

MULTI-VIEW LATENT DIFFUSION RECONSTRUCTION FOR VISION-ENHANCED TIME SERIES FORECASTING

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 Recent studies have explored diffusion models for time series forecasting, yet
 012 most methods operate directly on 1D signals and tend to overlook intrinsic tem-
 013 poral structures (e.g., periodicity and trend). This often leads to suboptimal long-
 014 range dependency modeling and poorly calibrated uncertainty. To this end, we
 015 propose LDM4TS, a vision-enhanced time series forecasting framework that vi-
 016 sualizes time series into structured 2D representations and leverages the image
 017 reconstruction capabilities of diffusion models. Raw sequences are first con-
 018 verted into complementary visual inputs, forming multiple views that collectively
 019 capture diverse temporal structures. By leveraging the generative nature of the
 020 diffusion process, the framework not only yields accurate point forecasts but
 021 also provides the capability to characterize predictive uncertainty. Extensive ex-
 022 periments demonstrate that LDM4TS outperforms various specialized forecast-
 023 ing models for time series forecasting tasks. The source code is available at:
 024 <https://anonymous.4open.science/r/LDM4TS-53FB/>.

1 INTRODUCTION

027 Time Series Forecasting (TSF) is a critical capability across many real-world domains Jin et al.
 028 (2024a), enabling proactive decisions in demand planning Leonard (2001), energy load scheduling Liu
 029 et al. (2023), climate and environmental modeling Schneider & Dickinson (1974), and traffic flow
 030 management Zheng et al. (2006). As temporal data grow in scale and heterogeneity, practitioners
 031 increasingly require models that are robust across regimes.

032 Deep learning has substantially advanced TSF by learning complex temporal dependencies. Early
 033 recurrent models introduced sequential inductive biases Cho et al. (2014); Hochreiter & Schmidhuber
 034 (1997); Lin et al. (2024b), while Transformer-based architectures improved long-range modeling
 035 and computational efficiency Nie et al. (2023a); Zhou et al. (2021; 2022); Wu et al. (2021); Woo
 036 et al. (2022); Liu et al. (2024). More recently, leveraging pre-trained or foundation models has
 037 shown promise in time series Zhou et al. (2023); Jin et al. (2024b); Zhong et al. (2025). Despite
 038 these advances, these methods still operate on raw 1D inputs, struggle to capture intrinsic temporal
 039 structures and model uncertainty for stable long-horizon forecasting and robust generalization.

040 To address this, diffusion models have been introduced as powerful generative frameworks for
 041 structure-aware reconstruction and uncertainty modeling in TSF Rasul et al. (2021a); Shen et al.
 042 (2024); Shen & Kwok (2023); Tashiro et al. (2021); Yan et al. (2021). Denoising Diffusion Proba-
 043 bilistic Models (DDPMs) progressively remove noise and sample diverse yet realistic images Ho et al.
 044 (2020), while Latent Diffusion Models (LDMs) partially alleviate quadratic computational cost by
 045 operating in a compressed latent space Rombach et al. (2022). Though their great success in vision
 046 tasks like image-to-image Saharia et al. (2022a,b); Meng et al. (2021); Mokady et al. (2023); Zhang
 047 et al. (2023), these models struggle to capture the sequential nature of time series and often fail to
 048 preserve long-range temporal dependencies when directly applied to raw 1D signals.

049 To harness diffusion models without sacrificing temporal structure, an intuitive idea is to transform
 050 sequences into compact 2D visual representations that encode local trends, periodicity, and cross-
 051 channel interactions as diverse spatial textures Chen et al. (2024). Early studies have also shown
 052 that time series data can be transformed into coherent visual representations, although most adopt a
 053 single-view perspective that preserves only specific temporal characteristics Eckmann et al. (1995);
 van den Oord et al. (2016); Wang & Oates (2015a); Griffin & Lim (1984); Daubechies (2002); Vetterli

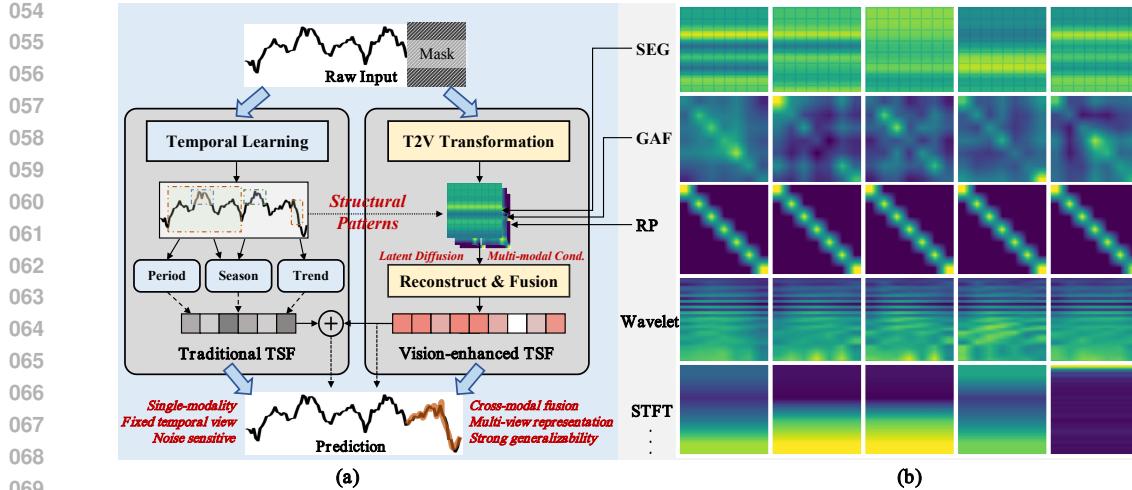


Figure 1: (a) Comparison between traditional TSF methods and vision-enhanced approach. (b) Illustration of different transformations for time series data, each with unique temporal patterns.

& Herley (1992). These vision-based transformations introduce spatial inductive biases, allowing diffusion models to fully exploit their strengths in uncertainty modeling while capturing both local and global temporal dependencies essential for robust time series forecasting Wu et al. (2022); Chen et al. (2024); Zhong et al. (2025). However, several critical limitations exist: (i) Most existing methods based on single-view transformation leave inherent structural patterns under-represented, necessitating a multi-view strategy to extract complementary structural patterns; (ii) The integration of accurate point forecasting and quantification remains largely unexplored in vision-based approaches.

To address these challenges, we present LDM4TS, the first attempt to leverage multi-view transformation and latent diffusion reconstruction as a vision-enhanced time series forecasting method. Our approach proposes the image multi-modal conditional reconstruction to enhance the TSF task, as illustrated in Figure 1 (a). LDM4TS combines the strong reconstruction capability of diffusion models with multi-view vision-enhanced temporal dependency learning. Specifically, ① we first transform raw time series data into multi-view visual representations, including multiple Time-to-Vision (T2V) transformation strategies to capture a full spectrum of temporal structures. ② These visual representations are then mapped into a low-dimensional latent space, where a latent diffusion model progressively denoises the latent variables. ③ To further increase the flexibility of the model, the diffusion process is conditioned on the frequency embedding and textual embedding to capture domain-specific knowledge or statistical properties of the time series via cross-attention. ④ Finally, a projection and fusion module is introduced to extract complex dependencies from the reconstructed representations and predict future time series. The key contributions of this work are as follows:

1) Multi-view Visual Representations: We present the first work that transforms time series into multi-view visual representations with preserved crucial temporal properties, thus leveraging diffusion models' power to capture the complex temporal structures and intrinsic patterns.

2) Vision-enhanced Latent Diffusion Framework for TSF: We develop LDM4TS, a unified framework that reconstructs multi-view T2V representations via latent diffusion and a multi-modal conditional-guided mechanism for effective time series forecasting.

3) Comprehensive Empirical Validation: Extensive experiments verify that LDM4TS achieves state-of-the-art performance on diverse datasets, outperforming specialized TSF models and methods with pre-trained components on time series forecasting tasks.

2 RELATED WORK

Diffusion Models for Time Series. Diffusion models have emerged as a powerful class of generative approaches, demonstrating remarkable success across various high-dimensional data domains.

108 Denoising Diffusion Probabilistic Models (DDPMs) Ho et al. (2020) employ a Markov chain to add
 109 and remove Gaussian noise, progressively generating high-fidelity samples. Score-based diffusion
 110 models Song et al. (2020) directly estimate the score function of data distributions, while conditional
 111 diffusion models Dhariwal & Nichol (2021) further incorporate guidance signals to steer the generative
 112 process. Recent years have witnessed increasing applications of diffusion models in time
 113 series analysis Yang et al. (2024b); Lin et al. (2024a). TimeGrad Rasul et al. (2021a) pioneered the
 114 integration of diffusion with autoregressive modeling, and D3VAE Li et al. (2022) combines variational
 115 autoencoders with diffusion for improved flexibility. TSDiff Kolloviev et al. (2024) iteratively
 116 refines probabilistic forecasts through implicit densities. In the context of imputation, conditional
 117 models such as CSDI Tashiro et al. (2021) and MIDM Wang et al. (2023a) leverage conditional score
 118 matching for irregular time series. TimeDiff Shen & Kwok (2023) introduces a non-autoregressive
 119 conditional diffusion framework for time series prediction, while TMDM Li et al. (2024) employs
 120 transformer-modulated diffusion for multivariate probabilistic forecasting. DiffusionTS Yuan &
 121 Qiao (2024) focuses on interpretable diffusion for general time series generation, and NsDiff Ye
 122 et al. (2025) specifically addresses non-stationary time series forecasting via specialized diffusion
 123 modeling techniques. Domain-specific designs have also emerged, such as DiffLoad Wang et al.
 124 (2023b) for load forecasting, WaveGrad Chen et al. (2020) and DiffWave Kong et al. (2020) for audio
 125 synthesis, and EHRDiff Yuan et al. (2023) for healthcare applications. DiffSTG Wen et al. (2023)
 126 further explores spatio-temporal graph structures in diffusion models for time series.

127 *However, most existing diffusion methods focus on single-modality or lack mechanisms for leveraging*
 128 *multi-view visual representations for TSF.* Our work advances the development of latent diffusion
 129 models for TSF by incorporating multi-modal information and exploiting cross-modal conditioning
 130 mechanisms, thereby substantially improving the accuracy and robustness under different scenarios.

131 **Vision-enhanced Time Series Forecasting.** Vision models like ViT Dosovitskiy (2020) and
 132 MAE He et al. (2022) have demonstrated remarkable success in computer vision through their
 133 exceptional feature extraction capabilities, demonstrating unprecedented generalization power when
 134 pre-trained on large-scale datasets like ImageNet Deng et al. (2009). Inspired by the success of these
 135 vision models, researchers have begun exploring their potential in time series forecasting.

136 Leveraging vision models for time series analysis has recently gained increasing traction Ni et al.
 137 (2025); Zhao et al. (2025). Early methods of treating time series as images have evolved from
 138 traditional approaches using Gramian Angular Fields (GAF), Markov Transition Fields (MTF) Wang
 139 & Oates (2015b) or various spectrogram-based approaches van den Oord et al. (2016); Griffin & Lim
 140 (1984); Daubechies (2002). These methods enable the use of 2D vision models like CNNs Wang &
 141 Oates (2015b); Barra et al. (2020), and more sophisticated transformer-based methods Dosovitskiy
 142 (2020); Wu et al. (2022); Chen et al. (2024) for time series tasks. TimesNet Wu et al. (2022) exploits
 143 2-D matrix representations, and VisionTS Chen et al. (2024) utilizes pre-trained visual architectures
 144 for effective feature extraction and transfer learning. ViTime Yang et al. (2024a) demonstrates the
 145 possibility of zero-shot forecasting by treating time series as visual signals.

146 *However, these approaches are predominantly deterministic and lack uncertainty quantification capa-*
 147 *bilities since they are not built within generative frameworks.* Our work addresses these limitations
 148 by integrating latent diffusion models with visual representations in a unified framework. This design
 149 enables our model to effectively capture temporal dependencies while maintaining the uncertainty
 150 modeling capabilities inherent in diffusion models.

151 3 METHODOLOGY

154 As illustrated in Figure 2, LDM4TS employs a cross-modal architecture that leverages the visual
 155 pattern reconstruction capabilities of latent diffusion models to enhance time series forecasting.
 156 The framework operates through three key stages: ① First, it transforms raw time series data into
 157 multi-view visual representations using complementary encoding methods, each capturing underlying
 158 characteristics. ② Second, these visual representations are processed through a latent diffusion model
 159 that iteratively denoises the multi-modal encoded data, guided by frequency and textual conditions
 160 that provide domain knowledge and statistical context. ③ Finally, the model combines the diffusion-
 161 generated features with explicit temporal features through an adaptive fusion mechanism, producing
 162 accurate and robust forecasts that capture both global patterns and local dynamics.

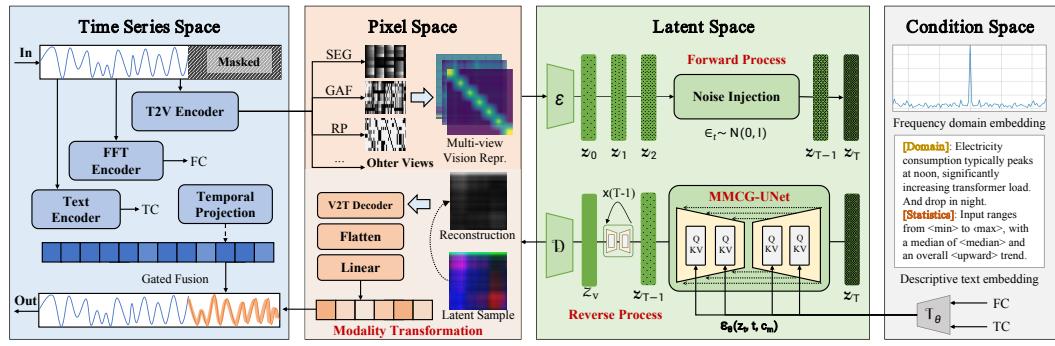


Figure 2: The framework of our proposed LDM4TS. Time series data is first transformed into complementary visual representations (SEG: Segmentation, GAF: Gramian Angular Field, RP: Recurrence Plot) that encode structural temporal patterns. A conditional latent diffusion model then reconstructs the images through iterative denoising guided by a multi-modal conditional-guided mechanism (FC: frequency conditioning, TC: textual conditioning). Finally, the reconstructed images are mapped back to time series space with explicit temporal dependencies and implicit patterns.

3.1 MULTI-VIEW VISION TRANSFORMATION FOR TIME SERIES

Time series data exhibits complex temporal patterns across multiple views, from local fluctuations to long-term trends, making structural modeling challenging. We propose a novel approach that transforms time series into multiple complementary visual representations, each capturing unique temporal characteristics through a T2V vision encoder (VE) integrated with multiple transformation strategies and multi-scale convolution combination. Given an input sequence $X \in \mathbb{R}^{B \times L \times D}$, where B denotes the batch size, L represents the sequence length, and D indicates the feature dimension, we construct a multi-channel image representation I_ϕ through complementary encoding methods $\phi(\cdot)$. The technical details of all the transformation processes are presented in Appendix E.

We implemented 8 different transformation strategies and simplified their utilization. For illustrative and evaluation purposes, we generate three visual channels with strong complementary properties to validate our approach. Specifically, One combination of the T2V encoder transformation process is inspired by (i) the Segmentation representation (SEG) Chen et al. (2024) that employs periodic restructuring to preserve local temporal structures, enabling the detection of recurring patterns across multiple time scales; (ii) the Gramian Angular Field (GAF) Zheng et al. (2014); Wang & Oates (2015a) that transforms temporal correlations into spatial patterns through polar coordinate mapping, effectively capturing long-range dependencies crucial for forecasting; and (iii) the Recurrence Plot (RP) Eckmann et al. (1995); Marwan et al. (2007) that constructs similarity matrices between time points to reveal both cyclical behaviors and temporal anomalies, providing a complementary view of the underlying structure. As demonstrated in Figure 1 (b), these three visual encoding strategies effectively convert temporal dynamics into structured spatial patterns, enabling our model to capture history dependencies and underlying features. The transformation process is formulated as follows:

$$\tilde{X} = \frac{X - \min(X)}{\max(X) - \min(X) + \epsilon}, \quad I_\phi' = \mathcal{F}(\mathcal{R}(\mathcal{P}(\tilde{X}^T), \lceil \frac{L+p}{P} \rceil, P)), \quad (1)$$

$$I_\phi'' = \mathcal{F}\left(\frac{1}{D} \sum_{d=1}^D \cos(\theta_d \oplus \theta_d^T)\right), \quad I_\phi''' = \mathcal{F}\left(\exp\left(-\frac{\|X_i - X_j\|_2^2}{2\sigma^2}\right)\right), \quad (2)$$

$$I_\phi = \text{VE}(X, \phi) = \text{Multi-Conv}(\text{Concat}[I_\phi'; I_\phi''; I_\phi''']) \in \mathbb{R}^{B \times 3 \times H \times W}, \quad (3)$$

where $\epsilon = 1e^{-8}$ is a small constant added to prevent division by zero during normalization; $\mathcal{P}(\cdot)$ represents padding operation that ensures the sequence length is divisible by periodicity P and p is the padding length; $\mathcal{R}(\cdot)$ restructures the padded sequence into a 2D matrix with dimensions determined by T ; $\mathcal{F}(\cdot)$ performs bilinear interpolation to the target size (H, W) and normalizes to $[0, 1]$; $\theta_d = \arccos(2\tilde{X}_{:, :, d} - 1)$ represents the angular coordinates of the normalized time series mapped to $[-1, 1]$; \oplus denotes the outer sum operation generating pairwise temporal correlations;

X_i and *X_j* refer to phase space vectors at time points *i* and *j* respectively. and σ is the standard deviation of these distances. The final multi-channel image I_ϕ integrates three complementary views of temporal dynamics with standard image shape $3 \times H \times W$.

3.2 MULTI-MODAL CONDITIONAL-GUIDED LATENT DIFFUSION FOR RECONSTRUCTION

Traditional diffusion models operate in high-dimensional pixel space, making them computationally intensive for time series. We complete the masked future region of the structured 2D encodings in a low-dimensional space via a lightweight latent diffusion model. Beyond standard latent diffusion Rombach et al. (2022), our denoiser is specifically built Multi-modal Conditional-Guided U-Net (**MMCG-UNet**) that projects heterogeneous conditions (frequency/text) into a shared guidance space with fusion and normalization to preserve global structures. This design yields stronger structure completion and better calibration at a few sampling steps. More algorithm details are in Appendix D.

Multi-conditional Generation Framework. To guide accurate temporal feature reconstruction, we implement a cross-modal conditioning mechanism that integrates both frequency domain information and semantic descriptions. Given a visual representation $I \in \mathbb{R}^{B \times 3 \times H \times W}$, we first encode it into latent space and derive conditional signals as:

$$c_{freq} = \text{FFTEncoder}(X), \quad c_{text} = \text{TextEncoder}(X), \quad (4)$$

$$z_0 = \mathcal{E}(I_\phi) \cdot \mathbf{s}, \quad c_m^{(t)} = \text{CrossAttn}(\text{MLP}([c_{text}; c_{freq}]), z_t), \quad (5)$$

where $\mathcal{E}(\cdot)$ represents the frozen pre-trained VAE, \mathbf{s} is the latent space scaling factor (see Appendix D.1 for detailed derivation). $c_{freq} \in \mathbb{R}^{B \times (2DL+2)}$ captures periodic patterns through frequency analysis while $c_{text} \in \mathbb{R}^{B \times d_{model}}$ encodes statistical properties and domain knowledge through natural language descriptions. For inference step t , condition c_m is updated with denoised z_t . Our framework provides flexibility for integrating multi-modal conditional embeddings across. The detailed implementations of the aforementioned FFTEncoder and TextEncoder are provided in Appendix D.4.

Forward Diffusion Process. Our forward process implements a variance-preserving Markov chain that gradually injects Gaussian noise into the latent representations. By operating in compressed latent space rather than pixel space, this approach enables efficient learning of temporal patterns across different scales while preserving the intrinsic information from vision transformations. For a given initial latent representation z_0 , we define the forward diffusion process distribution q as:

$$q(z_t | z_{t-1}, I_\phi) = \mathcal{N}(z_t; \sqrt{\alpha_t} z_{t-1}, (1 - \alpha_t) \mathbf{I}), \quad (6)$$

$$q(z_t | z_0, I_\phi) = \mathcal{N}(z_t; \sqrt{\bar{\alpha}_t} z_0, (1 - \bar{\alpha}_t) \mathbf{I}), \quad \bar{\alpha}_t = \prod_{s=1}^t \alpha_s, \quad t \in \{1, \dots, T\}, \quad (7)$$

where $\{\alpha_t\}_{t=1}^T$ defines a scaled linear noise schedule, and $\bar{\alpha}_t$ controls the cumulative noise level across t timesteps. \mathcal{N} denotes a multivariate Gaussian distribution.

MMCG-UNet De-noising Process. The reverse process employs a parameterized U-Net architecture to denoise the representations, exploiting cross-modal conditioning mechanisms. By incorporating frequency and semantic embeddings, this process uniquely captures complex temporal dynamics while maintaining coherent long-term dependencies. The denoising process is formulated as:

$$p_\theta(z_{t-1} | z_t, c_m^{(t)}) = \mathcal{N}(z_{t-1}; \mu_\theta(z_t, t, c_m^{(t)}), \Sigma_\theta(z_t, t)), \quad (8)$$

$$\mu_\theta(z_t, t, c_m^{(t)}) = \frac{1}{\sqrt{\alpha_t}} \left(z_t - \frac{1 - \alpha_t}{\sqrt{1 - \alpha_t}} \epsilon_\theta(z_t, t, c_m^{(t)}) \right), \quad (9)$$

where ϵ_θ is the MMCG-UNet that predicts the noise sample given the noisy latent z_t , timestep t , and cross-modal condition embedding c_m . We pre-compute and cache diffusion parameters including α_t , $\sqrt{\alpha_t}$, cumulative products $\bar{\alpha}_t$ to improves training and inference efficiency. The reconstructed image $\hat{I}_t = \mathcal{D}(z_t / \mathbf{s})$ is obtained by decoding the denoised latent representation through the VAE decoder $\mathcal{D}(\cdot)$, and the visual feature $z_v = \text{MMCG}(\hat{I}_0)$ is computed via up/downsampling followed by GeLU.

270 3.3 MULTI-MODAL PREDICTION AND OPTIMIZATION
271

272 **Multi-modal Feature Fusion.** While the latent diffusion model captures global patterns effectively,
273 local temporal dynamics and distribution shifts require explicit modeling. As shown in Fig. 3,
274 we utilize a temporal projection (TP) that complements the diffusion process through three key
275 components: patch embedding, attention-based projection, and multi-modal gated fusion. Given
276 input sequence $X \in \mathbb{R}^{B \times L \times D}$, we adopt the patch embedding strategy Dosovitskiy (2020); Nie et al.
277 (2023b) to encode temporal hidden states, which are then processed through l layers encoders, where
278 $X_{norm} = \text{LN}(X)$. The resulting embeddings are constructed as follows:

$$279 \quad h_0 = \text{Embed}(X_{norm}) \in \mathbb{R}^{B \times N_p \times d}, \quad h'_l = h_{l-1} + \text{MSA}(\text{LN}(h_{l-1})), \quad (10)$$

$$281 \quad h_l = h'_l + \text{MLP}(\text{LN}(h'_l)), \quad z_h = \text{Linear}(h_l) \in \mathbb{R}^{B \times L_{pred} \times D}, \quad (11)$$

283 where N_p denotes patch count, h is hidden states and d is the hidden dimension.
284 $\text{MSA}(\cdot)$ and $\text{LN}(\cdot)$ represent multi-head self-attention and layer normalization respectively.
285

286 **Forecasting and Optimization Objective.** We
287 employ a gated fusion mechanism to combine tem-
288 poral features z_h and visual features z_v derived
289 from the reconstruction \hat{I} for point predictions:
290

$$291 \quad z_v = \text{Linear}(\text{Flatten}(\hat{\mathcal{F}}(\hat{I}))), \quad (12)$$

$$293 \quad g = \sigma(\text{MLP}([z_h; z_v])), \quad (13)$$

$$295 \quad \hat{Y} = g \odot z_h + (1 - g) \odot z_v, \quad (14)$$

296 where σ denotes the activation function, \odot re-
297 presents element-wise multiplication, and g are learn-
298 able gating weights that dynamically balance the
299 contributions from each modality. The operator
300 $\hat{\mathcal{F}}(\cdot)$ denotes the inverse of $\mathcal{F}(\cdot)$, a V2T decoder
301 that maps visual representations back to the origi-
302 nal value range of the normalized time series.

303 The model is trained using mean squared error (MSE)
304 loss for point prediction. For probabilistic
305 forecasting in Appendix C, we exploit the inherent
306 stochasticity of the diffusion process to generate
307 a predictions set $\{\hat{Y}^{(s)}\}_{s=1}^S$ by sampling S latent
308 trajectories. Our implementation leverages the
309 deterministic nature of time series forecasting while
310 accounting for inherent uncertainties, providing
311 accurate predictions and well-calibrated prediction
312 intervals.

313 4 EXPERIMENTS

314 4.1 SETTINGS

315 **Dataset and Metrics.** We evaluate LDM4TS on seven widely used time series datasets spanning
316 diverse domains, including energy consumption (ETTh1, ETTh2, ETTm1, ETTm2), weather fore-
317 casting, and electricity load prediction (ECL; 321 variables), Zhou et al. (2021); Lai et al. (2018).
318 These benchmarks are widely adopted for long-term forecasting Wu et al. (2022) and cover a range
319 of sampling frequencies, dimensionalities, and temporal structures. These datasets are chosen for
320 their varying characteristics in terms of sampling frequency, dimensionality, and temporal patterns.
321 Our experiments primarily focus on point forecasting, evaluated by Mean Absolute Error (MAE) and
322 Mean Squared Error (MSE), following standard practice. Due to space constraints, we additionally
323 reported performance on irregular time series in Appendix C.1 and evaluated the Quantile Interval
324 Calibration Error (QICE) Han et al. (2022) for probabilistic forecasting against diffusion-based
325 models and report comparative results in Appendix C. Further dataset and metric details are provided
326 in Appendices A.1 and A.3.

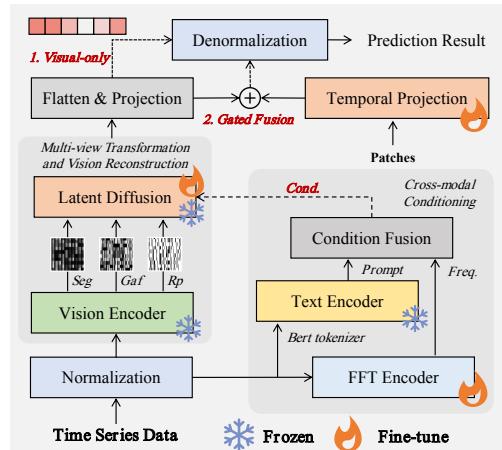


Figure 3: The forward process of LDM4TS.

324 Table 1: Long-term forecasting results. All results are averaged from four forecasting horizons: $H \in$
 325 $\{96, 192, 336, 720\}$. A lower value indicates better performance. **Red**: best, **Blue**: second best.

Methods	LDM4TS (Ours)	ETFormer (2022)	Stationary (2022b)	Autoformer (2021)	FEDformer (2022)	DLinear (2023)	Informer (2021)	TimesNet (2022)	LightTS (2023)	Reformer (2020)	PatchTST (2023b)	GPT4TS (2023)												
Metric	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE												
ETTh1	0.439	0.452	0.542	0.510	0.570	0.537	0.504	0.492	0.440	0.460	0.457	1.040	0.799	0.460	0.455	0.590	0.544	1.006	0.745	0.468	0.454	0.465	0.455	
ETTh2	0.377	0.412	0.439	0.452	0.526	0.516	0.467	0.468	0.439	0.451	0.564	0.519	4.551	1.742	0.407	0.421	1.260	0.678	2.531	1.244	0.408	0.425	0.381	0.412
ETTm1	0.349	0.385	0.429	0.425	0.481	0.456	0.576	0.526	0.471	0.470	0.404	0.408	0.867	0.690	0.477	0.443	0.427	0.437	1.013	0.737	0.387	0.401	0.388	0.403
ETTm2	0.283	0.329	0.293	0.342	0.308	0.347	0.307	0.351	0.318	0.366	0.349	0.349	1.593	0.908	0.299	0.333	0.830	0.614	1.874	1.009	0.293	0.337	0.284	0.339
Weather	0.229	0.277	0.271	0.334	0.288	0.314	0.320	0.375	0.333	0.375	0.246	0.306	0.634	0.549	0.263	0.288	0.259	0.315	1.229	0.858	0.258	0.281	0.264	0.284
ECL	0.182	0.273	0.208	0.323	0.193	0.296	0.253	0.352	0.612	0.377	0.225	0.319	0.378	0.438	0.208	0.303	0.243	0.343	0.326	0.404	0.188	0.275	0.205	0.290

333 Table 2: Few-shot learning on 10% training data. We use the same protocol in Table 1.

Methods	LDM4TS (Ours)	ETFormer (2022)	Stationary (2022b)	Autoformer (2021)	FEDformer (2022)	DLinear (2023)	Informer (2021)	TimesNet (2022)	LightTS (2023)	Reformer (2020)	iTransformer (2024)	PatchTST (2023b)												
Metric	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE												
ETTh1	0.471	0.468	1.180	0.834	0.915	0.639	0.701	0.596	0.638	0.561	0.691	0.599	1.199	0.808	0.869	0.628	1.375	0.877	1.249	0.833	0.660	0.551	0.633	0.542
ETTh2	0.371	0.405	0.894	0.713	0.462	0.455	0.488	0.499	0.466	0.475	0.608	0.538	3.871	1.512	0.479	0.465	2.655	1.159	3.485	1.486	0.435	0.439	0.415	0.431
ETTm1	0.371	0.393	0.980	0.714	0.797	0.578	0.802	0.628	0.721	0.605	0.411	0.429	1.192	0.820	0.479	0.465	0.970	0.704	1.426	0.856	0.450	0.431	0.501	0.466
ETTm2	0.270	0.331	0.447	0.487	0.332	0.366	1.341	0.930	0.463	0.488	0.316	0.368	3.369	1.439	0.319	0.353	0.987	0.755	3.978	1.587	0.305	0.349	0.296	0.343
Weather	0.229	0.276	0.318	0.360	0.318	0.323	0.300	0.342	0.284	0.283	0.241	0.283	0.597	0.494	0.279	0.301	0.289	0.322	0.526	0.469	0.272	0.290	0.242	0.279

340 Table 3: Few-shot learning on 5% training data. **Red**: best, **Blue**: second best.

Methods	LDM4TS (Ours)	ETFormer (2022)	Stationary (2022b)	Autoformer (2021)	FEDformer (2022)	DLinear (2023)	Informer (2021)	TimesNet (2022)	LightTS (2023)	Reformer (2020)	PatchTST (2023b)											
Metric	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE										
ETTh1	0.458	0.456	0.398	0.850	0.662	1.026	0.722	0.599	0.659	0.562	0.750	0.611	1.225	0.817	0.926	0.648	1.451	0.903	1.242	0.835	0.687	0.722
ETTh2	0.388	0.412	0.809	0.681	0.470	0.489	0.470	0.489	0.441	0.457	0.828	0.616	3.923	1.654	0.464	0.454	3.206	1.268	3.527	1.473	0.827	0.615
ETTm1	0.407	0.412	1.125	0.783	0.857	0.598	0.796	0.621	0.731	0.593	0.401	0.417	1.163	0.791	0.717	0.561	1.123	0.766	1.264	0.827	0.526	0.476
ETTm2	0.311	0.353	0.534	0.547	0.341	0.373	0.388	0.433	0.381	0.404	0.399	0.426	3.658	1.489	0.345	0.373	1.416	0.871	3.582	1.487	0.315	0.353
Weather	0.258	0.294	0.333	0.371	0.327	0.328	0.311	0.354	0.310	0.353	0.264	0.309	0.584	0.528	0.298	0.318	0.306	0.345	0.447	0.453	0.269	0.303

349 **Compared Methods.** We compared point forecasting with a set of recent competitive models, including ① time-series specific models PatchTST Nie et al. (2023b), FEDformer Zhou et al. (2022), Autoformer Wu et al. (2021), Informer Zhou et al. (2021), ETSformer Woo et al. (2022), Reformer Kitaev et al. (2020), DLinear Zeng et al. (2023), TimesNet Wu et al. (2022), ESTformer Woo et al. (2022), Non-Stationary Transformer Liu et al. (2022a), LightTS Zhang et al. (2022), and ② advanced models like PatchTST Nie et al. (2023b), iTransformer Liu et al. (2024), Timemixer++ Wang et al. (2024a), FITS Xu et al. (2023) and TimeVLM Zhong et al. (2025), VisionTS Chen et al. (2024), GPT4TS Zhou et al. (2023) with pre-trained components. ③ For probabilistic forecasting, we selected six strong baselines including TimeGrad Rasul et al. (2021a), CSDI Tashiro et al. (2021), TimeDiff Shen & Kwok (2023), TMDM Li et al. (2024), DiffusionTS Yuan & Qiao (2024) and NsDiff Ye et al. (2025). More details of these methods are in Appendix B.

360 **Implementation Details.** The models are trained using the Adam optimizer with a learning rate of 10^{-3} , batch size of 32, and a maximum of 10 epochs, applying an early stopping strategy. All 361 experiments are conducted on an Nvidia RTX A6000 GPU with 48GB memory. All training and 362 model parameter settings are detailed in Appendix A.2.

4.2 RESULTS

363 **Long-term Forecasting.** We evaluate the long-term forecasting capabilities of LDM4TS across 364 multiple prediction horizons. As shown in Table 1, LDM4TS consistently outperforms state-of-the- 365 art baselines. On the ETT datasets family, our approach demonstrates significant improvements, 366 achieving the best MSE of 0.349 on ETTm1 compared to the second-best performer GPT4TS (0.381), 367 and reducing MSE by 7.37% on ETTh2 (0.377) compared to TimesNet (0.407). The advantages 368 extend to high-dimensional scenarios, achieving superior results on Electricity (321 variables, MSE: 369 0.182 vs PatchTST 0.188). Overall, LDM4TS achieves competitive performances among these 370 datasets, validating that our vision-enhanced modeling strategy effectively captures complex temporal 371 dynamics across diverse forecasting scenarios.

372 **Few-shot Forecasting.** To evaluate model robustness under data scarcity, we conduct experiments 373 using only 10% and 5% of the training data. As shown in Table 2, LDM4TS achieves optimal or the

378 Table 4: Zero-shot learning results among the ETT dataset family. **Red**: best, **Blue**: second best.
379

380 Methods	381 LDM4TS (Ours)	382 ETSformer (2022)	383 Stationary (2022b)	384 Autoformer (2021)	385 FEDformer (2022)	386 DLinear (2023)	387 Informer (2021)	388 ETSformer (2022)	389 LightTS (2023)	390 Reformer (2020)	391 CSDI (2021)
392 Metric	393 MSE	394 MAE	395 MSE	396 MAE	397 MSE	398 MAE	399 MSE	400 MAE	401 MSE	402 MAE	403 MSE
<i>ETTh1</i> → <i>ETTh2</i>	0.458 0.452	0.589 0.589	0.591 0.530	0.582 0.548	0.495 0.501	0.493 0.488	2.292 1.169	0.589 0.589	1.075 0.699	2.119 1.125	0.500 0.527
<i>ETTh1</i> → <i>ETTm2</i>	0.369 0.400	0.569 0.568	0.437 0.439	0.457 0.483	0.373 0.424	0.415 0.452	2.167 1.124	0.569 0.568	1.058 0.700	2.228 1.165	0.410 0.444
<i>ETTm1</i> → <i>ETTh2</i>	0.452 0.434	0.704 0.620	0.921 0.676	0.470 0.479	0.587 0.565	0.464 0.475	1.526 0.945	0.704 0.620	0.572 0.556	1.663 1.081	0.504 0.515
<i>ETTm1</i> → <i>ETTm2</i>	0.354 0.367	0.603 0.578	0.493 0.470	0.469 0.484	0.424 0.463	0.335 0.389	1.521 0.951	0.603 0.578	0.466 0.495	2.017 1.111	0.405 0.440
<i>ETTm2</i> → <i>ETTh2</i>	0.426 0.435	1.693 0.958	0.903 0.629	0.423 0.439	0.545 0.516	0.455 0.471	1.663 0.955	1.693 0.958	1.051 0.730	2.056 1.043	0.482 0.498
<i>ETTm2</i> → <i>ETTm1</i>	0.588 0.487	0.728 0.607	1.055 0.796	0.755 0.591	0.819 0.618	0.649 0.537	0.854 0.637	0.728 0.607	0.716 0.550	0.941 0.698	1.039 0.763

392 Table 5: Ablation study results on different components on the Weather dataset. We compare the full LDM4TS
393 model with variants excluding key components: latent diffusion model (w/o LDM), vision encoder (w/o VE),
394 temporal encoder (w/o TE), textual conditioning (w/o TC), and frequency conditioning (w/o FC). We also
395 investigate the impact of individual visual transformation methods. %Deg denotes the degradation percentage.
396

397 Horizon	398 LDM4TS - Full		399 w/o LDM		400 w/o VE		401 w/o TE		402 w/o TC		403 w/o FC		404 w/o SEG		405 w/o GAF		406 w/o RP	
	399 MSE	400 MAE	401 MSE	402 MAE	403 MSE	404 MAE	405 MSE	406 MAE	407 MSE	408 MAE	409 MSE	410 MAE	411 MSE	412 MAE	413 MSE	414 MAE	415 MSE	416 MAE
96	0.154	0.210	0.164	0.216	0.213	0.266	0.213	0.266	0.161	0.215	0.163	0.214	0.162	0.213	0.160	0.215	0.162	0.213
192	0.199	0.251	0.224	0.274	0.259	0.298	0.259	0.299	0.206	0.256	0.207	0.257	0.211	0.259	0.211	0.259	0.211	0.259
336	0.245	0.294	0.280	0.311	0.267	0.302	0.276	0.311	0.260	0.296	0.260	0.295	0.265	0.300	0.265	0.300	0.269	0.304
720	0.318	0.353	0.364	0.364	0.342	0.357	0.337	0.354	0.336	0.348	0.354	0.370	0.331	0.348	0.330	0.345	0.344	0.360
Avg	0.229	0.277	0.258	0.291	0.270	0.306	0.271	0.307	0.241	0.279	0.246	0.284	0.242	0.280	0.242	0.280	0.247	0.284
%Deg	—	—	12.66%	5.05%	↑18.00%	↑10.35%	↑10.91%	↑5.05%	↑5.54%	↑1.47%	↑2.54%	↑5.78%	↑1.05%	↑5.47%	↑0.92%	↑7.60%	↑2.43%	↑

397 second-best performance on all 5 datasets in both MSE and MAE metrics. LDM4TS outperforms the
398 time series specific methods, with notable MSE reductions: 25.5% on *ETTh1* (0.471 vs 0.630), 3.2%
399 on *ETTh2*, and 9.7% on *ETTm1* (0.371 vs 0.411). On the Weather dataset, LDM4TS outperforms
400 the advanced methods like FEDformer and DLinear. Even with further reduced 5% training data,
401 LDM4TS maintains strong performance by achieving the best results on 4 MSE and 5 MAE metrics
402 across datasets. The robust performance under extreme data scarcity demonstrates how our vision-
403 enhanced approach captures intrinsic patterns to address missing and sparse data challenges in
404 real-world forecasting applications.
405

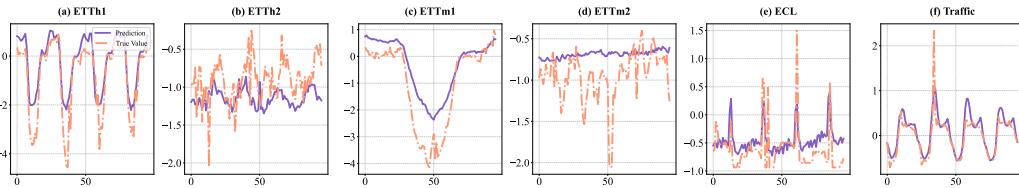
406 **Zero-shot Forecasting.** To evaluate cross-domain generalization, we conduct zero-shot transfer
407 experiments across different datasets without any fine-tuning. As shown in Table 4, LDM4TS
408 achieves the best performance in 4 MSE and 5 MAE metrics out of 6 scenarios, demonstrating strong
409 cross-domain transferability. For challenging transfer tasks like *ETTh1*→*ETTh2* and *ETTh1*→
410 *ETTm2*, LDM4TS achieves MSE of 0.458 and 0.369 respectively, outperforming both DLinear
411 (0.493, 0.415) and FEDformer (0.495, 0.373). The model also achieves the best on *ETTm1*→
412 *ETTh1* (0.452, 0.434) and *ETTm2*→*ETTm1* (0.588, 0.487). The advantages are particularly
413 pronounced when compared to other diffusion models like CSDI, with LDM4TS achieving from
414 9.9% to 36.1% improvements across all transfer scenarios. Notably, while most baselines exhibit
415 significant performance degradation under cross-dataset transfer, LDM4TS maintains stable and
416 competitive accuracy, underscoring its robust and reliable generalization capacity.

4.3 MODEL ANALYSIS

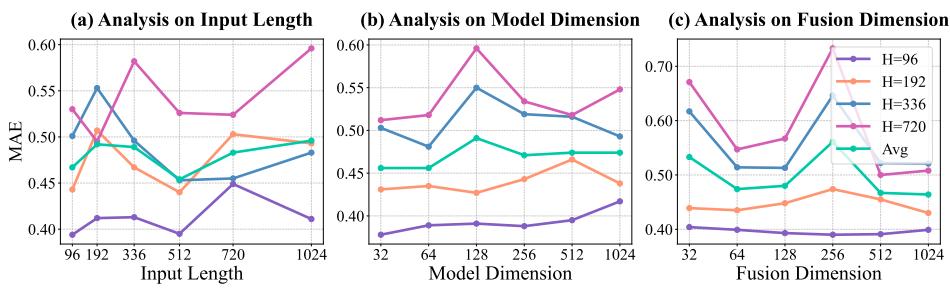
419 **Overall Performance Analysis.** LDM4TS demonstrates superior performance across various fore-
420 casting scenarios, excelling in long-term, few-shot, and zero-shot predictions, while maintaining
421 computational efficiency with only 5.4M learnable parameters and fast inference speed (see Ap-
422 pendix F for detailed analysis). Through comprehensive experiments, we observe that our approach
423 effectively captures both global trends and local patterns in time series data. As shown in Figure 4,
424 LDM4TS achieves good performance in forecasting structured patterns, such as the clear periods
425 in the Traffic datasets (MSE: 0.496) and regular consumption patterns in ECL data (MSE: 0.182).
426 The performance shows slight degradation on datasets with irregular patterns or abrupt changes,
427 suggesting potential areas for future improvement in handling non-stationary patterns.
428

429 **Visual Encoding Effectiveness.** For consistency across all experiments, we exclusively use a
430 three-channel image representation composed of SEG, GAF, and RP transformations as our visual
431 encoding strategy. The complementary nature of these encodings is particularly evident, and the
432 combination achieves MSE reduction ranging from 5.6% to 7.5% compared to using any single

432 encoding method in the ETT datasets. Our framework provides a highly flexible architecture for
 433 combining different transformation strategies to extract intrinsic temporal features and preserve them
 434 within image structures. The current implementation supports various transformation methods beyond
 435 the three used in experiments, with detailed specifications and guidelines provided in Appendix E.
 436



437
 438 Figure 4: Qualitative visualization of long-term forecasting results generated by the proposed
 439 LDM4TS model across all benchmark datasets under the input-96-predict-96 setting.
 440
 441



442
 443 Figure 5: Hyperparameter sensitivity analysis on the ETTh1. The results illustrate the impact of input
 444 sequence length (left), model dimension (middle), and fusion dimension (right) on performance.
 445

446
 447 **Ablation Study.** Table 5 presents ablation studies on key components of LDM4TS. Both vision
 448 encoder and temporal encoder prove to be crucial, with their removal leading to significant per-
 449 formance degradation (18.00% and 18.42% MSE increase respectively), validating that our visual
 450 representations successfully capture essential temporal characteristics. The latent diffusion also plays
 451 a vital role (12.66% MSE increase when removed), demonstrating effective bridging between image
 452 reconstruction and time series prediction. Furthermore, removing individual transformation methods
 453 results in performance drops (5.78%, 5.47%, and 7.60% respectively), confirming that each view
 454 captures complementary temporal information to enhance forecasting performance. This validates
 455 our multi-view strategy that extracts and preserves diverse temporal features within the visual space.
 456

457
 458 **Parameter Sensitivity Analysis.** We further performed a parameter sensitivity analysis to investi-
 459 gate the effect of key hyperparameters on the model performance, as shown in Figure 5(a) shows the
 460 best performance at around 512 timesteps as input sequence length, while the performance of longer
 461 sequences decreases due to increased noise. The hidden dimension shows an optimum point between
 462 32 and 64, balancing model capacity and risk of overfitting. For the hidden dimension values between
 463 64 and 128 produce better results, suggesting that compact representations are more effective for
 464 integrating cross-modal information.
 465

466 5 CONCLUSION

467
 468 In this paper, we present LDM4TS, a novel framework that adapts the latent diffusion model with
 469 cross-modal conditional-guided mechanism for time series forecasting. By transforming temporal
 470 data into multi-view visual representations and reconstructing future images, LDM4TS effectively
 471 bridges the strengths of visual feature extraction and probabilistic generative modeling. Extensive
 472 experiments demonstrate that our method significantly outperforms existing diffusion-based methods
 473 and specialized forecasting models and excels at various forecasting tasks, providing a novel vision-
 474 enhanced perspective to address the key challenges of intrinsic temporal pattern extraction and
 475 uncertainty modeling. Future work will focus on exploring diffusion models' potential in broader
 476 time series applications and developing comprehensive benchmarks.
 477

486 REFERENCES
487

488 Silvio Barra, Salvatore Mario Carta, Andrea Corriga, Alessandro Sebastian Podda, and Diego Re-
489 forgiato Recupero. Deep learning and time series-to-image encoding for financial forecasting.
490 *IEEE/CAA Journal of Automatica Sinica*, 7(3):683–692, 2020.

491 David Campos, Miao Zhang, Bin Yang, Tung Kieu, Chenjuan Guo, and Christian S Jensen. Lightts:
492 Lightweight time series classification with adaptive ensemble distillation. *Proceedings of the ACM
493 on Management of Data*, 1(2):1–27, 2023.

494 Mouxiang Chen, Lefei Shen, Zhuo Li, Xiaoyun Joy Wang, Jianling Sun, and Chenghao Liu. Visions:
495 Visual masked autoencoders are free-lunch zero-shot time series forecasters. *arXiv preprint
496 arXiv:2408.17253*, 2024.

497 Nanxin Chen, Yu Zhang, Heiga Zen, Ron J Weiss, Mohammad Norouzi, and William Chan. Wave-
498 Grad: Estimating gradients for waveform generation. In *International Conference on Learning
499 Representations*, 2020.

500 Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger
501 Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-decoder for
502 statistical machine translation. *arXiv preprint arXiv:1406.1078*, 2014.

503 Ingrid Daubechies. The wavelet transform, time-frequency localization and signal analysis. *IEEE
504 transactions on information theory*, 36(5):961–1005, 2002.

505 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
506 hierarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*,
507 pp. 248–255. Ieee, 2009.

508 Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. *Advances
509 in neural information processing systems*, 34:8780–8794, 2021.

510 Alexey Dosovitskiy. An image is worth 16x16 words: Transformers for image recognition at scale.
511 *arXiv preprint arXiv:2010.11929*, 2020.

512 Jean-Pierre Eckmann, S Oliffson Kamphorst, David Ruelle, et al. Recurrence plots of dynamical
513 systems. *World Scientific Series on Nonlinear Science Series A*, 16:441–446, 1995.

514 Daniel Griffin and Jae Lim. Signal estimation from modified short-time fourier transform. *IEEE
515 Transactions on acoustics, speech, and signal processing*, 32(2):236–243, 1984.

516 Xizewen Han, Huangjie Zheng, and Mingyuan Zhou. Card: Classification and regression diffusion
517 models. *Advances in Neural Information Processing Systems*, 35:18100–18115, 2022.

518 Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
519 autoencoders are scalable vision learners. In *Proceedings of the IEEE/CVF conference on computer
520 vision and pattern recognition*, pp. 16000–16009, 2022.

521 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in
522 neural information processing systems*, 33:6840–6851, 2020.

523 Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. *Neural Computation*, 9(8):
524 1735–1780, 1997.

525 Ming Jin, Huan Yee Koh, Qingsong Wen, Daniele Zambon, Cesare Alippi, Geoffrey I Webb,
526 Irwin King, and Shirui Pan. A survey on graph neural networks for time series: Forecasting,
527 classification, imputation, and anomaly detection. *IEEE Transactions on Pattern Analysis and
528 Machine Intelligence*, 2024a.

529 Ming Jin, Shiyu Wang, Lintao Ma, Zhixuan Chu, James Y. Zhang, Xiaoming Shi, Pin-Yu Chen,
530 Yuxuan Liang, Yuan-Fang Li, Shirui Pan, and Qingsong Wen. Time-llm: Time series forecasting
531 by reprogramming large language models, 2024b. URL <https://arxiv.org/abs/2310.01728>.

540 Taesung Kim, Jinhee Kim, Yunwon Tae, Cheonbok Park, Jang-Ho Choi, and Jaegul Choo. Reversible
 541 instance normalization for accurate time-series forecasting against distribution shift. In *ICLR*,
 542 2022.

543 Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. In *ICLR*,
 544 2020.

545 Marcel Kollovieh, Abdul Fatir Ansari, Michael Bohlke-Schneider, Jasper Zschiegner, Hao Wang, and
 546 Yuyang Bernie Wang. Predict, refine, synthesize: Self-guiding diffusion models for probabilistic
 547 time series forecasting. *Advances in Neural Information Processing Systems*, 36, 2024.

548 Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and Bryan Catanzaro. DiffWave: A versatile
 549 diffusion model for audio synthesis. In *International Conference on Learning Representations*,
 550 2020.

551 Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling long-and short-term
 552 temporal patterns with deep neural networks. In *The 41st international ACM SIGIR conference on
 553 research & development in information retrieval*, pp. 95–104, 2018.

554 Michael Leonard. Promotional analysis and forecasting for demand planning: a practical time series
 555 approach. *with exhibits*, 1, 2001.

556 Yan Li, Xinjiang Lu, Yaqing Wang, and Dejing Dou. Generative time series forecasting with
 557 diffusion, denoise, and disentanglement. *Advances in Neural Information Processing Systems*, 35:
 558 23009–23022, 2022.

559 Yuxin Li, Wenchao Chen, Xinyue Hu, Bo Chen, Mingyuan Zhou, et al. Transformer-modulated
 560 diffusion models for probabilistic multivariate time series forecasting. In *The Twelfth International
 561 Conference on Learning Representations*, 2024.

562 Lequan Lin, Zhengkun Li, Ruikun Li, Xuliang Li, and Junbin Gao. Diffusion models for time-series
 563 applications: a survey. *Frontiers of Information Technology & Electronic Engineering*, 25(1):
 564 19–41, 2024a.

565 Shengsheng Lin, Weiwei Lin, Xinyi Hu, Wentai Wu, Ruichao Mo, and Haocheng Zhong. Cyclenet:
 566 Enhancing time series forecasting through modeling periodic patterns, 2024b. URL <https://arxiv.org/abs/2409.18479>.

567 Hengbo Liu, Ziqing Ma, Linxiao Yang, Tian Zhou, Rui Xia, Yi Wang, Qingsong Wen, and Liang
 568 Sun. Sadi: A self-adaptive decomposed interpretable framework for electric load forecasting under
 569 extreme events. In *IEEE International Conference on Acoustics, Speech and Signal Processing*,
 570 2023.

571 Yong Liu, Haixu Wu, Jianmin Wang, and Mingsheng Long. Non-stationary transformers: Rethinking
 572 the stationarity in time series forecasting. In *Neural Information Processing Systems*, 2022a.

573 Yong Liu, Haixu Wu, Jianmin Wang, and Mingsheng Long. Non-stationary transformers: Exploring
 574 the stationarity in time series forecasting. In *Advances in Neural Information Processing Systems*,
 575 pp. 9881–9893, 2022b.

576 Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.
 577 itransformer: Inverted transformers are effective for time series forecasting. In *International
 578 Conference on Learning Representations*, 2024.

579 Norbert Marwan, M Carmen Romano, Marco Thiel, and Jürgen Kurths. Recurrence plots for the
 580 analysis of complex systems. *Physics reports*, 438(5-6):237–329, 2007.

581 Chenlin Meng, Yutong He, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan Zhu, and Stefano Ermon.
 582 Sdedit: Guided image synthesis and editing with stochastic differential equations. *arXiv preprint
 583 arXiv:2108.01073*, 2021.

584 Ron Mokady, Amir Hertz, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or. Null-text inversion for
 585 editing real images using guided diffusion models. In *Proceedings of the IEEE/CVF conference on
 586 computer vision and pattern recognition*, pp. 6038–6047, 2023.

594 Jingchao Ni, Ziming Zhao, ChengAo Shen, Hanghang Tong, Dongjin Song, Wei Cheng, Dongsheng
 595 Luo, and Haifeng Chen. Harnessing vision models for time series analysis: A survey. *arXiv*
 596 *preprint arXiv:2502.08869*, 2025.

597

598 Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth
 599 64 words: Long-term forecasting with transformers. In *International Conference on Learning*
 600 *Representations*, 2023a.

601 Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth
 602 64 words: Long-term forecasting with transformers. In *International Conference on Learning*
 603 *Representations*, 2023b.

604 Kashif Rasul, Calvin Seward, Ingmar Schuster, and Roland Vollgraf. Autoregressive denoising
 605 diffusion models for multivariate probabilistic time series forecasting. In *International Conference*
 606 *on Machine Learning*, pp. 8857–8868. PMLR, 2021a.

607 Kashif Rasul, Calvin Seward, Ingmar Schuster, and Roland Vollgraf. Autoregressive denoising
 608 diffusion models for multivariate probabilistic time series forecasting. In *International Conference*
 609 *on Machine Learning*, 2021b.

610 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 611 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-
 612 ence on computer vision and pattern recognition*, pp. 10684–10695, 2022.

613 Chitwan Saharia, William Chan, Huiwen Chang, Chris Lee, Jonathan Ho, Tim Salimans, David Fleet,
 614 and Mohammad Norouzi. Palette: Image-to-image diffusion models. In *ACM SIGGRAPH 2022*
 615 *conference proceedings*, pp. 1–10, 2022a.

616 Chitwan Saharia, Jonathan Ho, William Chan, Tim Salimans, David J Fleet, and Mohammad Norouzi.
 617 Image super-resolution via iterative refinement. *IEEE transactions on pattern analysis and machine*
 618 *intelligence*, 45(4):4713–4726, 2022b.

619 Stephen H Schneider and Robert E Dickinson. Climate modeling. *Reviews of Geophysics*, 12(3):
 620 447–493, 1974.

621 Lifeng Shen and James Kwok. Non-autoregressive conditional diffusion models for time series
 622 prediction. In *International Conference on Machine Learning*, pp. 31016–31029. PMLR, 2023.

623 Lifeng Shen, Weiyu Chen, and James Kwok. Multi-resolution diffusion models for time series
 624 forecasting. In *The Twelfth International Conference on Learning Representations*, 2024.

625 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 626 Poole. Score-based generative modeling through stochastic differential equations. *arXiv preprint*
 627 *arXiv:2011.13456*, 2020.

628 Yusuke Tashiro, Jiaming Song, Yang Song, and Stefano Ermon. CSDI: Conditional score-based
 629 diffusion models for probabilistic time series imputation. In *Neural Information Processing*
 630 *Systems*, 2021.

631 Aäron van den Oord, S. Dieleman, H. Zen, K. Simonyan, Oriol Vinyals, A. Graves, Nal Kalchbrenner,
 632 A. Senior, and K. Kavukcuoglu. Wavenet: A generative model for raw audio. In *SSW*, 2016.

633 Martin Vetterli and Cormac Herley. Wavelets and filter banks: Theory and design. *IEEE transactions*
 634 *on signal processing*, 40(9):2207–2232, 1992.

635 Shiyu Wang, Jiawei Li, Xiaoming Shi, Zhou Ye, Baichuan Mo, Wenze Lin, Shengtong Ju, Zhixuan
 636 Chu, and Ming Jin. Timemixer++: A general time series pattern machine for universal predictive
 637 analysis. *arXiv preprint arXiv:2410.16032*, 2024a.

638 Shiyu Wang, Haixu Wu, Xiaoming Shi, Tengge Hu, Huakun Luo, Lintao Ma, James Y Zhang, and
 639 Jun Zhou. Timemixer: Decomposable multiscale mixing for time series forecasting. *arXiv preprint*
 640 *arXiv:2405.14616*, 2024b.

648 Xu Wang, Hongbo Zhang, Pengkun Wang, Yudong Zhang, Binwu Wang, Zhengyang Zhou, and Yang
 649 Wang. An observed value consistent diffusion model for imputing missing values in multivariate
 650 time series. In *Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and*
 651 *Data Mining*, pp. 2409–2418, 2023a.

652

653 Zhiguang Wang and Tim Oates. Encoding time series as images for visual inspection and classification
 654 using tiled convolutional neural networks. In *Workshops at the twenty-ninth AAAI conference on*
 655 *artificial intelligence*, 2015a.

656 Zhiguang Wang and Tim Oates. Imaging time-series to improve classification and imputation. *arXiv*
 657 *preprint arXiv:1506.00327*, 2015b.

658

659 Zhixian Wang, Qingsong Wen, Chaoli Zhang, Liang Sun, and Yi Wang. Diffload: uncertainty
 660 quantification in load forecasting with diffusion model. *arXiv preprint arXiv:2306.01001*, 2023b.

661

662 Haomin Wen, Youfang Lin, Yutong Xia, Huaiyu Wan, Qingsong Wen, Roger Zimmermann, and
 663 Yuxuan Liang. Diffstg: Probabilistic spatio-temporal graph forecasting with denoising diffusion
 664 models. In *Proceedings of the 31st ACM International Conference on Advances in Geographic*
 665 *Information Systems*, pp. 1–12, 2023.

666

667 Gerald Woo, Chenghao Liu, Doyen Sahoo, Akshat Kumar, and Steven Hoi. Etsformer: Exponential
 668 smoothing transformers for time-series forecasting. *arXiv preprint arXiv:2202.01381*, 2022.

669

670 Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition transformers
 671 with auto-correlation for long-term series forecasting. In *Neural Information Processing Systems*,
 2021.

672

673 Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet:
 674 Temporal 2d-variation modeling for general time series analysis. *arXiv preprint arXiv:2210.02186*,
 2022.

675

676 Zhijian Xu, Ailing Zeng, and Qiang Xu. Fits: Modeling time series with 10^k parameters. *arXiv*
 677 *preprint arXiv:2307.03756*, 2023.

678

679 Tijin Yan, Hongwei Zhang, Tong Zhou, Yufeng Zhan, and Yuanqing Xia. Scoregrad: Multivariate
 680 probabilistic time series forecasting with continuous energy-based generative models. *arXiv*
 681 *preprint arXiv:2106.10121*, 2021.

682

683 Luoxiao Yang, Yun Wang, Xinqi Fan, Israel Cohen, Jingdong Chen, Yue Zhao, and Zijun Zhang.
 684 Vitime: A visual intelligence-based foundation model for time series forecasting. *arXiv preprint*
 685 *arXiv:2407.07311*, 2024a.

686

687 Yiyuan Yang, Ming Jin, Haomin Wen, Chaoli Zhang, Yuxuan Liang, Lintao Ma, Yi Wang, Chenghao
 688 Liu, Bin Yang, Zenglin Xu, et al. A survey on diffusion models for time series and spatio-temporal
 689 data. *arXiv preprint arXiv:2404.18886*, 2024b.

690

Weiwei Ye, Zhuopeng Xu, and Ning Gui. Non-stationary diffusion for probabilistic time series
 691 forecasting. *arXiv preprint arXiv:2505.04278*, 2025.

692

Hongyi Yuan, Songchi Zhou, and Sheng Yu. Ehrdiff: Exploring realistic ehr synthesis with diffusion
 693 models. *arXiv preprint arXiv:2303.05656*, 2023.

694

Xinyu Yuan and Yan Qiao. Diffusion-ts: Interpretable diffusion for general time series generation.
 695 *arXiv preprint arXiv:2403.01742*, 2024.

696

Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
 697 forecasting? In *Proceedings of the AAAI conference on artificial intelligence*, volume 37, pp.
 698 11121–11128, 2023.

699

Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
 700 diffusion models. In *Proceedings of the IEEE/CVF international conference on computer vision*,
 701 pp. 3836–3847, 2023.

702 Tianping Zhang, Yizhuo Zhang, Wei Cao, Jiang Bian, Xiaohan Yi, Shun Zheng, and Jian Li. Less is
 703 more: Fast multivariate time series forecasting with light sampling-oriented mlp structures. *arXiv*
 704 *preprint arXiv:2207.01186*, 2022.

705 Ziming Zhao, ChengAo Shen, Hanghang Tong, Dongjin Song, Zhigang Deng, Qingsong Wen, and
 706 Jingchao Ni. From images to signals: Are large vision models useful for time series analysis?,
 707 2025. URL <https://arxiv.org/abs/2505.24030>.

708 Weizhong Zheng, Der-Horng Lee, and Qixin Shi. Short-term freeway traffic flow prediction: Bayesian
 709 combined neural network approach. *Journal of transportation engineering*, 132(2):114–121, 2006.

710 Yi Zheng, Qi Liu, Enhong Chen, Yong Ge, and J Leon Zhao. Time series classification using multi-
 711 channels deep convolutional neural networks. In *International conference on web-age information*
 712 *management*, pp. 298–310. Springer, 2014.

713 Siru Zhong, Weilin Ruan, Ming Jin, Huan Li, Qingsong Wen, and Yuxuan Liang. Time-vlm:
 714 Exploring multimodal vision-language models for augmented time series forecasting. *arXiv*
 715 *preprint arXiv:2502.04395*, 2025.

716 Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
 717 Informer: Beyond efficient transformer for long sequence time-series forecasting. In *Proceedings*
 718 *of the AAAI conference on artificial intelligence*, volume 35, pp. 11106–11115, 2021.

719 Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. Fedformer: Frequency
 720 enhanced decomposed transformer for long-term series forecasting. In *International conference on*
 721 *machine learning*, pp. 27268–27286. PMLR, 2022.

722 Tian Zhou, Peisong Niu, Liang Sun, Rong Jin, et al. One fits all: Power general time series analysis
 723 by pretrained lm. In *Advances in neural information processing systems*, pp. 43322–43355, 2023.

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 **A EXPERIMENTAL DETAILS**
757758 **A.1 DATASET DETAILS**
759760
761 Table 6: Summary of the benchmark datasets. Each dataset contains multiple time series (Dim.) with
762 different sequence lengths and is split into training, validation and testing sets. The data are collected
763 at different frequencies across various domains. "Uncert.Var." means uncertainty variation.

764 Dataset	765 Dim.	766 Series Length	767 Dataset Size	768 Frequency	769 Domain	770 Uncert.Var.
ETTm1	7	{96, 192, 336, 720}	(34465, 11521, 11521)	15 min	Temperature	2.53
ETTm2	7	{96, 192, 336, 720}	(34465, 11521, 11521)	15 min	Temperature	1.27
ETTh1	7	{96, 192, 336, 720}	(8545, 2881, 2881)	1 hour	Temperature	2.50
ETTh2	7	{96, 192, 336, 720}	(8545, 2881, 2881)	1 hour	Temperature	1.29
Electricity	321	{96, 192, 336, 720}	(18317, 2633, 5261)	1 hour	Electricity	3.94
Weather	21	{96, 192, 336, 720}	(36792, 5271, 10540)	10 min	Weather	-

771
772 We conduct experiments on the above real-world datasets to evaluate the performance of our proposed
773 model and follow the same data processing and train-validation-test set split protocol used in TimesNet
774 benchmark Wu et al. (2022), ensuring a strict chronological order to prevent data leakage. Different
775 datasets require specific adjustments to accommodate their unique characteristics:776
777 **ETT Dataset Kim et al. (2022)** The Electricity Transformer Temperature (ETT) dataset consists
778 of both hourly (ETTh) and 15-minute (ETTm) frequency data, with 7 variables ($enc_in = dec_in =$
779 $c_out = 7$) measuring transformer temperatures and related factors. For ETTh data, we set periodicity
780 to 24 with hourly frequency, while ETTm data uses a periodicity of 96 with 15-minute intervals.
781 Standard normalization is applied to each feature independently, and the model maintains the same
782 architectural configuration across both temporal resolutions.783
784 **ECL Dataset Wu et al. (2021)** The electricity consumption dataset contains 321 variables monitoring
785 power usage patterns. We employ robust scaling techniques to handle outliers and implement
786 sophisticated missing value imputation strategies. The model incorporates adaptive normalization
787 layers to address the varying scales of electricity consumption across different regions and time
788 periods. The daily periodicity is preserved through careful temporal encoding, while the high feature
789 dimensionality is managed through efficient attention mechanisms.790
791 **Weather Dataset Wu et al. (2021)** This multivariate dataset encompasses 21 weather-related
792 variables, each with distinct physical meanings and scale properties. Our approach implements
793 feature-specific normalization to handle the diverse variable ranges while maintaining their physical
794 relationships. The model captures both daily and seasonal patterns through enhanced temporal
795 encoding, with special attention mechanisms designed to model the complex interactions between
796 different weather variables. We maintain consistent prediction quality across all variables through
797 carefully calibrated cross-attention mechanisms.798 **A.2 OPTIMIZATION SETTINGS**
799800 **A.2.1 MODEL ARCHITECTURE PARAMETERS**
801802 The core architecture of our diffusion-based model consists of several key components, each with
803 specific parameter settings. The autoencoder pathway is configured with an image size of 64×64
804 and a patch size of 16, providing an efficient latent representation while maintaining temporal
805 information. The diffusion process uses 20 timesteps with carefully tuned noise scheduling ($\beta_{start} =$
806 0.00085 , $\beta_{end} = 0.012$) to ensure stable training.807 For the transformer backbone, we employ a configuration with $d_model = 256$ and 8 attention
808 heads, which empirically shows strong performance across different datasets. The encoder-decoder
809 structure uses 2 encoder layers and 1 decoder layer, striking a balance between model capacity and
computational efficiency.

810
811
812
813

Table 7: Default Model Architecture Parameters

Parameter	Default Value	Description
<i>Visual Representation Parameters</i>		
image_size	64	Size of generated image representation
patch_size	16	Size of patches for input processing
grayscale	True	Whether to use grayscale images
<i>Diffusion Process Parameters</i>		
training_timesteps	20	Number of diffusion training steps
inference_timesteps	20	Number of inference steps
num_samples	100	Samples generated for the distribution
beta_start	0.00085	Initial value of noise schedule
beta_end	0.012	Final value of noise schedule
use_ddim	True	Whether to use DDIM sampler
unet_layers	1	Number of layers in UNet
<i>Model Architecture Parameters</i>		
d_model	256	Dimension of model hidden states
d_ldm	256	Hidden dimension of LDM
d_fusion	256	Dimension of gated fusion module
e_layers	2	Number of encoder layers
d_layers	1	Number of decoder layers
<i>Training Configuration</i>		
freeze_ldm	True	Whether to freeze LDM parameters
save_images	False	Whether to save generated images
output_type	full	Type of output for ablation study

836
837
838
839
840
841

Table 8: Default Training Parameters

Parameter	Default Value	Description
<i>Basic Training Parameters</i>		
batch_size	32	Number of samples per training batch
learning_rate	0.001	Initial learning rate for optimization
train_epochs	10	Total number of training epochs
patience	3	Epochs before early stopping
loss	MSE	Type of loss function
label_len	48	Length of start token sequence
seq_len	96/168(for probabilistic)	Length of input sequence
norm_const	0.4	Coefficient for normalization
padding	8	Size of sequence padding
stride	8	Step size for sliding window
pred_len	96/192/336/720	Available prediction horizons
<i>Dataset-specific Parameters</i>		
c_out	7 (ETTh1/h2/m1/m2) 21 (Weather) 321 (Electricity) 862 (Traffic)	Dataset-specific output dimensions
periodicity	24 (ETTh1/h2/Electricity/Traffic) 96 (ETTm1/m2) 144 (Weather)	Natural cycle length per dataset

862
863

864 A.2.2 TRAINING PARAMETERS
865

866 We adopt a comprehensive training strategy with both general and task-specific parameters. The
867 model is trained with a batch size of 32 and an initial learning rate of 0.001, using the *AdamW*
868 optimizer. Early stopping with a patience of 3 epochs is implemented to prevent over-fitting. For
869 time series processing, we use a sequence length of 96 and a prediction length of 96, with a label
870 length of 48 for teacher forcing during training.

871 The training process employs automatic mixed precision (AMP) when available to accelerate training
872 while maintaining numerical stability. We use MSE as the primary loss function, supplemented by
873 additional regularization terms for specific tasks.

874
875 A.3 EVALUATION METRICS
876

877 For point forecasting evaluation metrics, we utilize the mean square error (MSE) and mean absolute
878 error (MAE) to measure the accuracy of the predicted values compared to the ground truth. For proba-
879 bilistic forecasting, we choose the quantile interval calibration error (QICE) to quantify the deviation
880 between the proportion of true data contained within each interval and the optimal proportion. The
881 calculations of these metrics are as follows:

$$882 \text{MSE} = \frac{1}{H} \sum_{h=1}^H (\mathbf{Y}_h - \hat{\mathbf{Y}}_h)^2, \quad \text{MAE} = \frac{1}{H} \sum_{h=1}^H |\mathbf{Y}_h - \hat{\mathbf{Y}}_h|, \quad \text{QICE} = \frac{1}{M} \sum_{m=1}^M |r_m - \frac{1}{M}|,$$

883 where H denotes the number of data points (i.e., prediction horizon in our cases). \mathbf{Y}_h and $\hat{\mathbf{Y}}_h$ are
884 the h -th ground truth and prediction where $h \in \{1, \dots, H\}$. For QICE, r_m represents the actual
885 coverage rate of the m/M -quantile interval, and M is the number of quantile intervals evaluated (set
886 to $M = 10$ in our experiments).

887
888 B DETAILS OF BASELINE METHODS
889

890 We compare our approach with three categories of baseline methods used for comparative evaluation:
891 transformer-based architectures, diffusion-based models, and other competitive approaches for time
892 series forecasting.

893 **Transformer-based Models:** **FEDformer Zhou et al. (2022)** integrates wavelet decomposition
894 with a Transformer architecture to efficiently capture multi-scale temporal dependencies by process-
895 ing both time and frequency domains. **Autoformer Wu et al. (2021)** introduces a decomposing
896 framework that separates the time series into trend and seasonal components, employing an autocorre-
897 lation mechanism for periodic pattern extraction. **ETSformer Woo et al. (2022)** extends the classical
898 exponential smoothing method with a Transformer architecture, decomposing time series into level,
899 trend, and seasonal components while learning their interactions through attention mechanisms.
900 **Informer Zhou et al. (2021)** addresses the quadratic complexity issue of standard attention mech-
901 anisms through ProbSparse self-attention, which enables efficient handling of long input sequences.
902 **Reformer Kitaev et al. (2020)** optimizes attention computation via Locality-Sensitive Hashing
903 (LSH) and reversible residual networks, significantly reducing memory and computational costs.
904 **PatchTST Nie et al. (2023b)** treats time series as a sequence of patches and employs a transformer
905 architecture for long-term forecasting, showing strong performance through its patch-based approach.
906 **Non-Stationary Transformer Liu et al. (2022b)** rethinks the stationarity assumption in time series
907 forecasting by explicitly modeling non-stationary components within the Transformer framework.
908 **TimeMixer++ Wang et al. (2024b)** enhances multiscale mixing capabilities through improved
909 decomposition strategies and adaptive temporal fusion mechanisms.

910 **Diffusion-based Models:** **TimeGrad Rasul et al. (2021b)** pioneers diffusion for time series by
911 incorporating autoregressive components for multivariate probabilistic forecasting. **CSDI Tashiro
912 et al. (2021)** is tailored for irregularly-spaced time series, learning a score function of noise distribu-
913 tion under given conditions to generate samples for forecasting. **TimeDiff Shen & Kwok (2023)**
914 introduces non-autoregressive conditional diffusion models for time series prediction, improving
915 on previous autoregressive approaches. **TMDM Li et al. (2024)** employs transformer-modulated

918 diffusion models for probabilistic multivariate time series forecasting, combining the strengths of
 919 transformers and diffusion processes. **DiffusionTS Yuan & Qiao (2024)** presents an interpretable
 920 diffusion framework for general time series generation with enhanced controllability. **NsDiff Ye et al.**
 921 **(2025)** addresses non-stationary characteristics in time series through specialized diffusion modeling
 922 techniques. **ScoreGrad Song et al. (2020)** utilizes a continuous-time framework for progressive
 923 denoising from Gaussian noise to reconstruct the original signal, allowing for adjustable step sizes
 924 during the denoising process.

925 **Other Competitive Models:** **DLinear Zeng et al. (2023)** proposes a linear transformation approach
 926 directly on time series data, simplifying the prediction process under the assumption of linear changes
 927 over time. **TimesNet Wu et al. (2022)** focuses on multi-scale feature extraction using various
 928 convolution kernels to capture temporal dependencies of different lengths, automatically selecting
 929 the most suitable feature scales. **LightTS Campos et al. (2023)** aims to build lightweight time
 930 series forecasting models, streamlining structures and parameters to reduce computational resource
 931 requirements while maintaining high predictive performance. **iTransformer Liu et al. (2024)** is an
 932 inverted Transformer for TSF that embeds each variate’s entire history as a variate token, and applies
 933 self-attention across variates to model multivariate correlations. **FITS Xu et al. (2023)** operates on
 934 the principle that time series can be manipulated through interpolation in the complex frequency
 935 domain. **VisionTS Chen et al. (2024)** leverages pre-trained vision models by transforming time series
 936 into visual representations. **Time-VLM Zhong et al. (2025)** explores multimodal vision-language
 937 models for time series forecasting by integrating temporal, visual, and textual modalities with frozen
 938 pre-trained VLMs.

939
 940 Table 9: Probabilistic forecasting comparison by QICE (lower is better). Input length = 168, horizon
 941 = 192. We draw 100 samples per method to estimate predictive distributions.

Dataset	TimeGrad (2021b)	CSDI (2021)	TimeDiff (2023)	TMDM (2024)	DiffusionTS (2024)	NsDiff (2025)	LDM4TS (ours)
ETTh1	6.731	3.107	14.931	2.821	6.423	1.470	1.589
ETTh2	9.488	5.331	14.813	4.471	9.577	2.074	1.598
ETTm1	6.693	2.828	14.795	2.567	5.605	2.041	1.590
ETTm2	6.962	8.106	13.385	2.610	9.959	2.030	1.589
ECL	7.118	7.506	15.466	10.562	8.205	6.685	1.580

C PROBABILISTIC FORECASTING

953 While LDM4TS is primarily evaluated on point forecasting tasks, diffusion-based uncertainty model-
 954 ing naturally extends to probabilistic forecasting. To evaluate the probabilistic forecasting capabilities
 955 of our model, we selected six strong baselines including TimeGrad Rasul et al. (2021a), CSDI Tashiro
 956 et al. (2021), TimeDiff Shen & Kwok (2023), TMDM Li et al. (2024), DiffusionTS Yuan & Qiao
 957 (2024) and NsDiff Ye et al. (2025). More details of these methods are in Appendix B. and employ
 958 the Quantile Interval Calibration Error (QICE) Han et al. (2022), which measures the calibration
 959 of prediction intervals across multiple quantiles. By leveraging the stochastic nature of the reverse
 960 diffusion process, we generate multiple samples that effectively quantify prediction uncertainty. As
 961 shown in Table 9, LDM4TS achieves superior performance on probabilistic metrics across most
 962 datasets. Especially on the ETT dataset family, LDM4TS consistently outperforms other previous
 963 diffusion-based methods, with a dramatic 10 times improvement compared to TimeDiff (1.589 vs
 964 14.931) on ETTh1, and 43.77% improvement of CSDI on ETTm1 (1.590 vs 2.828). The advantages
 965 are particularly significant on larger datasets, where LDM4TS achieves only 23.63% QICE of the
 966 best baseline NsDiff (1.580 vs 6.685) on the ECL dataset.

C.1 ANALYSIS OF PERFORMANCE ON IRREGULAR TIME SERIES

967 To further evaluate the robustness and generalizability of our approach, we conduct additional
 968 experiments on the Exchange rate dataset, which represents a particularly challenging scenario for
 969 time series forecasting due to its irregular temporal patterns and absence of clear periodic structures.
 970 Beyond the popular SOTA model PatchTST Nie et al. (2023b), we additionally compare recent

state-of-the-art models from 2024-2025, including iTransformer Liu et al. (2024), FITS Xu et al. (2023), and TimeMixer++ Wang et al. (2024b). We also compare against methods with pre-trained components, including VisionTS Chen et al. (2024) and Time-VLM Zhong et al. (2025), to ensure fair comparison within the same paradigm of leveraging pre-trained foundation models.

Table 10: Performance evaluation on irregular time series (Exchange dataset). The input sequence length is set to 96 for all baselines, and the average results of prediction lengths {96, 192, 336, 720} are reported.

Dataset	LDM4TS (Ours)		PatchTST (2023b)		iTransformer (2024)		FITS (2023)		TimeMixer++ (2024b)		VisionTS (2024)		Time-VLM (2025)	
Metric	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
Exchange	0.393	0.416	0.427	0.436	0.441	0.457	0.458	0.457	0.471	0.467	0.483	0.461	0.555	0.481

The experimental results on the Exchange dataset demonstrate LDM4TS’s superior performance on irregular time series, achieving MSE of 0.393 and MAE of 0.416, which represents 8.0% and 4.6% improvements over the second-best method PatchTST (0.427/0.436). Notably, our approach significantly outperforms other vision-enhanced methods, with 18.6% lower MSE than VisionTS (0.483) and 29.2% lower MSE than Time-VLM (0.555). These results validate that our multi-view transformation strategy and conditional diffusion framework effectively capture subtle temporal dependencies even in challenging datasets without clear periodic structures, extending the applicability of vision-enhanced forecasting to diverse real-world scenarios.

D PREREQUISITES OF LATENT DIFFUSION MODELS

D.1 AUTOENCODER FRAMEWORK

Latent Diffusion Models (LDMs) leverage the autoencoder architecture to facilitate efficient learning in the latent space. An autoencoder comprises two primary components: an encoder and a decoder. The encoder \mathcal{E} compresses high-dimensional input data $x \in \mathbb{R}^D$ into a lower-dimensional latent representation $z \in \mathbb{R}^d$, where $d \ll D$. This compression not only reduces the computational complexity but also captures the essential features of the data. In our implementation, we utilize the pre-trained AutoencoderKL from the *stable-diffusion-v1-4*, which has demonstrated remarkable capabilities in image compression and reconstruction. Mathematically, this process is described as:

$$z = \mathcal{E}(x) \quad (15)$$

Latent Space Scaling In practice, the latent representations produced by the encoder are typically scaled by a factor $s = 0.18215$ to ensure numerical stability and optimal distribution characteristics:

$$z_{scaled} = s \cdot \mathcal{E}(x) \quad (16)$$

This specific scaling factor originates from the VAE design in Stable Diffusion and is derived through empirical optimization. The value is calculated to minimize the KL divergence between the scaled latent distribution and the standard normal distribution:

$$s^* = \operatorname{argmin}_s \mathbb{E}_{x \sim p_{data}} [D_{KL}(s \cdot \mathcal{E}(x) \| \mathcal{N}(0, 1))] \quad (17)$$

where D_{KL} represents the Kullback-Leibler divergence. In our framework, this scaling operation serves multiple critical purposes. It ensures numerical stability during the diffusion process by maintaining consistent value ranges while facilitating better optimization dynamics by bringing the latent distribution closer to the standard normal. This operation also maintains compatibility with the pre-trained weights while allowing for efficient processing of our visual time series representations.

The optimization process involves collecting latent representations $z = \mathcal{E}(x)$ from a large dataset, computing their empirical statistics μ_z and σ_z^2 , and determining the optimal scaling factor s such that $s\sigma_z \approx 1$ to match the target standard deviation. This process has been extensively validated in the context of both image generation and, in our case, time series visual representations. During decoding, the inverse scaling is applied to restore the original magnitude:

$$\hat{x} = \mathcal{D}(z_{scaled} / s) \quad (18)$$

1026 The autoencoder is trained to minimize the reconstruction loss:
 1027

$$\mathcal{L}_{\text{AE}} = \|\mathcal{D}(\mathcal{E}(x)) - x\|_2^2 \quad (19)$$

1029 However, in the context of LDMs, the autoencoder enables operations to be performed in the
 1030 compressed latent space, thereby enhancing efficiency without significant loss of information. In our
 1031 implementation, we freeze the pre-trained autoencoder parameters in the LDM4TS model during
 1032 training, focusing the optimization process on diffusion dynamics and temporal feature extraction.
 1033 This design choice significantly reduces computational overhead while maintaining the benefits of
 1034 well-learned representations from the compressed latent space.
 1035

1036 D.2 FOUNDATIONS OF DIFFUSION MODELS

1038 Diffusion models define a principled framework for generative modeling through gradual noise
 1039 addition and removal. In our LDM4TS framework, we adapt this process specifically for time series
 1040 visual representations while maintaining the fundamental probabilistic structure.

1041 **Forward Process** The forward diffusion process follows a Markov chain that progressively adds
 1042 Gaussian noise:
 1043

$$q(x_t|x_{t-1}) = \mathcal{N}(x_t; \sqrt{1 - \beta_t}x_{t-1}, \beta_t \mathbf{I}) \quad (20)$$

$$q(x_t|x_0) = \mathcal{N}(x_t; \sqrt{\bar{\alpha}_t}x_0, (1 - \bar{\alpha}_t)\mathbf{I}) \quad (21)$$

1044 Here, $q(x_t|x_{t-1})$ describes the transition from step $t - 1$ to t , where β_t controls the noise schedule.
 1045 In our implementation, we adopt a linear noise schedule with carefully tuned parameters $\beta_{\text{start}} =$
 1046 0.00085 and $\beta_{\text{end}} = 0.012$. The second equation gives the direct relationship between any noisy
 1047 sample x_t and the original data x_0 , where $\bar{\alpha}_t = \prod_{s=1}^t (1 - \beta_s)$ represents the cumulative product of
 1048 noise levels.
 1049

1052 **Reverse Process** The reverse process learns to gradually denoise data through:
 1053

$$p_{\theta}(x_{t-1}|x_t) = \mathcal{N}(x_{t-1}; \mu_{\theta}(x_t, t), \Sigma_{\theta}(x_t, t)) \quad (22)$$

1056 where the mean and variance are parameterized as:
 1057

$$\mu_{\theta}(x_t, t) = \frac{1}{\sqrt{\bar{\alpha}_t}}(x_t - \frac{\beta_t}{\sqrt{1 - \bar{\alpha}_t}}\epsilon_{\theta}(x_t, t)) \quad (23)$$

$$\Sigma_{\theta}(x_t, t) = \frac{1 - \bar{\alpha}_{t-1}}{1 - \bar{\alpha}_t}\beta_t \quad (24)$$

1062 In our framework, we modify the noise prediction network ϵ_{θ} to accept additional conditioning
 1063 information, transforming the reverse process into:
 1064

$$p_{\theta}(x_{t-1}|x_t, c) = \mathcal{N}(x_{t-1}; \mu_{\theta}(x_t, t, c), \Sigma_{\theta}(x_t, t)) \quad (25)$$

1066 where c represents the concatenated frequency domain embeddings and encoded textual descriptions.
 1067 This modification allows the model to leverage both spectral and semantic information during the
 1068 denoising process while maintaining the same variance schedule.
 1069

1070 **Sampling Methods** Different sampling strategies offer various trade-offs between generation
 1071 quality and computational efficiency. In our implementation, we primarily utilize DDIM for its
 1072 deterministic nature and faster sampling capabilities, though both approaches are supported:
 1073

- 1074 • **DDPM:** Uses the full chain of T steps with stochastic sampling:
 1075

$$x_{t-1} = \mu_{\theta}(x_t, t) + \sigma_t \epsilon, \quad \epsilon \sim \mathcal{N}(0, \mathbf{I}) \quad (26)$$

- 1077 • **DDIM:** Enables faster sampling through deterministic trajectories:
 1078

$$x_{t-1} = \sqrt{\bar{\alpha}_{t-1}} \left(\frac{x_t - \sqrt{1 - \bar{\alpha}_t}\epsilon_{\theta}(x_t, t)}{\sqrt{\bar{\alpha}_t}} \right) + \sqrt{1 - \bar{\alpha}_{t-1}}\epsilon_{\theta}(x_t, t) \quad (27)$$

1080 D.3 U-NET ARCHITECTURE
1081

1082 The U-Net architecture serves as the backbone for noise prediction in our framework, combining
1083 multi-view processing with skip connections specifically designed for time series visual patterns. Our
1084 implementation modifies the standard U-Net structure to better handle temporal dependencies while
1085 maintaining spatial coherence.

1086 **Encoder-Decoder Structure** The architecture consists of multiple resolution levels:
1087

- 1088 • **Downsampling path:** Progressive feature compression

$$1090 h_l = \text{ResBlock}(\text{Down}(h_{l-1})), \quad l = 1, \dots, L \quad (28)$$

- 1091 • **Upsampling path:** Gradual feature reconstruction

$$1092 h'_l = \text{ResBlock}(\text{Up}(h'_{l+1})) + h_l, \quad l = L, \dots, 1 \quad (29)$$

- 1093 • **Skip connections:** Feature preservation across scales

$$1094 h'_l = h'_l + \text{Project}(h_l) \quad (30)$$

1095 **Feature Extraction** Each resolution level processes features through a sequence of operations:
1096

$$1097 F_l = \text{Conv}(\text{GroupNorm}(\text{Attention}(h_l))) \quad (31)$$

1098 These operations are augmented with timestep embeddings, which provide temporal information to
1099 guide the denoising process:

$$1100 \gamma_t = \text{MLP}(\text{SinusoidalPos}(t)) \quad (32)$$

1101 In our implementation, the timestep embedding is projected through a two-layer MLP with SiLU
1102 activation, following the design choices in Stable Diffusion for consistency and stability.

1103 D.4 CONDITIONAL GENERATION

1104 Our framework implements a sophisticated dual-conditioning mechanism that leverages both frequency
1105 domain features and semantic descriptions to guide the diffusion process. This multi-modal
1106 approach enables robust capture of both temporal patterns and contextual information:

1107 **Frequency Conditioning** To effectively encode the rich spectral information inherent in time series
1108 data, we implement a sophisticated frequency domain transformation pipeline. This process begins
1109 with the application of a Hann window function, which is crucial for minimizing spectral leakage and
1110 enhancing frequency resolution:

$$1111 w_t = 0.5(1 - \cos(\frac{2\pi t}{L-1})) \quad (33)$$

1112 The frequency features are then systematically extracted through a carefully designed three-step
1113 process. First, we apply the window function to the input sequence:

$$1114 X_{win} = X \odot w \quad (34)$$

1115 Next, we transform the windowed signal into the frequency domain using the Fast Fourier Transform:

$$1116 X_{fft} = \text{FFT}(X_{win}) = \sum_{t=0}^{L-1} X_{win}(t) \cdot e^{-2\pi i k t / L} \quad (35)$$

1117 Finally, to preserve the complete spectral information, we concatenate the real and imaginary
1118 components of the FFT output:

$$1119 c_{freq} = \text{Concat}[X_{fft_{real}}, X_{fft_{imag}}] \in \mathbb{R}^{B \times (2DL+2)} \quad (36)$$

1120 where L denotes the sequence length, w represents the Hann window function, and \odot indicates
1121 element-wise multiplication. The terms $X_{fft_{real}}$ and $X_{fft_{imag}}$ correspond to the real and imaginary
1122 components of the Fourier transform respectively. This comprehensive encoding strategy enables
1123 our model to capture both amplitude and phase information across multiple frequency bands, while
1124 maintaining computational efficiency through strategic dimensionality reduction.

1134
 1135 **Text Conditioning** To provide semantic guidance for the diffusion process, we automatically
 1136 generate descriptive prompts by extracting key characteristics from the input time series. The prompt
 1137 generation function $d_{prompt}(X)$ captures the following statistical properties:
 1138

- Statistical measures: minimum, maximum, and median values
- Temporal dynamics: overall trend direction and lag patterns
- Context information: prediction length and historical window size
- Domain knowledge: dataset-specific descriptions

1142 These features are combined into a structured prompt template. A typical generated prompt follows
 1143 the format:

1144 ”<|start_prompt|>Dataset description: {description}. Task: forecast the next
 1145 {pred_len} steps given the previous {seq_len} steps. Input statistics: min value
 1146 {min}, max value {max}, median value {median}, trend is {trend_direction}, top-5
 1147 lags are {lags}.<|end_prompt|>”
 1148

1149 The prompts are then processed through a frozen **BERT-base-uncased** model (110M parameters)
 1150 to extract semantic features. Specifically, each prompt is first tokenized using BERT’s WordPiece
 1151 tokenizer with a maximum sequence length of 77 tokens:

$$1153 h_{token} = \text{BERT}(d_{prompt}(X)) \in \mathbb{R}^{B \times L_{seq} \times d_{ff}} \quad (37)$$

1154 where L_{seq} is the sequence length after tokenization and $d_{ff} = 768$ is BERT’s hidden dimension. The
 1155 token-level features are aggregated through mean pooling to obtain a sequence-level representation:

$$1157 h_{pool} = \frac{1}{L_{seq}} \sum_{i=1}^{L_{seq}} h_{token}[:, i, :] \in \mathbb{R}^{B \times d_{ff}} \quad (38)$$

1160 The pooled features are then projected to match the latent dimension through a learnable transforma-
 1161 tion:
 1162

$$1163 c_{text} = \text{TextEncoder}(X) = \text{TextProj}(h_{pool}) \in \mathbb{R}^{B \times d_{model}} \quad (39)$$

1164 where $\text{TextProj}(\cdot)$ consists of a linear layer that projects from d_{ff} to d_{model} , followed by layer
 1165 normalization and ReLU activation to enhance feature expressiveness.

1166 The frequency and text conditions are fused through a cross-modal attention mechanism:

$$1169 c = \text{CrossAttn}(\text{MLP}([c_{text}; c_{freq}])) \in \mathbb{R}^{B \times d_{model}} \quad (40)$$

1170 where the MLP first projects the concatenated features to a higher dimension for better feature
 1171 interaction, and the cross-attention layer enables dynamic feature selection based on the latent
 1172 representation. This combined conditioning signal guides the diffusion process by injecting both
 1173 semantic and frequency information into each denoising step through the attention blocks of the
 1174 U-Net architecture.

1176 E ANALYSIS OF VISION TRANSFORMATION METHODS

1179 Time series analysis faces the fundamental challenge of capturing complex temporal dynamics that
 1180 manifest simultaneously across multiple scales. While traditional methods excel at specific temporal
 1181 resolutions, they often struggle to comprehensively capture the full spectrum of patterns ranging from
 1182 rapid local variations to gradual global trends. This limitation motivates our investigation into vision
 1183 transformation techniques that can effectively encode rich temporal information into spatial patterns,
 1184 making them amenable to powerful vision-based processing approaches.

1185 Our framework introduces a systematic approach to time series visualization through theoretically-
 1186 grounded transformation methods. Each method targets distinct yet complementary aspects of
 1187 temporal dynamics, providing a comprehensive representation of the underlying time series structure.
 1188 The transformation method we **implemented in the repository** is described below:

1188
1189

E.1 SEGMENTATION REPRESENTATION (SEG)

1190
1191
1192
1193

The SEG transformation addresses the challenge of preserving local temporal structures while enabling efficient detection of periodic patterns. This method operates by restructuring a time series $x \in \mathbb{R}^L$ into a matrix $M \in \mathbb{R}^{\lceil L/T \rceil \times T}$, where T represents the period length. The transformation process can be formally expressed as:

1194
1195

$$M_{i,j} = x_{(i-1)T+j}, \quad \text{for } i \in \{1, \dots, \lceil L/T \rceil\}, j \in \{1, \dots, T\}, \quad (41)$$

1196
1197

This segmentation approach offers several theoretical and practical advantages:

1198
1199
1200
1201
1202
1203
1204

- **Local Structure Preservation:** Each row in the matrix represents a complete segment of length T , maintaining the original temporal relationships at the finest granularity.
- **Periodic Pattern Detection:** The vertical alignment of segments facilitates the identification of recurring patterns across different time periods.
- **Multi-scale Analysis:** By varying the period length T , the transformation can capture patterns at different temporal scales, enabling hierarchical pattern discovery.

1205
1206

The optimal period length T is determined through an optimization process that maximizes temporal correlation:

1207
1208
1209

$$T = \arg \max_k \sum_{i=1}^{\lceil L/k \rceil} \sum_{j=1}^{k-1} \text{Corr}(M_{i,j}, M_{i,j+1}), \quad (42)$$

1210
1211
1212

where $\text{Corr}(\cdot, \cdot)$ denotes the correlation between adjacent columns. This optimization ensures optimal alignment of periodic patterns while maintaining temporal fidelity.

1213
1214

E.2 GRAMIAN ANGULAR FIELD (GAF)

1215
1216
1217

The GAF transformation provides a sophisticated approach to encoding temporal relationships through polar coordinate mapping and trigonometric relationships. This method preserves both magnitude and temporal correlation information through a series of carefully designed transformations.

1218
1219
1220

First, given a time series $\mathbf{x} = [x_1, x_2, \dots, x_T] \in \mathbb{R}^T$, we normalize each element x_i to a bounded interval. For the Gramian Angular Field, this normalization typically maps values to $[-1, 1]$ or $[0, 1]$ using min-max scaling:

1221
1222
1223

$$\tilde{x}_i = \frac{x_i - \min(\mathbf{x})}{\max(\mathbf{x}) - \min(\mathbf{x}) + \epsilon}, \quad i \in 1, 2, \dots, T, \quad (43)$$

1224
1225
1226

where ϵ is a small constant (e.g., 10^{-8}) added to prevent division by zero when the series has constant values. The normalized values \tilde{x}_i are then encoded in a polar coordinate system. For each time step i , we compute:

1227
1228

$$\phi_i = \arccos(\tilde{x}_i), \quad r_i = \frac{i}{N}, \quad (44)$$

1229
1230
1231
1232
1233

where ϕ_i represents the angular coordinate, r_i represents the radial coordinate, and N is a constant scaling factor that regularizes the span of the polar coordinates (typically $N = T$). The Gramian Angular Field (GAF) is then constructed as a matrix $\mathbf{G} \in \mathbb{R}^{T \times T}$ where each element $G_{i,j}$ encodes the trigonometric relation between points (ϕ_i, r_i) and (ϕ_j, r_j) . For the Gramian Angular Summation Field (GASF) and Gramian Angular Difference Field (GADF), we have:

1234
1235

$$G_{i,j}^{\text{GASF}} = \cos(\phi_i + \phi_j) = \tilde{x}_i \tilde{x}_j - \sqrt{1 - \tilde{x}_i^2} \sqrt{1 - \tilde{x}_j^2}, \quad (45)$$

1236
1237

$$G_{i,j}^{\text{GADF}} = \sin(\phi_i - \phi_j) = \tilde{x}_j \sqrt{1 - \tilde{x}_i^2} - \tilde{x}_i \sqrt{1 - \tilde{x}_j^2}. \quad (46)$$

1238
1239

Both preserve the temporal correlation patterns in the original time series. The GAF transformation offers several key advantages:

1240
1241

- **Scale Invariance:** The polar encoding ensures that the representation is robust to amplitude variations.

- **Temporal Correlation Preservation:** The Gramian matrix captures both local and global temporal dependencies.
- **Dimensionality Reduction:** The transformation provides a compact representation while preserving essential temporal information.

E.3 RECURRENCE PLOT (RP)

The RP transformation leverages phase space reconstruction to visualize the recurrent behavior in dynamical systems. Based on Taken’s embedding theorem, this method first reconstructs the phase space trajectory:

$$\vec{x}_i = (x_i, x_{i+\tau}, \dots, x_{i+(m-1)\tau}), \quad (47)$$

where m is the embedding dimension and τ is the time delay. The recurrence matrix is then constructed as:

$$R_{i,j} = \Theta(\epsilon - \|\vec{x}_i - \vec{x}_j\|), \quad (48)$$

where Θ is the Heaviside function and ϵ is a threshold distance. This transformation reveals fundamental dynamical properties through several characteristic patterns:

- **Diagonal Lines:** Parallel to the main diagonal, indicating similar evolution of trajectories and revealing deterministic structures
- **Vertical/Horizontal Lines:** Representing periods of state stagnation or laminar phases
- **Complex Patterns:** Non-uniform structures indicating chaos or non-linear dynamics

E.4 SPECTROGRAM - SHORT-TIME FOURIER TRANSFORM (STFT)

STFT provides a powerful representation of time series in the time-frequency domain, allowing for the analysis of how frequency content evolves over time. Unlike the standard Discrete Fourier Transform (DFT), which only describes the intensity $f(w)$ of each constituent frequency w across the entire signal but lacks temporal localization, STFT addresses this limitation by computing localized frequency information within overlapping time windows. Given a time series $\mathbf{x} = [x_1, x_2, \dots, x_T] \in \mathbb{R}^T$, the STFT is defined as:

$$\mathcal{F}(w, \tau) = \sum_{t=1}^T x_t g(t - \tau) e^{-iwt}, \quad S(w, \tau) = \log(1 + |\mathcal{F}(w, \tau)|^2), \quad (49)$$

where w is the frequency variable, τ represents the position of the sliding window (time localization), $g(t)$ is a window function that confines the analysis to a local segment, and $\mathcal{F}(w, \tau)$ describes the complex amplitude of frequency w at time step τ . To generate a spectrogram image, we compute the power spectrum $|\mathcal{F}(w, \tau)|^2$ and often apply logarithmic scaling for vision modality normalization.

STFT spectrograms reveal periodic components and their temporal evolution, and separate noise into distinct frequency bands. The method highlights characteristic frequency signatures of temporal patterns and provides partial invariance to phase shifts and temporal warping.

E.5 SPECTROGRAM - WAVELET

Wavelet Transform offers an alternative time-frequency representation that overcomes the fixed resolution limitations of STFT. By using basis functions (wavelets) that are localized in both time and frequency domains, this method provides multi-resolution analysis with adaptive time-frequency windows. The Continuous Wavelet Transform (CWT) of a time series $\mathbf{x} \in \mathbb{R}^T$ is defined as:

$$\mathcal{C}(s, \tau) = \int_{-\infty}^{\infty} x(t) \frac{1}{s} \psi^* \left(\frac{t - \tau}{s} \right) dt, \quad (50)$$

where s is the scale parameter controlling frequency resolution, τ is the translation parameter indicating time position, ψ^* is the complex conjugate of the mother wavelet, and $\mathcal{C}(s, \tau)$ represents the wavelet coefficient at scale s and position τ . In discrete implementation, this becomes:

$$\mathcal{C}(s, \tau) = \sum_{t=1}^T x_t \frac{1}{s} \psi^* \left(\frac{t - \tau}{s} \right). \quad (51)$$

The scale parameter s has an inverse relationship with frequency—larger scales correspond to more stretched wavelets capturing lower frequencies, while smaller scales focus on higher frequencies and finer temporal details. The wavelet scalogram is created by computing $|\mathcal{C}(s, \tau)|^2$ and visualizing it as a heatmap with scales (or equivalent frequencies) on the vertical axis and time on the horizontal axis.

Wavelet transforms provide superior time-frequency localization compared to STFT, offer better resolution for transient events and rapid changes, adapt naturally to multi-scale patterns in data, and preserve important non-stationary characteristics that might be obscured in other transformations.

E.6 SPECTROGRAM - MEL FILTERBANK

Mel Filterbank transformation adapts spectral analysis to better align with human auditory perception, where frequency discrimination varies across the spectrum. Though originally designed for audio processing, this method offers valuable representations for general time series analysis.

Given a time series $\mathbf{x} \in \mathbb{R}^T$, the Mel Filterbank process begins with a pre-emphasis filtering step to amplify higher frequencies:

$$\hat{x}_t = x_t - \alpha x_{t-1}, \quad (52)$$

where α is a pre-emphasis coefficient (typically 0.95-0.97). Next, STFT is applied to obtain the power spectrum $|f(w, \tau)|^2$. The core innovation comes from applying a bank of M triangular filters to the power spectrum, where these filters are spaced according to the Mel scale. The conversion from linear frequency f to the Mel scale is given by:

$$m(f) = C_1 \log_{10} \left(1 + \frac{f}{C_2} \right), \quad (53)$$

where $C_1 = 2595$ and $C_2 = 700$ are Mel-scale constants derived from psychoacoustic research modeling human pitch perception. Each triangular filter $H_m(w)$ is centered at frequency f_m on the Mel scale, with the filterbank output calculated as:

$$\hat{f}(m, \tau) = \sum_{w=0}^{N/2} |f(w, \tau)|^2 H_m(w), \quad \text{for } m = 1, 2, \dots, M. \quad (54)$$

The resulting Mel spectrogram is visualized with Mel bands on the vertical axis and time on the horizontal axis, often with logarithmic compression:

$$S(m, \tau) = \log(\hat{f}(m, \tau) + \epsilon), \quad (55)$$

Mel Filterbank transformation captures perceptually relevant frequency information, reduces dimensionality while preserving essential spectral characteristics, emphasizes patterns in frequency ranges most critical for signal interpretation, and enhances detection of subtle spectral variations.

E.7 MARKOV TRANSITION FIELD (MTF)

The Markov Transition Field (MTF) transformation provides a principled approach to visualizing the dynamics of temporal transitions within a time series. By encoding the transition probabilities of quantized states, MTF captures both the temporal evolution and the underlying stochastic patterns of the sequence, making it particularly suitable for analyzing non-linear or non-stationary time series. Given a time series $\mathbf{x} = [x_1, x_2, \dots, x_T]$, we first normalize and quantize the data:

$$q_t = Q \left(\frac{x_t - \min(\mathbf{x})}{\max(\mathbf{x}) - \min(\mathbf{x}) + \epsilon} \right), \quad t = 1, \dots, T, \quad (56)$$

where Q assigns each value to one of n discrete bins, and ϵ is a small constant. The one-step Markov transition probability matrix $P \in \mathbb{R}^{n \times n}$ is estimated as:

$$P_{i,j} = \frac{\sum_{t=1}^{T-1} \mathbb{I}(q_t = i, q_{t+1} = j)}{\sum_{t=1}^{T-1} \mathbb{I}(q_t = i)}, \quad (57)$$

where $\mathbb{I}(\cdot)$ is the indicator function. Finally, the Markov Transition Field $M \in \mathbb{R}^{T \times T}$ is constructed by mapping transition probabilities to all pairs of time steps:

$$M_{s,t} = P_{q_s, q_t}, \quad 1 \leq s, t \leq T. \quad (58)$$

This process efficiently encodes the temporal dynamics of the quantized sequence into a two-dimensional field, suitable for visual analysis and downstream vision-based modeling. The MTF transformation exhibits several noteworthy advantages:

- **Stochastic Pattern Encoding:** By leveraging Markovian transition probabilities, MTF captures the probabilistic structure and dynamics of the underlying process.
- **Temporal Structure Preservation:** The two-dimensional field preserves temporal localization and global transition patterns simultaneously.
- **Compatibility with Vision Models:** The resulting matrix can be interpreted as an image, making it directly amenable to convolutional neural networks and other vision-based architectures.
- **Parameter Flexibility:** The resolution and sensitivity of the representation can be tuned by adjusting the number of quantization bins n , allowing adaptation to different data types and noise levels.

For long time series, computational efficiency can be improved via downsampling or segment-wise processing, with minimal loss of essential transition information. The MTF transformation thus offers a powerful and flexible mechanism for encoding both local and global temporal dependencies in a unified visual format, facilitating downstream tasks such as classification, anomaly detection, and similarity analysis.

F EFFICIENCY ANALYSIS OF DIFFUSION FORWARDS

Table 11: Computational efficiency on ETTh1. We report trainable parameters and per-batch inference latency (milliseconds) across prediction horizons H . Lower latency is better.

Model	# Params	Inference Time (ms)			
		$H=96$	$H=192$	$H=336$	$H=720$
LDM4TS (Ours)	5.4M	76.88	80.31	193.44	192.19
TimeGrad	3.1M	870.20	1854.50	3119.70	6724.10
CSDI	10.0M	90.40	142.80	398.90	513.10
SSSD	32.0M	418.60	645.40	1054.20	2516.90

We evaluate computational efficiency on ETTh1 by measuring per-batch inference latency across multiple horizons and by comparing model sizes with strong diffusion-based baselines. As summarized in Table 11, LDM4TS attains consistently low latency despite operating a generative diffusion backbone: (i) at short horizons ($H=96, 192$), LDM4TS is $11.3\times$ – $23.1\times$ faster than TimeGrad and $5.5\times$ – $8.0\times$ faster than SSSD; (ii) at long horizons ($H=336, 720$), it remains $16.1\times$ – $35.0\times$ faster than TimeGrad and $5.5\times$ – $13.1\times$ faster than SSSD. Compared to CSDI, LDM4TS is markedly faster at $H=336, 720$, while being competitive at short horizons.

G ANALYSIS OF TEXTUAL CONDITIONING

In this section, we conduct a detailed analysis of how textual conditioning influences the diffusion process and overall forecasting performance. While our primary experiments use ***BERT-based-uncased*** to encode statistical and domain descriptions as textual embedding, we investigate multiple variants to understand the optimal approach for integrating language representations into time series forecasting. *We aim to illustrate the full utilization of the textual modalities and flexibility of our proposed method.*

G.1 EFFECT OF NUMERIC INFORMATION IN TEXTUAL PROMPTS

Textual conditioning (TC) can substantially improve forecasting, yet we observed occasional variability and **even degradations** when naively applying generic language embeddings. A plausible

cause is that off-the-shelf language models are not inherently optimized for encoding numeric tokens that are critical in TSF (e.g., range statistics, medians, nominal horizons). We therefore conduct a controlled study on ETTh1 to quantify the role of explicit numeric cues in prompts.

Concretely, we compare three variants on the ETTh1 dataset: (i) *w. TC*, where prompts include dataset- and instance-specific numeric descriptors (min/max/median, trend, horizon); (ii) *w/o. TC*, where textual conditioning is entirely removed; and (iii) *TC w/o number*, where prompts retain structure but strip numeric values. We also substitute different text encoders (BERT-base-uncased, GPT-2-small, RoBERTa-base) to assess encoder choice. As reported in Table 12, adding numeric information consistently improves both MSE and MAE over the non-numeric variant, confirming that numerical summaries provide salient contextual signals that generic text alone fails to capture. The gain becomes especially pronounced at long horizons (H=720), where numeric prompts reduce MSE by 29.4% relative to non-numeric prompts.

Table 12: ETTh1: Impact of numeric cues in prompts and choice of text encoder. Lower is better. Best and second-best per row are highlighted.

Horizon	w. TC		w/o. TC		TC w/o number		BERT-base		GPT-2-small		RoBERTa-base	
	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
96	0.388	0.411	0.426	0.433	0.425	0.433	1.652	0.962	0.483	0.455	0.544	0.480
192	0.412	0.430	0.425	0.444	0.439	0.448	0.526	0.491	0.527	0.479	0.462	0.470
336	0.471	0.473	0.479	0.472	0.461	0.455	0.666	0.592	0.456	0.469	0.521	0.484
720	0.501	0.502	0.769	0.592	0.710	0.577	1.652	0.962	1.041	0.737	1.097	0.732
Avg	0.443	0.454	0.525	0.485	0.509	0.479	0.843	0.627	0.627	0.535	0.656	0.542

G.2 COMPARISON OF DIFFERENT LANGUAGE MODELS

As shown in Table 12, we conducted experiments to compare how different pre-trained language models perform when their embeddings are used as the entire conditioning embedding input for time series forecasting. We experimented with three widely-used models: *BERT-base-uncased* (default), *GPT-2-small*, and *RoBERTa-base*. The results reveal that textual conditioning is crucial for our model, as removing it leads to significant performance degradation, particularly for long-horizon forecasting (H=720) where MSE increases from 0.501 to 0.769. Among the three language models compared, both *GPT-2-small* (average MSE=0.627) and *RoBERTa-base* (average MSE=0.656) outperform *BERT-base-uncased* (average MSE=0.843), with *BERT-base-uncased* showing particularly poor performance for long-term predictions (MSE=1.652). Despite these results, we chose BERT as our default encoder to minimize redundancy in textual information, as its simpler architecture is sufficient for extracting essential statistical patterns without overfitting linguistic nuances. However, our approach is flexible for easy substitution of text encoders, suggesting promising future directions for exploring specialized language models pre-trained on time series data. While integrating language models with time series forecasting remains challenging, properly implemented textual conditioning serves as a valuable complementary signal to frequency-domain features, particularly for complex time series with domain-specific characteristics.

H STATEMENT ON LLM USAGE

We use LLMs solely to aid and polish writing, including covering spell checking, grammar fixes, style refinement, and minor wording suggestions. LLMs did not contribute to any scientific or technical content: all conceptualization, method design, implementation, experiments, result analysis, figures/tables, and conclusions were performed and verified by the authors. All cited works were independently retrieved, fully read, and manually verified using official sources; LLMs were never treated as authoritative references and were not used to generate or fabricate citations or results.