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ABSTRACT

Optimization of heuristic functions for the A* algorithm, realized by deep neural
networks, is usually done by minimizing square root loss of estimate of the cost to
goal values. This paper argues that this does not necessarily lead to a faster search
of A* algorithm since its execution relies on relative values instead of absolute
ones. As a mitigation, we propose the L∗ loss, which upper-bounds the number
of excessively expanded states inside the A* search. The L∗ loss, when used in
the optimization of state-of-the-art deep neural networks for automated planning
in maze domains like Sokoban and maze with teleports, significantly improves the
fraction of solved problems, the quality of founded plans, and reduces the number
of expanded states to approximately 50%.

1 INTRODUCTION

Automated planning aims to find a sequence of actions that will reach a goal in a model of the en-
vironment provided by the user. Planning is considered to be one of the core problems in Artificial
intelligence and it is behind some of its successful applications Samuel (1967); Knuth & Moore
(1975); Silver et al. (2017). Early analysis of planning tasks McDermott (1996) indicated that op-
timising the heuristic function steering the search for a given problem domain can dramatically
improve the performance of the search.

Learning in planning means optimizing heuristic functions from plans of already solved prob-
lems and their instances. This definition includes selection of proper heuristics in a set of pat-
tern databases Franco et al. (2017); Haslum et al. (2007); Moraru et al. (2019); Edelkamp (2006),
a selection of a planner from a portfolio Katz et al. (2018), learning planning operators from
instances Ménager et al. (2018); Wang (1994), and learning for macro-operators and entangle-
ments Chrpa (2010); Korf (1985). Recent years observe a renewed interest in learning heuristic
functions and this is fuelled by the success of deep learning and reinforcement learning in the same
area Shen et al. (2020); Groshev et al. (2018); Ferber et al. (2020); Bhardwaj et al. (2017).

In this work, we are interested in optimising the heuristic function for A* Hart et al. (1968), which
despite the popularity of Monte Carlo tree search Coulom (2006); Silver et al. (2017) is interesting
due to its guarantees on optimal solution. A* is also optimally efficient in the sense that it expands
the minimal number of states. Majority of prior art Shen et al. (2020); Toyer et al. (2020); Groshev
et al. (2018); Ferber et al. (2020); Bhardwaj et al. (2017) optimises the heuristic function by mini-
mizing the error of the predicted cost to the goal on a training set of problem instances,1 where the
error is measured by the L2 error function or its variant. L2 = 0 does not guarantee the optimal
efficiency of A* , hence it gives a false sense of security.

We propose a L∗ loss function tailored for A* , which minimizes an upper bound on the number
of expanded states. This is achieved by stimulating states on an optimal path to have a smaller
cost function f = g + h than those off the optimal path. By this, L∗ effectively utilizes all the
states generated during the exploration of A* , providing much more information to the learner. If
L∗ on a given problem instance is equal to zero, it is guaranteed that A* will expand only states
on the optimal path, which under conditions on the training set as detailed below, implies optimal
efficiency of A* . We emphasize that the optimal efficiency is retained even on problems with

1The training set contains solved problem instances, where the solution should be ideally found by a search
finding optimal solution, such as A* with ideally admissible heuristic function.
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exponentially many optimal paths Helmert & Röger (2008), therefore the heuristic function has to
learn a tie-breaking mechanism.

The proposed L∗ is compared to state of the art on seven domains: Sokoban, Maze with teleports,
Sliding tile puzzle, Blockworld, Ferry, Grippe, and N-Puzzle and on all of them it consistently
outperforms heuristic functions optimizing L2.

2 PRELIMINARIES

We define a search problem instance by a directed weighted graph Γ = ⟨S, E , w⟩, a distinct node
s0 ∈ S and a distinct set of nodes S∗ ⊆ S . The nodes S denote all possible states s ∈ S of
the underlying transition system representing the graph. The set of edges E contains all possible
transitions e ∈ E between the states in the form e = (s, s′). s0 ∈ S is the initial state of the problem
instance and S∗ ⊆ S is a set of allowed goal states. Problem instance graph weights (alias action
costs) are mappings w : E → R≥0.

Let π = (e1, e2, . . . , el), we call π a path (alias a plan) of length l solving a task Γ with s0 and S∗

iff π = ((s0, s1), (s1, s2), . . . , (sl−1, sl)) and sl ∈ S∗. An optimal path is defined as a minimal
cost of a problem instance Γ, s0,S∗ and is denoted as π∗ together with its value f∗ = w(π∗) =
w(e1)+w(e2)+. . . ,+w(el). We often minimize the cost of solution of a problem instance Γ, s0,S∗,
namely π∗, together with its length l∗ = |π∗|.

2.1 A* ALGORITHM

Let’s briefly recall how the A* algorithm works. For consistent heuristics, where h(s) − h(s′) ≤
w(s, s′) for all edges (s, s′) in the w-weighted state space graph, it mimics the working of Dijkstra’s
shortest-path algorithm Dijkstra (1959) and maintains the set of generated but not expanded nodes
in O (the Open list) and the set of already expanded nodes in C (the Closed list). It works as follows.

1. Add the start node s0 to the Open list O0.
2. Set g(s0) = 0

3. Initiate the Closed list to empty, i.e. C0 = ∅.
4. For i ∈ 1, . . . until Oi ̸= ∅

(a) Select the state si = argmins∈Oi−1 g(s) + h(s)

(b) Remove si from Oi−1, Oi = Oi−1 \ {si}
(c) If si ∈ S∗, i.e. it is a goal state, go to 5.
(d) Insert the state si to Ci−1, Ci = Ci−1 ∪ {si}
(e) Expand the state si into states s′ for which hold (si, s

′) ∈ E and for each
i. set g(s′) = g(si) + w(si, s

′)
ii. if s′ is in the Closed list as sc and g(s′) < g(sc) then sc is reopened (i.e., moved

from the Closed to the Open list), else continue with (e)
iii. if s′ is in the Open list as so and g(s′) < g(so) then so is updated (i.e., removed

from the Open list and re-added in next step with updated g(·)), else continue with
(e)

iv. add s′ into the Open list
5. Walk back to retrieve the optimal path.

In the above algorithm, g(s) denotes a function assigning an accumulated cost w for moving from the
initial state (s0) to a given state s. Consistent heuristics are called monotone because the estimated
cost of a partial solution f(s) = g(s) + h(s) is monotonically non-decreasing along the best path
to the goal. More than this, f is monotone on all edges (s, s′), if and only if h is consistent as
we have f(s′) = g(s′) + h(s′) ≥ g(s) + w(s, s′) + h(s) − w(s, s′) = f(s) and h(s) − h(s′) =
f(s) − g(s) − (f(s′) − g(s′)) = f(s) − f(s′) + w(s, s′) ≤ w(s, s′). For the case of consistent
heuristics, no reopening (moving back nodes from Closed to Open) is needed, as we essentially
traverse a state-space graph with edge weights w(s, s′) + h(s′)− h(s) ≥ 0. For the trivial heuristic
h0, we have h0(s) = 0 and for perfect heuristic h∗, we have f(s) = f∗ = g(s)+h∗(s) for all nodes
s. Both heuristics h0 and h∗ are consistent.
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Figure 1: A visualization of a search space of an A* algorithm. In sub-figure (a), path s0 → s1 → s2
represents the optimal plan, states {s3, s4, s5}/s6 are off the optimal path but have / have not been
generated by the A* . In sub-figure (b), path s0 → s1 → s2 → s4 and s0 → s1 → s3 → s4
represents the optimal plan, states s5/s6 are off the optimal path but have / have not been generated.

Even if the heuristic is not consistent, algorithms like A* even without the reopening, remain com-
plete i.e. they find a plan if there is one. Plans might not be provably optimal but are often very good
in planning practice.

2.2 OPTIMIZING THE HEURISTIC

We consider heuristic function hθ : S → R≥0 mapping a state s ∈ S to a real non-negative
value, where θ ∈ Rm holds parameters of hθ. Using a set of problem instances T (further called
training set), we want to optimize parameters θ of hθ such that an A* search algorithm would find
an (optimal) solution by expanding the least number of states. 2 This, in practice, means to solve the
optimization problem

argmin
θ

∑
S∈T

L(hθ,S), (1)

where the loss function L should be such that smaller values imply better heuristic function hθ as
perceived by A* .

2.3 WEAKNESS OF L2 LOSS FUNCTION

Many prior art on optimizing heuristic function Shen et al. (2020); Groshev et al. (2018); Ferber
et al. (2020); Bhardwaj et al. (2017); Toyer et al. (2020) minimize the L2 loss function3 L2(hθ,S) =∑

i (hθ(si)− yi)
2
, where the training set S consists of pairs {(si, yi)}ni=1 , where si is some state

and yi is the length of the plan from si to the goal state. We argue that zero L2 loss on a given
problem instance for states on the optimal path does not guarantee that A* will be optimally efficient
in the sense that it can expand more states than needed.

L2 does not utilize states off the optimal path. Imagine a problem instance shown in Figure 1a,
where s0 and s2 are the initial and goal states respectively and (s0, s1, s2) is the optimal path. When
L2 loss is optimized, one needs to know the exact cost-to-go values which are obtained by solving
the problem instance. Thus, by solving the instance in Figure 1, one obtains heuristic values for
{s0, s1, s2}. But if L2 loss is equal to zero on them, it does not say anything about estimates for
states off the optimal path states {s3, s4, s5, s6}. This means that it can happen that f(s3) < f(s1),
which would lead to expanding the state s3 in A* algorithm and hence to sub-optimality.

This issue can be fixed, if the training set is extended to contain heuristic values for all states off
the optimal path ({s3, s4, . . . , s6} in our example), which in practice requires solving all possible
variants of the problem instances. This has been suggested in Bhardwaj et al. (2017) but is infeasible
due to excessive computational requirements. Therefore, in practice, it is assumed the training set
to be large, thereby mitigating this problem.

2Here it is assumed that the number of expanded states is directly proportional to the time taken to find the
solution, as the time to compute the value of hθ is independent of the value of θ.

3While some works use L1, the properties discussed here for L2 holds for L1 as well.
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L2 loss provides a false sense of optimality. Some problems can have large (even exponential)
number of optimal solutions with the same cost Helmert & Röger (2008). In this case, minimizing
estimate of cost-to-go of all states in the problem instance (to fix the problem mentioned above) does
not guarantee that A* will be optimally efficient. Consider an example in Figure 1b with unit cost on
edges. The algorithm starts by expanding state s0 to s1 and s2. The heuristic is perfectly estimated
and f(s1) = f(s2) = 3. Hence there are two states with the same value f which means A* has to
decide, how to the break this tie. The situation repeats after A* expands either s1 or s3, since the
open set will now contain state s3 with f(s3) = 3 and A* needs to resolve ties again. See Helmert
& Röger (2008) for more examples.

Heuristic value for unreachable (dead-end) states should be infinite to ensure that they are never
selected. An infinity in the L2 loss would always lead to an infinite loss which would then result in
an infinite gradient. Hence, in practice, a sufficiently large value for dead-end states has to be used.

3 L∗ LOSS

We explain the proposed L∗loss function on a single problem instance Γ = ⟨S, E , w⟩ (the extension
to a set of plan is trivial through Equation equation 1). We assume to have a (preferably optimal and
shortest) plan π = ((s0, s1), (s1, s2), . . . , (sn−1, sn)) with states from this optimal plan denoted as
So = {s0, s1, s2, . . . , sn}. This plan can be found by A* with some (admissible) heuristic function
h, which does not have to coincide with the heuristic function hθ that we are optimizing. We denote
states off the optimal plan as Sn ⊂ S \So, where the subset exists because, in practice, Sn contains
states generated by A* while solving the problem instance Γ. In the visualization in Figure 1a, grey
states are on the optimal path So, pink states are off the optimal path, and yellow states were not
generated in the course of solving the problem instance. Hence, S = {si}6i=1, So = {si}2i=1 and
Sn = {si}5i=3. The training sample for a L∗is defined as a tuple Γ̄ = ⟨S, E , w⟩,So.

L∗ aims to minimize the number of expanded states in the A* algorithm. Recall that A* always
expands a state from an open list with smallest fθ(s) = g(s) + hθ(s). To be optimally efficient,
states on the optimal path s′ ∈ So should have always smaller f(s′) than states off the optimal path
s′′ ∈ Sn, i.e.

(∀s′ ∈ So)(∀s′′ ∈ Sn)(g(s′) + hθ(s
′) < g(s′′) + hθ(s

′′)) (2)
On the optimal path, we might also impose monotonicity as

(∀si, sj ∈ So)(i < j)(g(si) + hθ(si) ≤ g(sj) + hθ(sj), (3)

though it does not affect the optimality of A* . We do this, since monotonic heuristic function
implies A* returning optimal solution. In Constraint equation 2, states not generated by A* are
ignored. But Sn will always contain all states of distance one from the optimal path, which is
sufficient to show that a loss equalling zero implies expanding states only on an optimal path (in the
training set). To prevent confusion, we emphasize that conditions are designed for the heuristic hθ

that is to be optimized, and not for the heuristic h that has generated the training set in the first place.

While Constraint equation 3 is true for every consistent heuristic, Constraint equation 2 is true
only for perfect heuristics. Otherwise, we could have some earlier states in the exploration off the
optimal path that have a smaller f -value than later ones in the optimal path. What seems to be
over-restrictive, such that almost no heuristic function will ever fulfill, Constraint equation 2, is
intentional.

The proposed L∗ loss minimizes the number of times each of the above constraints are violated as

1

|So||Sn|
∑
s′∈So

∑
s′′∈Sn

Jg(s′) + hθ(s
′) ≥ g(s′′) + hθ(s

′′)K+

1

|So|(|So| − 1)

|So|∑
i=2

i∑
j=1

Jg(si) + hθ(si) > g(sj) + hθ(sj)K, (4)

where J·K is an Iverson bracket, which is equal to one if the argument is true and zero otherwise.
The first part of the loss function loosely upper bounds the number of non-optimal states the A*
expands while the second part ensures the monotonicity of the heuristic function along the optimal
plan. In other words, the conditions equation 2 and equation 3 encode the aim of a consistent and
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perfect heuristic. During training, we iterate over many samples of A* explorations which enlarges
the scope of L∗.

To set constraints for heuristic learning, we only need the partitioning of the set of explored nodes
into the sets S0 and Sn, computed via an optimal plan and a set of all generated nodes, together
with their g-values. Given the optimal heuristic, A* will always find an optimal solution. Up to
tie-breaking, it is optimally efficient and will expand only nodes with optimal merit f∗.

Loss function L∗ does not distinguish between the Open and Closed lists in the exploration of A*
as long as it has access to the combined set of explored nodes. This way, we can take any optimal
planner and not just the heuristic search planners for training.

3.1 HOW L∗ ADDRESSES THE DEFICIENCIES OF L2

L∗ utilizes all states generated during the A* search used to create the training sample(s), which
is in sharp contrast to L2 estimating cost-to-go. This propagates to better utilization of states in the
training set. The experimental results show that given a fixed and small number of training problems,
models minimizing L∗ achieves higher performance.

L∗ = 0 implies optimality. We state a following theorem:

Theorem 1 (Upper Bound) For a problem instance with states S = Sn ∪ So, denote

Rn =
{
s′′ ∈ Sn | ∃s′ ∈ S0 ∧ (g(s′) + hθ(s

′) ≥ g(s′′) + hθ(s
′′))

}
, (5)

the quantity |Rn| is an upper bound on the number of non-optimal states A* expands during its
search.

The proof is straightforward and it is included in supplementary for completeness. The quantity
|Rn| is exactly the quantity minimized by the L∗ as defined in Equation equation 4. The following
theorem is a trivial consequence of this property.

Theorem 2 (Optimal efficiency) Let for a given training sample Γ̄, and a heuristic function hθ

L∗( ¯Γ, hθ) = 0. Then A* with heuristic function hθ will expand only states on the optimal path So.
If So in Γ̄ is optimal and shortest, A* will be optimally efficient.

The proof is a consequence of the property that L∗( ¯Γ, hθ) = 0 implies that |Rn| = 0. The above
theorem holds even on problems with multiple optimal solutions. In this case, L∗ would be either
equal to zero, which means hθ includes tie-breaking mechanism and it will be optimal, or it will be
greater than zero. Thus and unlike L2, its zero value implies optimal efficiency.

L∗does not require heuristic value of unreachable (dead-end) states, which is caused by the fact
that L∗requires satisfaction of inequalities instead of estimation of some value. L∗ loss does not
force the heuristic to be goal aware, since as discussed in Supplementary, this is not needed for the
optimal efficiency of A* .

4 RELATED WORK

In potential heuristics Seipp et al. (2015), parameters of the heuristic functions are optimized by
linear programming for a particular problem instance to satisfy constraints similar to those stated
in this paper. The optimization assumes a particular structure of the heuristic, unlike here, where
no structure is assumed. Ref. Takahashi et al. (2019) admits that the symmetry of L2 (and of L1)
loss does not promote admissibility of the heuristic. It recommends asymmetric L1 with different
weights on the left and right parts, but this does not completely solve the problems identified above
in Section 2.3.

In Ferber et al. (2020), neural networks estimate the number of expansions of a GBFS search, though
the results are comparable to an estimation of cost-to-goal. In Bhardwaj et al. (2017) A* is viewed
as a Markov Decision Process with value function being equal to the number of steps of A* till
it reaches the solution. While this detaches the heuristic values from cost-to-goal cost, it does not
solve the problem with dead-ends, state efficiency, and ties.
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Refs. Vlastelica et al. (2021); Yonetani et al. (2021) combine neural networks with discrete search
algorithms, which become an inseparable part of the architecture. Orseau & Lelis (2021) proposes a
new search algorithm that uses both a heuristic function and policy networks to minimize the search
loss. Our setting is more classical where the heuristic is optimized for A* search but the execution
of the search is independent of the training. This has the advantage that one (costly) execution of
A* search algorithm is used many times during training to optimize weights.

A large corpus of literature Silver et al. (2017); Guez et al. (2018); Feng et al. (2020); Anthony
et al. (2017) is devoted to improvements to Monte Carlo Tree Search. Since this work is concerned
exclusively to A* algorithm, we view these works independent to this. Nevertheless, we compare
to some of them in the experimental section. Similarly, a lot of works Shen et al. (2020); Toyer
et al. (2020); Zhang & Geißer (2021); Groshev et al. (2018); Chrestien et al. (2021); Ferber et al.
(2020); Bhardwaj et al. (2017) investigate architectures of neural networks for learning a heuristic
function, ideally for arbitrary planning problems. These works are perpendicular to this one, which
investigate how to optimize these neural networks to perform well inside A* .

5 EXPERIMENTAL EVALUATION

Heuristic functions optimized with respect to L∗ loss function are compared to those optimized
with respect to L2 loss on seven domains. Due to lack of space, only Sokoban and Mazes with
teleports are detailed below, and the remaining five are in supplementary material. This is supple-
mented by the comparison with domain-independent planners: (1) SymBA* Torralba et al. (2014),
a cost-optimal planner from International Planning Competition (IPC) 2014; (2) Delfi Katz et al.
(2018); (3) Mercury14 Katz & Hoffmann (2014), a satisfycing planner from IPC 2014; (4) Stone
soupe Seipp & Röger (2018), and by solutions based on Monte Carlo Tree Search Guez et al. (2018)
and reinforcement learning Racanière et al. (2017); Guez et al. (2019). Ref. Toyer et al. (2020) admit
it does not work on Sokoban and Shen et al. (2020) works only on small Sokoban problems with
two boxes, we do not compare to these works. All experiments involving neural networks have been
repeated three times.

The Neural Network Neural networks (NN) implementing heuristic functions were adopted
from Groshev et al. (2018) and Chrestien et al. (2021), where the latter is, to our best knowledge
the state-of-the-art architecture for maze domains. It contains seven convolution layers P1, . . . P7

followed by four convolution-attention-position blocks, which allow correlating information from
distant parts of the maze. The output tensor of the fourth CoAt block is ”flattened” by global av-
erage pooling over the x and y dimension to a vector, which is then fed to a fully connected layer
(FC) which outputs a scalar estimating the heuristic value. More details on the network can be
found Chrestien et al. (2021). This network is further called ”CoAt” after the CoAt blocks. We also
studied the network of Groshev et al. (2018) (without policy head), which has a similar structure,
but instead of four CoAt blocks it has seven CNN layers. We refer to this network as to CNN. Both
networks are by design scale-free, which means that they can be used on mazes of various sizes, as
is shown below on the mazes with teleport domain. Since the L∗loss as defined in Equation 4 is not
differentiable, the Iverson bracket is replaced by a logistic loss function Ll(x) = log(1+exp(−x)).

Our experiments were implemented in Keras-2.4.3 with Tensorflow-2.3.1 as the backend. For train-
ing the neural networks, we used an NVIDIA Tesla GPU model V100-SXM2-32GB; the evaluation
was performed on the CPU to ensure a fair comparison to domain independent planners. The neural
networks were trained by the Adam optimizer Kingma & Ba (2014) with a default learning rate of
0.001. Each mini-batch contained all states from one problem instance. Scripts reproducing our
experiments together with mazes and solutions will be made available upon acceptance.

5.1 TRAINING FROM SOLVED MAZES

We generate mazes for the training set by running the A* algorithm using the heuristic function
from Groshev et al. (2018) on a set of problem instances to identify a set of states generated during
the A* search. All these sets form the training set. Since optimizing the heuristic by L2 loss requires
knowing the true heuristic value (cost to reach the goal), we have used SymBA* Torralba et al.
(2014) to find the optimal plan from each state in the training set. For states for which SymBA*
doesn’t find a solution (dead-end states), the h value is replaced by a very large value. This con-
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CNN CoAt
#b SBA* Delfi Merc FDSS L2 L∗ L2 L∗ CL w.L∗

3 100 100 100 100 81 87 91 94 95
4 100 100 81 100 74 80 89 93 94
5 97 91 67 94 72 82 85 89 90
6 55 55 49 56 61 71 73 80 85
7 46 44 31 42 51 59 63 77 83
8 - - - - - - - 32 59
9 - - - - - - - 12 38

(a)

model coverage
MCTSNet 84
I2A 84
DRC (3,3) 10k 93
DRC (3,3) 900k 99
CoAt− L∗ 97
CL CoAt− L∗ 100
SBA* 100

(b)

Table 1: Left: Fraction of solved mazes (in percents) of S(ym)BA* , Delfi(1), Merc(ury14), FDSS
(Fast Downward Stone Soup), CoAt and CoAt* on test data sets containing variable number of
boxes. Column captioned #b indicates the number of boxes in different categories. The standard
deviation of all repeated experiments was between 0.004 and 0.008 and it is not shown to save
space. Right: Fraction of solved mazes (in percents) from Boxoban dataset. DRC 900k / DRC 10k
optimizes on 10k levels. Results of MCTSNet Guez et al. (2018), I2A Racanière et al. (2017), and
DRC Guez et al. (2019) have been copied from Table 2 of Guez et al. (2019).

struction, albeit very expensive, allows a fair comparison, since the training of heuristic by L2 loss
will also use states off the optimal path of the original problem instance for which the states were
generated.

Sokoban’s training set contained 10000 Sokoban mazes of size 10× 10 with 3 boxes created using
gym-sokoban Schrader (2018). The testing set contained 2000 mazes of the same size 10 × 10
but with 3, 4, 5, 6, 7, 8, 9 boxes. The complexity increases with the addition of more boxes.4, and
therefore we can evaluate the ability to generalize outside training environments. We go a step
further and implement curriculum learning Bengio et al. (2009) by training from those mazes that
are solved by our network during evaluation. We create a new training set containing all the solved
mazes and re-train our network in an effort to improve the coverage of our network.

Maze-with-teleports’s training set contained 5000 randomly generated mazes of size n × n =
15 × 15 with the agent in the upper-left corner and the goal in the lower-right corner. The mazes
were generated using an open-source maze generator 5, where walls were randomly broken and 4
pairs of teleports were randomly added to the maze structure. The testing contained 2000 mazes
generated by the same algorithm but (i) were bigger by up to 60 × 60 and (ii) were rotated by 90,
180, and 270 degrees which moved the start and goal states to positions not occurring in the training
set.

5.2 RESULTS

Sokoban Table 1a shows the percentage of solved mazes of all compared planners on problem in-
stances with a various number of boxes (recall that the NNs were optimized on instances with only
three boxes). All planners were given a time limit of 10 minutes to solve each Sokoban instance. On
mazes with 3 and 4 boxes, the optimal planners SymBA* (SBA* ) and Delfi were able to solve all
problem instances while the best performing architecture among the NNs, which is CoAt optimized
with respect to L∗ (CoAt−L∗), could solve 94% and 93% of the mazes respectively. On increasing
the number of boxes, the A* with NNs start outperforming classical planners. A* with NNs optimiz-
ing L∗ is consistently better than those optimizing L2. The CoAt architecture proposed in Chrestien
et al. (2021) with the proposed L∗ is the only solver that can solve some mazes with 8 and 9 boxes.
Solutions found by CoAt optimizing L∗were close to optimum, on average by 1 step longer, which
is likely because the learnt heuristic is most of the times admissible (see Supplementary for details).
The average number of expanded states in Figure 2a shows that NNs optimizing L∗indeed expand a
smaller number of states than those optimizing L2.

Since networks have never seen mazes with four or more boxes, extrapolation to eight and nine boxes
is impressive. To evaluate the potential for self-improvement, the training set of CoAt − L∗was

4This is of course just an approximation, as we can have simple problems with a large number of boxes
5https://github.com/ravenkls/Maze-Generator-and-Solver
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Figure 2: The average number of expanded states in A* for Sokoban (left) and Maze problems
(right).

CNN CoAt
n SBA* Delfi Merc FDSS L2 L∗ L2 L∗

50 92 90 75 100 100 100 100 100
55 52 50 - 100 85 85 86 88
60 - - - 100 73 74 76 79

Table 2: Fraction of solved mazes with teleports of S(ym)BA* , Delfi(1), Merc(ury14), and A*
algorithm with heuristic function implemented by CNN and CoAt networks optimized with respect
to L2 and L∗. All solvers have solved all mazes of size 15–40, hence they are not shown Standard
deviations of repeated experiments were between 0.005 and 0.008 are shown in Supplementary.

extended with mazes from the testing set it has already solved for fine-tuning. We refer to this
as curriculum learning (CL w. L∗) and the results are shown in the last column of Table 1a. It
shows marginal improvement on mazes with 3-5 boxes but records a significant improvement in
performance over the vanilla L∗on mazes exceeding 5 boxes.

Boxoban On unfiltered ”Boxoban” levels from Guez et al. (2019), A* with heuristic implemented
by CoAt network and optimized with respect to the proposed L∗is compared to MCTSNet Guez et al.
(2018), Imagination augmented agent (I2A) Racanière et al. (2017), and to DRC (3,3) network Guez
et al. (2019), with possible discrepancies, as results on the competing methods were taken from Guez
et al. (2019). CoAt−L∗was optimized on 10k mazes with 3 boxes (it is the same network as reported
in the previous paragraph), whereas others were optimized on 900k mazes with 4 boxes. CoAt −
L∗and MCTSNet knows the model, whereas DRC and I2A do not. The fraction of solved mazes
shown in Table 1b shows that CoAt−L∗trained on 10k mazes is second best behind DRC (3,3) that
is trained on 900k mazes, but DRC (3,3) trained on 10k mazes is already inferior. CoAt − L∗with
one iteration of curriculum learning where the training set is extended to contain previously solved
mazes (from set used in previous paragraph) solves 100% of boxoban mazes. Needless to say that
during optimization, DRC (3,3) used 1G iterations of SGD, MCTSNets allowed 10M iterations of
SGD, whereas CoAt optimized L∗allowed just for 120k iterations, which is few magnitudes less.

Maze-with-teleports Fraction of solved mazes with teleports is shown in Table 2. A* with heuristic
implemented by NN was optimized on mazes of size 15 × 15 and has solved all mazes up to size
40× 40 (not shown in the table) and beyond. The results mimic the results on Sokoban in the sense
that A* with CoAt networks optimizing L∗ is consistently outperforming those optimizing L2.

All 2000 mazes in the training set were created such that the agent starts in the top left corner and
the goal is in the bottom right corner. When mazes are rotated by 90◦, 180◦ and 270◦, the agent has
to solve mazes with distributions very different to that on the training set, yet the fraction of solved
mazes for CoAt− L∗decreases by at most 5% (see Table 3 in Supplementary). Average number of
generated states in A* with different heuristics is shown in Figure 2a. Again, heuristics optimized
with respect to L∗expand smaller number of states during the search.
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3000 4000 5000 6000
epoch L2 L∗ L2 L∗ L2 L∗ L2 L∗

0 7.4 7.4 7.7 7.7 8.5 8.5 8.3 8.3
1 11 11 9.8 11 10 10 9.6 10
2 15 18 11 16 12 18 14 16
3 29 33 20 31 21 24 20 32
4 34 62 27 69 36 49 31 48
5 62 75 44 75 57 73 34 66
6 67 77 51 80 61 80 49 77
7 63 76 62 80 74 82 50 86

(a) Sokoban

1000 3000 5000
epoch L2 L∗ L2 L∗ L2 L∗

0 25 25 19 19 15 15
1 42 45 29 35 18 20
2 45 68 39 51 34 34
3 69 83 59 67 41 59
4 84 90 78 83 66 75

(b) Maze with teleports

Table 3: Fraction of solved mazes (in percents) when the networks are optimized only on mazes
they have previously solved. First row corresponds to A* with untrained network.

5.3 TRAINING FROM UNSOLVED MAZES

Let’s now consider a bootstrap protocol, where in each epoch, a heuristic function implemented
by the NN is first used in A* to try to solve mazes from an available set of mazes (recall that we
set a 10min time limit for solving a maze) and then to optimize its parameters on a set of mazes
it has solved. Similarly to reinforcement learning, if an un-optimized (which means uninformed)
heuristics solves at least a few mazes, it can boot the learning.

In this experiment, the training set of unsolved mazes is fixed. In the optimization of our NN over
solved mazes, we perform one epoch. Hence the number of iteration and epoch coincide. Table 3
shows percentages of solved mazes on Sokoban and Maze with teleports for the first seven and four
epochs (epoch number 0 means that the network is untrained) for different sizes of the training set.
The set of Sokoban mazes contained problems with three, four, and five boxes; the set of mazes with
teleports contained problems of size 40× 40.

We observe that the fraction of solved mazes increases with epochs and the speed of this growth
is significantly faster for heuristics optimized with respect to the proposed L∗. To our surprise, the
fraction of solved mazes does not grow faster when the number of initially unsolved set of mazes
is bigger. Yet we have observed that the fraction of solved unfiltered boxoban mazes increases as
expected. A* with the network optimized on the set of 6000 mazes could solve 96% of levels of
unfiltered boxoban mazes after seven epochs. This agent has performed just 20.5k gradient descend
steps, which is comparatively smaller than 1G steps of DRC (3,3) agent from Guez et al. (2018).
Sections 5 and 6 in Supplementary contains additional evaluation of five more domains (Sliding tile
puzzle, Blockworld, Gripper, Ferry, and N-Puzzle) with the same conclusion: L∗is always better
than L2.

6 CONCLUSION

This work has proposed L∗ loss function for imitation learning in planning;it has been designed
specifically to maximize the efficiency of the A* algorithm. L∗ is zero, if and only if the basic
monotonicity requirements on the f-value in A* are satisfied, so that the heuristic trained on this loss
function is consistent and perfect. This enables A* to find the optimal solution at an optimal time. It
has been shown that L2 does not have these guarantees. The experiments have verified the promises
that A* with heuristic functions optimized with respect to L∗ always solve a much higher number
of problems, generate up to 50% lesser states than those optimized with respect to the usual L2, and
return nearly optimal solutions. By comparison to MCTSNets, we have shown that A* with well
trained heuristic can be competitive to Monte Carlo Tree Search. The training is also more efficient,
as we use a much lesser number of SGD steps.

The proposed L∗loss well complements contemporary research, which pays a lot of attention to the
network architectures, as it can be used as a drop-in replacement for L2. It inspires us to design loss
functions for other types of search algorithm and research neglected aspects, such as the construction
of a representative training set. We see them as a limiting factor in the further endeavour to solve
more difficult problem instances.
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