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Abstract

As an essential sequential model, the temporal point process
(TPP) plays a central role in real-world sequence modelling
and analysis, whose learning is often based on the maxi-
mum likelihood estimation (MLE). However, due to imper-
fect observations, such as incomplete and sparse sequences
that are common in practice, the MLE of TPP models often
suffers from overfitting and leads to unsatisfactory general-
ization power. In this work, we develop a novel hierarchical
contrastive (HCL) learning method for temporal point pro-
cesses, which provides a new regularizer of MLE. In prin-
ciple, our HCL considers the noise contrastive estimation
(NCE) problem at the event-level and that at the sequence-
level jointly. Given a sequence, the event-level NCE maxi-
mizes the probability of each observed event given its his-
tory while penalizing the conditional probabilities of the un-
observed events. At the same time, we generate positive and
negative event sequences from the observed sequence and
maximize the discrepancy between their likelihoods through
the sequence-level NCE. Instead of using time-consuming
simulation methods, we generate the positive and negative
sequences via a simple but efficient model-guided thinning
process. Experimental results show that the MLE method as-
sisted by the HCL regularizer outperforms classic MLE and
other contrastive learning methods in learning various TPP
models consistently. The code is available at https://github.
com/qingmeiwangdaily/HCL_TPP.

Introduction

Continuous-time event sequences are ubiquitous in real-
world scenarios, such as earthquakes (Lewis and Shedler
1979), financial transactions (Bacry, Mastromatteo, and
Muzy 2015), social behaviors (Zhou, Zha, and Song 2013a),
e-commercial behaviors (Xu, Carin, and Zha 2018), etc. Fac-
ing such event sequences, temporal point processes (TPPs)
have been widely used as typical sequential models and
achieved encouraging performance in various applications,
including healthcare data modeling (Xu et al. 2016), social
network analysis (Zhao et al. 2015), high-frequency trading
prediction (Rambaldi, Bacry, and Lillo 2017), and so on.
However, the learning of TPPs often suffers from the im-
perfectness issue of data: Real-world event sequences may
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be too short, censored, and/or with missing events and noisy
timestamps, and learning TPPs from such data may lead to
poor generalization power and unsatisfactory performance.

Many efforts have been made to learn TPPs robustly from
imperfect observations. Typically, when learning TPPs via
the maximum likelihood estimation (MLE) (Ozaki 1979),
sparse and/or low-rank regularization is often applied to
avoid the over-fitting of the models (Zhou, Zha, and Song
2013b; Xu, Farajtabar, and Zha 2016). Besides adding reg-
ularizers, various data augmentation methods, like random
stitching (Xu, Luo, and Zha 2017), superposition (Xu et al.
2018), counterfactual inference (Noorbakhsh and Rodriguez
2021), and model-driven data imputation (Mei, Qin, and Eis-
ner 2019), have been introduced to improve the quality of
observed event sequences. Additionally, leveraging genera-
tive adversarial networks (GANSs) (Goodfellow et al. 2014)
and reinforcement learning (Sutton and Barto 2018), we can
introduce discriminators (Xiao et al. 2017a, 2018; Yan et al.
2018) or reward functions (Li et al. 2018; Upadhyay, De,
and Gomez-Rodrizuez 2018; Zhu et al. 2021) to guide the
learning of TPP models.

More recently, to simplify the learning task itself, dis-
criminative learning (Xu et al. 2016) and contrastive learn-
ing (Guo, Li, and Liu 2018; Mei, Wan, and Eisner 2020)
are applied. In particular, instead of maximizing the like-
lihood of event sequences, these methods focus on a rel-
atively easier task — distinguishing the real observations
from potential negative samples. Although these methods
have achieved some encouraging results, they often suffer
from the following challenges. Firstly, the side information
associated with the data, e.g., a pretrained TPP model (Mei,
Wan, and Eisner 2020), is required to design the correspond-
ing contrastive loss and simulate negative events, which is
often unreliable and even unavailable. Secondly, the genera-
tion of negative events depends on time-consuming thinning
algorithms (Lewis and Shedler 1979; Ogata 1981), which
limits the scalability and efficiency of the methods. Thirdly,
existing methods only consider negative events and the cor-
responding event-level contrastive learning while ignoring
the necessity of “negative sequences”’, which may still lead
to the over-fitting issue because of the natural uncertainty of
individual events in TPPs.

To overcome the above challenges, we propose a novel
learning method, called hierarchical contrastive learning
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Figure 1: The scheme of our learning method. (a) An illustration of hierarchical contrastive learning. (b) An illustration of

model-guided thinning.

(HCL), for temporal point process models, which constructs
event-level and sequence-level contrastive loss functions to
regularize the MLE of TPPs in a hierarchical way. As shown
in Figure 1(a), given a timestamp and the historical event se-
quence before the time, the target TPP model outputs 7) the
intensity vector indicating the instantaneous happening rates
of the events with different types at time ¢; i7) the latent em-
bedding of the historical event sequence; and z:7) a lower-
triangular infectivity matrix indicating the impacts of each
event on its successors. Our HCL leverages the intensity vec-
tor to construct the event-level contrastive loss, maximizing
the intensity of the real observed (i.e., positive) event type
while suppressing those of the other unobserved (i.e., neg-
ative) event types. Furthermore, the infectivity matrix pro-
vides us with the evidence to recognize the events having
significant impacts. Therefore, we develop a model-guided
thinning module to generate positive sequences and negative
sequences by randomly removing those insignificant and
significant events from the original sequence, respectively,
as shown in Figure 1(b). Given the embeddings of the posi-
tive and negative sequences, we construct the sequence-level
contrastive loss to maximize the difference between them.
The sequence-level contrastive loss, which is seldom con-
sidered by existing work, helps to capture the uncertainty
of historical impacts on the same event. Without using pre-
trained model (Mei, Wan, and Eisner 2020) or sophisticated
thinning processes (Lewis and Shedler 1979; Mei, Qin, and
Eisner 2019), the proposed sequence generation method is
purely dependent on the infectivity matrix derived by the
intermediate TPP model during training, which is very effi-
cient. Our HCL method is applicable to most existing TPP
models, including Hawkes process, self-correcting process,
and their neural network-based variants. Such high compat-
ibility is beneficial for its application in practice. Experi-
ments demonstrate the superiority of our HCL method.

Related Work

Temporal Point Processes Temporal point process is a
classic statistical tool to model the event sequences in

continuous-time domain. The simplest TPP model is Pois-
son process (Kingman 1992), which models event sequences
in a memory-less way. For the event sequences whose
events have a temporal dependency, the TPPs like Hawkes
process (HP) (Hawkes 1971) and self-correcting process
(SCP) (Isham and Westcott 1979) leverage additive or multi-
plicative mechanisms to build triggering patterns among dif-
ferent events quantitatively, whose triggering patterns can be
extended to multivariate scenarios (Liniger 2009; Xu et al.
2016). Recently, modelling TPPs by deep neural networks
helps to capture the event sequences with complicated dy-
namics, which has achieved encouraging performance in
various applications. The recurrent marked temporal point
process (RMTPP) in (Du et al. 2016) extends recurrent neu-
ral networks (RNNs) to continuous-time scenarios, which
is one of the representative neural TPP models. Similarly,
the neural Hawkes process in (Mei and Eisner 2017) works
as a continuous-time LSTM (CT-LSTM) model. More re-
cently, some attempts have been made to model the tem-
poral dependency of events based on the well-known self-
attention mechanism (Vaswani et al. 2017), e.g., the self-
attentive Hawkes process (SAHP) (Zhang et al. 2020) and
the transformer Hawkes process (THP) (Zuo et al. 2020).

Learning Methods of TPPs Typically, we learn TPP
models based on maximum likelihood estimation (MLE),
which aims at maximizing the likelihood of observed event
sequences (Kingman 1992). As aforementioned, real-world
data are often noisy and incomplete, and the MLE method
may lead to misspecified TPPs. To improve the robustness
of MLE, we leverage the prior knowledge and impose regu-
larizers on model parameters, e.g., the sparse and low-rank
regularizers of triggering patterns (Zhou, Zha, and Song
2013b) and the topological regularizer of Granger causality
graphs (Zhang, Lipani, and Yilmaz 2021).

Besides imposing structural regularizers, another robust
learning strategy is applying MLE to augmented data. Var-
ious data augmentation methods have been proposed, e.g.,
the random stitching (Xu, Luo, and Zha 2017) and superpo-
sition (Xu et al. 2018) for Hawkes processes and the counter-



factual sequence generation for more general TPPs (Noor-
bakhsh and Rodriguez 2021). Additionally, the combina-
tion of the data augmentation methods and the MLE frame-
work leads to the reinforcement learning (RL) methods of
TPPs (Li et al. 2018; Upadhyay, De, and Gomez-Rodrizuez
2018). These RL methods often simulate event sequences
based on the current model, calculate the rewards of the sim-
ulated event sequences, and update the model by the pol-
icy gradient algorithm. However, the simulation of event
sequence requires the Ogata’s thinning algorithm (Ogata
1981), which is time-consuming when the number of event
types or the time length is large.

Instead of applying MLE, the work in (Xu et al. 2016)
applies discriminative learning to multivariate TPPs, which
maximizes the conditional probabilities of observed event
types. This objective is also used as a regularizer in some
recent work (Zuo et al. 2020; Zhang et al. 2020). The
work in (Xiao et al. 2017a, 2018) develops generative ad-
versarial networks (GANS) to learn TPPs, which leads to
a min-max optimization problem. More recently, the idea
of contrastive learning has been introduced into the learn-
ing task of TPPs. Essentially, the contrastive learning meth-
ods, e.g., the noise contrastive estimation (NCE) (Gutmann
and Hyvérinen 2012), aim at distinguishing the negative
samples and the positive ones conditioned on the observed
data. Following the same idea, an NCE-based method called
“Initiator” is developed in (Guo, Li, and Liu 2018). Simi-
larly, the work in (Mei, Wan, and Eisner 2020) proposes to
train TPPs by discriminating the observed events from the
events sampled from a (pretrained/predefined) noisy point
process, which is another version of NCE. This method is
demonstrated to achieve consistent estimations of the TPPs
with (nearly) continuous intensity functions. Still, it de-
pends on a given noise point processes and needs to simu-
late negative events by the time-consuming Ogata’s thinning
method (Ogata 1981). Note that these NCE methods merely
focus on the contrastive loss at the event-level. In the fol-
lowing content, we will show that it is possible to design a
sequence-level contrastive loss with both effectiveness and
efficiency and learn TPPs robustly.

Proposed Method
A Generalized Formulation of TPPs

Suppose that we observe an event sequence s =
{(tn, cn)}¥,, where (t,,c,) is the n-th event, ¢,, € [0, 7]
is its timestamp, and ¢, € C = {1,...,C} is its event
type. We would like to develop a TPP model, which is
characterized by a multivariate intensity function A(¢) =

{Ae(t) Yeec,teo,1)» Where

dE[N.(t)[Hf]
dt

which represents the instantaneous rate of the type-c event
happening at time ¢ given historical events (Liniger 2009).
Here, N.(t) is the counting process of the event type and
HE = {(tn,cn) € 8|t <t} is the history till time .
Typically, we implement the TPP as a parametric model,
i.e., fg, where 6 represents the model parameters. In this

Ac(t) = , Veel, ey

study, we consider a generalized formulation of commonly-
used TPP models, which is illustrated in Figure 1(a) and is
defined as follows:

A(t), G, e = fo(t, st). 2)
In this formulation, the TPP model takes a timestamp ¢ and
the historical events before ¢t (i.e., s; = ’Htc with length

L = |s|) as its input, and output three terms:

* The multivariate intensity vector at time t, i.e., A(t) =
A(t)] € RE.

* The lower-triangular infectivity matrix for events, de-
noted as G = [g;;] € REXL, where g;; with i > j repre-
sents the influence of the j-th event on the i-th event, and

* The embedding vector of the historical event sequence
till time ¢, i.e., e € RP.

Note that the formulation in (2) is generalized, which cov-
ers many representative TPP models. Here, we give some
examples below:

Hawkes Process (HP) (Zhou, Zha, and Song 2013b)
Given ¢ and s;, the HP derives the intensity of each event
type at time ¢ as

Ae(t) = pe + Z(tn e, Qe (t — 1), Ve €C.  (3)

Then, inspired by the EM algorithm of multivariate Hawkes

process (Zhou, Zha, and Song 2013b), we can define the

events’ infectivity matrix G = [g;;] as

Qe Ki(ti — )
/\Cz‘ (tl)

The sequence embedding e can be set as the average of the

intensity vector over time, i.e., e = L "7 A(t;) € RC.

Self-Correcting Process (SCP) (Isham and Westcott
1979; Xu et al. 2016) Given ¢ and s,, the self-correcting
process derives the intensity of each event type at time ¢ as

Ac(t) = exp (uct — Z(tn,cn)ea accn), Ve € C. 5)

We can define the events’ infectivity matrix G = [g;;] as

gij = 4)

exp(ac,ec,)
= il 6
and the sequence embedding can be defined as the average
of the intensity vector as well.

Transformer Hawkes Process (THP) (Zuo et al. 2020)
Given t and s;, the THP leverages a transformer (Vaswani
et al. 2017) to obtain the embedding of the event sequence
e. The events’ infectivity matrix G is the intermediate result
generated by the self-attention module in the transformer.
Finally, the intensity vector at time ¢ is obtained by

A(t) = Softplus(p + Wes,) (7)

where g = [u.] € RY is the base intensity vector, W =
[wT;..;wk] € RE*P and w. € RP forc € C.



Other models like the neural Hawkes process in (Mei
and Eisner 2017) and the self-attentive Hawkes process
in (Zhang et al. 2020) can also be captured in the same for-
mulation. As aforementioned, given a sequence s, we often
learn the above TPP model via maximum likelihood estima-
tion (MLE) (Ogata et al. 1978). The learning task is maxi-
mizing the log-likelihood of s:

max Z log Ac,

However, purely relying on MLE may lead to unsatisfactory
learning results. To learn TPP models robustly, we further
introduce two regularizers with the help of noise contrastive
estimation (Gutmann and Hyvirinen 2012). In principle, the
two regularizers aim at maximizing the discrepancy within
an event sequence at the event level and the discrepancy
across different sequences, respectively.

max £(s;0) Z/ 3

ceC

Event-Level Contrastive Loss

In the training phase, the event type associated with each
timestamp is known. Therefore, for each event (¢, ¢) and its
history s;, the intensity vector A(¢) obtained has included
both “positive” and “negative” samples — the c-th element
Ac(t) is the intensity we should enlarge while the other ele-
ments are the values we should suppress. As a result, we can
obtain an event-level contrastive loss:

Aer (t)
+Zlg( O ) ©
c'#c N ,

p(c'lt,’Hf)

Lo A1) = log 2l t

p(clt,HE)

where A\(t) = Zc_l Ac(t) is the overall intensity at time ¢.
Each \.(t)/A(t) corresponds to the probability of the event
type c conditioned on current time ¢ and the history H¢.

Beyond the discriminative learning method in (Xu et al.
2016), which only maximizes the conditional probability
of the “positive” event type, our event-level contrastive
loss further penalizes the conditional probabilities of those
“negative” event types. Furthermore, following the sam-
pling strategies used in the original NCE (Gutmann and
Hyvirinen 2012), we don’t have to enumerate all negative
event types when the number of event types is large. Instead,
we can sample a subset of negative event types randomly and
rewrite the event-level contrastive loss as follows:

B o o /\c’ (t)
Eevent(A(t)) =1 ! g(l )\/(t) >’ (10)

S, Ae(t), andC =\ {e}.

Here, ¢’ ~ C’ means sampling a small subset randomly from
the remaining negative event types. As a result, the event-
level contrastive loss suppresses the uncertainty of the ob-
served event sequence by enlarging the conditional proba-
bility of the positive event and reducing that of the negative
event at the same time, which is more efficient than the dis-
criminative learning method in (Xu et al. 2016).

Note that our event-level contrastive loss is different from
the NCE loss used in (Guo, Li, and Liu 2018; Mei, Wan,

where ' (t) =

and Eisner 2020), which neither depends on time-consuming
simulation algorithms (Ogata 1981) to generate negative
events nor requires a pretrained/predefined TPP model as the
reference. Therefore, our learning method is easy to imple-
ment and has advantages in efficiency.

Sequence-Level Contrastive Loss

When learning a TPP model, the event sequences, rather
than the individual events within each of them, work as
the samples of the model. For the TPP model, whose event
types have temporal dependencies, the likelihood of observ-
ing a sequence is different from that of observing individ-
ual events independently at the corresponding timestamps.
Therefore, besides constructing contrastive loss for event
types, we further propose the contrastive loss at the sequence
level in this study and implement it efficiently.

The proposed sequence-level contrastive loss requires
generating some ‘“negative” event sequences based on
the observed ones. Instead of applying Ogata’s thinning
method (Ogata 1981), we propose a simple but efficient sim-
ulation method called model-guided thinning. In principle,
in the training phase, this method first estimates the sig-
nificance of each event in an observed sequence based on
the TPP model at the current stage. Then, it generates posi-
tive and negative event sequences by thinning the observed
events based on their significance.

In this study, we obtain the significance of events based
on the infectivity among them. The infectivity matrix G de-
rived by the model fy indicates the events that have a huge
influence on their followers. Taking G as an input, we can
define the following function to obtain the significance of
observed events quantitatively, i.e.,

g = g, = softmax(GT1y). (11)

Here, GT1; accumulates the influence of each event on the
future events, which provides us with strong evidence for the
significance of events. The softmax operation normalizes the
significance accordingly.

According to the definition in (11), the small g; means
that the [-th event has ignorable impacts on future events.
Removing it would have a limited influence on the happen-
ing of the future event. On the contrary, when g; is large,
the [-th event is significant to the future events, and accord-
ingly, removing it would break the generative mechanism of
the future events. As illustrated in Figure 1(b), we can sam-
ple a set of negative event sequences by removing the events
randomly while sampling a positive event sequence by yield-
ing the significance g and removing insignificant events with
higher probabilities. Assuming that the embeddings of sim-
ilar sequences will be close to each other as well, we con-
struct the following sequence-level contrastive loss:

Lseq (8, 8(py, {8k,v) Het)
eeTE(p)

O
¢ ec"em + 25:1

eeTek (N)
Zlog(l_ ee’ e’ ek/7(N)>’

€r 4 Zk/

+
ec ermm (12)




Algorithm 1: The MLE+HCL method of TPPs

Input: A event sequence set S. Output: A TPP fy
Initialize the model parameter 6 randomly.
for A batch of sequences 5 C S do
for Each s € B do
Calculate L(s; 0) via (8).
for Each event (¢;,¢;) € sdo
Sample negative events C’, get Leyent(A(t;)).
end for
Sample sequences, get Lqq(€, €(py, { €, (n) Fk)-
Construct the loss function via (13).
end for
Apply Adam (Kingma and Ba 2014) to update fy.
end for

where we denote s as the original observed sequence,
s(p) as the positive sequence, and sy, () as the k-th neg-
ative sequence. Accordingly, e, e p), and ey, () represent
the embeddings of s, s(py, and s;, ().

Compared to Ogata’s thinning algorithm (Ogata 1981),
which is applied in other contrastive learning methods (Mei,
Wan, and Eisner 2020) for generating negative samples, our
model-guided thinning is much more efficient.. In theory, to
generate a negative sequence with O(N) events, the com-
plexity of Ogata’s thinning is O(N?) because each event is
generated according to its history. On the contrary, the com-
plexity of our thinning method is at most O(N) because its
sampling process is memoryless — for each event, it just
determines whether preserve it or not.

Hierarchical Contrastive Learning of TPPs

Taking the above two contrastive losses into account, we
obtain a hierarchical contrastive learning (HCL) method to
regularize the MLE of TPPs. In summary, given an event se-
quence before time ¢ (i.e., s; with length L) and the event at
time ¢ (i.e., (¢, ¢)), our learning problem is

L(s:0 Y Leem(A
H}E;X (8, ) +’Yl Zi:l evem( (tl))+

Log-likelihood

Event-level contrastive loss ( 1 3)

'72£seq(37 S(p)» {Sk,(N)}§:1)7

Sequence-level contrastive loss

where L(s;60) is the log-likelihood term in (8),
Levent(A(t;)) is the event-level contrastive loss in (10),
and ,Cseq(e,e(p),{ek’(N)}kK:l) is the sequence-level
contrastive loss in (12).

This learning problem can be solved efficiently by
stochastic gradient descent (SGD). Algorithm 1 shows the
scheme of our learning method in detail.

Experiments

To demonstrate the usefulness of our HCL method, we eval-
uate it on several synthetic and real-world datasets, with a
comparison to representative learning methods of TPPs. The
following experimental results show the superiority of our
HCL method, and we further do ablation studies and analyze

Dataset # Types | # Sequences | Max. length
Hawkes 5 10000 100
Missing 5 10000 100
Retweet 3 24000 264
StackOverflow 22 6633 736
Bookorder 2 200 3319

Table 1: The statistics of datasets

the robustness of the method to its hyperparameters. All the
experiments are run on a server with two Nvidia 3090 GPUs.

Implementation Details

Datasets We considered five datasets, whose statistics are
given in Table 1 and details are summarized below:

Hawkes and Missing are synthetic data provided by (Mei,
Qin, and Eisner 2019). Each of these two datasets con-
tains ten thousand event sequences yielding 5-dimensional
Hawkes processes. The event sequences in the Missing
dataset are censored randomly, which imitate the real-world
scenarios with missing events.

Retweet (Zhao et al. 2015): The Retweet dataset, includ-
ing 24000 sequences, is collected from Twitter, a social web-
site which is composed of sequences of tweets. Each tweet
is treated as an event, which contains a timestamp and a user
group tag based on the number of the user’s followers.

Stack Overflow: The Stack Overflow’s open source
dataset contains two years of users’ reward history on a
question-answering website. Each sequence represents a
user’s reward history and each reward(i.e., event) contains
a timestamp and a badge(i.e., event type).

BookOrder is collated from (Mei, Qin, and Eisner 2019).
The maximum length of this sequence dataset is up to more
than three thousand, implying difficulties in storage and
training computational overhead.

Baselines and Hyperparameter Settings We test our
method (MLE+HCL) on each of the above datasets and
compare it with the following baselines. The baselines
can be categorized into two categories: ¢) the MLE-based
methods, including the MLE with sparse regularization
(MLE+Reg) (Zhou, Zha, and Song 2013b), the MLE with
superposition-based data augmentation (MLE+DA) (Xu
et al. 2018); i) the non-MLE methods, including the dis-
criminative learning (DIS) method in (Xiao et al. 2017b)),
and the contrastive learning methods INITIATOR (Guo,
Li, and Liu 2018) and NCE-TPP (Mei, Wan, and Eisner
2020). For all the methods, we set the learning rate as 0.001,
the batch size as 1 for the Bookorder dataset (because it
owns extremely long event sequences) and 4 for the remain-
ing datasets, and the dimension of sequence embedding as
D = 64. For NCE-TPP, we follow its default setting, apply-
ing the neural Hawkes process as the noisy point process to
generate negative samples. For MLE+HCL, we set the num-
ber of negative sequences as K = 20, whose rationality is
given in the following analytic experiments.

Backbone Models To demonstrate the universality of our
learning method, we apply two different TPPs to model each



Methods

Models Data Metrics (T ErReg  MLE+DA DIS INITIATOR  NCE-TPP  MLE+HCL
Hawkes Log-Like | -0.06 (0.05) -0.52(0.34)  -6.6(I.11) _ -0.22(0.02) _ -0.10 (0.08) _-0.04 (0.05)

Type-Acc | 0.38(0.01)  038(0.01)  032(0.05  035(0.02) 0.33(0.02)  0.40 (0.00)

Missing Log-Like | -0.06 (0.00) -1.09 (0.00) -3.38 (0.00) _ -0.53 (0.04) _ -0.04 (0.01) _-0.02 (0.00)

Type-Acc | 0.42(0.00)  041(0.01)  040(0.01)  038(0.02) 041(0.01) 0.42(0.02)

1P Bookorder | Loglike [ 2,60 (040) 328 (0.58) -1.64(0.36) -171(025) -1.60 (038) -1.57 (0.30)
Type-Acc | 0.57 (0.00)  0.57(0.01)  0.62(0.01)  0.60(0.02)  0.62(0.00)  0.62 (0.00)

StackOverflow | LogLike | 077000 231 (0.12) 096 (0.07) -0.79(0.03) -0.74(0.04) -0.72 (0.00)
Type-Acc | 0.45(0.02)  043(0.02)  040(0.05) 049 (0.02)  0.51(0.06) 0.50 (0.01)

Retweet Log-Like | -8.94 (0.20) -10.73 (2.20) — 889 (0.11) -8.92(0.05) -8.84 (0.02)

Type-Acc | 0.60 (0.01)  0.59(0.00)  0.58(0.02)  0.62(0.05)  0.66 (0.03)  0.66 (0.04)

Hawkes Log-Like | 0.11(0.03) -1.23(0.43) -0.68(0.13) _ 0.03(0.05) _ 0.12(0.01) _ 0.14 (0.02)

Type-Acc | 0.38 (0.00)  0.26 (0.00)  0.34(0.03) 024 (0.02)  0.40(0.01)  0.38 (0.00)

Missing LogLike | 047 (0.01) -1.32(021) -0.75(0.16) -1.08(0.10) -0.50 (0.02) -0.34 (0.08)

Type-Acc | 0.41(0.01) 027 (0.00)  0.41(0.00)  0.40(0.00)  0.42(0.01)  0.41 (0.00)

THP Bookorder | Loglike [-T.69(03) 450 (1.79) -1.64(0.36) -1.70(043) -1.60 (0.30) -1.58 (0.21)
Type-Acc | 0.62(0.00)  0.62(0.01)  0.62(0.00) 053 (0.01)  0.64(0.00) 0.64 (0.00)

StackOverflow | LogLike [ 077 @00) 231 (0.12) 096 (007) 089 (0.10) -0.77 (0.02) -0.79 (0.01)
Type-Acc | 0.43(0.00)  042(0.02)  049(0.03)  0.40(0.05)  0.39(0.02)  0.44 (0.01)

Retweet Log-Like | -7.35(0.35)  -9.14 (0.46) — 1020 (0.53) -7.33(0.29) -7.27 (0.18)

Type-Acc | 0.53(0.00)  0.50(0.01)  0.54(0.00)  0.53(0.01)  0.54(0.00)  0.56 (0.00)

s

the parentheses contains the standard deviation.

“—" means the learning method fails to converge. The best results are bolden. In each cell, the averaged performance is shown, and

Table 2: Comparisons for various methods on learning TPPs from different datasets

of the above datasets and learn the two models via various
methods. The first TPP is the Hawkes process (HP) with ex-
ponential impact functions, which has been commonly used
in many works (Zhou, Zha, and Song 2013b; Bacry, Mastro-
matteo, and Muzy 2015). The second TPP is the transformer
Hawkes process (THP) proposed in (Zuo et al. 2020), which
is one of the state-of-the-art TPP models and achieves en-
couraging performance in various applications. Essentially,
the THP can be viewed as an extension of the classic HP
— the triggering patterns captured by the classic HP are
parametrized by the transformer architecture of the THP.
Accordingly, the infectivity between different events is de-
scribed by the self-attention mechanism.

Evaluation Measurements Given a dataset and a back-
bone model, we train the model via a learning method with
5-fold cross validation. In each trial, given the testing event
sequences, we consider two evaluation measurements: ¢) the
log-likelihood per event (Log-Like); ¢7) the prediction ac-
curacy of event types (Type-Acc). These two measurements
evaluate the performance of the learning method in two as-
pects: the testing log-likelihood indicates the data fidelity
achieved by the learning method, while the prediction accu-
racy shows the prediction power of the learned model. For
each measurement, its averaged value and standard devia-
tion are recorded.

Comparison Experiments

Applying various learning methods to train backbone mod-
els, we obtain the learning results shown in Table 2. We
can find that the superiority of our MLE+HCL method is
consistent on all the datasets and robust to the selection of
backbone models — for each of the backbone models, our

MLE+HCL method outperforms the baselines in most situ-
ations. In particular, for the MLE-based methods, our HCL
regularizer works better than the sparse regularizer and the
data augmentation method, which achieves higher testing
log-likelihood and prediction accuracy. Additionally, com-
pared to the data augmentation method, in which the ran-
dom superposition increases the uncertainty of data, our
MLE+HCL method achieves more minor standard devia-
tion.

Compared to other non-MLE methods, our MLE+HCL
approach owns better performance and efficiency. As shown
in Table 2, our MLE+HCL is at least comparable to the
state-of-the-art contrastive learning methods (i.e., INITIA-
TOR and NCE-TPP) on testing log-likelihood and pre-
diction accuracy. Additionally, the discriminative learning
method in (Xu et al. 2016) fails to converge when dealing
with the Retweet dataset because of the lack of the log-
likelihood term. Leveraging the advantages of both MLE
and contrastive learning, our MLE+HCL works better on
both performance and stability.

Another advantage of our HCL method is its efficiency.
As aforementioned, the most time-consuming step of pre-
vious contrastive learning methods (Mei, Wan, and Eisner
2020; Guo, Li, and Liu 2018) is generating samples be-
cause they rely on Ogata’s thinning algorithm (Ogata 1981).
On the contrary, our HCL applies a model-guided thinning
method. The event sequences are generated by a simple cate-
gorical sampling process, which is much faster than Ogata’s
thinning algorithm. Figure 2 compares the two thinning
methods on the runtime of generating one event sequence
for a Hawkes process. We can see that with the increase of
the number of events, the advantage of our thinning method
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Figure 2: The runtime comparison on the two thinning meth-
ods. For our model-guided thinning method, the runtime of
constructing the infectivity matrix is taken into account.
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Figure 3: The ablation study of our HCL method.

becomes more and more obvious.

Analytic Experiments

Ablation Study Our HCL method takes both the event-
level contrastive loss and the sequence-level one into ac-
count. To demonstrate the necessity of these two losses, we
perform an ablation study on both synthetic and real-world
datasets. Taking the testing log-likelihood as the measure,
we check the influence of the event-level loss and that of
the sequence-level loss and compare them with the proposed
HCL regularizer. The results are shown in Figure 3. We can
find that considering only one contrastive loss leads to the
degradation of performance. The HCL considering the two
losses jointly, achieves the highest testing log-likelihood.

Robustness Analysis Our HCL method owns three key
hyperparameters: the weights of the two contrastive losses,
i.e., 71 and 2, and the number of negative sequences K. We
test the robustness of our HCL method to the two weights
and show the analytic results in Figure 4. We can find that
results of our HCL method are relatively stable when
and 2 change in a wide range. For the number of negative
sequences per sample, we show its influence on the learn-
ing results in Figure 5. When K is small, the negative se-
quences may have poor diversity and can be close to the
original sequence because of the randomness of sampling.
When K is large, the negative sequences will be dominant
compared to the positive sequence. As shown in Figure 5, for
both testing log-likelihood and prediction accuracy, the best
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Figure 4: The robustness of our HCL method to the weights
of the contrastive losses.
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Figure 5: The influence of the number of negative event se-
quences. The dataset is the synthetic Hawkes dataset.

performance is achieved when applying the default setting
K = 20, which achieves a trade-off between the diversity
and the redundancy of negative sequences.

Conclusion

In this paper, we present a hierarchical contrastive learn-
ing method for temporal point processes, which provides
a new regularizer for the scheme of maximum likelihood
estimation. The proposed method not only considers the
event-level contrastive learning like existing work (Guo, Li,
and Liu 2018; Xu et al. 2016) did, but also designs a sim-
ple but effective sequence-level contrastive loss guided by
the triggering pattern hidden behind the target model. The
contrastive learning mechanism, especially the sequence-
level part, is more efficient than the Ogata’s thinning-based
method (Mei, Wan, and Eisner 2020). The complexity of our
thinning method is O(N) and can be O(1) in parallel while
the complexity of the Ogata’s thinning is O(N?). Beyond
the scheme of MLE, we would like to combine the proposed
HCL method with other learning frameworks in the future,
e.g., the Wasserstein GAN strategy (Xiao et al. 2017a) and
the reinforcement learning strategy (Li et al. 2018; Zhu et al.
2021). Additionally, we will try to find theoretical support
for our HCL method.
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