?208

In Section 4.1 we describe the metrics proposed to evaluate the performance our proposed method,209

as well as the baselines, which we describe in Section 4.2. In Section 4.3, we present results on210

synthetic tasks typically used in the multi-fidelity BO and active learning literature. In Section 4.4,211

we present results on more practically relevant tasks for scientific discovery, such as the design of212

DNA sequences and anti-microbial peptides.213
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4.1 Metrics214

One core motivation in the conception of GFlowNets, as reported in the original paper [4], was the215

goal of sampling diverse objects with high-score, according to a reward function.216

• Mean score, as per the highest fidelity oracle fM , of the top-K samples.217

• Mean pairwise similarity within the top-K samples.218

Furthermore, since here we are interested in the cost effectiveness of the active learning process, in219

this section we will evaluate the above metrics as a function of the cost accumulated in querying the220

multi-fidelity oracles. It is important to note that the multi-fidelity approach is not aimed at achieving221

better mean top-K scores than a single-fidelity active learning counterpart, but rather the same mean222

top-K scores with a smaller budget.223

4.2 Baselines224

In order to evaluate our approach, and to shed light on the questions stated above, we consider the225

following baselines:226

• GFlowNet with highest fidelity (SF-GFN): GFlowNet based active learning approach from [22]227

with the highest fidelity oracle to establish a benchmark for performance without considering228

the cost-accuracy trade-offs.229

• GFlowNet with random fidelities (Random fid. GFlowNet): Variant of SF-GFN where the230

candidates are generated with the GFlowNet but the fidelities are picked randomly and a231

multi-fidelity acquisition function is used, to investigate the benefit of deciding the fidelity232

with GFlowNets.233

• Random candidates and fidelities (Random): Quasi-random approach where the candidates234

and fidelities are picked randomly and the top (x,m) pairs scored by the acquisition function235

are queried.236

• Multi-fidelity PPO (MF-PPO): Instantiation of multi-fidelity Bayesian optimization where the237

acquisition function is optimized using proximal policy optimization [PPO 49].238

4.3 Synthetic Tasks239

As an initial assessment of MF-GFNs, we consider two synthetic functions—Branin and Hartmann—240

widely used in the single- and multi-fidelity Bayesian optimisation literature [44, 53, 28, 36, 16].241

Branin We consider an active learning problem in a two-dimensional space where the target242

function fM is the Branin function, as modified in [52] and implemented in botorch [2]. We243

simulate three levels of fidelity, including the true function. The lower-fidelity oracles, the costs of244

the oracles (0.01, 0.1, 1.0) as well as the number of points queried in the initial training set were245

adopted from [36]. We provide further details about the task in Appendix B.2. In order to consider a246

discrete design space, we map the domain to a discrete 100× 100 grid. We model this grid with a247

GFlowNet as in [4, 37]: starting from the origin (0, 0), for any state s = (x1, x2), the action space248

consists of the choice between the exit action or the dimension to increment by 1, provided the next249

state is in the limits of the grid. Fig. 1a illustrates the results for this task. We observe that MF-GFN250

is able to reach the minimum of the Branin function with a smaller budget than the single-fidelity251

counterpart and the baselines.252

Hartmann Next, we consider the 6-dimensional Hartmann function as objective fM on a hyper-grid253

domain. As with Branin, we consider three oracles, adopting the lower-fidelity oracles and the set254

of costs (0.125, 0.25, 1.0) from [53]. We discretize the domain into a six-dimensional hyper-grid of255

length 10, yielding 106 possible candidate points. The results for the task are illustrated in Fig. 1b,256

which indicate that multi-fidelity active learning with GFlowNets (MF-GFN) offers an advantage257

over single-fidelity active learning (SF-GFN) as well as some of the other baselines in this higher-258

dimensional synthetic problem as well. Note that while MF-PPO performs better in this task, as259

shown in the next experiments, MF-PPO tends to collapse to single modes of the function in more260

complex high-dimensional scenarios.261
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Figure 1: Results on the synthetic tasks—Branin and Hartmann functions. The curves indicate
the mean score fM within the top-50 and top-10 samples (for Branin and Hartmann, respectively)
computed at the end of each active learning round and plotted as a function of the budget used.
The random baseline is omitted from this plot to facilitate the visualisation since the results were
significantly worse in these tasks. We observe that MF-GFN clearly outperforms the single-fidelity
counterpart (SF-GFN) and slightly improves upon the GFlowNet baseline that samples random
fidelities. On Hartmann, MF-PPO initially outperforms the other methods.

4.4 Benchmark Tasks262

While the synthetic tasks are insightful and convenient for analysis, to obtain a more solid assessment263

of the performance of MF-GFN, we evaluate it, together with the other baselines, on more complex,264

structured design spaces of practical relevance. We present results on a variety of tasks including DNA265

aptamers (Section 4.4.1), anti-microbial peptides (Section 4.4.2) and small molecules (Section 4.4.3).266
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Figure 2: Results on the DNA aptamers and AMP tasks. The curves indicate the mean score fM
within the top-100 and top-50 samples (for DNA and AMP, respectively) computed at the end of
each active learning round and plotted as a function of the budget used. The colour of the markers
indicates the diversity within the batch (darker colour of the circular dots indicating more diversity).
In both the DNA and AMP tasks, MF-GFN outperforms all baselines in terms of cost efficiency,
while obtaining great diversity in the final batch of top-K candidates.

4.4.1 DNA Aptamers267

DNA aptamers are single-stranded nucleotide sequences with multiple applications in polymer design268

due to their specificity and affinity as sensors in crowded biochemical environments [66, 11, 63, 29].269

DNA sequences are represented as strings of nucleobases A, C, T or G. In our experiments, we270

consider fixed-length sequences of 30 bases and design a GFlowNet environment where the action271

space A consists of the choice of base to append to the sequence, starting from an empty sequence.272

This yields a design space of size |X | = 430 (ignoring the selection of fidelity in MF-GFN). As273

the optimisation objective fM (highest fidelity) we used the free energy of the secondary structure274

as calculated by NUPACK [65]. As a lower fidelity oracle, we trained a transformer model on 1275
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million randomly sampled sequences annotated with fM , and assigned it a cost 100× smaller than276

the highest-fidelity oracle. Further details about the task are discussed in Appendix B.4.277

The main results on the DNA aptamers task are presented in Fig. 2a. We observe that on this task278

MF-GFN outperforms all other baselines in terms cost efficiency. For instance, MF-GFN achieves279

the best mean top-K energy achieved by its single-fidelity counterpart with just about 20% of the280

budget. It is also more efficient than GFlowNet with random fidelities and MF-PPO. Crucially, we281

also see that MF-GFN maintains a high level of diversity, even after converging to topK reward. On282

the contrary, MF-PPO is not able to discover diverse samples, as is expected based on prior work [22].283

4.4.2 Antimicrobial Peptides284

Antimicrobial peptides are short protein sequences which possess antimicrobial properties. As285

proteins, these are sequences of amino-acids—a vocabulary of 20 along with a special stop token. We286

consider variable length proteins sequences with up to 50 residues. We use data from DBAASP [45]287

containing antimicrobial activity labels, which is split into two sets – one used for training the oracle288

and one as the initial dataset in the active learning loop, following [22]. To establish the multi-fidelity289

setting, we train different models with different capacities and with different subsets of the data. The290

details about these oracles along with additional details about the task are discussed in Appendix B.5.291

The results in Fig. 2b inidicate that even in this task MF-GFN outperforms all other baselines in292

terms of cost-efficiency. It reaches the same maximum mean top-K score as the random baselines293

with 10× less budget and almost 100× less budget than SF-GFN. In this task, MF-PPO did not294

achieve comparable results. Crucially, the diversity of the final batch found by MF-GFN stayed high,295

satisfying this important criterion in the motivation of this method.296

4.4.3 Small Molecules297

Molecules are clouds of interacting electrons (and nuclei) described by a set of quantum mechanical298

descriptions, or properties. These properties dictate their chemical behaviours and applications.299

Numerous approximations of these quantum mechanical properties have been developed with different300

methods at different fidelities, with the famous example of Jacob’s ladder in density functional301

theory [43]. To demonstrate the capability of MF-GFlowNet to function in the setting of quantum302

chemistry, we consMF-GFNoof-of-concept tasks in molecular electronic potentials: maximization of303

adiabatic electron affinity (EA) and (negative) adiabatic ionisation potential (IP). These electronic304

potentials dictate the molecular redox chemistry, and are key quantities in organic semiconductors,305

photoredox catalysis, or organometallic synthesis. We employed three oracles that correlate with306

experimental results as approximations of the scoring function, by uses of varying levels of geometry307

optimisation to obtain approximations to the adiabatic geometries, followed by the calculation of IP308

or EA with semi-empirical quantum chemistry XTB (see Appendix) [39]. These three oracles had309

costs of 1, 3 and 7 (respectively), proportional to their computational running demands. We designed310

the GFlowNet state space by using sequences of SELFIES tokens [32] (maximum of 64) to represent311

molecules, starting from an empty sequence; every action consists of appending a new token to the312

sequence.313

The realistic configuration and practical relevance of these tasks allow us to draw stronger conclu-314

sions about the usefulness of multi-fidelity active learning with GFlowNets in scientific discovery315

applications. As in the other tasks evaluated, we here also found MF-GFN to achieve better cost316

efficiency at finding high-score top-K molecules (Fig. 3), especially for ionization potentials (Fig. 3a).317

By clustering the generated molecules, we find that MF-GFN captures as many modes as random318

generation, far exceeding that of MF-PPO. Indeed, while MF-PPO seems to outperform MF-GFN in319

the task of electron affinity (Fig. 3b), all generated molecules were from a few clusters, which is of320

much less utility for chemists.321

5 Conclusions, Limitations and Future Work322

In this paper, we present MF-GFN, the first application of GFlowNets for multi-fidelity active learning.323

Inspired by the encouraging results of GFlowNets in (single-fidelity) active learning for biological324

sequence design [22] as a method to discover diverse, high-scoring candidates, we propose MF-GFN325
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Figure 3: Comparative results on the molecular discovery tasks: (a) ionisation potential (IP), (b)
electron affinity (EA). Results illustrate the generally faster convergence of MF-GFN to discover a
diverse set of molecules with desirable values of the target property (colour scheme of the circular
dots: darker/blue is better than lighter/yellow).

to sample the candidates as well as the fidelity at which the candidate is to be evaluated, when326

multiple oracles are available with different fidelities and costs.327

We evaluate the proposed MF-GFN approach in both synthetic tasks commonly used in the multi-328

fidelity Bayesian optimization literature and benchmark tasks of practical relevance, such as DNA329

aptamer generation, antimicrobial peptide design and molecular modelling. Through comparisons330

with previously proposed methods as well as with variants of our method designed to understand the331

contributions of different components, we conclude that multi-fidelity active learning with GFlowNets332

not only outperforms its single-fidelity active learning counterpart in terms of cost effectiveness and333

diversity of sampled candidates, but it also offers an advantage over other multi-fidelity methods due334

to its ability to learn a stochastic policy to jointly sample objects and the fidelity of the oracle to be335

used to evaluate them.336

Broader Impact Our work is motivated by pressing challenges to sustainability and public health,337

and we envision applications of our approach to drug discovery and materials discovery. However,338

as with all work on these topics, there is a potential risk of dual use of the technology by nefarious339

actors [57].340

Limitations and Future Work Aside from the molecular modelling tasks, our empirical evaluations341

in this paper involved simulated oracles with relatively arbitrary costs. Therefore, future work should342

evaluate MF-GFN with practical oracles and sets of costs that reflect their computational or financial343

demands. Furthermore, we believe a promising avenue that we have not explored in this paper is344

the application of MF-GFN in more complex, structured design spaces, such as hybrid (discrete and345

continuous) domains [34], as well as multi-fidelity, multi-objective problems [24].346
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