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ABSTRACT

We introduce foveated perceptual systems – a hybrid architecture inspired by human
vision, to explore the role of a texture-based foveation stage on the nature and
robustness of subsequently learned visual representation in machines. Specifically,
these two-stage perceptual systems first foveate an image, inducing a texture-like
encoding of peripheral information – mimicking the effects of visual crowding
– which is then relayed through a convolutional neural network (CNN) trained
to perform scene categorization. We find that these foveated perceptual systems
learn a visual representation that is distinct from their non-foveated counterpart
through experiments that probe: 1) i.i.d and o.o.d generalization; 2) robustness
to occlusion; 3) a center image bias; and 4) high spatial frequency sensitivity.
In addition, we examined the impact of this foveation transform with respect to
two additional models derived with a rate-distortion optimization procedure to
compute matched-resource systems: a lower resolution non-foveated system, and
a foveated system with adaptive Gaussian blurring. The properties of greater
i.i.d generalization, high spatial frequency sensitivity, and robustness to occlusion
emerged exclusively in our foveated texture-based models, independent of network
architecture and learning dynamics. Altogether, these results demonstrate that
foveation – via peripheral texture-based computations – yields a distinct and robust
representational format of scene information relative to standard machine vision
approaches, and also provides symbiotic computational support that texture-based
peripheral encoding has important representational consequences for processing in
the human visual system.

1 INTRODUCTION

In the human visual system, incoming light is sampled with different resolution across the retinal
area, a stark contrast to machines that perceive images at uniform resolution. One account for the
nature of this foveated (spatially-varying) array in humans is related purely to sensory efficiency
(biophysical constraints) (Land & Nilsson, 2012; Eckstein, 2011), e.g., there is only a finite amount
of retinal ganglion cells (RGC) that can relay information from the retina to the LGN constrained
by the flexibility and thickness of the optic nerve. Thus it is “more efficient” to have a moveable
high-acuity fovea, rather than a non-moveable uniform resolution retina when given a limited number
of photoreceptors as suggested in Akbas & Eckstein (2017). Machines, however do not have such
wiring/resource constraints – and with their already proven success in computer vision (LeCun et al.,
2015) – this raises the question if a foveated inductive bias is even necessary for vision at all.

However, it is also possible that foveation plays a functional role at the representational level, which
can confer perceptual advantages as has been explored in humans. This idea has remained elusive in
computer vision, but popular in vision science, and has been explored both psychophysically (Loschky
et al., 2019) and computationally (Poggio et al., 2014; Cheung et al., 2017; Han et al., 2020). There
are several symbiotic examples arguing for the functional advantages of foveation in humans, via
functional advantages in machine vision systems. For example, in the work of Pramod et al. (2018),
blurring the image in the periphery gave an increase in object recognition performance of computer
vision systems by reducing their false positive rate. In Wu et al. (2018)’s GistNet, directly introducing
a dual-stream foveal-peripheral pathway in a neural network boosted object detection performance
via scene gist and contextual cueing. Relatedly, the most well known example of work that has
directly shown the advantage of peripheral vision for scene processing in humans is Wang & Cottrell
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Figure 1: A cartoon illustrating how a foveated image is rendered resembling a human visual metamer
via the foveated feed-forward style transfer model of Deza et al. (2019). Here, each receptive field is
locally perturbed with noise in its latent space in the direction of their equivalent texture representation
(blue arrows) resulting in visual crowding effects in the periphery. These effects are most noticeable
far away from the navy dot which is the simulated center of gaze (foveal region) of an observer.

(2017)’s dual stream CNN that modelled the results of Larson & Loschky (2009) with a log-polar
transform and adaptive Gaussian blurring (RGC-convergence). Taken together, these studies present
support for the functional hypothesis of a foveated visual system.

Importantly, none of these studies introducing the notion of texture representation in the periphery
– a key property of peripheral computation as posed in Rosenholtz (2016). Testing whether this
texture-based coding of the visual periphery is functional in any perceptual system is still an open
question. Here we address this question directly. Specifically, we introduce foveated perceptual
systems: these are two-stage (hybrid) systems that have a texture-based foveation stage followed
by a deep convolutional neural network. In particular, we will mimic foveation over images using
a transform that simulates visual crowding (Levi, 2011; Pelli, 2008; Doerig et al., 2019b;a) in the
periphery as shown in Figure 1 (Deza et al., 2019), rather than Gaussian blurring (Pramod et al.,
2018; Wang & Cottrell, 2017) or compression (Patney et al., 2016; Kaplanyan et al., 2019). These
rendered images capture image statistics akin to those preserved in human peripheral vision, and
resembling texture computation at the stage of area V2, as argued in Freeman & Simoncelli (2011);
Rosenholtz (2016); Wallis et al. (2019).

Thus, our strategy in this paper is to compare these hybrid models’ perceptual biases to their
non-foveated counterpart through a set of experiments: generalization, robustness to occlusion,
image-region bias and spatial frequency sensitivity. A difference from Wang & Cottrell (2017) is
that our goal is not to implement foveation with adaptive gaussian blurring to fit known results to
data (Larson & Loschky, 2009); but rather to explore the emergent representational consequences
on scene representation following texture-based foveation. While it is certainly possible that in
these machine vision systems that only need to categorize scenes, there may be little to no benefit of
this texture-based computation; the logic of our approach however, is that any benefits or relevant
differences between these systems can shed light into both the importance of texture-based peripheral
computation in humans, and could suggest a new inductive bias for advanced machine perception.

2 FOVEATED PERCEPTUAL SYSTEMS

We define perceptual systems as two-stage with a foveation transform (stage 1, f(◦) : RD → RD),
that is relayed to a deep convolutional neural network (stage 2, g(◦) : RD → Rd). Note that the
first transform stage is a fixed operation over the input image, while the second stage has learnable
parameters. In general, the perceptual system S(◦), with retinal image input I : RD is defined as:

S(I) = g(f(I)) (1)

Such two stage models have been growing in popularity, and the reasons these models (including
our own) are designed to not be fully end-to-end differentiable is mainly to force one type of
computation into the first-stage of a system such that the second-stage g(◦) must figure out how to
capitalize on such forced transformation and thus assess its f(◦) representational consequences. For
example, Parthasarathy & Simoncelli (2020) successfully imposed V1-like computation in stage 1
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Figure 2: A. Two key Perceptual Systems S: Foveation-Net (top row) and Standard-Net (bottom
row), where each system receives an image as an input, applies a foveation transform (f(◦)), which
is then relayed to a CNN architecture (g(◦)) for scene classification. Foveation-Net uses a visual
crowding model with texture computation (shown on right), while Standard-Nets provides a baseline
for a perceptual upper-bound for all perceptual systems. B. The algorithm of how a foveated image is
generated that enables visual crowding (mainly steps 5-7).

to explore the learned role of texture representation in later stages with a self-supervised objective,
and Dapello et al. (2020) found that fixing V1-like computation also at stage 1 aided adversarial
robustness. At a higher level, our objective is similar where we would like to force a texture-based
peripheral coding mechanism (V2) at the first stage to check if the perceptual system through g(◦)
will learn to pick-up on this newly made representation and make ‘good’ use of it potentially shedding
light on the functionality hypothesis for machines and humans. This leads us to further motivate our
choice for a single-stream foveated-peripheral pathway (vs dual-stream Wang & Cottrell (2017); Wu
et al. (2018)), as we would like to focus on how g(◦) will differ purely based on the learning dynamics
driven by SGD rather than architectural constraints (Deza et al., 2020) for the newly transformed
input space (foveated : f∗ vs non-foveated : f0) to perform a 20-way scene categorization task.

2.1 STAGE 1: FOVEATION TRANSFORM (f)

To model the computations of a foveated visual system, we employed the model of Deza et al.
(2019) (henceforth Foveation Transform). This model is inspired by the metamer synthesis model
of Freeman & Simoncelli (2011), where new images are rendered to have locally matching texture
statistics (Portilla & Simoncelli, 2000; Balas et al., 2009) in greater size pooling regions of the
visual periphery with structural constraints. Analogously, the Deza et al. (2019) Foveation Transform
uses a foveated feed-forward style transfer (Huang & Belongie, 2017) network to latently perturb
the image in the direction of its locally matched texture (see Figure 1). Altogether, f : RD →
RD is a convolutional auto-encoder that is non-foveated when the latent space is un-perturbed:
f0(I) = D(E(I)), but foveated (◦Σ) when the latent space is perturbed via localized style transfer:
f∗(I) = D(EΣ(I)), for a given encoder-decoder (E ,D) pair.

Note that when calibrating the distortions correctly, the resulting procedure can yield a visual metamer
(for a human), which is a carefully perturbed image perceptually indistinguishable from its reference
image (Feather et al., 2019). However, importantly in the present work, we exaggerated the strength of
these texture-driven distortions (beyond the metameric boundary), as our aim here is to understand the
implications of this kind of texturized peripheral input on later stage representations (e.g. following
a similar approach as Dapello et al. (2020)). By having an extreme manipulation, we reasoned
this would accentuate the consequences of these distortions, making them more detectable in our
subsequent experiments.

2.2 STAGE 2: CONVOLUTIONAL NEURAL NETWORK BACKBONE (g)

The foveated images (stage 1) are passed into a standard neural network architecture. Here we
tested two different base architectures: AlexNet (Krizhevsky et al., 2012), and ResNet18 (He et al.,
2016). The goal of running these experiments on two different architectures is to let us examine the
consequences of foveation that are robust to these different network architectures. Further, this CNN
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Figure 3: A. Two matched-resource controls to Foveation-Net are introduced. Top, seagreen:
adaptive gaussian blurring (Ada-Gauss-Net) emulating RGC convergence-based foveation; Bottom,
orchid: uniform blurring emulating a matched-resource non-foveated visual system (Matched-Net).
B. A Rate-Distortion Optimization procedure is summarized where we compute the matched-resource
images that will define the new foveation transforms: {f̂∗, f̂0}. C. The foveation transforms of both
perceptual systems Ada-Gauss-Net (top) and Matched-Net (bottom) do not model visual crowding.

backbone (g : RD → Rd) should not be viewed in the traditional way of an end-to-end input/output
system where the input is the retinal image (I), and the output is a one-hot vector encoding a d-class-
label in Rd. Rather, the CNN (g) acts as a proxy of higher stages of visual processing (as it receives
input from f ), analogous to the 2-stage model of Lindsey et al. (2019).

2.3 CRITICAL MANIPULATIONS: FOVEATED VS NON-FOVEATED PERCEPTUAL SYSTEMS

Now, we can define two perceptual systems as the focus of our experiments that must perform 20-way
scene categorization: Foveation-Net, receives an image input, applies the foveated transform f∗(◦),
and later relays it through the CNN g(◦); and Standard-Net, that performs a non-foveated transform
f0(◦), where images are sent through the same convolutional auto-encoder D(E(I)), but with the
parameter that determines the degree of texture style transfer set to 0. Both of these systems are
depicted in Figure 2 (A).

Anticipating the potential differences between Foveation-Nets and Standard-Nets, a natural next
question arises: Will these differences be found with any type of spatially-varying processing, or are
the effects specific to a type of foveation transformation (texture-based coding as linked to area V2 vs
adaptive gaussian blurring given retinal constraints). Thus, we created a matched-resource adaptive
blurred foveation transform using a Rate-Distortion (RD) optimization framework inspired from Ballé
et al. (2016). Figure 3 (B) summarizes our goal and approach: we will have to find a set of standard
deviation of the gaussian blurring kernel per retinal eccentricity (the ‘distortions’ D), such that we
can render a perceptually matched adaptive gaussian blurred image – in reference to the compressed
image from Standard-Nets – that matches the perceptual transmission ‘rate’R of Foveation-Nets via
the SSIM perceptual metric (Wang et al., 2004) – also in reference to Standard-Nets.

0.8
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0.4
0 10 20 30 40

Figure 4: RD-Optimization.

Perceptual Systems trained on these images (which define a new
function f̂∗), provide a matched-resource control to Foveation-
Net that we dub Ada-Gauss-Net. This same optimization pro-
cedure can be extended to the entire image to also develop
a matched-resource control for a non-foveated visual system
(Matched-Net, f̂0: Figure 4), as one could argue that Standard-
Nets may be at an unfair advantage to Foveation-Nets since their
foveal regions are identical and the retinal sensors have not been
properly re-distributed (Cheung et al., 2017) & Figure 6 (A).

Altogether these 4 perceptual systems help us answer three key questions as shown in Figure 5
(A.): 1) Foveation-Net vs Standard-Nets will tell us how a texture-based foveation mechanism will
compare to its undistorted perceptual upper-bound. 2) Foveation-Nets vs Ada-Gauss-Nets will tell
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Figure 5: A. Three critical questions that our 4 conditions will help us answer pertaining the role
of foveated (spatially-varying) perceptual systems and their comparisons to their non-foveated
counterparts. B. Five example images from the 20 scene categories are shown, after being passed
through the first stage of each perceptual system.

us if any potentially interesting pattern of results is due to the type/stage of foveation. This will
help us measure the contributions of the crowding mechanism and texture computation vs adaptive
gaussian blurring; 3) Foveation-Net vs Matched-Net will tell us how do these perceptual systems
(one foveated, and the other one not) behave when allocated with a fixed number of perceptual
resources. In addition our supplementary material includes an extended analysis that includes 2 more
highly relevant systems such as Foveation-Aug-Net (a foveated system with the crowding operator
coupled with eye-movements – a biological proxy of data-augmentation) and Standard-Aug-Net (a
non-foveated system trained with popular data-augmentation mechanisms).

3 METHODS
All models were trained to perform 20-way scene categorization. The scene categories were selected
from the Places2 dataset (Zhou et al., 2017), with 4500 images per category in the training set, 250
per category for validation, and 250 per category for testing. The categories included were: aquarium,
badlands, bedroom, bridge, campus, corridor, forest path, highway, hospital, industrial area, japanese
garden, kitchen, mansion, mountain, ocean, office, restaurant, skyscraper, train interior, waterfall.
Samples of these scenes coupled with their foveation transforms can be seen in Figure 5 (B.).

Training: Convolutional neural networks of the stage 2 of each perceptual system were trained
which resulted in 40 networks per architecture: 10 Foveation-Nets, 10 Standard-Nets, 10 Matched-
Net, 10 Ada-Gauss-Net; totalling 80 trained networks to compute relevant error bars shown in all
figures (standard deviations, not standard errors) and to reduce effects of randomness driven by the
particular network initialization. All systems were paired such that their stage 2 architectures g(◦)
started with the same random weight initialization prior to training. Other parameters in training
via backpropagation were: learning rates: η = 0.001 AlexNet, η = 0.0005 ResNet18 – with no
learning rate decay for both architectures, and batch size: 128. We trained the AlexNet architectures
for each perceptual system (g(◦)) up to 360 epochs and each ResNet18 architecture up to 180
epochs. In the main body of the paper we will show our results for AlexNet at 270 epochs. All
effects reported are reproduced across both architectures (AlexNet, ResNet18) and multiple epochs
(180,270,360); (90,120,180) respectively in the Supplementary Material which suggests that these
effects are independent of learning dynamics.

Testing: The networks of each perceptual system were tested on the same type of image distribution
they were trained on.
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Figure 6: A. A legend illustrating the 4 key perceptual systems in all our experiments with their
differences and similarities: Standard-Net, Foveation-Net, Matched-Net and Ada-Gauss-Net. B.
Scene Categorization Accuracy: Foveation-Net has the highest i.i.d generalization while Ada-Gauss-
Net has the greatest o.o.d generalization – both perceptual systems are foveated (spatially-varying).

4 EXPERIMENTS

In the following section we will discuss results found with regards to i.i.d. & o.o.d. generalization,
robustness to occlusion, central image bias and spatial frequency sensitivity. All results shown in
this section use AlexNet as g(◦) for the second stage of each perceptual system. The same pattern of
results are shown with a ResNet18 as stage 2 – these extended results coupled with learning dynamics,
as well as extra calculations and additional controls, can be accessed in the Supplementary Material.

4.1 GENERALIZATION

We first examined the generalization capacity for our 4 network types. Given that Foveation-Nets
receive distorted inputs in the periphery one could expect them to do worse compared to Standard-
Nets (which operate over full resolution, untexturized images) and on par with Matched-Nets (which
have with perceptually matched resources as Foveation-Nets). On the other hand, it is possible that
the texture-based image encoding could confer a functional advantage, in which case Foveation-Nets
would do better. If this is indeed the case, we would also see an advantage of Foveation-Nets over
Ada-Gauss-Net; but if their performance is the same, we can conclude that any type of spatially-
varying processing operator can enhance scene categorization performance. Additionally, a somewhat
contrived but interesting experiment, we will also conduct is the out-of-distribution (o.o.d) case in
which each perceptual system is shown stimuli type that they never encountered during training – in
particular stimuli that is the input following the first stage of the other perceptual systems.

Result 1: Figure 6(B.) shows that a foveated system with texture-based computation in the periphery
(Foveation-Net) has greater i.i.d generalization than its matched resource non-foveated system
(Matched-Net) and a foveated system with adaptive gaussian blurring (Ada-Gauss-Net); and also
performs on par with an un-matched resource non-foveated system (Standard-Net). For an o.o.d
generalization task where systems are shown o.o.d images from another system, we find that drops in
performance for foveated perceptual systems are lower compared to their non-foveated counter-part
(Foveation-Net (↑) vs Standard-Net (↓); Ada-Gauss-Net (↑) vs Matched-Net (↓)); and that overall
Ada-Gauss-Nets has greater o.o.d generalization compared to all other systems, while Foveation-Net
struggles to cross-generalize to low pass spatially transformed images compared to Ada-Gauss-Net –
a result that ties to the experiments of Section 4.4.

4.2 ROBUSTNESS TO OCCLUSION

We next examined how all perceptual systems could classify scene information under conditions of
visual field loss, either from the center part of the image (scotoma), or the periphery (glaucoma).
This manipulation lets us examine the degree to which the representations are relying on central
vs peripheral information to classify scene categories. For the foveal-occlusion conditions, we
superimposed a central gray square on each image from the testing image set, with 8 levels of
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Figure 7: A. The Robustness curves for image occlusion (◦⊕O) when the Foveation Transform is On
(as the stimuli is shown before the transform), and when the Foveation Transform is Off (stimuli shown
post-transform). Foveation-Nets performs has greater robustness to occlusion across all matched-
resource systems, and also bumps it’s performance due to visual crowding. B. A visualization of how
the visual input is transformed for each perceptual system given their respective Foveation transform
(f). Left: The effects of crowding are noticeable for Foveation-Nets (but not Ada-Gauss-Nets)
as it increases visual area. Right: Even without the aid of visual crowding, the learned texture
representation yields greater robustness with matched occluded areas for Foveation-Nets.

increasing size. For the peripheral-occlusion condition, we superimposed a gray box over the outter
image boundaries, with area-matched levels of occlusion. These images were then passed through all
of the trained models to compute scene categorization performance. Accuracy was measured at each
level of occlusion and area under the curve was computed as an index of robustness to occlusion.

Figure 7 (top) shows a summary of these results. Overall Foveation-Nets showed more robustness to
central/scotoma occlusion to all other systems: un-matched non-foveated (Standard-Nets), matched-
resource foveated system with adaptive gaussian blurring (Ada-Gauss-Net), and matched-resource
non-foveated systems (Matched-Net). This result is similar to peripheral/glaucoma occlusion with
the exception of Foveation-Nets being on par with non-resource matched Standard-Net. To further
explore these results, we visualized what the image inputs look like after the foveation stage, across
all systems. Figure 7 (B. left) reveals critical information:

Result 2a: The effect of the stage 1 crowding operation (f∗(◦)) of Foveation-Net exclusively reduces
the occluded area in the periphery – a stark contrast compared to all other systems. By filling in the
image with texture statistics due to the foveation stage (f∗) – Foveation-Net (but not Ada-Gauss-Net)
are able to boost classification performance by using greater visual information and/or the peripheral
texturized representations that Standard-Nets & Matched-Nets do not have access to.

But is this the main factor accounting for the higher robustness of the foveated systems? In other
words: is it driven by greater computable visual area that has been filled in from the foveation stage;
Or is the benefit driven by the learned texturized representations in the subsequent deep convolutional
neural network? To examine this question, we occluded either the center or periphery of the images,
but after the stage 1 computation (see Figure 7 (A., right)). In this way, the area of occlusion was
matched for the second stage classification task.

Result 2b: Across the matched-resource systems and matched-occluded area condition: Foveation-
Net has greater robustness to occlusion than Matched-Net and Ada-Gauss-Net. This puzzling
result for both scotomal and glaucomal occlusion, not only suggests that the learned represen-
tations in Foveation-Net is different than Ada-Gauss-Net, but that Foveation-Net has learned a
locally distributed representation vs a globally distributed representation (Ada-Gauss-Net). In addi-
tion as Foveation-Nets and Ada-Gauss-Nets only differ in peripheral computation, this suggests that
a texture-based encoding mechanism provides a representational advantage than an adaptive blurred
representation when information is unavailable, occluded or removed.
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Figure 8: A. A visualization of the stimuli type that is shown to each perceptual system consists
of a smoothed composition of a foveal image (e.g. badlands) mixed with a peripheral image (e.g.
aquarium). B. The composition procedure relies on using the same log-polar pooling windows over
which the foveated images were rendered. C.,D. Foveated Perceptual Systems – independent the
computation type (Ada-Gauss-Net, Foveation-Net) – show stronger biases to classify scenes with the
foveal region; a result also observed in humans (Larson & Loschky, 2009; Loschky et al., 2019).

4.3 WINDOW CUE-CONFLICT EXPERIMENT

It is possible that foveated systems weight visual information strongly in the foveal region than the
peripheral region as hinted by our occlusion results (the different rate of decay for the accuracy curves
in the Scotoma and Glaucoma conditions) – and due to the fact that the information in the periphery
is texturized/blurred? To assess such difference, we conducted an experiment where we created
a windowed cue-conflict stimuli where we re-rendered our set of testing images with one image
category in the fovea, and another one in the periphery. All cue-conflicting images were paired with a
different class (ex: aquarium with badlands). We then systematically varied the fovea-periphery visual
area ratio & examined classification accuracy for both the foveal and peripheral scenes (Figure 8).

Result 3: We found that Foveation-Nets and Ada-Gauss-Nets maintained higher accuracy for the
foveal scene class than do Standard-Nets and Matched-Nets, as the amount of competing peripheral
information increased – and vice versa for the peripheral scene class. A qualitative way of seeing
this foveal-bias is by checking the foveal/peripheral ratio where these two accuracy lines cross. The
more leftward the cross-over point (⊗), the higher the foveal bias. Thus, Foveation-Nets have learned
to weigh information in the center of the image more when categorizing scenes – a similar finding
to Wang & Cottrell (2017) indeed as Ada-Gauss-Net vs Matched-Net shows the exact same pattern
of results. Thus, these results indicate that the spatially varying computation from center to periphery
(evident in both Foveation-Nets and Ada-Gauss-Nets) is mainly responsible for the development of a
center image bias. It is possible that one of the functions of any spatially-varying coding mechanisms
in the visual field is to enforce the perceptual system to attend on the foveal region – avoiding the
shortcut of learning to attend the entire visual field (Geirhos et al., 2020).

4.4 SPATIAL FREQUENCY SENSITIVITY

We next examined differences of learned feature representations that are more reliant on low or high
spatial frequency information, at the second stage of visual processing (post-foveation) across all
systems. To do so, we filtered the testing image set at multiple levels to create both high pass and
low pass frequency stimuli and assessed scene-classification performance over these images for all
models, as shown in Figure 9 (A.). Low pass frequency stimuli (FL) were rendered by convolving a
Gaussian filter of standard deviation σ = [0, 1, 3, 5, 7, 10, 15, 40] pixels on the foveation transform
(f0, f̂0, f∗, f̂∗) outputs. Similarly, the high pass stimuli (FH) was computed by subtracting the
reference image from its low pass filtered version with σ = [∞, 3, 1.5, 1, 0.7, 0.55, 0.45, 0.4] pixels
and adding a residual. These are the same values used in the experiments of Geirhos et al. (2019).

Result 4: We found that Foveation-Nets and Standard-Nets were more sensitive to High Pass Fre-
quency information, while Ada-Gauss-Nets and Matched-Nets were sensitive to Low Pass Frequency
stimuli. This suggests that foveation via adaptive gaussian blurring (Ada-Gauss-Nets) may implicitly
contribute to scale-invariance as also shown in Poggio et al. (2014); Cheung et al. (2017); Han et al.
(2020). Additionally, an intriguing possibility is that Foveation-Nets’ peripheral texture representation
may potentially support a biologically-plausible mechanism of a shape bias as argued in Figure 9.
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Figure 9: A. Sample images from the foveated and non-foveated images and how they change as a
function of spatial frequency filtering at the post-foveation stage. B. Foveation-Nets have nominally
greater sensitivity to high spatial frequency filtered stimuli than Standard-Nets, and both of these
systems present notably higher sensitivity to high spatial frequencies than Matched-Nets and Ada-
Gauss-Nets. Conversely, this pattern is reversed for low pass frequency stimuli. C. This suggests
Foveation-Nets’s crowding-like computation may naturally enforce a shape-bias given it’s high pass
spatially frequency tolerance as these Spatial Frequency curves show similar trends as Geirhos et al.
(2019)’s Stylized ImageNet (SIN) that were trained on objects (adapted and redrawn).

5 DISCUSSION
The present work was motivated by the broad question of the functional role of a texture-based
peripheral representation. We specifically examined whether a texture-based peripheral encoding
mechanism yielded any perceptual advantages and distinctive representational signatures in second-
stage deep neural networks. We found that when comparing Foveation-Nets to their matched-resource
models that differed in computation: Ada-Gauss-Nets (foveated w/ adaptive gaussian blur) and
Matched-Nets (non-foveated w/ uniform blur) – that peripheral texture encoding did lead to specific
computational signatures, particularly in robustness to occlusion. We also found that foveation
(in general) seems to induce a focusing mechanism, servicing the foveal/central region, while the
texture-based computation still preserves high spatial-frequency selectivity – this last result is likely
due to weight-sharing that does not give room to low-spatial frequency tuned filters to naturally
emerge as in Wang & Cottrell (2017).

The particular consequences of our foveation stage raises interesting future directions about what
computational advantages could arise when trained on object categorization, as objects are typically
centered in view and have different hierarchical/compositional priors than scenes (Zhou et al. (2014);
Deza et al. (2020)) in addition to different processing mechanisms (Renninger & Malik (2004)).
Specifically, one intriguing possibility is that our foveated representational signatures may induce
more shape sensitivity for object recognition (rather than texture sensitivity; Geirhos et al. (2019);
Hermann et al. (2020)), and may amplify the perceptual differences we identified across foveated and
non-foveated systems.

Finally, a future direction is investigating the effects of crowding to adversarial robustness. Motivated
by the recent work of Dapello et al. (2020) which has shown promise of adversarial robustness
via enforcing stochasticity and V1-like computation by matching the Nyquist sampling frequency
of these filters (Serre et al., 2007) in addition to a natural gamut of orientations and frequencies
as studied in De Valois et al. (1982), it raises the question of how much we can further push for
robustness in hybrid perceptual systems like these, drawing on even more biological mechanisms.
Both Luo et al. (2015) and Reddy et al. (2020) have already taken steps in this direction by coupling
fixations with a spatially-varying retina. However, the computational impact of visual crowding and
texture-based computation on adversarial robustness is an open question.
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Figure 10: A full explanatory diagram of the Rate-Distortion Optimization Procedure inspired
from both Ballé et al. (2016) and Deza et al. (2019). The goal is to find the equivalent ‘perceptual
transmission rate’ for a given distortion σ to find a matched-resource perceptual input for Foveation-
Nets that is non-foveated (Figure 4). This optimization produces Matched-Nets, a perceptual system
that receives as input uniformly blurred images as a way to quantify the expense of computing lower
frequencies given retinal ganglion cell re-distribution in as if it were to occur in humans.

6 SUPPLEMENTARY MATERIAL

6.1 DESCRIPTION OF FOVEATED PERCEPTUAL SYSTEMS

Foveation-Net: We adjusted the parameters of the foveation transform to have stronger distortions in
the periphery that can consequently amplify the differences between a foveated and non-foveated
system. This was done setting the rate of growth of the receptive field size (scaling factor) s = 0.4.
Thus, when foveation is on at the previous scaling factor, we will abbreviate f as f∗.

This value was used instead of s = 0.5, given that experiments of Freeman & Simoncelli (2011);
Deza et al. (2019) has shown that this scaling factor yields a match with physiology but only when
human observers are psychophysically tested between pairs of synthesized/rendered image metamers.
Works of Wallis et al. (2017; 2019); Deza et al. (2019) have suggested that the when comparing a
non-foveated reference image to it’s foveated crowded version, the scaling factor is actually much
smaller than 0.5 (0.24, or in some cases as small as 0.20; See Table 1). We thus selected a smaller
factor of s = 0.4 (that is still metameric to a human observer between synthesized pairs), as smaller
scaling factors significantly reduced the crowding effects. Ultimately, the selection of this value is not
critical in our studies as we are not making any comparative measurements to human psychophysical
experiments (See Deza & Eckstein (2016) for an example where matching scaling factors is critical).

Standard-Net: We use the same foveation transform at the foveation stage for Standard-Net but
set the scaling factor set to s = 0. In this way, any potential effects of the compression/expansion
operations of the foveation stage in the image are matched between the Foveation-Nets and Standard-
Nets. Thus, the only difference after stage 1 is whether the image statistics were texturized in
increasingly large pooling windows (Foveation-Nets), or not (Standard-Nets). Extending our notation,
no foveation in stage one will be abbreviated as f0.

Note however, that Standard-Nets are not matched-resource non-foveated controls – Standard-
Nets only provide the control for comparing purely the effects of crowding (Foveation-Net) while
potentially using more resources as both the foveal regions of both transforms remain intact, and
a matched resource control should redistribute the retinal ganglion cell convergence uniformly as
explored in Cheung et al. (2017). In fact, the matched-resource control that is also non-foveated is
Matched-Net as described earlier in the paper, and more in detail as follows.

Matched-Net: Matched-Net provides a non-foveated resource matched control with respect to
Foveation-Net. This perceptual system is essentially computed via finding the optimal standard
deviation σ of the filtering kernel Gσ as shown in Figure 10. This distortion image is computed via
the convolution (~) of the image f0(I) with the low-pass filter: Gσ. Here, Wang et al. (2004)’s
SSIM is our idea candidate as it will take into consideration the luminance, contrast and structural
changes locally for the entire image and pool them together for an aggregate perceptual score (and
also the rate R) that is upper bounded by 1 and correlated with human perceptual judgments. As
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Figure 11: A. The full explanatory diagram (continued) of the Rate-Distortion Optimization Procedure
from Figure 10 adapted for Ada-Gauss-Nets. B. The goal is to find the equivalent ‘perceptual
transmission rate’ for a given distortion σ to find a matched-resource perceptual input for Foveation-
Nets that is foveated but with adaptive gaussian blurring, i.e. we must find the standard deviation of the
gaussian blurring kernel which is computed over a set of eccentricity rings that have been windowed
with cosine functions. C. The full Rate-Distortion curves as a function of retinal eccentricity.

SSIM operates on the luminance of the image, all validation images over which the RD curve (right)
was computed were transformed to grayscale to find the optimal standard deviation (σ = 3.4737).

Ada-Gauss-Net: Is a foveated perceptual system that receives Rate-Distortion optimized images that
have been blurred with different standard deviations of the gaussian kernel Gσ as a function of retinal
eccentricity. We picked the same eccentricity rings (or pooling regions) as Foveation-Nets given that
we did not want to include a potential effect that is driven by differences in receptive fields rather than
differences in type of computation. Figure 11 shows the full set of distortion strengths (σ) of each
receptive field ring to match the transmission rate of the Foveation Transform (f∗(◦)) that computes
crowding.

There are other alternatives to potentially find the set of standard deviation coefficients that are not
driven by a rate-distortion optimization procedure. One possibility could have been to find a mapping
between pixels and degrees of visual angle as done in Pramod et al. (2018) and derive the coefficients
by fitting a contrast sensitivity function given the visual field. While this approach is appealing,
the coefficients for object recognition (ImageNet Russakovsky et al. (2015)) can not be extended
to scenes (Places Zhou et al. (2017)). In addition, the coupling of the RD-optimization with SSIM
provides a perceptual guarantee to compare Ada-Gauss-Net with Foveation-Net or Matched-Net.

Foveation-Aug-Net (Supplementary Control): Eye-movements can be seen as a biologically moti-
vated type of data-augmentation strategy. More generally, the goal of this additional control is to test
if eye-movements coupled with a texture-based foveated operator will vary the strength of our results
in any possible dimension: generalization, robustness, center bias, spatial frequency sensitivity. To
test this, we created an enhanced version of Foveation-Net where the deep neural network at stage 2
receives a foveated image of a variable fixation point from one of 9 points from a fixed 3× 3 grid. A
schematic of the type of inputs Foveation-Aug-Nets receives can be seen in Figure 12.

Statistical testing (paired t-test, n.s.) revealed no strong differences between Foveation-Nets and
Foveation-Aug-Nets, likely due to the fact that scene recognition can be done independent of
fixation point (Henderson & Hollingworth, 1999; Oliva & Torralba, 2001). However there are
nominal positives differences for Foveation-Aug-Nets over Foveation-Nets, and it is possible that the
contribution of eye-movements in learning a new representation is redundant in scene recognition, and
that re-computing these experiments for an object classification task may yield stronger perceptual
biases.
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Figure 12: Two additional Perceptual Systems, that serve as data-augmentation controls: Foveation-
Aug-Net (top row) and Standard-Aug-Net (bottom row), where each system receives an image as
an input, applies a foveation transform (f ′(◦)) coupled with a data-augmentation procedure such
as eye-movements (Foveation-Aug-Nets) or random cropping + resizing + horizontal mirroring
(Standard-Aug-Nets). Once again, these newly transformed image representations are then relayed to
a CNN architecture (g(◦)) for scene classification.

Standard-Aug-Net (Supplementary Control): In analogy to the previous augmentation condition,
Standard-Aug-Net enhances our Standard-Net model with artificial data-augmentation regimes such
as random cropping (0.7− 1.0 of area), resizing, and a 0.5 chance of horizontally flipping the image
at training. Standard-Aug-Nets was motivated by 2 main questions: 1) How will actual computer
vision systems trained with common data-augmentations behave in reference to other perceptual
systems?; 2) Is an augmented non-foveated system asymptotically equal to a foveated system? A
schematic of the type of inputs Standard-Aug-Nets receives can be seen in Figure 12.

Several experiments as we will show through-out the Supplementary section, have shown remarkable
perceptual similarities between Standard-Aug-Nets and Matched-Nets. This should come at no
surprise given that Standard-Aug-Nets received randomly cropped and up-sampled images (thus
simulating a type of blur through loss of resolution in the up-sampling stage). What is perhaps
most interesting however is that random cropping, up-sampling and horizontal mirroring did not
contribute to a stronger center bias or to a high spatial frequency sensitivity which is correlated
to a shape-bias (See Figure 24 from the extended results of Spatial Frequency sensitivity). These
are findings that differ from the results of Hermann & Kornblith (2019); Hermann et al. (2020)
that suggest that data-augmentation enhances a shape bias for object recognition. However, recall
that scene recognition and object recognition processing mechanisms differ (Renninger & Malik,
2004; Zhou et al., 2014; Deza et al., 2020) – so our findings may in fact be complimentary. This is
encouraging as it supports our initial conjectures of the impact of foveation on scenes vs objects, and
that stronger pattern of results may emerge when training on such different image input distributions,
as mentioned in the Discussion (Section 5).
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6.2 METHODS (EXTENDED)

All models were trained to perform 20-way scene categorization. The scene categories were selected
from the Places2 dataset (Zhou et al., 2017), with 4500 images per category in the training set, 250
per category for validation, and 250 per category for testing. The categories included were: aquarium,
badlands, bedroom, bridge, campus, corridor, forest path, highway, hospital, industrial area, japanese
garden, kitchen, mansion, mountain, ocean, office, restaurant, skyscraper, train interior, waterfall.

Samples of these scenes coupled with their foveation transforms for each perceptual system can be
seen in Section 6.4.

Training: Convolutional neural networks of the stage 2 of each perceptual system were trained which
resulted in 60 networks per architecture: 10 Foveation-Nets, 10 Standard-Nets, 10 Matched-Net,
10 Ada-Gauss-Net, 10 Foveation-Aug-Nets, 10 Standard-Aug-Nets; totalling 120 trained networks
to compute relevant error bars shown in all figures (standard deviations, not standard errors) and to
reduce effects of randomness driven by the particular network initialization. All systems were paired
such that their stage 2 architectures g(◦) started with the same random weight initialization prior
to training, thus the randomness was purely imposed by SGD. This procedure also facilitated our
statistical testing via paired t-tests as the model systems began their visual diet with the same set of
random weights, thus reasonably ‘pairing’ them up for statistical analysis when necessary. Other
parameters in training via backpropagation were: (learning rates: η = 0.001 AlexNet, η = 0.0005
ResNet18 – with no learning rate decay for both architectures), and batch size: 128. We trained
the AlexNet architectures for each perceptual system (g(◦)) up to 360 epochs and each ResNet18
architecture up to 180 epochs to study the learning dynamics that can be seen throughout the entire
Supplementary Material showing that the main effects and patterns of results reported in the paper
are preserved throughout different epochs in training.

Validation: Validation images were used exclusively to: 1) visualize the convergence of the loss
function for each perceptual system (See Figure 13); 2) compute quantities in our experiments that if
otherwise may introduce biases. Examples of these quantities are: the rate-distortion optimization
curves for Matched-Nets and Ada-Gauss-Nets; the average channel intensity for each image across
all perceptual systems as a sub-step to compute the residual in high-pass spatial frequency filtering
(See Section 6.9).

Testing: Foveation-Nets were only evaluated on center fixation images at inference time. Standard-
Nets were tested on non-foveated images (the output of the foveation transform with scaling factor
set to zero). Matched-Nets were evaluated on uniformly blurred images that were gaussian filtered
with the same standard deviation coefficient that they were trained on. Ada-Gauss-Nets were tested
on adaptive gaussian blurred images that held the same collection of standard deviation coefficients
over retinal eccentricities that they were trained on. Standard-Aug-Nets were tested on the same
images as Standard-Nets. Foveation-Aug-Nets were tested only on center fixation images (the same
images as Foveation-Nets were tested on).

No data-augmentation or multi-crop averaging was performed at inference for any of the networks. No
data-augmentation was performed at training for each network either (except for Foveation-Aug-Nets
+ Standard-Aug-Nets).

All networks performed mean and standard contrast normalization both at training and testing with
values set to mean: (0.485, 0.456, 0.406), std: (0.229, 0.224, 0.225).
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6.3 RESULTS ARE INDEPENDENT OF LEARNING DYNAMICS OF g(◦)

To quantify the robustness of the results reported in the main body of the paper, we re-ran our
experiments at different epochs during training of all 6 perceptual systems. Critically, the 270-th
epoch for AlexNet was chosen to be displayed in the main body of the paper given that it is the
approximate epoch after which the validation loss begins to diverge from the training loss for at least
one of the perceptual systems. This promotes our choice of picking a relevant snapshot for AlexNet
as two more points before and after the 270-th epoch, suggesting the 180-th (before 270) and 360-th
epoch (after 270). The same effect (of a diverging validation loss of at least one system) can be seen
for epoch 120 of ResNet18. Similarly, this encourages us to pick epoch 90 (before) and epoch 180
(after) as other reference snapshots to evaluate the interaction of learning dynamics with our pattern
of results.
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Figure 13: Learning: An averaged visualization of loss function convergence as a function of
epochs for all 6 perceptual systems: Standard-Nets, Foveation-Nets, Matched-Nets, Ada-Gauss-Nets,
Standard-Aug-Nets, Foveation-Aug-Nets. Each point in the plot is the average across the 10 different
network runs from the locally averaged/smooth loss function per each 9 epochs. The epoch snapshots
we show in our analysis are: AlexNet: 180, 270 (reported in main body of paper), 360; ResNet18: 90,
120, 180.

The collection of all the extended results for AlexNet + ResNet18 architectures at multiple epochs is
shown in Section 6.6 (Generalization Extended), Section 6.7 (Robustness to Occlusion Extended),
Section 6.8 (Window Cue-Conflict Extended) and Section 6.9 (Spatial Frequency Senstitivity Ex-
tended).
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6.4 FOVEATION TRANSFORM SAMPLE VISUALIZATIONS
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Figure 14: Sample Testing Image Mosaics (Part 1, not cherry picked).
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Figure 15: Sample Testing Image Mosaic (Part 2, not cherry picked).
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Figure 16: Sample Testing Image Mosaic (Part 3, not cherry picked).
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6.5 DIFFERENCES ACROSS DIFFERENT FOVEATION MODELS AND RELEVANT WORK

There are currently 4 foveation models that implement texture-like computation in the peripheral
field of view as shown in Table 1. We selected the Foveation Transform model given that it is
computationally tractable to render a foveated image dataset (100’000) at a rate of 1 image/second
(rather than hours Freeman & Simoncelli (2011) or minutes Wallis et al. (2017)). We did not use
the highly accelerated model of Fridman et al. (2017) (order of miliseconds, that was based on the
Texture-Tiling Model of Rosenholtz et al. (2012)) because it was: 1) Not psychophysically tested with
human observers thus there is no guarantee of visual metamerism via the choice of texture statistics;
2) it does not provide an upper-bound computational baseline (similar to Standard-Net), when all
the perturbations coefficients are off, given that the system is closed and lossy; 3) the code was/is
unavailable at the time. However we think that re-running our experiments and testing them with
other foveated models such as the before-mentioned is a direction of future work as we would be
curious to see the replicability of our pattern of results across other texture-based peripheral models.

Model Freeman & Simoncelli (2011) Wallis et al. (2019) Fridman et al. (2017) Deza et al. (2019)
Feed-Forward - - X X

Input Noise Noise Image Image
Multi-Resolution X X - -
Texture Statistics Steerable Pyramid VGG19 conv-11, 21, 31, 41, 51 Steerable Pyramid VGG19 relu41

Style Transfer Portilla & Simoncelli (2000) Gatys et al. (2016) Rosenholtz et al. (2012) Huang & Belongie (2017)
Foveated Pooling X X (Implicit via FCN) X

Decoder (trained on) - - metamers/mongrels images
Moveable Fovea X X X X

Use of Noise Initialization Initialization - Perturbation
Non-Deterministic X X - X

Direct Computable Inverse - - (Implicit via FCN) X
Rendering Time hours minutes miliseconds seconds

Image type scenes scenes/texture scenes scenes
Critical Scaling (vs Synth) 0.46 ∼ {0.39/0.41} Not Required 0.5

Critical Scaling (vs Reference) Not Available ∼ {0.2/0.35} Not Required 0.24
Experimental design ABX Oddball - ABX

Reference Image in Exp. Metamer Original - Compressed via Decoder
Number of Images tested 4 400 - 10

Trials per observers ∼ 1000 ∼ 1000 - ∼ 3000

Table 1: Metamer Model comparison. Redrawn from Deza et al. (2019).

There are several works that have used foveation to show a type of representational advantage over
non-foveated systems. Mainly Pramod et al. (2018) with adaptive gaussian blur, and Wu et al. (2018)
with scene gist, that have been targeted towards a computational goal in increasing object recognition
performance. For scene recognition, only Wang & Cottrell (2017) has successfully modelled known
behavioural results of Larson & Loschky (2009) via a dual-stream neural network that uses adaptive
gaussian blurring and a log-polar transform. One key difference however is that we are interested in
exploring the effects of visual crowding that is a phenomena linked to area V2 in the primate ventral
stream (rather than retinal as in Wang & Cottrell (2017) which resembles our control condition:
Ada-Gauss-Nets). In general, we are taking a complimentary approach where we a priori do not know
of a functional role of texture-based computation or prime ourselves to fit our model to a reference
behavioural result. Thus we explore what functionality it may have in comparison to a non-foveated
system (Matched-Nets, Standard-Nets) or a foveated system that only implements adaptive gaussian
blurring (Ada-Gauss-Nets). Table 2 highlights key similarities & differences between these papers
and ours.

Model Wang & Cottrell (2017)) Wu et al. (2018) Pramod et al. (2018) (Ours)
Image input type scenes objects objects scenes

Single/Dual Stream Dual + Gating Dual + Concatenation Single Single
Role of Single/Dual Stream Coupling the fovea + periphery Contextual modulation (scene gist) Serializing the (single) two-stage model
Foveated Transform (F.T.) log-polar + adaptive gaussian blurring Region Selection adaptive gaussian blurring Visual Metamer w/ texture-distortion

Stochastic F.T. - - - X Deza et al. (2019)
Representational Stage of F.T. retinal (Geisler & Perry, 1998) "Overt Attention" retinal (Geisler & Perry, 1998) V2 (Freeman & Simoncelli, 2011)

Moveable Fovea X X X X
Explores the role of Eye-Movements - - - X(Supplement)

Accounts for pooling regions Implicit via adaptive gaussian blurring - Implicit via adaptive gaussian blurring X
Accounts for visual crowding - - - X

Accounts for retinal eccentricity X Implicit via cropping X X
Accounts for loss of visual acuity X - X Implicit via visual crowding

Critical Radius (Larson & Loschky, 2009) 8 deg Not Applicable (Objects) ∼ 8.9 deg (Estimated from Fig. 8)
Out of Distribution Generalization - - - X

Robustness to Distortion Type - Blurring Blurring Occlusion
Spatial Frequency Preference High (Fovea), Low (Periphery) Low (Global) High (Fovea), Low (Periphery) High (Global)

Weighted Bias Emerges Center/Fovea Center/Fovea Center/Fovea Center/Fovea
Goal of Foveal-Peripheral Architecture Fit Behavioural Results Increase Recognition Accuracy Explore Perceptual Properties

Model System Focus Human Machine Human Hybrid

Table 2: A summary set of Foveal-Peripheral CNN model characteristics.
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6.6 GENERALIZATION (EXTENDED)
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Figure 18: Generalization: The full i.i.d. Generalization and o.o.d Generalization plots for AlexNet
and ResNet18 across multiple epochs of training. We observe that our results do not vary as a
function of training epoch or network architecture: Foveation-Nets with greater i.i.d generalization
across matched-resource systems, and Ada-Gauss-Nets with greater o.o.d generalization across all
systems. This suggests spatially-varying computation provides a representational benefit in both the
i.i.d and o.o.d setting contingent on the type of foveated computation (texture vs blur). Future work
should evaluate combining both computations. A. Our 4 main perceptual systems: Standard-Net,
Foveation-Net, Matched-Net, Ada-Gauss-Net; B. Standard-Net (re-plotted from above), Foveation-
Net (re-plotted from above), Standard-Aug-Net (supplementary), Foveation-Aug-Net (supplementary).
Notice that only gold and navy dots are shown for o.o.d plots because Standard-Aug-Nets were tested
on Standard-Net inputs, and Foveation-Aug-Nets were tested on Foveation-Nets inputs.
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Figure 19: Robustness to Occlusion of All Perceptual Systems (Extended – Part 1/4).

6.7 ROBUSTNESS TO OCCLUSION (EXTENDED)

We decided to extend the robustness to occlusion analysis with 2 additional conditions: Left2Right
and Top2Bottom, which are both occluding conditions where the stimuli is occluded with a gray
patch from “left to right” and from “top to bottom” respectively. Altogether we find that the same
pattern of results is sustained where Foveation-Nets are near the perceptual upper-bound provided
by Standard-Nets. Both matched-resource systems: Matched-Net (spatially uniform and lower-
resolution) and Ada-Gauss-Net (spatially varying with adaptive gaussian blurring) are less robust
to lateral, vertical, scotomal and peripheral occlusion than Foveation-Net (spatially-varying with
texture-based peripheral encoding) across both AlexNet and ResNet18 architectures as g(◦), and
across different epochs (learning dynamics). Furthermore the reported findings in the main body
of the paper with regards to the impact of the visual crowding mechanism (exclusively f∗(◦)) as a
filling-in operator, is sustained across both AlexNet and ResNet18 architecture as g(◦) and number
of epochs (learning dynamics). These extended results are plotted in addition to the new controls
Foveation-Aug-Nets and Standard-Aug-Nets in Figures 19,20,21,22. In these plots we once again
show that the contribution of eye-movements in training (Foveation-Aug-Nets) provides marginal
improvements in robustness to Foveation-Nets for both the pre and post foveation to occlusion
conditions. On the hand, Standard-Aug-Nets show a pattern of results very similar to a combination
of Matched-Nets and Standard-Nets. This should not be a surprise as Standard-Aug-Nets have been
trained with multi-resolution images. Somewhat surprisingly, Standard-Aug-Nets do not exceed the
robustness of Standard-Nets, showing a particularly counter-intuitive limitation to data-augmentation.
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Figure 20: Robustness to Occlusion of All Perceptual Systems (Extended – Part 2/4).
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Figure 21: Robustness to Occlusion of All Perceptual Systems (Extended – Part 3/4).
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Figure 22: Robustness to Occlusion of All Perceptual Systems (Extended – Part 4/4).
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6.8 WINDOW CUE-CONFLICT (EXTENDED)
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Figure 23: Window Cue Conflict Experiment: The pattern or results with regards to a greater foveal
bias for any foveated perceptual system over non-foveated perceptual systems remains independent of
the network architecture (g(◦)) and the epoch. This can be verified by finding the cross-over points
for Foveation-Nets, Ada-Gauss-Nets, and Foveation-Aug-Nets being placed more leftwards than
Standard-Nets, Matched-Nets and Standard-Aug-Nets. These results are independent of potential
perceptual differences at testing time i.e. baseline. For example, see AlexNet @ 360 epochs, or
ResNet18 @ 120 or 180 epochs, where the cross-over point for Standard-Nets, Matched-Nets and
Standard-Aug-Nets is still shifted more biased towards the right than Foveation-Nets, Ada-Gauss-
Nets and Foveation-Aug-Nets – implying a greated need for foveal area to arrive to the point of
subjective equality (PSE). A final note on the interpretability of these results is that this foveal bias
is being tested after the foveation transforms are computed (similar to our post-foveation occlusion
experiments), such that no changes in area are driving the revealed biases, and thus the bias is driven
purely by the learned representation.
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6.9 SPATIAL FREQUENCY SENSITIVITY (EXTENDED)
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Figure 24: Spatial Frequency Sensitivity for AlexNet and ResNet18 across multiple training epochs:
There are no notorious differences for high pass frequency sensitivity across network architecture
and epochs in comparison to the results reported in the main body of the paper. Specifically, these
patterns are: no differences between Foveation-Nets, Foveation-Aug-Nets and Standard-Nets (all
three statistically tested with paired t-tests against each other, n.s.). There are differences between
Standard-Nets and Standard-Aug-Nets (a greater bias to high pass spatial frequency sensitivity in
Standard-Nets). These 4 systems are notably also more biased to high pass spatial frequency than
Ada-Gauss-Net and Matched-Net in an orderly fashion. The opposite pattern of results hold for low
pass frequency sensitivity.

Images shown to each network were the respective images from each training-testing distribution pair.
Foveation-Nets were shown foveated images with a center fixation, Standard-Net were shown non-
foveated images, Matched-Nets were shown matched-resource non-foveated (yet blurred) images, and
Ada-Gauss-Nets were shown foveated images with adaptive gaussian blurring. Thus, both High Pass
Spatial Frequency and Low Pass Spatial Frequency experiments were conducted at the post-foveation
stage to directly examined the learned representations of g(◦): the second stage of each perceptual
system.
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The size of all shown images was 256× 256× 3, thus the units of the gaussian filters specified from
Section 4.4 are in pixels. For a given Gaussian filtering operation Gσ for a given standard deviation σ,
low pass spatial frequency (LF) images were computed via:

LF (IC) = Gσ(IC) (2)

for each channel C. In the main body of the paper we used the summarized notation FL(◦) for
low-pass frequency filtering operator. Similarly, High Pass Spatial Frequency (HF) image stimuli
were computed via:

HF (IC) = IC − Gσ(IC) + meanCval (3)

where meanCval (which we call the residual in the main body of the paper) is the average of image
intensity over the held-out validation set for each channel C, a small extension from Geirhos et al.
(2019) as our image stimuli is in color vs grayscale. In the main body of the paper we used the
summarized notation FH(◦) for the high pass frequency filtering operator.
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