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ABSTRACT

Many modern machine learning algorithms are in the form of a composition of
simple private algorithms; thus, an increasingly important problem is to efficiently
compute the overall privacy loss under composition. In this paper, we introduce the
Edgeworth Accountant, an analytical approach to composing differential privacy
guarantees of private algorithms. The Edgeworth Accountant starts by losslessly
tracking the privacy loss under composition using the f -differential privacy frame-
work (Dong et al., 2022), which allows us to express the privacy guarantees using
privacy-loss log-likelihood ratios (PLLRs). As the name suggests, this accoun-
tant next uses the Edgeworth expansion (Hall, 2013) to upper and lower bound
the probability distribution of the sum of the PLLRs. Moreover, by relying on a
technique for approximating complex distributions by simple ones, we demonstrate
that the Edgeworth Accountant can be applied to composition of any noise-addition
mechanism. Owing to certain appealing features of the Edgeworth expansion, the
(ε, δ)-differential privacy bounds offered by this accountant are non-asymptotic,
with essentially no extra computational cost, as opposed to the prior approaches
in Koskela et al. (2020); Gopi et al. (2021), in which the running times are in-
creasing with the number of compositions. Finally, we show our upper and lower
(ε, δ)-differential privacy bounds are tight in certain regimes of training private
deep learning models and federated analytics.

1 INTRODUCTION

Differential privacy (DP) provides a mathematically rigorous framework for analyzing and developing
private algorithms working on datasets containing sensitive information about individuals (Dwork
et al., 2006). This framework, however, is often faced with challenges when it comes to analyzing
the privacy loss of complex algorithms such as privacy-preserving deep learning and federated
analytics (Ramage & Mazzocchi, 2020; Wang et al., 2021), which are composed of simple private
building blocks. Therefore, a central question in this active area is to understand how the overall
privacy guarantees degrade from the repetition of simple algorithms applied to the same dataset.

Continued efforts to address this question have led to the development of relaxations of differential
privacy and privacy analysis techniques (Dwork et al., 2010; Dwork & Rothblum, 2016; Bun et al.,
2018; Bun & Steinke, 2016). A recent flurry of activity in this line of research was triggered
by Abadi et al. (2016), which proposed a technique called moments accountant for providing
upper bounds on the overall privacy loss of training private deep learning models over iterations.
A shortcoming of moments accountant is that the privacy bounds are generally not tight, albeit
computationally efficient. This is because this technique is enabled by Rényi DP in Mironov (2017)
and its following works (Balle et al., 2018; Wang et al., 2019), whose privacy loss profile can be lossy
for many mechanisms. Alternatively, another line of works directly compose (ε, δ)-DP guarantees
via numerical methods such as the fast Fourier transform (Koskela et al., 2020; Gopi et al., 2021).
This approach can be computationally expensive, as the number of algorithms under composition is
huge, which unfortunately is often the case for training deep neural networks.

Instead, this paper aims to develop computationally efficient lower and upper privacy bounds for the
composition of private algorithms with finite-sample guarantees1 by relying on a new privacy defini-

1Here, “sample” refers to the number of compositions of DP algorithms. From now on we use the term
“finite-sample” to mean that the bound is non-asymptotic in the number of compositions.
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Figure 1: The comparison between the GDP approximation in Dong et al. (2022), and our Edge-
worth Accountant. Both methods start from the exact composition using f -DP. Upper: Dong
et al. (2022) uses a CLT type approximation to get a GDP approximation to the f -DP guarantee,
then converts it to (ε, δ)-DP via duality (Fact 1). Lower: We losslessly convert the f -DP
guarantee to an exact (ε, δ(ε))-DP guarantee, with δ(ε) defined with PLLRs in (3.1), and then
take the Edgeworth approximation to numerically compute the (ε, δ)-DP.

tion called f -differential privacy (f -DP (Dong et al., 2022)). f -DP offers a complete characterization
of DP guarantees via a hypothesis testing interpretation, which was first introduced in Kairouz et al.
(2015), and enables a precise tracking of the privacy loss under composition using a certain operation
between the functional privacy parameters. Moreover, Dong et al. (2022) developed an approximation
tool for evaluating the overall privacy guarantees using a central limit theorem (CLT), which can lead
to approximate (ε, δ)-DP guarantees using the duality between (ε, δ)-DP and Gaussian Differential
Privacy (GDP, a special type of f -DP) (Dong et al., 2022). While the (ε, δ)-DP guarantees are
asymptotically accurate, a usable finite-sample guarantee is lacking in the f -DP framework.

In this paper, we introduce the Edgeworth Accountant as an analytically efficient approach to obtaining
finite-sample (ε, δ)-DP guarantees by leveraging the f -DP framework. In short, the Edgeworth
Accountant makes use of the Edgeworth approximation (Hall, 2013), which is a refinement to the CLT
with a better convergence rate, to approximate the distribution of the sum of certain random variables
that we refer to as privacy-loss log-likelihood ratios (PLLRs). By leveraging a Berry–Esseen type
bound derived for the Edgeworth approximation, we obtain non-asymptotic upper and lower privacy
bounds that are applicable to privacy-preserving deep learning and federated analytics. On a high
level, we compare the approach of our Edgeworth Accountant to the Gaussian Differential Privacy
approximation in Figure 1. Additionally, we note that while the rate of the Edgeworth approximation
is well conceived, the explicit finite-sample error bounds are highly non-trivial. To the best of our
knowledge, it is the first time such a bound has been established in the statistics and differential
privacy communities and it is also of interest on its own.

We have made available two versions of our Edgeworth Accountant to better fulfill practical needs:
the approximate Edgeworth Accountant (AEA), and the exact Edgeworth Accountant interval (EEAI).
The AEA can give an estimate with asymptotically accurate bound for any number of composition m.
By using higher-order Edgeworth expansion, such an estimate can be arbitrarily accurate, provided
that the Edgeworth series converges, and therefore it is useful in practice to quickly estimate privacy
parameters. As for the EEAI, it provides an accurate finite-sample bound for any m. It gives a
rigorous bound on the privacy parameters efficiently.

Our proposal is very important as an efficiently computable DP-accountant. For the composition of
m identical mechanisms, our algorithm runs in O(1) time to compute the privacy loss, and for the
general case when we need to compose m heterogeneous algorithms, the runtime becomes O(m),
which is information-theoretically optimal. In contrast, fast Fourier transform (FFT)-based algorithms
(Gopi et al., 2021) provide accurate finite-sample bound, but can only achieve polynomial runtime for
general composition of private algorithms. The suboptimal time-complexity of FFT-based methods
leads to a large requirement of resources when m is large, and a large m is quite common in practice.
For example, in deep learning and federated learning, m is the number of iterations (rounds) and can
be potentially very large. To make things worse, in real-world applications, the same dataset is often
adaptively used or shared among different tasks. To faithfully account for the privacy loss, the DP
accountant system has to track the cost of each iteration across different tasks, further increasing the
number of compositions. Our EEAI serves as the first DP accountant method that simultaneously
provides finite-sample guarantees, performs with optimal time complexity, and is very accurate (when
m is large), which can be a good supplement to the current toolbox.
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The paper is organized as follows. We briefly summarize related work in privacy accounting of
differentially private algorithms as well as our contributions in Section 1. In Section 2 we introduce
the concept of f -DP and its important properties. We then introduce the notion of privacy-loss
log-likelihood ratios in Section 3 and establish how to use them for privacy accountant based on
distribution function approximation. In Section 4 we provide a new method, Edgeworth Accountant,
that can efficiently and almost accurately evaluate the privacy guarantees, while providing finite-
sample error bounds. Simulation results and conclusions can be found in Sections 5 and 6. Proofs
and technical details are deferred to the appendices.

1.1 MOTIVATING APPLICATIONS

We now discuss two motivating applications: the NoisySGD (Song et al., 2013; Chaudhuri et al.,
2011; Abadi et al., 2016; Bu et al., 2020) as well as the Federated Analytics and Federated Learning
(Ramage & Mazzocchi, 2020; Wang et al., 2021). The analysis of DP guarantees of those applications
are important yet especially challenging due to the large number of compositions involved. Our goal
is primarily to devise a general tool to analyze the DP guarantees for these applications.

NoisySGD. NoisySGD is one of the most popular algorithms for training differentially private neural
networks. In contrast to the standard SGD, the NoisySGD has two additional steps in each iteration:
clipping (to bound the sensitivity of the gradients) and noise addition (to guarantee the privacy of
models). The details of the NoisySGD algorithm is described in Algorithm 1 in Appendix B.

Federated Analytics. Federated analytics is a distributed analytical model, which performs statistical
tasks through the interaction between a central server and local devices. To complete a global
analytical task, in each iteration, the central server randomly selects a subset of devices to carry out
local analytics and then aggregates results for the statistical analysis. The total number of iterations is
usually very large2 in federated analytics, requiring a tight analysis of its DP guarantee.

1.2 RELATED WORK

In this section, we present the following comparison of several existing works in DP accountant in
Table 1. Specifically, we focus on their theoretical guarantees and the runtime complexity when the
number of composition is m. We present a detailed survey of those DP accountants in Appendix A.

Method Finite-sample guarantee Tightness of guarantee Computational complexity
GDP/GDP-E No N/A O(1), O(m)

MA Only upper bound Loose conversion to (ε, δ)-DP O(1), O(m)
FFT Yes Yes O(

√
m), O(m2.5)

EA Yes Yes∗ O(1), O(m)

Table 1: Comparison among different DP accountants. Each entry in the computation complex-
ity contains two columns: (Left) the runtime for the composition of m identical algorithms;
(Right) the runtime for the composition of m general algorithms. GDP: the Gaussian differ-
ential privacy accountant (Dong et al., 2022); GDP-E: the Edgeworth refinement to the GDP
accountant (Zheng et al., 2020); MA: the moments accountant using Rényi-DP (Abadi et al.,
2016); FFT: the fast Fourier transform accountant for privacy random variables (Gopi et al.,
2021); EA: the Edgeworth Accountant we propose, including both the AEA (Definition 4.1),
and the EEAI (Definition 4.2). *The guarantee of EA is tight when the order of the underlying
Edgeworth expansion k is high, or when m is large for k = 1.

1.3 OUR CONTRIBUTIONS

We now briefly summarize our three main contributions.

Improved time-complexity and estimation accuracy. We propose a new DP accountant method,
termed Edgeworth Accountant, which gives finite-sample error bound in constant/linear time com-
plexity for the composition of identical/general mechanisms. In practice, our method outperforms
GDP and moments accountant, with almost the same runtime.

2The number of iterations can be small for a single analytical task. However, in most practical cases, many
statistical tasks are performed on the same base of users which leads to a large number of total iterations.
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A unified framework for efficient and computable evaluation of f -DP guarantee. Though the
evaluation of f -DP guarantee is #P-hard, we provide a general framework to efficiently approximate
it. Leveraging this framework, any approximation scheme to the CDFs of the sum of privacy-loss
log-likelihood ratios (PLLRs) can directly transform to a new DP accountant.

Exact finite-sample Edgeworth bound analysis. We are, to our best knowledge, the first to use
Edgeworth expansion with finite-sample bounds in the statistics and machine learning communities.
The analysis of the finite-sample bound of Edgeworth expansion is of its own interest, and has many
potential applications. We further derive an explicit adaptive exponential decaying bound for the
Edgeworth expansion of the PLLRs, which is the first such result for Edgeworth expansion.

2 PRELIMINARIES AND PROBLEM SETUP

In this section, we first define the notion of differential privacy and f -DP mathematically. We then
set up the problem by revisiting our motivating applications.

A differentially private algorithm promises that an adversary with perfect information about the entire
private dataset in use – except for a single individual – would find it hard to distinguish between its
presence or absence based on the output of the algorithm (Dwork et al., 2006). Formally, for ε > 0,
and 0 ≤ δ < 1, we consider a (randomized) algorithm M that takes as input a dataset.
Definition 2.1. A randomized algorithm M is (ε, δ)-DP if for any neighboring dataset S, S′ differing
by an arbitrary sample, and for any event E, P[M(S) ∈ E] 6 eε · P [M (S′) ∈ E] + δ.

In Dong et al. (2022), the authors propose to use the trade-off between the type-I error and type-
II error in place of a few privacy parameters in (ε, δ)-DP. To formally define this new privacy
notion, we denote by P and Q the distribution of M(S) and M(S′), and let φ be a (possibly
randomized) rejection rule for a hypothesis testing, where H0 : P vs. H1 : Q. The trade-off function
f between P and Q is then defined as the mapping between type-I error to type-II error, that is,
f = T (P,Q) : α 7→ infφ {1− EQ[φ] : EP [φ] 6 α} . This motivates the following definition.
Definition 2.2. A (randomized) algorithm M is f -differentially private if T (M(S),M (S′)) > f
for all neighboring datasets S and S′.

The following facts about f -DP have been established in Bu et al. (2020); Dong et al. (2022).
Fact 1 (Duality to (ε, δ)-DP). A mechanism is f -DP if and only if it is (ε, δ(ε))-DP for all ε > 0,
with δ(ε) = 1 + f∗(−eε). Here g∗(y) = sup−∞<x<∞ yx− g(x) is the convex conjugate of g.
Fact 2 (Composition). Letting M1 and M2 be two mechanisms, we define their composition al-
gorithm M as M(S) = (M1(S),M2 (S,M1(S))). In general, the composition of more than two
algorithms follows recursively. Given trade-off functions f = T (P,Q) and g = T (P ′, Q′), let
f ⊗ g = T (P × P ′, Q×Q′). Assume Mt is ft-DP for t = 1, . . . ,m. The composition theorem
states that their m-fold composition algorithm is f1 ⊗ · · · ⊗ fm-DP, which is tight in general.
Fact 3 (Subsampling). Consider the following two most common subsampling schemes: (1) (Poisson
subsampling) for each individual in the dataset S, includes its datum in the subsample independently
with probability p; (2) (Uniform subsampling) draws a subsample of S that is chosen uniformly at
random among all s = |S|p-sized subsets of S. Denote Id(α) = 1− α, and suppose an algorithm
M is f -DP. The subsampling theorem for f -DP states that the Poisson subsampled and uniform
subsampled algorithm are both min{fp, f−1

p }∗∗-DP, where fp = pf + (1− p) Id.
Fact 4 (Gaussian Differential Privacy (GDP)). To deal with the composition of f -DP guaran-
tees, Dong et al. (2022) introduce the concept of µ-GDP, which is a special case of f -DP with
f = Gµ = T (N (0, 1),N (µ, 1)). They prove that when all the f -DP guarantees are close to the
identity, their composition is asymptotically a µ-GDP with some computable µ, which can then be
converted to (ε, δ)-DP via duality. However, it comes without a finite-sample bound.

With these facts, we can characterize the f -DP guarantee for motivating applications in Section 1.1.

NoisySGD. For a NoisySGD with m iterations, subsampling ratio of p, and noise multiplier σ, it is
min{f, f−1}∗∗-DP (Bu et al., 2020; Dong et al., 2022), with f =

(
pG1/σ + (1− p)Id

)⊗m
.

Federated Analytics. Suppose there are m tasks, and each task is fi-DP with fi = T (Pi, Qi). Then
the overall DP guarantee is characterized by

⊗m
i=1 fi-DP.
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It is easy to see that the f -DP guarantee of NoisySGD is a special case of the f -DP guarantee of
federated analytics with each trade-off function being fi = min{fp, f−1

p }∗∗, that is, with identical
composition of subsampled Gaussian mechanisms. Therefore, our goal is to efficiently and accurately
evaluate the privacy guarantee of the general

⊗m
i=1 fi-DP with an explicit finite-sample error bound.

3 PRIVACY-LOSS LOG-LIKELIHOOD RATIOS (PLLRS)

We aim to compute the explicit DP guarantees for general composition of trade-off functions of the
form f =

⊗m
i=1 fi. For the i-th composition, the trade-off function fi = T (Pi, Qi) is realized by

the two hypotheses: H0,i : wi ∼ Pi vs. H1,i : wi ∼ Qi, where Pi, Qi are two distributions. To
evaluate the trade-off function f =

⊗m
i=1 fi, we are essentially distinguishing between the two

composite hypotheses H0 : w ∼ P1 × P2 × · · · × Pm vs. H1 : w ∼ Q1 ×Q2 × · · · ×Qm, where
w = (w1, ..., wm) is the concatenation of all wi’s. Motivated by the optimal test asserted by the
Neyman-Pearson Lemma, we give the following definition.
Definition 3.1. The associated pair of privacy-loss log-likelihood ratios (PLLRs) is defined to
be the logarithm of the Radon-Nikodym derivatives of two hypotheses under null and alternative
hypothesis, respectively. Specifically, we can express PLLRs with respect to H0,i and H1,i as

Xi ≡ log
(
dQi(ξi)
dPi(ξi)

)
, Yi ≡ log

(
dQi(ζi)
dPi(ζi)

)
, where ξi ∼ Pi, ζi ∼ Qi. 3

Note that the definition of PLLRs only depends on the two hypotheses. It allows us to convert
the f -DP guarantee to a collection of (ε, δ)-DP guarantees losslessly. The following proposition
characterizes the relationship between ε and δ in terms of the distribution functions of PLLRs.
Proposition 3.2. Let X1, . . . , Xm and Y1, . . . , Ym be the PLLRs defined above. Let FX,m, FY,m be
the CDFs of X1 + · · · + Xm and Y1 + · · · + Ym, respectively. Then, the composed mechanism is
f -DP (with f =

⊗m
i=1 fi) if and only if it is (ε, δ)-DP for all ε > 0 with δ defined by

δ = 1− FY,m(ε)− eε(1− FX,m(ε)). (3.1)

Proposition 3.2 establishes a relationship between f -DP and a collection of (ε, δ(ε))-DP, which
reflects the primal-dual relationship between them. Note that some special forms of this general
proposition have been proved previously in terms of privacy loss random variables. See Balle &
Wang (2018); Zhu et al. (2021); Gopi et al. (2021) for details. The key contribution of our Proposition
3.2 is that we express the (ε, δ)-DP characterization of the #P-complete f -DP in terms of (3.1),
which can be approximated directly. Of note, the above relationship is general in the sense that we
make no assumption on the private mechanisms.

Definition 3.1 can be applied directly when dQi(ξi)
dPi(ξi)

is easy to compute, which corresponds to the
case without subsampling. To deal with the case with subsampling, one must take into account that
the subsampled DP guarantee is the double conjugate of the minimum of two asymmetric trade-off
functions (for example, recall the trade-off function of a single sub-sampled Gaussian mechanism
is min{fp, f−1

p }∗∗, where fp = (pG1/σ + (1 − p)Id)). In general, the composition of multiple
subsampled mechanisms satisfies f -DP for f = min{⊗mi=1fi,pi ,⊗mi=1f

−1
i,pi
}∗∗. This general form

makes the direct computation of the PLLRs through composite hypotheses infeasible, as it is hard to
write f as a trade-off function for some explicit pair of hypotheses H0 and H1. Therefore, instead of
using one single sequence of PLLRs directly corresponding to f , we shall use a family of sequences
of PLLRs. In general, suppose we have a mechanism characterized by some f -DP guarantee, where
f =

(
infα∈I{f (α)}

)∗∗
, for some index set I. That is, f is the tightest possible trade-off function

satisfying all the f (α)-DP. Suppose further that for each α, we can find a sequence of computable
PLLRs corresponding to f (α), which allows us to obtain a collection of (ε, δ(α)(ε))-DP guarantees.

Lemma 3.3. Suppose that for each α, functions f (α) and δ(α) satisfy that a mechanism is f (α)-DP
if and only if it is (ε, δ(α)(ε))-DP for all ε > 0. Then a mechanism is f =

(
infα∈I{f (α)}

)∗∗
-DP if

and only if it is (ε, supα{δ(α)(ε)})-DP for all ε > 0.

We defer the proof of this lemma to the appendices. The intuition is that both
(
infα∈I{f (α)}

)∗∗
-DP

and (ε, supα{δ(α)(ε)})-DP correspond to the tightest possible DP-guarantee for the entire collection.
3For completeness, we explicitly require that all ξi and ζi be independent.

5



Under review as a conference paper at ICLR 2023

Lemma 3.3 allows us to characterize the subsampled Gaussian mechanism using two sequences
of PLLRs. As mentioned above, it is f -DP with f = min{⊗mi=1fi,p,⊗mi=1f

−1
i,p }∗∗, where

each fi,p =
(
pG1/σ + (1− p)Id

)
. For the first part, the PLLRs corresponding to ⊗mi=1fi,p =(

pG1/σ + (1− p)Id
)⊗m

are given by X(1)
i = log(1 − p + peµξi−

1
2µ

2

), and Y (1)
i = log(1 − p +

peµζi−
1
2µ

2

), for 1 ≤ i ≤ m, with ξi ∼ N (0, 1), ζi ∼ pN (0, 1) + (1 − p)N (µ, 1). And for the
second part, the PLLRs corresponding to ⊗mi=1f

−1
i,p =

(
(pG1/σ + (1− p)Id)−1

)⊗m
are given by

X
(2)
i = − log(1 − p + peµζi−

1
2µ

2

), and Y (2)
i = − log(1 − p + peµξi−

1
2µ

2

), for 1 ≤ i ≤ m, with
ξi ∼ N (0, 1), ζi ∼ pN (0, 1) + (1 − p)N (µ, 1). Now substituting FX(1),m and FY (1),m by any
approximation (for example, using the CLT or Edgeworth), we get a computable relationship in terms
of the (ε, δ(1)(ε))-DP; and similarly, we can get a relationship in terms of the (ε, δ(2)(ε))-DP. We
conclude that the subsampled Gaussian mechanism is (ε,max{δ(1)(ε), δ(2)(ε)})-DP.

3.1 TRANSFERRED ERROR BOUND BASED ON CDF APPROXIMATIONS

As discussed above, Lemma 3.3 allows us to characterize the double conjugate of the infimum of
a collection of f (α)-DPs via analyzing each sequence of PLLRs separately. As a result, our focus
is to compute the bounds of δ(α) for each single trade-off function f (α). To fulfill the purpose, we
seek an efficient algorithm for approximating distribution functions of the sum of PLLRs, namely,
FX(α),m, FY (α),m. This perspective provides a general framework that naturally encompasses many
existing methods, including fast Fourier transform (Gopi et al., 2021) and the characteristic function
method (Zhu et al., 2021). They can be viewed as different methods for finding upper and lower
bounds of FX(α),m, FY (α),m. Specifically, we denote the upper and lower bounds of FX(α),m by
F+
X(α),m

and F−
X(α),m

, and similarly for FY (α),m. These bounds can be easily converted to the error

bounds on privacy parameters of the form g(α)−(ε) ≤ δ(α)(ε) ≤ g(α)+(ε), for all ε > 0, where

g(α)+(ε) = 1− F−
Y (α),m

(ε)− eε(1− F+
X(α),m

(ε)),

g(α)−(ε) = 1− F+
Y (α),m

(ε)− eε(1− F−
X(α),m

(ε)).
(3.2)

Thus, the DP guarantee of
(
infα f

(α)
)∗∗

-DP in the form of (ε, δ(ε)) satisfies supα{g(α)−(ε)} ≤
δ(ε) ≤ supα{g(α)+(ε)}, for all ε > 0. To convert the guarantee of the form (ε, δ(ε)) for all ε > 0
to the guarantee of the form (ε(δ), δ) for all δ ∈ [0, 1), we can invert the above bounds on δ(ε) and
obtain the bounds of the form ε−(δ) ≤ ε(δ) ≤ ε+(δ). Here ε+(δ) is the largest root of equation
δ = supα{g(α)+(·)}, and ε−(δ) is the smallest non-negative root of equation δ = supα{g(α)−(·)}.
Remark 3.4. In practice, we often need to solve for those roots numerically, and we need to specify
a finite range in which we find all the roots. In Appendix B, we exemplify how to find such range for
NoisySGD, see Remark B.1 in the appendices for details.

4 EDGEWORTH ACCOUNTANT WITH FINITE-SAMPLE GUARANTEE

In what follows, we present a new approach, Edgeworth Accountant, based on the Edgeworth
expansion to approximate the distribution functions of the sum of PLLRs. For simplicity, we
demonstrate how to obtain the Edgeworth Accountant for any trade-off function f (α) based on a
single sequence of PLLRs {X(α)

i }mi=1, {Y
(α)
i }mi=1. Henceforth, we drop the superscript α when it is

clear from context. Specifically, we derive an approximate Edgeworth Accountant (AEA) and the
associated exact Edgeworth Accountant interval (EEAI) for f with PLLRs {Xi}mi=1, {Yi}mi=1. We
define AEA and EEAI for general trade-off function of the form

(
infα f

(α)
)∗∗

in Appendix C.

4.1 EDGEWORTH ACCOUNTANT

To approximate the CDF of a random variable X =
∑m
i=1Xi, we introduce Edgeworth expansion

in its most general form, where Xi’s are independent but not necessarily identical. Such generality
allows us to account for composition of heterogeneous DP algorithms. Suppose E [Xi] = µi
and γp,i := E [(Xi − µi)p] < +∞ for some p ≥ 4. We define Bm :=

√∑m
i=1 E [(Xi − µi)2],

and
∑m
i=1 µi = Mm. So, the standardized sum can be written as Sm := (X −Mm)/Bm. We
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denote Em,k,X(x) to be the k-th order Edgeworth approximation of Sm. Note that the central limit
theorem (CLT) can be viewed as the 0-th order Edgeworth approximation. The first-order Edgeworth
approximation is given by adding one extra order O(1/

√
m) term to the CLT, that is, Em,1,X(x) =

Φ(x)− λ3,m

6
√
m

(
x2 − 1

)
φ(x). Here, Φ and φ are the CDF and PDF of a standard normal distribution,

and λ3,m is a constant to be defined in Lemma 4.3. It is known that (see for example, Hall (2013))
the Edgeworth approximation of order p has an error rate of O(m−(p+1)/2). This desirable property
motivates us to use the rescaled Edgeworth approximation Gm,k,X(x) = Em,k,X ((x−Mm)/Bm)
and Gm,k,Y (x) = Em,k,Y ((x−Mm)/Bm) to approximate FX,m(x) and FY,m(x), respectively, in
(3.1). This is what we term the approximate Edgeworth Accountant (AEA).
Definition 4.1 (AEA). The k-th order AEA that defines δ(ε) for ε > 0 is given by δ(ε) = 1 −
Gm,k,Y (ε)− eε(1−Gm,k,X(ε)), for all ε > 0.

Asymptotically, AEA is an exact accountant, due to the rate of convergence Edgeworth approximation
admits. In practice, however, the finite-sample guarantee is still missing since the exact constant
of such rate is unknown. To obtain a computable (ε, δ(ε))-DP bound via (3.1), we require the
finite-sample bounds on the approximation error of the CDF for any finite number of iterations m.
Suppose that we can provide a finite-sample bound using Edgeworth approximation of the form
|FX,m(x)−Gm,k,X(x)| ≤ ∆m,k,X(x), where ∆m,k,X(x) is computable. Then we have

F+
X,m(x) = Gm,k,X(x) + ∆m,k,X(x) and F−X,m(x) = Gm,k,X(x)−∆m,k,X(x), (4.1)

and similarly for FY,m. We now define the exact Edgeworth Accountant interval (EEAI).
Definition 4.2 (EEAI). The k-th order EEAI associated with privacy parameter δ(ε) for ε > 0 is
given by [δ−, δ+], where for all ε > 0

δ−(ε) ≡ 1−Gm,k,Y (ε)−∆m,k,Y (ε)− eε(1−Gm,k,X(ε) + ∆m,k,X(ε)),

δ+(ε) ≡ 1−Gm,k,Y (ε) + ∆m,k,Y (ε)− eε(1−Gm,k,X(ε)−∆m,k,X(ε)).
(4.2)

To bound the EEAI, it suffices to have a finite-sample bound on ∆m,k,X(ε) and ∆m,k,Y (ε).

4.2 UNIFORM BOUND ON PLLRS

We now deal with the bound of the Edgeworth approximation on PLLRs in (4.1). Our starting point
is a uniform bound of the form ∆m,k,X(x) ≤ cm,k,X , for all x. The bound for ∆m,k,Y (x) follows
identically. To achieve this goal, we follow the analysis on the finite-sample bound in Derumigny
et al. (2021). We state the bound of the first-order Edgeworth expansion.
Lemma 4.3. Define the average individual standard deviation B̄m := Bm/

√
m and the average

standardized r-th cumulant as λk,m := 1
m

∑m
j=1 kr,j/B̄

3
m, where kr,j is the r-th centralized cumulant

of the j-th sample. With bounded moments of order four, that is, γ4,i < +∞ for 1 ≤ i ≤ m, we have
the (uniform) bound on Edgeworth expansion as

∆m,1,X ≤
0.1995K̃3,m√

m
+

0.031K̃2
3,m + 0.195K4,m + 0.054 |λ3,m| K̃3,m + 0.038λ2

3,m

m
+ r1,m,

where Kp,m := m−1
∑m
i=1 E [|Xi − µi|p] /

(
B̄m
)p

, which is the average standardized p-th absolute
moment, and K̃3,m := K3,m + 1

m

∑m
i=1 E |Xi − µi| γ2,i/B̄

3
m. Here r1,m is a remainder term of

order O(1/m5/4) that depends only on K3,m,K4,m and λ3,m, and is defined in Equation (H.1).

Note that this lemma deals with the first-order Edgeworth approximation which can be generalized to
the higher-order Edgeworth approximations. We present the analysis of the second- and third-order
in the appendices. The expression of r1,m only involves real integration with known constants which
can be numerically evaluated in constant time.
Remark 4.4. The precision of the EEAI highly depends on the rate of the finite-sample bound of
the Edgeworth expansion. Any better bounds for higher-order Edgeworth expansions can be directly
applied to our EEAI by substituting ∆m,k,X(ε), here we simply demonstrate when k = 1 leveraging
the first-order expansion. Observe that Lemma 4.3 gives a bound of order O(1/

√
m) due to the

reason that we want to deal with general independent but not necessarily identical random variables.
We demonstrate how one can obtain a O(1/m) rate in the i.i.d. case in Appendix H. Our current
first-order bound is primarily useful when m is large enough, but a bound for higher-order Edgeworth
expansions can further improve the precision for all m.
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4.3 ADAPTIVE EXPONENTIAL DECAYING BOUND FOR NOISYSGD

One specific concern of the bound derived in the previous section is that it is uniform in ε. Note that in
(3.1), there is an amplification factor of error by eε in front of FX,m. Therefore, as long as ε grows in
m with order at least ε ∼ Ω(logm), the error term in (3.1) scales with order eΩ(logm)/O(m) = Ω(1).

In this section, we study the compositions of subsampled Gaussian mechanism (including NoisySGD
and many federated learning algorithms), where we are able to improve the previous bound when
ε is large. Informally, omitting the dependence on m, we want to have a bound of the form
|FX,m(ε)−Gm,k,X(ε)| = O(e−ε

2

) to offset the effect of eε in front of FX,m. To this end, we first
prove that the tail bound of FX,m(ε) is of orderO(e−ε

2

), with exact constant. Combining with the tail
behavior of the Edgeworth expansion, we conclude that the difference has the desired convergence rate.
Following the discussion in Section 3, we need to calculate the bounds for two sequences of PLLRs
separately. Here we focus on the sequence of PLLRs corresponding to

(
pG1/σ + (1− p)Id

)⊗m
.

These PLLRs are given by Xi = log(1 − p + peµξi−
1
2µ

2

), where ξi ∼ N(0, 1). The following
theorem characterizes the tail behavior of FX,m. The tail bound of the sum of the other sequence of
PLLRs corresponding to ((pG1/σ + (1− p)Id)−1)⊗m has the same rate, and can be proved similarly.

Theorem 1. There exist some positive constant a, and some associated constant η(a) > 0, such that

the tail of FX,m can be bounded as 1−FX,m(ε) = P (
∑m
i=1Xi ≥ ε) ≤ 2 exp

(
− (ε+mη)2

8mτ2

)
, where

τ2 = max

{
(log(1−p+peµa−

1
2
µ2 )+µ(a+−a)−log(1−p))2

4 , µ2, (a+−a)2µ2

2 log(Φ(a+)−Φ(a))

}
and a+ = φ(a)

1−Φ(a) .

The proof of Theorem 1 is deferred to Appendix G along with its dependent technical lemmas. From
the above theorem, we know that the tail of FX,m(ε) is O(e−max{ε2/m,m}) = o(e−ε), as long as
ε = o(m). Note that in this case, the tail of the rescaled Edgeworth expansion is of the same order
O(e−max{ε2/m,m}) = o(e−ε). Therefore, we can give a finite-sample bound of the same rate for the
difference between FX,m(ε) and its approximation Gm,k,X at large ε. Note that this finite-sample
bound scales better than uniform bound in Lemma 4.3 when m and ε are large.

4.4 EXTENSION TO OTHER MECHANISMS

Note that our analysis framework is applicable to a wide range of common noise-adding mechanisms.
Specifically, Lemma 4.3 only requires the distribution of PLLRs to have bounded fourth moments.
And for many common mechanisms, a counterpart of Theorem 1 can be proved similarly. We now
demonstrate how to generalize our analysis to the Laplace Mechanism.

The Laplace Mechanism. It is straightforward to verify that the trade-off function for subsampled
Laplace Mechanisms is given by min{(pLµ + (1− p)Id)⊗m, ((pLµ + (1− p)Id)−1)⊗m}∗∗, where
Lµ = T (Lap(0, 1),Lap(µ, 1)). The two associated sequences of PLLRs Xi and Yi can be ex-
pressed as: X(1)

i ≡ log
(
1− p+ pe|ξ|−|ξ−µ|

)
, Y

(1)
i ≡ log

(
1− p+ pe|ζ|−|ζ−µ|

)
, and X

(2)
i ≡

− log
(
1− p+ pe|ζ|−|ζ−µ|

)
, Y

(2)
i ≡ − log

(
1− p+ pe|ξ|−|ξ−µ|

)
, where ξ ∼ Lap(0, 1), ζ ∼

pLap(µ, 1) + (1− p)Lap(0, 1). Note that all the PLLRs are bounded and thus sub-Gaussian. This
implies that we can apply Lemma 4.3 directly and also bound the tail similar to Theorem 1.

Proposition 4.5. Denote η = −max
{
E(X

(1)
i ),E(X

(2)
i )
}
> 0. The tail of the sum of both

sequence of PLLRs under the Laplace Mechanism has the following inverse exponential be-
havior, max

{
P
(∑m

i=1X
(1)
i ≥ ε

)
,P
(∑m

i=1X
(2)
i ≥ ε

)}
≤ exp

(
− 2(ε+mη)2

mτ2

)
, where τ2 =

(log(1− p+ peµ)− log(1− p+ pe−µ))
2.

5 NUMERICAL EXPERIMENTS

In this section, we illustrate the advantages of Edgeworth Accountant by presenting the plots of
DP accountant curves under different settings. Specifically, we plot the privacy curve of ε against
number of compositions and compare our methods (AEA and EEAI) with existing DP accountants.
We provide the implementation of our Edgeworth Accountant in Appendix D.
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The AEA. We first demonstrate that our proposed approximate Edgeworth Accountant (AEA)
is indeed very accurate, outperforming the existing Rényi DP and the CLT approximations in
experiments. The first experiment has the same setting as in Figure 1(b) in Gopi et al. (2021), where
the authors report that both RDP and GDP are inaccurate, whereas the second setting corresponds
to a real federated learning task. The results are shown in Figure 2, where we describe the specific
settings in the caption. For each sub-figure, the dotted lines “FFT_LOW” and “FFT_UPP” denote
the lower and upper bound computed by FFT (Gopi et al., 2021) which are used as the underlying
ground truth. The “GDP” curve is computed by the CLT approximation (Bu et al., 2020), the “RDP”
curve is computed by moments accountant using Rényi DP with subsampling amplification (Wang
et al., 2019), and the “EW_EST” curve is computed by our (second-order) AEA. As is evident from
the figures, our AEA outperforms the GDP and RDP.
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Figure 2: The privacy curve computed via several different accountants. Left: The setting
in Figure 1(b) in Gopi et al. (2021), where p = 0.01, σ = 0.8, and δ = 0.015. Middle and
Right: The setting of a real application task in federated learning for 10 epochs, with p = 0.05,
σ = 1, and δ = 10−5. Here, “EW_EST” is the estimate given by our approximate Edgeworth
accountant. We omit the RDP curve in the middle subfigure for better comparisons with others.

The EEAI. We now present the empirical performance of EEAI obtained in Section 4.1. We still
experiment with NoisySGD. Details of the experiments are in the caption of Figure 3. The two error
bounds of EEAI are represented by “EW_UPP” and “EW_LOW”, and all other curves are defined the
same as in the previous setting. In addition to its optimal time complexity, our analytical finite-sample
bounds also achieve better numerical stability for large m in many cases. See Appendix for details.
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Figure 3: We demonstrate the comparisons between our Edgeworth accountant (both AEA and
EEAI), the RDP accountant, and the FFT accountant (whose precision of ε is set to be 0.1).
The three settings are set so that the privacy guarantees does not change dramatically as m
increases. Specifically, in all three settings, we set δ = 0.1, σ = 0.8, and p = 0.4/

√
m (left),

p = 1/
√
m logm (middle), and p = 0.1

√
logm/m (right). We omit the GDP curve here,

because the performance is fairly close to the AEA (“EW_EST” curve) when m is large.

6 CONCLUSION

In this paper, we provide a novel way to efficiently evaluate the composition of f -DP, which serves as
a general framework for constructing DP accountants based on approximations to PLLRs. Specifically,
we introduced the Edgeworth Accountant, an efficient approach to composing DP algorithms via
Edgeworth approximation. In contrast, existing privacy accountant algorithms either fail to provide a
finite-sample bound, or only achieve polynomial runtime for general compositions. Importantly, our
approach is a complement to the existing literature when the number of compositions is large, which
is typical in applications such as large-scale deep learning and federated analytics.
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