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ABSTRACT

Offline safe RL is of great practical relevance for deploying agents in real-world
applications. However, acquiring constraint-satisfying policies from the fixed
dataset is non-trivial for conventional approaches. Even worse, the learned con-
straints are stationary and may become invalid when the online safety requirement
changes. In this paper, we present a novel offline safe RL approach referred to as
SaFormer, which tackles the above issues via conditional sequence modeling. In
contrast to existing sequence models, we propose cost-related tokens to restrict the
action space and a posterior safety verification to enforce the constraint explicitly.
Specifically, SaFormer performs a two-stage auto-regression conditioned by the
maximum remaining cost to generate feasible candidates. It then filters out unsafe
attempts and executes the optimal action with the highest expected return. Exten-
sive experiments demonstrate the efficacy of SaFormer featuring (1) competitive
returns with tightened constraint satisfaction; (2) adaptability to the in-range cost
values of the offline data without retraining; (3) generalizability for constraints
beyond the current dataset.

1 INTRODUCTION

Reinforcement learning (RL) agents have achieved significant success in simulated environ-
ments (Mnih et al., 2015; Silver et al., 2017; Vinyals et al., 2019) but may pose potential risks
when deployed in the real world. Safe RL (a.k.a constrained RL), has gained traction in recent years
as most safety-critical applications require agents to follow certain constraints. However, existing
solutions often satisfy constraints through trial and error (Achiam et al., 2017; Yang et al., 2020),
leading to a risk-filled training process. In such scenarios, it is more practical to learn constraint-
satisfying policies from offline data (Levine et al., 2020), but this poses several challenges, including
the identification of mixed, unsafe, or conflicting demonstrations, insufficient long-term cost return
estimation, and unstable optimization.

In this paper, we tackle the above issues by leveraging sequence modeling, which is of independent
interest in recent offline RL literature (Chen et al., 2021; Janner et al., 2021). This paradigm shows
the promise for a reliable cost estimation for safety-critical tasks. However, applying the current
art to offline safe RL is still intractable. Take Decision Transformer (DT) (Chen et al., 2021) as an
example. It makes sense to increase the reward-to-go (RTG) manually for higher rewards, but that
might be detrimental when considering that the agent demands more information to navigate the
trade-off between performance and safety in the constrained action space.

We propose a novel architecture called SaFormer, which is the first sequence modeling approach to
offline safe RL. We introduce two cost-related tokens, the cost limit token and the cost-to-go (CTG)

∗denote the equal contribution in this paper
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token, which are used to determine the target reward-to-go (RTG) and generate feasible actions.
Besides, SaFormer does not rely on unidirectional sequence generation to achieve zero constraint
violation, but instead samples a batch of candidates, filters out unsafe attempts, and executes the
feasible action with the highest expected return. We follow a practical pattern in our experiments,
using cost-agnostic offline data acquisition based on arbitrary behavior policies and relabeling the
dataset with specific cost criteria to facilitate the reuse of offline data.

We conduct experiments on D4RL benchmarks (Fu et al., 2020) subjecting to constraints on the
cumulative torque. Empirical results confirm the strengths of our approach:
1. SaFormer outperforms state-of-the-art baselines for competitive reward improvements and strict

constraint satisfactions in both discounted and undiscounted settings.
2. SaFormer treats the constraint as contextual tokens and is adaptive to different cost limits in the

range of existing offline data without retraining.
3. SaFormer supports online fine-tuning to satisfy the unexplored constraints beyond the dataset.

2 RELATED WORK

Offline Safe Reinforcement Learning Offline safe RL is an intersection of safe RL and offline
RL . Conventional methods Tessler et al. (2018); Wang et al. (2020) are less effective when dealing
with constrained optimization and conservative learning simultaneously. Le et al. (2019) are the
first to study the problem of batch policy learning under constraints. They simply utilize the off-
policy evaluation for safety constraints, which limits their approach to the discrete action space.
Based on the above work, Polosky et al. (2022) propose a algorithm that corrects the rewards-
optimal policy back to the cost-feasible set through the Fenchel duality. Their analysis explicitly
accounts for the distributional shift and offers non-asymptotic confidence bounds on the cost return.
COptiDICE (Lee et al., 2021) instead directly estimates the stationary distribution corrections of the
optimal policy and therefore yields a single solvable optimization objective. Orthogonal to existing
approaches, Xu et al. (2022a) trains an independent safety critic to penalizes unsafe actions and
disables policy updates on them. Their proposed CPQ algorithm achieves impressive performance
on a set of constrained locomotion tasks in continuous spaces.

RL via Sequence Modeling Sequence modeling has been widely adopted in natural language pro-
cessing and computer vision. Recently, casting offline RL as a sequence generation problem shows
the promise as well (Hu et al., 2022). Trajectory Transformer (TT) (Janner et al., 2021) discretizes
the state-action-reward sequence and maximizes the sampling probability via beam search. More-
over, the transformer-based architecture features more reliable long-horizon prediction ability than
single-step models, which also enables a fake trajectory bootstrapping for offline data augmenta-
tion (Wang et al., 2022). Decision Transformer (DT) (Chen et al., 2021) utilizes the future return to
condition the sequence generation. Their model-free method generally outperforms TT in terms of
cumulative rewards. Xu et al. (2022b) pre-train DT on a large-scale dataset and realizes few-shot
generalization by providing demonstrations. Zheng et al. (2022) propose a stochastic DT to over-
come the gap between offline training and online fine-tuning. To our best knowledge, there is no
existing work that relates sequence modeling to offline safe RL.

3 PRELIMINARIES

Problem Formulation we are interested in acquiring the constraint-satisfying policy from a sta-
tionary offline dataset. The problem formulation follows the constrained Markov Decision Process
denoted by a tuple (S,A,P, ρ0,R, C). Here, S and A represent the state space and the action space,
respectively. P(s′|s, a) : S ×A×S 7→ [0, 1] accounts for the state transition probability . ρ0 : S 7→
[0, 1] is the initial state distribution. R : S × A 7→ R and C : S × A 7→ R+ denote the reward and
cost functions. A policy π : S 7→ P (A) maps the current state to a distribution over the action space.
The discounted cumulative return of policy π can be calculated by JR(π) = Eτ

[∑∞
t=0 γ

tr(st, at)
]
,

where τ is determined by s0 ∼ ρ0(·), at ∼ π(·|st), st+1 ∼ P(·|st, at). we define the discounted
cost return as JC(π) = Eτ

[∑∞
t=0 γ

t
cr(st, at)

]
. Formally, the constrained RL problem is given by

max
π

JR(π) s.t. JC(π) ≤ d. (1)
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The agent is excepted to limit the cost return down to the threshold d.In our offline setting, the agent
is not accessible to the environment. We can only tackle the above constrained problem using a fixed
dataset D = {τi}Ni=1, collected from a range of behaviour policies πβ .

We assume that our offline safe RL tasks feature the following properties. First, the reward and
cost returns are at least weakly correlated, which is essential to restrict the expected return via cost
tokens. This assumption is mild since risk usually comes with profit. Second, the offline data
contains trajectories with heterogeneous cost returns. This assumption is a necessary condition for
our safety identification and action proposal. Instead, our method may not be distinguished from
imitation learning (IL) when learning from completely homogeneous demonstrations, for example,
all the trajectories are cost-signal-free and the expected constraint threshold is equal to 0 as well.

Revisit Decision Transformer in Offline Safe RL Decision Transformer (DT) (Chen et al., 2021)
brings a novel sequence modeling paradigm to offline RL. It employs 3 types of tokens, namely
R̂t, st, at, and represent a trajectory τ in order as ⟨R̂0, s0, a0, R̂1, s1, a1, ..., R̂T , sT , aT ⟩. At each
timestep t, DT is fed with 3K tokens from the last K timesteps and then predicts the following
deterministic action at = πDT({R̂i, si, ai}t−1

t−K ∪ {R̂t−k, st−k}) via a casually masked Trans-
former. Here, {R̂i, si, ai}t−1

t−K is as a shorthand for the subsequence ⟨R̂max{0.t−K}, smax{0.t−K},

amax{0.t−K}, ..., R̂t−1, st−1, at−1⟩. The policy is learned by minimizing the ℓ2 objective :

ED
∑K

k=0

(
at−k − πDT({R̂i, si, ai}t−1−k

t−K ∪ {R̂t−k, st−k})
)2
. (2)

DT is specified with the desired episodic return R̂0 at the initial state s0 and then a0.Once a0 is
performed, the agent observes the reward r0, which gives R̂1 = R̂0 − r0.

Chen et al. (2021) show that the eventual return strongly correlates with the initial RTG which can
even be extrapolated to values beyond the maximum in the dataset. Nevertheless, tweaking RTG
manually in offline safe RL is not straightforward since the optimal RTG is heavily dependent on the
constraints. Raising RTG aggressively may incur infeasible actions that conflict with certain safety
constraints. In summary, DT has to be conditioned via cost-reliant RTGs and other informative
tokens to navigate the trade-off between performance and safety.

4 METHODOLOGY

SaFormer Actor
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Step 1: Sample N RTG candidates

Step 2: Sample N action candidates

Step 3: Posterior Safety Verification

Figure 1: The schema of SaFormer.

In this section, we present SaFormer,
which addresses the above issues with the
conditional sequence generation and the
posterior safety verification, as illustrated
in fig. 1,The actor (top & middle) first
generates the RTG distribution via cost-
related tokens and then generates action
candidates after sampling potential RTGs.
The critic (bottom) predicts the long-term
cost return of each candidate to filters out
unsafe attempts and eventually selects the
feasible action with the highest future re-
ward designation.

Feasible Action Proposal Considering
the cost constraints in offline safe RL, we
propose two cost-related tokens, namely
the cost-to-go (CTG) Ĉt =

∑T
t′=t ct′ and

the cost limit D = d.

The CTG accounts for residual costs that the agent can still afford from now on, which is crucial
to condition the action. Even though the update of CTG is computable during the execution since
the initial value is equal to the constraint threshold at the beginning of an episode, we still expect
that predicting CTGs as an auxiliary task in the training process is beneficial for learning better
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representations. The motivation comes from the fact that it is equivalent to learning the cost function
considering that ct = Ĉt+1 − Ĉt.

The cost limit D is the constraint threshold and held constant throughout the sequence. We keep the
token D instead of feeding CTG only since D − Ĉt indicates the cumulative cost incurred before.
It contains past behavioral information that better conditions future sequence generation for a more
general partially observable Markov decision process.

Under the assumption that the cost limit token D, the CTG token Ĉt, and the past subsequence
{D, Ĉi, R̂i, si, ai}t−1

t−K are sufficient to determine the current RTG target, SaFormer generates RTG
distribution at timestep t as follows:

R̂t ∼ N (µθ,Σθ|{D, Ĉi, R̂i, si, ai}t−1
t−K ∪ {D, Ĉt}). (3)

After sampling the target from the RTG distribution, we then generate the action distribution next
based on the past sequence plus the future reward expectation R̂t and the visiting state st as follows:

ât ∼ N (µ′
θ,Σ

′
θ|{D, Ĉi, R̂i, si, ai}t−1

t−K ∪ {D, Ĉt, R̂t, st}). (4)

The above probabilistic mapping is more reasonable than a deterministic model since the agent
can perform different actions to achieve the same cost return, which yields a wide range of feasi-
ble RTGs under a definite CTG. Apart from that, it enables SaFormer to optimize CTGs, RTGs,
and actions within a single auto-regressive model. Tweaking multi-objective ℓ2 loss function in
eq. (2) is cumbersome considering that the scales of the above tokens vary significantly among
different scenarios. Instead, we keep them aligned via a multivariate independent Gaussian distribu-
tion P (Ĉt, R̂t, at|{D, Ĉi, R̂i, si, ai}t−1

t−K) and minimize the negative log-likelihood (NLL) objective
J(θ) as follows:

J(θ)=− 1

K+1
ED

K∑
k=0

[
log πθ

(
Ĉt−k|{D, Ĉi, R̂i, si, ai}t−1−k

t−K ∪D
)

+ log πθ

(
R̂t−k|{D, Ĉi, R̂i, si, ai}t−1−k

t−K ∪ {D, Ĉt−k}
)

+ log πθ

(
at−k|{D, Ĉi, R̂i, si, ai}t−1−k

t−K ∪ {D, Ĉt−k, R̂t−k, st}
)]
.

(5)

Another attractive point of this design is that the stochastic action distribution naturally fits in with
online exploration techniques (Zheng et al., 2022) and has the potential to transfer to unexplored
constraints beyond the offline dataset, which we will discuss in section 4.

Posterior Safety Verification The cost-conditioned sequence generation is effective in producing
near-optimal solutions. Nevertheless, we argue that it is impractical to solely rely on naive forward-
computing to satisfy the hard constraint. Instead, the unidirectional auto-regression in our approach
only nominates the potential candidates, and an additional transformer-based critic ζϕ is proposed to
enforce safety explicitly. Although the optimization of ζϕ is irrelevant with Bellman backups in the
conventional actor-critic architecture Fujimoto et al. (2019); Wang et al. (2020), we inherit the name
“critic” since it evaluates the cost that the agent may incur in the future. The critic ζϕ is updated via
causal sequence modeling, and the self-supervised objective is equal to the CTG in the dataset:

J̃(ϕ) =
1

K + 1
ED

K∑
k=0

(
Ĉt−k − ζϕ({si, ai}t−k

t−K)
)2
. (6)

In our implementation, we introduce the regularization terms into the objective function as:

J(ϕ) = J̃(ϕ) + λ ·
K−1∑
k=0

[ζϕ({si, ai}t−k
t−K)− ζϕ({si, ai}t−k−1

t−K )]+. (7)

The penalized objective leads to more reasonable representations since the cost signal c is always
non-negative, and the sequence of CTGs is monotonically decreasing.

Consequently, the critic ζϕ serves as the CTG estimator and conducts a posterior safety verification
after the actor πθ has proposed feasible action candidates. Details of online execution and offline
training for SaFormer are summarized in appendix B Algorithms 1 and 2, respectively.
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Online Fine-tuning for OOD Constraints SaFormer treats different cost limits as contextual to-
kens; thus, it is applicable to the in-range constraint values of the existing dataset without retraining.
It also shows the promise for constraint satisfaction beyond the offline data distribution consider-
ing the impressive generalization ability of Transformer architecture (Vaswani et al., 2017). fig. 4
shows that the final cost return strongly correlates with the specified cost limit and monotonically
decreases when the threshold is tightened. Nevertheless, pure offline training might be insufficient
for out-of-distribution (OOD) constraints when the collected data is limited.

We further propose an online fine-tuning algorithm inspired by Zheng et al. (2022). Different
from their purpose for boosting reward, we aim to fine-tune SaFormer for the tightened OOD con-
straints. Specifically, we reformulate the naive NLL objective in eq. (5) under the MaxEnt RL
framework (Haarnoja et al., 2018) to benefit the exploration, which boils down to the following
constrained optimization:

min
θ

J(θ) s.t. H(θ) ≥ β. (8)

H(θ) denotes the Shannon entropy of the action distribution , which is defined as:

H(θ) = 1
K+1ED

∑K
k=0 H

[
πθ

(
at−k|{D, Ĉi, R̂i, si, ai}t−k

t−K

)]
. (9)

Notably, we employ an attenuation factor α to decrease the cost limit every time SaFormer interacts
with the environment. It enables the acquisition of heterogeneous samples to speed up the training,
especially when the expected constraint is difficult to satisfy with the initial pre-trained SaFormer.
Nevertheless, we use the actual cost return as the value of token D when we relabel the newly
collected trajectory. Furthermore, we simply aggregate the dataset with new samples instead of
discarding the earliest trajectory Zheng et al. (2022) in order to maintain the previously learned
constraints. Details of online fine-tuning for SaFormer are summarized in appendix B Algorithm 3.

5 EXPERIMENTS

5.1 EXPERIMENT SETUP

Dataset We leverage the D4RL dataset Fu et al. (2020) over three Mujoco tasks, namely Hopper,
Walker2d, and HalfCheetah. Note that the behaviour policies are arbitrary and cost-agnostic
when collecting the samples; the existing offline data is relabeled hind-sightly according to certain
cost criteria. This paradigm is of great practical relevance in data reuse and can be more flexible
for varying online safety requirements compared with the prior work Xu et al. (2022a); Polosky
et al. (2022). In previous study, the datasets are constructed by two types of behaviour policies: the
unsafe one is trained with general RL methods; the safe one is trained via constrained RL adhering
to a pre-defined constraint. Such the setting has several limitations: First, the cost distribution will
center on two widely separated peaks, which is relatively easy to identify and thus can be simply
solved by behavior cloning. Second, the agent can only learn a stationary constraint determined by
the safe behavior policy. Most significantly, there would be a chicken-and-egg problem in practice
for obtaining the constraint-satisfying policy in advance to construct the offline dataset.

Task Our safety consideration is to prolong the lifespan of motors. Therefore, we specify the cost
as ct =

∑M
i=1 |ait| standing for the total torque applied to the M joints, and then we limit the cumu-

lative energy consumption by enforcing the episodic constraint Cπ =
∑T

t=0 γ
tct ≤ d. We conduct

experiments with γc = 0.99 and γc = 1, respectively. The discounted setting is widely adopted
in conventional TD-learning algorithms and also fits in with SaFomer if the cost is relabeled as
ct = γt

cct; the undiscounted setting is more challenging but practical since the torque applied in the
first and last steps are equally weighed for the lifespan of motors. As for the assignment of d, we sort
the trajectory-wise cost return Cπβ

on each dataset and uniformly specify the 10%, 20%, 30%, 50%
percentiles as different thresholds. Readers can refer to appendix A for the distributions of Cπβ

and
calculations of d regarding all the nine datasets.

Baselines We compare our method with the three kinds of representative baselines:

• DT (Chen et al., 2021): Decision Transformer with manually assigned RTGs is regarded as the
unconstrained counterpart. We set a constant initial RTG = 3600, 5000, 6000 for each dataset of
Hopper, Walker2d, and HalfCheetah, respectively.
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• BCQ-L: BCQ-L extends BCQ (Fujimoto et al., 2019) with Lagrangian relaxation to enforce con-
straints. It is a naive combination of offline RL and safe RL.

• CPQ (Xu et al., 2022a): CPQ is the state-of-the-art algorithm in offline safe RL. It addresses a
stationary constraint via conservative Q-Learning, instead of conditional sequence generation.

Implementation Details Due to the limited space, we place hyper-parameter lists in appendix B
table 6. The source code is available in the supplementary material.
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Figure 2: Online evaluation curves on HalfCheetah datasets under the discounted setting (γc =
0.99). The x-axis denotes the number of offline training epochs (5× 103 iterations per epoch). The
y-axis denotes the reward or cost return. The dashed line denotes the cost limit.
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Figure 3: Online evaluation curves on HalfCheetah datasets under the undiscounted setting (γc = 1).
The x-axis denotes the number of offline training epochs (5× 103 iterations per epoch). The y-axis
denotes the reward or cost return. The dashed line denotes the cost limit.

5.2 BASELINE COMPARISONS

In this experiment, the broad applicability of our method is highlighted. Empirically, SaFomer is
competitive with state-of-the-art baselines in the discounted setting, and still performs well in the
undiscounted setting where all the baselines fail to satisfy the constraints, as shown in table 1.

DATASET
γc = 0.99 γc = 1

SAFORMER BCQ-L CPQ DT SAFORMER BCQ-L CPQ DT

HALFCHEETAH
MEDIUM

REWARD 4519.21± 52.75 4734.96± 98.13 4727.55± 36.41 4986.64± 5.56 4661.20± 52.46 4729.00± 59.52 5411.98± 55.20 4986.64± 5.56
COST 398.86± 0.62 421.68± 3.36 400.83± 0.79 441.89± 0.21 4487.2± 6.05 4529.94± 34.25 4548.34± 11.07 4531.89± 1.45
LIMIT 400 400 400 – 4490 4490 4490 –

HALFCHEETAH
MEDIUM REPLAY

REWARD 3321.55± 101.17 3603.96± 144.22 3731.19± 163.03 4270.07± 16.11 3019.17± 234.09 3191.36± 101.62 4317.85± 192.30 4270.07± 16.11
COST 397.41± 0.43 417.86± 1.98 409.59± 5.93 436.16± 1.87 4289.54± 6.31 4443.87± 49.28 4408.20± 51.61 4448.84± 6.8
LIMIT 400 400 400 – 4300 4300 4300 –

HALFCHEETAH
MEDIUM EXPERT

REWARD 9124.51± 78.08 4642.31± 234.34 9870.24± 169.63 5053.89± 30.17 11000.37± 141.93 4902.81± 131.39 9221.09± 229.64 5053.89± 30.17
COST 395.17± 0.79 425.13± 9.84 393.91± 1.57 429.75± 0.37 4296.87± 9.92 4468.96± 50.47 4369.97± 18.63 4478.89± 3.52
LIMIT 400 400 400 – 4300 4300 4300 –

Table 1: Baseline comparison results on HalfCheetah datasets. The costs marked in xxx satisfy
the constraint; the costs marked in xxx violate the constraint and the corresponding policies are
deemed infeasible. We use the same notation in the rest part of the paper.

We first evaluate their performances under the discounted setting with threshold d = 400 across
the different Halfcheetah datasets.The results show that SaFormer adheres to the cost limit more
strictly than others and achieves competitive reward returns simultaneously. On the contrary, BCQ-
L suffers from oscillation in the learning process due to the changing Lagrangian multipliers and
hardly satisfies the constraints. Despite one case of constraint violation, CPQ outperforms SaFormer
in terms of cumulative rewards due to the explicit policy optimization based on Q functions.

We then perform a comparative evaluation under the undiscounted setting and apply a uniform
threshold d = 4300 across different tasks. Note that, we change the cost limit to 4490 in the
HalfCheeta medium dataset since the original value is completely out of the offline data distribu-
tion, and we will present the experiments in this circumstance later. The results show that only the
proposed SaFormer still adheres to the constraints. By contrast, BCQ-L and CPQ are extremely
unstable and yield infeasible policies when γc = 1, which is the inherent issue of Q-Learning.

It’s worth noting that DT converges to a sub-optimal solution on the HalfCheetah medium expert
dataset, while SaFormer can avoid the tramp and achieve significantly better performance with a
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lower cost return. To some extent, it reveals that SaFormer is not a simple behaviour cloning condi-
tioned by cost but searches for optimal actions in the constrained space.

5.3 OFFLINE CONSTRAINT ADAPTATION

DATASET 10%PERCENTILE 20%PERCENTILE 30%PERCENTILE 50%PERCENTILE DT(REFERENCE)

HALFCHEETAH
MEDIUM

REWARD 4661.2± 52.46 4713.52± 26.83 4718.44± 22.09 4724.89± 27.18 4986.64± 5.56

COST 4487.2± 6.05 4498.22± 2.57 4500.52± 1.65 4508.83± 2.79 4531.89± 1.45

LIMIT 4490 4503 4511 4526 –

HALFCHEETAH
MEDIUM REPLAY

REWARD 2202.69± 148.39 2208.41± 90.14 3363.11± 165.89 3712.08± 104.74 4270.07± 16.11

COST 4203.0± 17.46 4234.15± 13.36 4381.42± 16.94 4411.84± 9.29 4448.84± 6.8

LIMIT 3928 4257 4422 4493 –

HALFCHEETAH
MEDIUM EXPERT

REWARD 9016.82± 124.45 9121.95± 397.5 9161.5± 385.65 9296.29± 249.52 5053.89± 30.17

COST 4181.25± 16.63 4203.95± 2.36 4211.91± 9.08 4229.4± 17.35 4478.89± 3.52

LIMIT 4201 4215 4224 4266 –

Table 2: Experiments on constraint adaptation. We train SaFormer on certain dataset and exploit
different cost limit token in the execution. A full version of the results on all datasets can be found
in appendix C table 7.
In this experiment, we demonstrate that SaFormer is robust and flexible against varying in-range
constraint thresholds of the offline data without retraining, which is of great attraction to real-world
applications.

We train SaFormer on the fixed dataset and use the 10%, 20%, 30%, 50% percentiles of the cost re-
turn of the offline trajectories as contextual tokens to evaluate its applicability toward different safety
requirements. table 2 reports its constraint adaptation performance when pre-trained on HacfChee-
tah datasets. SaFormer satisfies 11 of 12 cost limits in the experiment, which holds a 91.6% con-
straint satisfaction rate. In general, SaFormer can identify different cost limits and is able to yield
feasible solutions accordingly.

The only instance of failure in all 12 cases is when using the 10% percentile of HalfChee-
tah medium replay dataset as the threshold (d = 3928). Similar situations also occur in the other
two environments. A possible reason is that the samples in the replay dataset (202 rollouts) are very
limited compared with the medium and expert datasets (> 1000 rollouts). Thus, the constrained
action space might be under-explored for our Transformer-based architecture.

5.4 ONLINE CONSTRAINT FINE-TUNING
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Figure 4: Cost returns of SaFormer after offline pre-
training (red) and online fine-tuning (green) with re-
spect to a range of expected cost limits (blue) of the
HalfCheetah medium replay dataset.

In this experiment, we apply algorithm 3
to deal with the under-explored con-
straints in the aforementioned dataset and
show the efficacy of the online fine-tuning
technique against those out-of-distribution
(OOD) constraints.

At first, we discard samples whose cost re-
turns are less than the previous unmet 10%
percentile (d = 3928) and regard such
thresholds as OOD constraints. Then, we
compare the generalizablity of SaFormer
via offline pre-training and online fine-
tuning. table 3 shows the mean cost return
of the above two types of SaFormer with respect to both in-sample and out-of-sample constraints.
We decrease the out-of-sample constraint threshold at equal intervals and witness a drop in the final
cost return achieved by offline SaFormer. Nevertheless, the OOD constraints are hardly satisfied via
pure offline training. By contrast, the online SaFormer shrinks the expected cost limits to generate
new conservative samples and reduces the overall cost below the corresponding thresholds after fine-
tuning. The online sample consumption is acceptable and we insert 200 new trajectories to satisfy
all the constraints listed in table 3.
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COST LIMIT D
OUT OF SAMPLE IN SAMPLE

3700 3750 3800 3850 3900 3928 4257 4422 4493

AVG COST (OFFLINE) 4045.92 4088.0 4139.33 4163.35 4164.42 4203.0 4234.15 4381.42 4411.84

AVG COST (FINETUNED) 3655.93 3691.42 3722.03 3784.85 3837.36 3852.83 4202.85 4330.46 4360.21

Table 3: Experiments on constraint generalizability. We report the mean cost return of SaFormer af-
ter offline pre-trained on the HalfCheetah medium replay dataset and online fine-tuned with respect
to a range of expected cost limits.

DATASET
20%PERCENTILE 30%PERCENTILE 50%PERCENTILE

ζϕ (!) ζϕ (%) ζϕ (!) ζϕ (%) ζϕ (!) ζϕ (%)

HALFCHEETAH
MEDIUM EXPERT

REWARD 9121.95± 397.5 11441.5± 12.35 9161.5± 385.65 11445.21± 27.3 9296.29± 249.52 11460.68± 21.44

COST 4203.95± 2.36 4304.72± 2.18 4211.91± 9.08 4308.48± 1.58 4229.4± 17.35 4305.78± 2.87

LIMIT 4215 4215 4224 4224 4266 4266

WALKER2D
MEDIUM EXPERT

RETURN 3076.96± 101.41 3597.44± 179.95 4278.38± 302.14 3913.53± 302.42 4479.84± 323.36 3989.87± 145.14

COST 2989.44± 75.12 3518.32± 159.18 3567.39± 174.72 3576.96± 214.27 3665.75± 231.09 3667.21± 90.22

LIMIT 3154 3154 3745 3745 3778 3778

HOPPER
MEDIUM EXPERT

REWARD 1191.74± 30.2 1671.21± 41.19 1312.42± 25.91 1663.75± 30.31 1467.81± 41.64 1677.25± 50.03

COST 639.62± 15.19 756.71± 18.93 696.03± 14.93 761.01± 12.35 732.89± 21.21 777.59± 25.22

LIMIT 683 683 742 742 856 856

Table 4: Ablation study on ζϕ. We report the performance of SaFormer with and without the poste-
rior safety verification at three different thresholds (20%,30%,50% percentiles, respectively). A full
version of the results on all datasets can be found in appendix C table 8.

5.5 ABLATION STUDY

Posterior safety verification We first investigate the necessity of the critic ζϕ, which evaluates
the long-term cost return and filters out unsafe actions. table 4 reports the performance of SaFormer
at 20%, 30% and 50% percentiles of in-range thresholds with and without the posterior safety ver-
ification, respectively. The results show that SaFormer fulfills the hard constraints well when it is
equipped with ζϕ. On the contrary, the naive actor πθ will only lead to near constraint-satisfying
policies and still holds the 55.6% of the proportion that violates the constraint. This phenomenon is
more pronounced when the constraint is tightened. Furthermore, even if the actor can directly yield
feasible trajectories under certain constraints, their cumulative rewards are inferior to SaFormer with
posterior safety verification. The reason is that SaFormer samples a batch of candidates and exe-
cutes the one with the highest RTG by leveraging ζϕ, which may boost the reward performance
while preserving the feasibility.

1 (20) 2 (21) 4 (22) 8 (23) 16 (24) 32 (25) 64 (26) 128 (27) 256 (28)
The batchsize of candidates N
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Figure 5: Sensitivity study on RTG and action proposal
batchsize N . The curve denotes the eventual cost re-
turn with respect to different N . The dashed line in the
corresponding color denotes the cost limit of the Hop-
per medium expert dataset.

Proposal batchsize we study the
effect of RTG and action proposal
batchsize N . We evaluate the con-
straint satisfaction at 20%, 30%, and
50% percentiles of in-range thresh-
olds (d = 683, 742, 856, respec-
tively) on the Hopper medium expert
dataset with respect to different N .
fig. 5 confirms that the cost return
is steady and constraint-satisfying
when the actor proposes a large batch
of candidates. By contrast, SaFormer
may exceed the cost limit during the
execution when the batch size N is
relatively small. It is concluded that the mapping from cost to reward is not a one-to-one func-
tion and requires a wide range of samples to search for the optimal solution. The eventual returns
converge if the batchsize is sufficiently large.
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6 CONCLUSION

We present SaFormer in this paper, which, to the best of our knowledge, is the first sequence mod-
eling approach to offline safe RL. Casting constraints as contextual tokens, SaFormer is competitive
with state-of-the art algorithms in terms of reward performance, but more robust and flexible toward
varying safety requirements. We believe such the properties is of great practical relevance in real-
world problems. As the future work, more complicated offline datasets and tasks are required to
better evaluate the proposed approach. Besides, we are also dedicated to overcome the fundamental
assumptions in the problem setup to enhance SaFormer’s risk-awareness and extend SaFormer to
multi-constraint scenarios to reduce its limitations in safety-critical tasks.
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A DATASET AND TASK VISUALIZATIONS

(a) Hopper medium (b) Hopper medium replay (c) Hopper medium expert

(d) Walker2d medium (e) Walker2d medium replay (f) Walker2d medium expert
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Figure 6: Pair-plots of reward and cost returns on the D4RL datasets.

DATASET MIN 10%PERCENTILE 20%PERCENTILE 30%PERCENTILE 50%PERCENTILE MAX

HALFCHEETAH MEDIUM 3172 4490 4503 4511 4526 4600
HALFCHEETAH MEDIUM REPLAY 3145 3928 4257 4422 4493 5461
HALFCHEETAH MEDIUM EXPERT 3172 4201 4215 4224 4266 4600

WALKER2D MEDIUM 246 1877 2450 3043 3839 4283
WALKER2D MEDIUM REPLAY 8 75 251 432 705 4432
WALKER2D MEDIUM EXPERT 246 2343 3154 3745 3778 4283

HOPPER MEDIUM 218 483 618 685 772 1710
HOPPER MEDIUM REPLAY 2 35 90 184 268 2186
HOPPER MEDIUM EXPERT 218 546 683 742 856 1710

Table 5: Threshold settings (10%,20%,30%,50% percentiles) on the D4RL datasets.
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B REPRODUCIBLITY

The hyper-parameters are listed below.

HYPER-PARAMETERS SAFORMER DT BCQ-L CPQ

SUBSEQUENCE LENGTH K 20 20 / /
NUMBER OF ATTENTION BLOCKS 3 3 / /

EMBEDDING DIMENSION 128 128 / /
HIDDEN LAYER 128 128 (256,256) (256,256)

DROPOUT RATIO 0.1 0.1 0.1 0.1
TRAINING BATCHSIZE 128 128 128 128

LEARNING RATE 10E-4 10E-4 10E-4 10E-4
LEARNING RATE DECAY 10E-4 10E-4 10E-4 10E-4
PROPOSAL BATCHSIZE N 128 / / /

PENALTY FACTOR λ 0.25 / / /
ATTENUATION FACTOR α 0.95 / / /

INITIAL LAGRANGIAN MULTIPLIER / / 0.1 /
LAGRANGIAN MULTIPLIER LEARNING RATE / / 3E-4 /

POLYAK AVERAGING FACTOR τ / / 0.05 0.05
OOD PENALTY α XU ET AL. (2022A) / / / 5.0
VAE PENALTY β XU ET AL. (2022A) / / / 1.5

Table 6: Hyper-parameter lists for baseline comparisons.
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C EMPIRICAL DETAILS

DATASET 10%PERCENTILE 20%PERCENTILE 30%PERCENTILE 50%PERCENTILE DT(REFERENCE)

HALFCHEETAH
MEDIUM

REWARD 4661.2± 52.46 4713.52± 26.83 4718.44± 22.09 4724.89± 27.18 4986.64± 5.56

COST 4487.2± 6.05 4498.22± 2.57 4500.52± 1.65 4508.83± 2.79 4531.89± 1.45

LIMIT 4490 4503 4511 4526 –

HALFCHEETAH
MEDIUM REPLAY

REWARD 2202.69± 148.39 2208.41± 90.14 3363.11± 165.89 3712.08± 104.74 4270.07± 16.11

COST 4203.0± 17.46 4234.15± 13.36 4381.42± 16.94 4411.84± 9.29 4448.84± 6.8

LIMIT 3928 4257 4422 4493 –

HALFCHEETAH
MEDIUM EXPERT

REWARD 9016.82± 124.45 9121.95± 397.5 9161.5± 385.65 9296.29± 249.52 5053.89± 30.17

COST 4181.25± 16.63 4203.95± 2.36 4211.91± 9.08 4229.4± 17.35 4478.89± 3.52

LIMIT 4201 4215 4224 4266 –

WALKER2D
MEDIUM

REWARD 2654.84± 210.72 2752.82± 161.99 2896.36± 72.88 3016.77± 139.35 3325.07± 94.88

COST 3038.95± 222.47 3191.76± 138.93 3224.36± 67.41 3383.85± 121.79 3360.02± 99.78

LIMIT 1877 2450 3043 3839 –

WALKER2D
MEDIUM REPLAY

REWARD 32.54± 20.95 155.82± 36.2 238.5± 20.42 318.8± 42.47 2194.73± 176.7

COST 124.55± 39.66 417.45± 105.91 585.19± 28.27 682.98± 31.45 2259.91± 198.37

LIMIT 75 251 432 705 –

WALKER2D
MEDIUM EXPERT

REWARD 2938.5± 140.71 3076.96± 101.41 4278.38± 302.14 4479.84± 323.36 4972.82± 1.01

COST 3160.32± 130.84 2989.44± 75.12 3567.39± 174.72 3665.75± 231.09 3569.08± 0.41

LIMIT 2343 3154 3745 3778 –

HOPPER
MEDIUM

REWARD 862.21± 17.59 1037.53± 21.69 1090.57± 23.52 1245.57± 25.04 2018.02± 79.05

COST 477.39± 9.12 568.83± 12.04 599.08± 10.59 671.1± 13.18 907.24± 38.19

LIMIT 483 618 685 772 –

HOPPER
MEDIUM REPLAY

REWARD 39.28± 6.35 71.26± 14.0 244.93± 32.71 351.12± 59.37 904.97± 193.08

COST 50.03± 3.95 89.52± 14.47 207.42± 13.25 259.67± 11.71 346.6± 73.01

LIMIT 35 90 184 268 -

HOPPER
MEDIUM EXPERT

REWARD 986.29± 29.72 1191.74± 30.2 1312.42± 25.91 1467.81± 41.64 3274.14± 176.99

COST 535.13± 18.88 639.62± 15.19 696.03± 14.93 732.89± 21.21 1113.92± 65.25

LIMIT 546 683 742 856 –

Table 7: Full experiment results of constraint adaptation.

DATASET
20%PERCENTILE 30%PERCENTILE 50%PERCENTILE

ζϕ (!) ζϕ (%) ζϕ (!) ζϕ (%) ζϕ (!) ζϕ (%)

HALFCHEETAH
MEDIUM

REWARD 4611.15± 74.75 4884.18± 166.87 4604.47± 110.94 4883.92± 170.97 4724.89± 27.18 4968.35± 167.89

COST 4478.43± 12.5 4590.93± 75.71 4477.93± 20.45 4580.49± 93.37 4508.83± 2.79 4614.53± 74.26

LIMIT 4503 4503 4511 4511 4526 4526

HALFCHEETAH
MEDIUM REPLAY

REWARD 2208.41± 90.14 3807.5± 72.0 3363.11± 165.89 3646.36± 42.99 3712.08± 104.74 3470.89± 185.94

COST 4234.15± 13.36 4578.56± 6.62 4381.42± 16.94 4596.31± 11.27 4411.84± 9.29 4579.14± 57.62

LIMIT 4257 4257 4422 4422 4493 4493

HALFCHEETAH
MEDIUM EXPERT

REWARD 9121.95± 397.5 11441.5± 12.35 9161.5± 385.65 11445.21± 27.3 9296.29± 249.52 11460.68± 21.44

COST 4203.95± 2.36 4304.72± 2.18 4211.91± 9.08 4308.48± 1.58 4229.4± 17.35 4305.78± 12.87

LIMIT 4215 4215 4224 4224 4266 4266

WALKER2D
MEDIUM

REWARD 2752.82± 161.99 3304.39± 150.29 2896.36± 72.88 3416.02± 248.65 3016.77± 139.35 3367.41± 159.17

COST 3191.76± 138.93 3376.99± 143.7 3224.36± 67.41 3508.21± 240.09 3383.85± 121.79 3439.88± 163.23

LIMIT 2450 2450 3043 3043 3839 3839

WALKER2D
MEDIUM REPLAY

REWARD 155.82± 36.2 192.46± 14.19 238.5± 20.42 314.85± 51.67 318.8± 42.47 535.65± 64.69

COST 417.45± 105.91 482.54± 27.56 585.19± 28.27 618.22± 88.42 682.98± 31.45 873.69± 174.75

LIMIT 251 251 432 432 705 705

WALKER2D
MEDIUM EXPERT

REWARD 3076.96± 101.41 3597.44± 179.95 4278.38± 302.14 3913.53± 302.42 4479.84± 323.36 3989.87± 145.14

COST 2989.44± 75.12 3518.32± 159.18 3567.39± 174.72 3576.96± 214.27 3665.75± 231.09 3667.21± 90.22

LIMIT 3154 3154 3745 3745 3778 3778

HOPPER
MEDIUM

REWARD 1037.53± 21.69 1504.02± 31.34 1090.57± 23.52 1584.71± 60.46 1245.57± 25.04 1659.57± 65.07

COST 568.83± 12.04 682.61± 17.72 599.08± 10.59 718.98± 28.18 671.1± 13.18 757.86± 31.93

LIMIT 618 618 685 685 772 772

HOPPER
MEDIUM REPLAY

REWARD 71.26± 14.0 244.24± 36.01 244.93± 32.71 340.14± 21.47 351.12± 59.37 514.83± 108.93

COST 89.52± 14.47 241.02± 25.91 207.42± 13.25 281.49± 12.8 259.67± 11.71 290.89± 46.99

LIMIT 90 90 184 184 268 268

HOPPER
MEDIUM EXPERT

REWARD 1191.74± 30.2 1671.21± 41.19 1312.42± 25.91 1663.75± 30.31 1467.81± 41.64 1677.25± 50.03

COST 639.62± 15.19 756.71± 18.93 696.03± 14.93 761.01± 12.35 732.89± 21.21 777.59± 25.22

LIMIT 683 683 742 742 856 856

Table 8: Full experiment results of ablation study.
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D ALGORITHMS

Algorithm 1 SaFormer Policy Execution
1: Require: Online Env, Actor πθ , Critic ζϕ, cost limit d.
2: Initialize D = Ĉ0 = d.
3: for t = 0 to maximum episode horizon T do
4: #Feasible Action Proposal
5: SaFormer actor πθ generates the RTG distribution N (µθ,Σθ|{D, Ĉi, R̂i, si, ai}t−1

t−K ∪ {D, Ĉt}).
6: Sample N RTG candidates R̂n

t , n = 1, 2, ..., N .
7: SaFormer actor πθ generates N action distributions N (µθ,Σθ|{D, Ĉi, R̂i, si, ai}t−1

t−K ∪
{D, Ĉt, R̂

n
t , st}).

8: Sample N action candidates an
t , n = 1, 2, ..., N .

9: #Posterior Safety Verification
10: SaFormer critic ζϕ predicts the long-term cost-return of each pair < R̂n

t , a
n
t >,n = 1, 2, ..., N .

11: if ∃n, ζϕ({si, an
i }tt−K) ≤ Ĉt then

12: at = argmax(R̂n
t |ζϕ({si, an

i }tt−K) ≤ Ĉt)
13: else
14: Reject and re-sample < R̂n

t , a
n
t >,n = 1, 2, ..., N .

15: end if
16: Update st, rt, ct = Env.step(at) and Ĉt = Ĉt − ct.
17: end for

Algorithm 2 SaFormer Offline Training
1: Require: Offline dataset D, Actor πθ , Critic ζϕ
2: repeat
3: for iter = 0 to maximum iteration M do
4: Sample a mini-batch {D, Ĉi, R̂i, si, ai}tt−K ∼ D.
5: Optimize SaFormer actor πθ via minimizing Eq equation 5.
6: Optimize SaFormer critic ζϕ via minimizing Eq equation 7.
7: end for
8: Policy evaluation using algorithm 1.
9: until the offline training terminates.

Algorithm 3 SaFormer Online Fine-tuing
1: Require: Online Env, Offline dataset D, Actor πθ , Critic ζϕ, OOD cost limit d. Attenuation factor

α ∈ (0, 1).
2: repeat
3: Set d = αd as the target cost limit.
4: Rollout trajectory τ using algorithm 1.
5: Relabel τ as R̂t =

∑T
t′=t rt′ , Ĉt =

∑T
t′=t ct′ , D = Ĉ0.

6: Aggregate the offline data D = D ∪ τ .
7: Fine-tune SaFormer πθ and ζθ using algorithm 2.
8: until the online fine-tuning terminates.
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