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Abstract

The stock market provides a rich well of in-001
formation that can be split across modalities,002
which makes it an ideal candidate for multi-003
modal evaluation. Multimodal data plays an004
increasingly important role in the development005
of machine learning and has shown to posi-006
tively impact performance. But information007
can do more than exist across modes— it can008
exist across time. How should we attend to tem-009
poral data that consists of multiple information010
types? This work introduces (i) the MEANT011
model, a Multimodal Encoder for Antecedent012
information and (ii) a new dataset called Temp-013
Stock. TempStock consists of price, Tweets, and014
graphical data with over a million Tweets from015
all of the companies in the S&P 500 Index.016
We find that MEANT improves performance017
on existing baselines by over 15%, and that018
the textual information affects performance far019
more than the visual information on our time-020
dependent task from our ablation study. 1021

1 Introduction022

Recently, multimodal models have garnered serious023

momentum, with the release of large pretrained ar-024

chitectures such as Microsoft’s Kosmos-1 (Huang025

et al., 2023) and OpenAI’s GPT-4 (OpenAI et al.,026

2023). Their general use has exploded in many027

different domains such as language and image pro-028

cessing (Lu et al., 2019; Kim et al., 2021; Huang029

et al., 2023). Particularly interesting to this study030

is the deployment of multimodal models on time-031

dependent environments such as the stock market.032

Recent successes have shown that event driven033

models processing multiple modalities are far more034

performant on stock market tasks than previously035

state of the art (SOTA) algorithms focusing purely036

on price information (Li et al., 2021; Zhang et al.,037

2022). Language data from news and social media038

1The code and dataset will be made available upon publi-
cation.

sources have shown to greatly increase the per- 039

formance of models for price prediction (Li et al., 040

2021; Zhang et al., 2022; Bybee et al., 2023; Mitter- 041

mayer and Knolmayer, 2006; Xu and Cohen, 2018). 042

However, these approaches typically lack attention 043

components specifically designed to process inputs 044

with sequential, time-dependent information (Li 045

et al., 2021; Sun et al., 2017; Zhang et al., 2022; 046

Xu and Cohen, 2018). This sort of data is partic- 047

ularly important when making predictions about 048

stock prices or market movements, as price predic- 049

tion is a time series task (Zhang et al., 2022; Xu 050

and Cohen, 2018). 051

In this work, we introduce MEANT, a multi- 052

modal model architecture with a novel, temporally 053

focused self-attention mechanism. We extract im- 054

age features using a vision transformer architec- 055

ture (Dosovitskiy et al., 2020) to find relationships 056

in longer range information (i.e a graph of stock 057

prices over a month), while extracting language 058

features from social media information to pick up 059

more immediate trends (e.g.: Tweets pertaining to 060

stock prices over a 5 day period). Furthermore, 061

we release Tempstock, a multimodal stock-market 062

dataset that is designed to be sequentially processed 063

in chunks of varying lag periods. 064

2 Related Work 065

Multimodal Models for Financial Twitter Data 066

Several studies have employed natural language 067

processing (NLP) techniques to financial markets, 068

giving birth to the field of natural language-based 069

financial forecasting (NLFF). Many of these stud- 070

ies have focused on public news (Ashtiani and 071

Raahemi, 2023; Bybee et al., 2023). However, 072

social media presents more time-sensitive infor- 073

mation from active investors. Thus, for short term 074

analysis, many researchers have begun to focus 075

on Tweets for feature extraction (Araci, 2019; Wu 076

et al., 2018), through which some have combined 077

NLP techniques with traditional analysis on price 078
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data. Since Tweets often correspond to events as079

they happen in real time, such data is better suited080

for smaller windows (Xu and Cohen, 2018; Zhang081

et al., 2022). When working with stock market data,082

combining the features extracted through Natural083

Language Processing (NLP) methods with price084

data has shown promising results (Li et al., 2021;085

Zhang et al., 2022; Xu and Cohen, 2018). How-086

ever, it is ineffective to feed the concatenated in-087

formation to the model without encoding temporal088

dependencies (Li et al., 2021).089

Modeling media-aware stock movements is es-090

sentially a binary classification problem. Many091

traditional machine learning methods have been092

deployed to solve it, including SVMs and Bayesian093

classifiers (Huang et al., 2012; Wang, 2003; Zuo094

et al., 2012). More recently, researchers have ap-095

plied deep learning to the problem. Huang et al.096

(2016) used a convolutional neural network to ex-097

plore the impact of Tweets on the stock market.098

Sun et al. (2017) and Selvin et al. (2017) then099

employed a recurrent architecture, specifically an100

LSTM, to extract relevant sentiments from Twitter101

data for stock market analysis, making their model102

multimodal, as it could handel Tweets and price103

information. Li et al. (2021) built atop this archi-104

tecture, employing different tensor representations105

for their LSTM input to create more meaningful106

relationships between the price and Tweets data.107

Xu and Cohen (2018) introduced StockNet, a108

large generative architecture built atop generative109

architectures, particularly the Variational Auto En-110

coder. StockNet represented the first deep genera-111

tive model for stock market prediction (Xu and Co-112

hen, 2018). TEANet, the most relevant work to our113

own, similarly used an LSTM to process their final114

output, but used a BERT-style transformer to ex-115

tract relevant features from the Tweets (Zhang et al.,116

2022). TEANet is a language model equipped to117

handle lag periods similarly to MEANT. They con-118

catenate their language features to price data as119

an input for an LSTM and a subsequent softmax120

temporal encoding. We abandon recurrence alto-121

gether, developing a novel temporal mechanism,122

entirely based upon traditional self-attention meth-123

ods (Vaswani et al., 2017). The temporal process-124

ing in TEANet consists of concatenation methods125

similar to our own, but they do not employ attention126

over time. Furthermore, their model was built to127

handle Tweets and price inputs alone. MEANT can128

handle images as well, employing a dual encoder129

architecture similar to that of Su et al. (2023). 130

Financial Twitter Datasets Previous financial 131

datasets have shown the power of Twitter data for 132

financial analysis (Pei et al., 2022; Araci, 2019; 133

Li et al., 2021). Twitter is powerful in its ability 134

to generate real time information about the mar- 135

ket before traditional newswires (Pei et al., 2022). 136

Souza et al. (2015) focused on Twitter as a resource 137

for examine financial dynamics in the retail sec- 138

tor. Pei et al. (2022) introduced TweetsFinSent, 139

a large corpus specifically for sentiment analysis. 140

Sun et al. (2017) introduced a dataset consisting of 141

Tweets and prices, where the Tweets information 142

served as a sentiment analysis accompaniment for 143

the price data. Xu and Cohen (2018) introduced the 144

StockNet-dataset, consisting of Tweets and price 145

information for a selection of 88 companies over 146

a two year period from 01/01/2014 to 01/01/2016. 147

Mao et al. (2012) matched Tweets with price in- 148

formation from companies in the S&P 500 dataset, 149

which is the most similar to the TempStock dataset 150

that we introduce below. 151

3 TempStock Dataset 152

We collected a new dataset containing 1,755,998 153

Tweets and price information from all of the compa- 154

nies in the S&P 500 from 4/10/2022 to 4/10/2023. 155

From the price information, we calculated
the Moving Average Convergence-Divergence
(MACD) (Appel, 2005) for each company over
a year. The MACD is built on the back of Exponen-
tial Moving Average (EMA) (Brown, 1964). The
EMA is defined as follows:

EMAt = (1− α) · EMAt−1 + α · yt

where t represents the day of EMA and yt repre- 156

sents the closing price on that day, or in the case 157

of the signal line, the MACD value on that day. α 158

represents the degree of decrease; α = 2
t+1 . Higher 159

values, it can be observed, decrease more rapidly. 160

The MACD consists of an MACD line, which is 161

the difference between the fast EMA and the slow 162

EMA (which are commonly set to 12 days and 163

26 days respectively), a signal line, which is the 164

EMA of the MACD line itself (usally over a 9 day 165

period) and a histogram, which is the difference be- 166

tween the MACD and the signal line. The MACD 167

indicator was chosen2 because it has been shown 168

to perform well against other indicators in terms 169

2For more on this, see 6.4
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Figure 1: An example of a graph from our MACD data

of making accurate assertions about price direc-170

tions (Appel, 2005; Chio, 2022). From our MACD171

data, we created graphs of the MACD indicator and172

the corresponding signal line over 26 day periods,173

which served as our image inputs to the MEANT174

model. A example of the graph inputs can be seen175

in Figure 1.176

The MACD of each ticker in the subset was taken177

over a year period, along with the Tweets mention-178

ing that company for each day in that period. The179

MACD information was gathered using the Alpha-180

Vantage api (Alpha Vantage Inc., 2024), and the181

Tweets were scraped using the snscraper (JustAn-182

otherArchivist, 2021) in April 2023.183

3.1 Preprocessing184

First, all Tweets are anonymized, so that user iden-185

tity is protected and potential noise in the dataset186

is reduced. Next, we created two different parti-187

tions of the TempStock dataset for pretraining and188

fine-tuning, called TempStock-large and TempStock-189

small as we wanted to have a partition of the data190

upon which to test the performance of the model.191

The total number of Tweets and MACD values can192

be found in Table 1.193

TempStock-large is used for pretraining, con-194

tained Tweets, the MACD value, and the graphical195

representation for each ticker in the S&P 500.196

TempStock-small contained a subset of the S&P197

500, namely the first 37 tickers alphabetically. As198

we are tracing days where there was a recorded199

price, both the TempStock-small and TempStock-200

large dataset only trace weekdays, which amounts201

to 265 days in the aforementioned period. The num-202

ber of Tweets for each ticker on each day varied,203

Description Count
Total Tweets 1,755,998
Total MACD Values 122,959

Table 1: TempStock-large Raw Numbers

as some companies were mentioned more often 204

then others. TempStock-small required more direct 205

preprocessing, as it was used for fine-tuning on 206

downstream tasks. The raw data from TempStock- 207

large was used for pretraining only. 208

In TempStock-small, Tweets, graphs, and
MACD averages were arranged into 5 day lag peri-
ods, so that each data point processed by the model
consisted of 5 MACD vectors, 5 days of Tweets,
and a graph of the MACD indicator over the long
period from each of those days (5 images contain-
ing graphs of the MACD indicator over 26 days
leading up to said day). These data points were
classified as positive if the below equation held for
the target day (the last day in the lag period):

Mt−1 < St−1 ∧Mt > St ∧Mt > 0

The values are labeled as 1 (a buy signal, positive) 209

if the MACD was above 0 on the target day and 210

crossed the signal line, while experiencing an 211

upwards trend in the succeeding week (higher 212

lows). Otherwise they were labeled as 0 (negative). 213

The totals for Tweets and MACDs can be seen in 2, 214

along with the distribution of positive and negative 215

buy signals. 216

217

Description Total

Total Tweets 129,168
Total MACD Values 8,505
Positive MACDs 157
Negative MACDs 8,357

Table 2: Overview of TempStock-small

In TempStock-small, there was a class imbalance 218

between positive and negative examples, which in- 219

dicates that stocks to have sparse periods of momen- 220

tum buy signals, according to the MACD ticker and 221

traditional buy/sell strategies surrounding it (Joshi, 222

2022). For practical purposes, we would want a 223

model that can accurately identify these sparse buy 224

periods, and reject everything else. Thus, we em- 225

ploy the synthetic minority oversampling technique 226
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(SMOTE) algorithm (Bowyer et al., 2011) to pro-227

duce synthetic examples for our images, Tweets,228

and MACD price values. We clean our generated229

MACD values, to ensure that they obey our classi-230

fication rules by a clear margin. In section 6.4 we231

discuss drawbacks and benefits of this approach.232

Furthermore, we generate our image and text data233

separately, to reduce noise between the two modal-234

ity types. With our generated data, the class num-235

bers change to the values in 3.236

Category Count

Positive 8,357
Negative 8,357

Table 3: TempStock-small Resampled

4 MEANT237

MEANT combines the advantages of image and238

language processing with temporal attention, in239

order to extract dependencies from multimodal,240

sequential information, where 2 displays the full241

architecture. MEANT, similarly to most SOTA242

multimodal models (Liang et al., 2021; Kim et al.,243

2021; Su et al., 2019; Huang et al., 2023; OpenAI244

et al., 2023), is built atop the Transformer architec-245

ture (Vaswani et al., 2017).246

4.1 Encoder Only247

MEANT is an encoder-only model, similar to248

BERT (Devlin et al., 2018). The transformer stacks249

the attention mechanism with linear layers to ex-250

tract relevant features from the input. Between251

the 2 parts of the encoder, and before the output,252

there is a standard residual connection, meaning253

that the input to that portion of the architecture is254

fed through added with the original input. This is255

done to alleviate the vanishing gradient problem256

(Pascanu et al., 2013). The encoder structure em-257

ployed by both the language and vision pipelines258

is inspired by the Magneto model (Wang et al.,259

2022). It makes use of sub-layer normalization,260

meaning that a layer norm is interleaved between261

the attention and linear layer components of the en-262

coder. This architecture was chosen because it has263

been shown to be successful on a wide variety of264

uni-modal and multimodal problems (Huang et al.,265

2023; Wang et al., 2022).266

4.2 Token and Patch Embeddings 267

Before being fed to the attention mechanism, the 268

two input types have to be prepared for pro- 269

cessing using two different embedding strate- 270

gies. The Tweets in MEANT are tokenized us- 271

ing the BERTweet tokenizer (Nguyen et al., 2020). 272

MEANT also uses the BERTweet pretrained word 273

embedding layer. 274

The images are first transformed into tensors 275

of rgb values and reshaped to a manageable size. 276

MEANT handles input image sizes of 4 x 224 x 277

224, where 4 represents the number of channels 278

and the subsequent dimensions are the height and 279

width respectively. These vectors are then broken 280

down using the patch embedding strategy from 281

the original vision transformer (Dosovitskiy et al., 282

2020). 283

4.3 Positional Encoding 284

In MEANT, the language and vision encoder use
different variants of the rotary embedding (Su et al.,
2021). The language encoder uses the xPos em-
beddings (Sun et al., 2022), while the vision en-
coder uses 2D-axial rotary embeddings (Su et al.,
2021), which simply means that the angle θ of rota-
tion is altered according to the following equation:

θi = i ∗ floor(d/2) ∗ pi

4.3.1 Temporal Attention 285

For the input to the Temporal attention mechanism, 286

we used the pooled means from each modality, con- 287

catenating them to the MACD information from 288

that 5 day lag period: 289

ti = ⌈tp, gp,m⌉ ∈ Rl×dimt (1) 290

tp is the mean of the Tweet language encoder 291

outputs, gp is the mean of the graph vision encoder 292

outputs, l is the lag period, m are the MACD val- 293

ues, and dimt is the temporal dimension, which 294

is the sum of the language, image, and MACD 295

dimensions. ti signifies the input for the tempo- 296

ral encoder. In the vanilla implementation of the 297

MEANT model, the temporal dimension is 1540. 298

While many BERT-like architectures use [cls] to- 299

kens (Devlin et al., 2018; Araci, 2019), which are 300

trained to become reasonable representations of the 301

entire input over time, we found that mean pooling 302

was a more effective strategy for performance from 303

preliminary results. 304

In the case of MEANT, the outputs are not di- 305

rectly fed into a classification head, but are instead 306
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Figure 2: A schematic overview of the MEANT architecture

passed to a temporal mechanism. At this point in307

the pipeline, relevant image and text features have308

been extracted for each trading day in relation to309

themselves, not to one another. The temporal at-310

tention mechanism focuses on the target day, and311

its relationship to the preceding days. The purpose312

of the model is to extract a pattern from the pre-313

ceding days, to identify future MACD crossings314

which may result in a profitable push. MEANT315

does this by using the query matrix in the attention316

mechanism, which only acts upon the target day,317

so that all of the keys and values are processed in318

relation to the target day.319

tempAttention(Q,K, V ) = softmax

(
QtK

T

√
d

)
V

The relevant features are extracted by the lan-320

guage and vision encoders, where the temporal321

mechanism only needs to process a simple compu-322

tation to find a meaningful temporal pattern. The323

temporal encoder is structured identically to the324

image and language encoders in all other aspects.325

There are positional temporal embeddings layered326

on top, but these are simply a learned parameter327

vector, not rotary embeddings. For the TempStock328

and Stocknet experiments (see 5 below), the output329

of the temporal encoder is then processed by the330

MLP head, which produces a classification.331

5 Experiments 332

We ran the model at three different sizes, coined 333

MEANT-small, MEANT-large and MEANT-XL. 334

MEANT-small contained one encoder for lan- 335

guage and vision, along with one temporal encoder. 336

MEANT-large consisted of 12 encoders for both 337

language and vision, with one encoder for tempo- 338

ral attention. 12 was selected as the number of 339

encoders used in the original BERT model (De- 340

vlin et al., 2018). MEANT-XL had 24 encoders 341

for the vision and language encoders. MEANT 342

was implemented using a typical transformer for- 343

mula, employing the use of RMSNorm (Zhang and 344

Sennrich, 2019), Flash-attention (Dao et al., 2022), 345

and GELU activation units (Hendrycks and Gimpel, 346

2016). 347

Model Parameter Count

MEANT-small 73,685,762
MEANT-large 177,697,538
MEANT-XL 291,164,930

Table 4: MEANT Parameter Count

All fine-tuning and training was done with an 348

AdamW optimizer (Loshchilov and Hutter, 2017), 349

a cosine annealing learning rate scheduler with 350

warm restarts (Loshchilov and Hutter, 2016), and 351

an initial learning rate of 5e−5. 352
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5.1 Pretraining353

We follow typical pretraining methods for our lan-354

guage and vision encoders. For our language en-355

coder, we used masked language modeling on356

our raw TempStock-large dataset. We trained our357

MEANT-small and MEANT-large language en-358

coders on 4 NVIDIA p100 GPUs for 3 and 10359

hours respectively. For MEANT-XL, we trained on360

an A100 GPU for 10 hours. A training batch size361

of 32 was used.362

For the image encoders, we used masked im-363

age modeling with block and channel masking.364

The image encoders were trained on 4 NVIDIA365

p100 GPUs as well, for 20 hours. We used MACD366

graphs from the raw MACD data in TempStock-367

large. For these encoders, we also used a training-368

batch size of 32.369

5.2 Fine-tuning on downstream tasks370

We tested the viability of the MEANT architecture371

on two tasks.372

5.2.1 TempStock373

First, we wanted to see the performance of MEANT374

on TempStock-small. This boiled down to a binary375

classification task, identifying lag periods which376

resulted in momentum shifts and those that did377

not. We fine-tuned and tested the MEANT models378

on the augmented TempStock-small dataset, using379

a randomized split for our train, validation, and380

test data, consisting of 70%, 10%, and 20% of381

TempStock-small respectively.382

To further measure MEANT’s performance, we383

ran some similar SOTA encoder-based multimodal384

models on TempStock. TEANet, a key inspiration385

for this work, was the most similar model in origi-386

nal purpose, so proved the most interesting bench-387

mark. We fine-tuned VL-BERT (Su et al., 2019)388

and ViLT (Kim et al., 2021) on TempStock-small389

as well.390

5.2.2 Stocknet391

The most similar dataset to TempStock was the392

Stocknet dataset (Xu and Cohen, 2018), which con-393

sists of Tweets and price values from a selected394

batch of stock tickers. Stocknet is different from395

TempStock as it is a unimodal dataset, contain-396

ing no graphical component, and is furthermore397

focused on binary price change rather than mo-398

mentum shift (as measured by MACD crossing in399

TempStock). Nonetheless, Stocknet represents one400

of the only datasets to our knowledge organized401

Model F1 P R

VL-BERT 0.91 0.91 0.91
ViLT 0.94 0.95 0.94
TEANet 0.79 0.82 0.79

MEANT-base 0.97 0.97 0.97
MEANT-large 0.99 0.99 0.99
MEANT-XL 0.99 0.98 0.99

Table 5: TempStock Experiment Results, using Preci-
sion (P), Recall (R), and F-1 scores.

in lag periods and is therefore relevant as a bench- 402

mark for the MEANT model. StockNet, similar 403

to TempStock, is a binary classification problem, 404

where the inputs that had a movement ratio ≤ -0.5 405

were labeled 0 and the inputs with a movement 406

ratio ≥ 0.55 were labeled with 1. 407

We ran MEANT-Tweets (both small and large) 408

on the StockNet-dataset, and compared against 409

TEANet (Zhang et al., 2022) which was originally 410

evaluated by the authors on the StockNet dataset, as 411

well as the StockNet model itself (Xu and Cohen, 412

2018). We ran a commonly used encoder archi- 413

tecture on the StockNet-dataset, fine-tuned with 414

BERTweet (Nguyen et al., 2020). All experiments 415

were ran for 10 epochs, and the results after the 416

10th epoch are described below. 417

6 Results 418

Tables 5 and 6 in sections 6.1 and 6.2 show the 419

results for our experiments respectively. 420

6.1 TempStock Experiment results 421

MEANT-base, MEANT-large and MEANT-XL out- 422

perform the similar models by a signficant mar- 423

gin. MEANT outperforms TEANet, the only 424

other model with a temporal component, by 0.20 425

in F1 score. ViLT is the closest in perfor- 426

mance to MEANT base, achieving an F1-score of 427

0.949. ViLT the most similar encoding structure to 428

MEANT, which is one reason for the similar perfor- 429

mance. The performance gains with MEANT em- 430

phasize the effectiveness of combining the SOTA 431

transformer encoder architectures with temporal 432

components. 433

MEANT-XL and MEANT-large are practically 434

identical in performance, which indicates that the 435

task is ’solved’ with a model in the 170 million 436

parameter range or so. 437
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6.2 Stocknet results438

Model Acc% F1 P R

BERTweet 49.20 0.32 0.24 0.50
StockNet 57.53 0.57 0.58 0.57
TEANet 70.88 0.70 0.70 0.70

M-Tweet base 79.92 0.79 0.80 0.79
M-Tweet-large 80.17 0.80 0.80 0.80
M-Tweet-XL 85.65 0.85 0.85 0.85

Table 6: StockNet-dataset experiment results using Pre-
cision (P), Recall (R), F-1 scores and testing accuracy
(Acc).

Looking at 6, MEANT-Tweets base and439

MEANT-Tweets large outperform all other mod-440

els by a significant amount on the StockNet task.441

MEANT-tweet-XL outperformed TEANet, the pre-442

vious SOTA on the StockNet dataset, by 15%. We443

ran our own implementation of the TEANet model444

on the task following their descriptions from the445

paper, as we could not find publicly available code.446

The original accuracy score reported in the paper447

was 65.16% (Zhang et al., 2022).448

The importance of a temporal component for449

the StockNet task is clear. BERTweet, a typical450

encoder architecture without temporal support, per-451

formed abysmally. StockNet performed marginally452

better, but it is with the auxiliary temporal softmax453

mechanism in TEANet that the first true perfor-454

mance gain can be seen.455

Clearly, the attention-based temporal mechanism456

in MEANT is the most performant for this prob-457

lem. MEANT is able to extract meaningful rela-458

tionships between the target day and the auxiliary459

trading days, in a way that allows for far more460

accurate binary price prediction then previously de-461

fined mechanisms. There are likely a few reasons462

for this. Models that depend on multi-head selt-463

attention (MSA) can be thought of as a low pass464

filters, meaning that they generally tend to flatten465

loss landscapes (Park and Kim, 2022). There are466

Tweets in the StockNet dataset that don’t correlate467

to the buy signal, but because of the nature of the468

data collection, these are in the vast minority (Xu469

and Cohen, 2018). However, since we are also ex-470

tracting trends that are dependent on the order of471

these Tweets in time, a succession of even a few472

outlier or irrelevant Tweets could be very damag-473

ing to the loss landscape of a more sensitive model.474

Our temporal attention mechanism is better able to475

handle the noise in the data. Furthermore, atten- 476

tion scales far better with parameter size, and our 477

MEANT-XL model in particular dwarfs previous 478

TEANet and StockNet in parameter size (Zhang 479

et al., 2022; Xu and Cohen, 2018). Larger param- 480

eter spaces tend to lead to a more nuanced loss 481

landscape (Fort and Jastrzebski, 2019; Fort and 482

Scherlis, 2019; Park and Kim, 2022). 483

6.3 Albation Study 484

To examine the importance of the image and lan- 485

guage modalities respectively, we also created two 486

variations of the MEANT model, MEANT-vision 487

and MEANT-language. MEANT-vision contained 488

only the vision-encoder, while MEANT-Tweets 489

used the language-encoder only. Both model still 490

used the temporal attention head. These two vari- 491

ants were similarly fine-tuned and evaluated on the 492

TempStock-small task 7. 493

Model F1 P R

MEANT-base 0.97 0.98 0.96
MEANT-large 0.99 0.99 0.99
MEANT-XL 0.99 0.98 0.99
M-Tweets 0.94 0.94 0.94
M-Tweets-large 0.95 0.95 0.95
M-Tweets-XL 0.95 0.95 0.95
M-vision 0.72 0.77 0.73
M-vision-large 0.74 0.74 0.74
M-vision-XL 0.77 0.76 0.78

Table 7: TempStock MEANT-variant Results, using
Precision (P), Recall (R), and F-1 scores.

7 shows that MEANT large exhibited the best 494

performance in F1, precision, and recall. What 495

is perhaps more interesting about these results is 496

examining the performance of MEANT-Tweet vs 497

MEANT-large and MEANT-XL. The performance 498

drop-off from MEANT-base to MEANT-Tweets- 499

base is only about 0.03 in F1 score. Yet MEANT- 500

vision-base exhibits a performance drop off of 0.25 501

from MEANT-base. These results indicate that the 502

Twitter inputs contain features which are more in- 503

dicative of momentum changes in the MACD indi- 504

cator than the long-range graph inputs. This makes 505

sense, as the graph images are sparsely populated 506

(being mostly white space) and thus contain less 507

information at face value. We are training our vi- 508

sion encoders to sort through a lot of blank noise to 509

find the relevant information, which likely requires 510

more rigorous pretraining schemes to realize the 511
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true benefits of our long range information (Park512

and Kim, 2022; Dosovitskiy et al., 2020).513

6.4 Discussion514

Here, we outline considerations, trade-offs and de-515

sign decisions we have made:516

• Dataset To explore temporal information pro-517

cessing, we chose momentum buy signals in518

stock market data. We went with the MACD519

indicator because of its robustness, and corre-520

lation to strong positive returns against other521

indicators (Joshi, 2022; Chio, 2022). The se-522

rious drawback in this choice is in the infre-523

quency of buy signals that occur. To allevi-524

ate the huge class imbalance, we decided to525

use the SMOTE algorithm to produce syn-526

thetic examples. We chose oversampling as527

a technique over under sampling, because528

of the relatively small size of our evaluation529

dataset. This method has some drawbacks.530

SMOTE might generate examples in areas531

where classes overlap or there is noise, away532

from more secure regions. This could result533

in the creation of instances that do not accu-534

rately reflect the characteristics of the minority535

class, potentially degrading the effectiveness536

of classification (Elreedy and Atiya, 2019;537

Teslenko et al., 2023). Furthermore, the pre-538

cision of the instances produced by SMOTE539

can be affected by various factors, including540

the dataset’s dimensionality, the training set’s541

size, and the chosen number of nearest neigh-542

bors (Elreedy and Atiya, 2019; Teslenko et al.,543

2023; Grina et al., 2020). We gathered our544

stock price information from companies in545

the S&P 500. We chose this index because546

of its stability. However, as a result, we were547

unable to train our model on more extreme548

price patterns that are more common on ob-549

scure indexes (Goetzmann and Massa, 2003).550

Thus, in the case of extreme market events551

that result in periods of steep decline or rise552

would likely confuse the model.553

• MEANT The MEANT encoder is built atop554

the Kosmos-1 encoder architecture, that uses555

interleaved LayerNorms (Vu et al., 2022). The556

authors thought this to lead to increased nu-557

meric stability (Huang et al., 2023), which558

in turn helps prevent the exploding gradient559

problem. However, the inclusion of so many560

layerNorms in each encoder in our models 561

can lead to an increase in bias, which eventu- 562

ally can lead to a serious overfitting problem 563

(Xu et al., 2019). We chose to go ahead with 564

this risk, as previous architectures have shown 565

the stability gains from the interleaved nor- 566

malizations to allow for better scaling (Wang 567

et al., 2022; Huang et al., 2023). MEANT 568

was trained to identify buy signals, and reject 569

everything else, instead of trying to classify 570

price periods on a more nuanced scale. We 571

chose this path for simplicity’s sake. For prac- 572

tical use on financial data, we would likely 573

need more levels of categorization. 574

7 Conclusion and Future Work 575

We introduced a multimodal encoder with a novel 576

temporal component comprised entirely of self- 577

attention. MEANT outperforms previous models 578

on the StockNet benchmark by 15%, and proves to 579

be the most performant model on our own Temp- 580

Stock benchmark. To our knowledge, MEANT- 581

XL is the largest model to be applied to StockNet, 582

and is the first multimodal model to contain an 583

attention mechanism to deal with data over a lag 584

period of days. MEANT combines the realms of 585

language, vision, and time to produce SOTA results. 586

In the future, we would like to test MEANT against 587

some common multimodal benchmarks, such as Vi- 588

sual Question Answering (VQA) and Visual Com- 589

monsense Reasoning (VCR). We believe that the 590

MEANT architecture has the potential to succeed 591

on a wide variety of tasks. Furthermore, the image 592

space that we trained MEANT on was limited. We 593

would like to introduce more variation into our im- 594

age inputs, to fully utilize the capabilities of that 595

modality in our model. 596

8 Ethics Statement 597

Bias and Data Privacy: We acknowledge that 598

there are biases in our study, including limiting our 599

work to a specific time period, a small sample of 600

securities and the general public, where we cannot 601

verify they financial expertise in assessing markets. 602

The data collected in this work will only be made 603

available via Tweet IDs collected to protect X’s 604

users rights to remove, withdraw or delete their 605

content. All datasets and Language Models are 606

publicly available and were used under the license 607

category that allows use for academic research. 608
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Reproducibility: We make all of our code pub-609

licly available upon publication on Github, where610

we provide instructions to reproduce our results.611

Use case: We strongly advise against the use of612

our proposed model and dataset for financial de-613

cision making, including automated or high fre-614
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