
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

MULTI-VIEW LATENT DIFFUSION RECONSTRUCTION
FOR VISION-ENHANCED TIME SERIES FORECASTING

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent studies have explored diffusion models for time series forecasting, yet
most methods operate directly on 1D signals and tend to overlook intrinsic tem-
poral structures (e.g., periodicity and trend). This often leads to suboptimal long-
range dependency modeling and poorly calibrated uncertainty. To this end, we
propose LDM4TS, a vision-enhanced time series forecasting framework that vi-
sualizes time series into structured 2D representations and leverages the image
reconstruction capabilities of diffusion models. Raw sequences are first con-
verted into complementary visual inputs, forming multiple views that collectively
capture diverse temporal structures. By leveraging the generative nature of the
diffusion process, the framework not only yields accurate point forecasts but
also provides the capability to characterize predictive uncertainty. Extensive ex-
periments demonstrate that LDM4TS outperforms various specialized forecast-
ing models for time series forecasting tasks. The source code is available at:
https://anonymous.4open.science/r/LDM4TS-53FB/.

1 INTRODUCTION

Time Series Forecasting (TSF) is a critical capability across many real-world domains Jin et al.
(2024a), enabling proactive decisions in demand planning Leonard (2001), energy load scheduling Liu
et al. (2023), climate and environmental modeling Schneider & Dickinson (1974), and traffic flow
management Zheng et al. (2006). As temporal data grow in scale and heterogeneity, practitioners
increasingly require models that are robust across regimes.

Deep learning has substantially advanced TSF by learning complex temporal dependencies. Early
recurrent models introduced sequential inductive biases Cho et al. (2014); Hochreiter & Schmidhuber
(1997); Lin et al. (2024b), while Transformer-based architectures improved long-range modeling
and computational efficiency Nie et al. (2023a); Zhou et al. (2021; 2022); Wu et al. (2021); Woo
et al. (2022); Liu et al. (2024). More recently, leveraging pre-trained or foundation models has
shown promise in time series Zhou et al. (2023); Jin et al. (2024b); Zhong et al. (2025). Despite
these advances, these methods still operate on raw 1D inputs, struggle to capture intrinsic temporal
structures and model uncertainty for stable long-horizon forecasting and robust generalization.

To address this, diffusion models have been introduced as powerful generative frameworks for
structure-aware reconstruction and uncertainty modeling in TSF Rasul et al. (2021a); Shen et al.
(2024); Shen & Kwok (2023); Tashiro et al. (2021); Yan et al. (2021). Denoising Diffusion Proba-
bilistic Models (DDPMs) progressively remove noise and sample diverse yet realistic images Ho et al.
(2020), while Latent Diffusion Models (LDMs) partially alleviate quadratic computational cost by
operating in a compressed latent space Rombach et al. (2022). Though their great success in vision
tasks like image-to-image Saharia et al. (2022a;b); Meng et al. (2021); Mokady et al. (2023); Zhang
et al. (2023), these models struggle to capture the sequential nature of time series and often fail to
preserve long-range temporal dependencies when directly applied to raw 1D signals.

To harness diffusion models without sacrificing temporal structure, an intuitive idea is to transform
sequences into compact 2D visual representations that encode local trends, periodicity, and cross-
channel interactions as diverse spatial textures Chen et al. (2024). Early studies have also shown
that time series data can be transformed into coherent visual representations, although most adopt a
single-view perspective that preserves only specific temporal characteristics Eckmann et al. (1995);
van den Oord et al. (2016); Wang & Oates (2015a); Griffin & Lim (1984); Daubechies (2002); Vetterli
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Figure 1: (a) Comparison between traditional TSF methods and vision-enhanced approach. (b)
Illustration of different transformations for time series data, each with unique temporal patterns.

& Herley (1992). These vision-based transformations introduce spatial inductive biases, allowing
diffusion models to fully exploit their strengths in uncertainty modeling while capturing both local
and global temporal dependencies essential for robust time series forecasting Wu et al. (2022); Chen
et al. (2024); Zhong et al. (2025). However, several critical limitations exist: (i) Most existing
methods based on single-view transformation leave inherent structural patterns under-represented,
necessitating a multi-view strategy to extract complementary structural patterns; (ii) The integration of
accurate point forecasting and quantification remains largely unexplored in vision-based approaches.

To address these challenges, we present LDM4TS, the first attempt to leverage multi-view trans-
formation and latent diffusion reconstruction as a vision-enhanced time series forecasting method.
Our approach proposes the image multi-modal conditional reconstruction to enhance the TSF task,
as illustrated in Figure 1 (a). LDM4TS combines the strong reconstruction capability of diffusion
models with multi-view vision-enhanced temporal dependency learning. Specifically, ❶ we first
transform raw time series data into multi-view visual representations, including multiple Time-to-
Vision (T2V) transformation strategies to capture a full spectrum of temporal structures. ❷ These
visual representations are then mapped into a low-dimensional latent space, where a latent diffusion
model progressively denoises the latent variables. ❸ To further increase the flexibility of the model,
the diffusion process is conditioned on the frequency embedding and textual embedding to capture
domain-specific knowledge or statistical properties of the time series via cross-attention. ❹ Finally, a
projection and fusion module is introduced to extract complex dependencies from the reconstructed
representations and predict future time series. The key contributions of this work are as follows:

1) Multi-view Visual Representations: We present the first work that transforms time series into
multi-view visual representations with preserved crucial temporal properties, thus leveraging diffusion
models’ power to capture the complex temporal structures and intrinsic patterns.

2) Vision-enhanced Latent Diffusion Framework for TSF: We develop LDM4TS, a unified
framework that reconstructs multi-view T2V representations via latent diffusion and a multi-modal
conditional-guided mechanism for effective time series forecasting.

3) Comprehensive Empirical Validation: Extensive experiments verify that LDM4TS achieves
state-of-the-art performance on diverse datasets, outperforming specialized TSF models and methods
with pre-trained components on time series forecasting tasks.

2 RELATED WORK

Diffusion Models for Time Series. Diffusion models have emerged as a powerful class of genera-
tive approaches, demonstrating remarkable success across various high-dimensional data domains.
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Denoising Diffusion Probabilistic Models (DDPMs) Ho et al. (2020) employ a Markov chain to add
and remove Gaussian noise, progressively generating high-fidelity samples. Score-based diffusion
models Song et al. (2020) directly estimate the score function of data distributions, while conditional
diffusion models Dhariwal & Nichol (2021) further incorporate guidance signals to steer the gen-
erative process. Recent years have witnessed increasing applications of diffusion models in time
series analysis Yang et al. (2024b); Lin et al. (2024a). TimeGrad Rasul et al. (2021a) pioneered the
integration of diffusion with autoregressive modeling, and D3VAE Li et al. (2022) combines varia-
tional autoencoders with diffusion for improved flexibility. TSDiff Kollovieh et al. (2024) iteratively
refines probabilistic forecasts through implicit densities. In the context of imputation, conditional
models such as CSDI Tashiro et al. (2021) and MIDM Wang et al. (2023a) leverage conditional score
matching for irregular time series. TimeDiff Shen & Kwok (2023) introduces a non-autoregressive
conditional diffusion framework for time series prediction, while TMDM Li et al. (2024) employs
transformer-modulated diffusion for multivariate probabilistic forecasting. DiffusionTS Yuan &
Qiao (2024) focuses on interpretable diffusion for general time series generation, and NsDiff Ye
et al. (2025) specifically addresses non-stationary time series forecasting via specialized diffusion
modeling techniques. Domain-specific designs have also emerged, such as DiffLoad Wang et al.
(2023b) for load forecasting, WaveGrad Chen et al. (2020) and DiffWave Kong et al. (2020) for audio
synthesis, and EHRDiff Yuan et al. (2023) for healthcare applications. DiffSTG Wen et al. (2023)
further explores spatio-temporal graph structures in diffusion models for time series.

However, most existing diffusion methods focus on single-modality or lack mechanisms for leveraging
multi-view visual representations for TSF. Our work advances the development of latent diffusion
models for TSF by incorporating multi-modal information and exploiting cross-modal conditioning
mechanisms, thereby substantially improving the accuracy and robustness under different scenarios.

Vision-enhanced Time Series Forecasting. Vision models like ViT Dosovitskiy (2020) and
MAE He et al. (2022) have demonstrated remarkable success in computer vision through their
exceptional feature extraction capabilities, demonstrating unprecedented generalization power when
pre-trained on large-scale datasets like ImageNet Deng et al. (2009). Inspired by the success of these
vision models, researchers have begun exploring their potential in time series forecasting.

Leveraging vision models for time series analysis has recently gained increasing traction Ni et al.
(2025); Zhao et al. (2025). Early methods of treating time series as images have evolved from
traditional approaches using Gramian Angular Fields (GAF), Markov Transition Fields (MTF) Wang
& Oates (2015b) or various spectrogram-based approaches van den Oord et al. (2016); Griffin & Lim
(1984); Daubechies (2002). These methods enable the use of 2D vision models like CNNs Wang &
Oates (2015b); Barra et al. (2020), and more sophisticated transformer-based methods Dosovitskiy
(2020); Wu et al. (2022); Chen et al. (2024) for time series tasks. TimesNet Wu et al. (2022) exploits
2-D matrix representations, and VisionTS Chen et al. (2024) utilizes pre-trained visual architectures
for effective feature extraction and transfer learning. ViTime Yang et al. (2024a) demonstrates the
possibility of zero-shot forecasting by treating time series as visual signals.

However, these approaches are predominantly deterministic and lack uncertainty quantification capa-
bilities since they are not built within generative frameworks. Our work addresses these limitations
by integrating latent diffusion models with visual representations in a unified framework. This design
enables our model to effectively capture temporal dependencies while maintaining the uncertainty
modeling capabilities inherent in diffusion models.

3 METHODOLOGY

As illustrated in Figure 2, LDM4TS employs a cross-modal architecture that leverages the visual
pattern reconstruction capabilities of latent diffusion models to enhance time series forecasting.
The framework operates through three key stages: ❶ First, it transforms raw time series data into
multi-view visual representations using complementary encoding methods, each capturing underlying
characteristics. ❷ Second, these visual representations are processed through a latent diffusion model
that iteratively denoises the multi-modal encoded data, guided by frequency and textual conditions
that provide domain knowledge and statistical context. ❸ Finally, the model combines the diffusion-
generated features with explicit temporal features through an adaptive fusion mechanism, producing
accurate and robust forecasts that capture both global patterns and local dynamics.
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Figure 2: The framework of our proposed LDM4TS. Time series data is first transformed into
complementary visual representations (SEG: Segmentation, GAF: Gramian Angular Field, RP:
Recurrence Plot) that encode structural temporal patterns. A conditional latent diffusion model then
reconstructs the images through iterative denoising guided by a multi-modal conditional-guided
mechanism (FC: frequency conditioning, TC: textual conditioning). Finally, the reconstructed images
are mapped back to time series space with explicit temporal dependencies and implicit patterns.

3.1 MULTI-VIEW VISION TRANSFORMATION FOR TIME SERIES

Time series data exhibits complex temporal patterns across multiple views, from local fluctuations
to long-term trends, making structural modeling challenging. We propose a novel approach that
transforms time series into multiple complementary visual representations, each capturing unique
temporal characteristics through a T2V vision encoder (VE) integrated with multiple transformation
strategies and multi-scale convolution combination. Given an input sequence X ∈ RB×L×D, where
B denotes the batch size, L represents the sequence length, and D indicates the feature dimension,
we construct a multi-channel image representation Iϕ through complementary encoding methods
ϕ(·). The technical details of all the transformation processes are presented in Appendix E.

We implemented 8 different transformation strategies and simplified their utilization. For illustrative
and evaluation purposes, we generate three visual channels with strong complementary properties
to validate our approach. Specifically, One combination of the T2V encoder transformation process
is inspired by (i) the Segmentation representation (SEG) Chen et al. (2024) that employs periodic
restructuring to preserve local temporal structures, enabling the detection of recurring patterns across
multiple time scales; (ii) the Gramian Angular Field (GAF) Zheng et al. (2014); Wang & Oates
(2015a) that transforms temporal correlations into spatial patterns through polar coordinate mapping,
effectively capturing long-range dependencies crucial for forecasting; and (iii) the Recurrence Plot
(RP) Eckmann et al. (1995); Marwan et al. (2007) that constructs similarity matrices between time
points to reveal both cyclical behaviors and temporal anomalies, providing a complementary view
of the underlying structure. As demonstrated in Figure 1 (b), these three visual encoding strategies
effectively convert temporal dynamics into structured spatial patterns, enabling our model to capture
history dependencies and underlying features. The transformation process is formulated as follows:

X̃ =
X −min(X)

max(X)−min(X) + ϵ
, I

′

ϕ = F(R(P(X̃T ), ⌈L+ p

P
⌉, P )), (1)

I
′′

ϕ = F(
1

D

D∑
d=1

cos(θd ⊕ θTd )), I
′′′

ϕ = F(exp(−∥Xi −Xj∥22
2σ2

)), (2)

Iϕ = VE(X,ϕ) = Multi-Conv(Concat[I
′

ϕ; I
′′

ϕ ; I
′′′

ϕ ]) ∈ RB×3×H×W , (3)

where ϵ = 1e−8 is a small constant added to prevent division by zero during normalization; P(·)
represents padding operation that ensures the sequence length is divisible by periodicity P and p
is the padding length; R(·) restructures the padded sequence into a 2D matrix with dimensions
determined by T ; F(·) performs bilinear interpolation to the target size (H,W ) and normalizes to
[0, 1]; θd = arccos(2X̃:,:,d − 1) represents the angular coordinates of the normalized time series
mapped to [−1, 1]; ⊕ denotes the outer sum operation generating pairwise temporal correlations;
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Xi and Xj refer to phase space vectors at time points i and j respectively. and σ is the standard
deviation of these distances. The final multi-channel image Iϕ integrates three complementary views
of temporal dynamics with standard image shape 3×H ×W .

3.2 MULTI-MODAL CONDITIONAL-GUIDED LATENT DIFFUSION FOR RECONSTRUCTION

Traditional diffusion models operate in high-dimensional pixel space, making them computationally
intensive for time series. We complete the masked future region of the structured 2D encodings
in a low-dimensional space via a lightweight latent diffusion model. Beyond standard latent diffu-
sion Rombach et al. (2022), our denoiser is specifically built Multi-modal Conditional-Guided U-Net
(MMCG-UNet) that projects heterogeneous conditions (frequency/text) into a shared guidance space
with fusion and normalization to preserve global structures. This design yields stronger structure
completion and better calibration at a few sampling steps. More algorithm details are in Appendix D.

Multi-conditional Generation Framework. To guide accurate temporal feature reconstruction, we
implement a cross-modal conditioning mechanism that integrates both frequency domain information
and semantic descriptions. Given a visual representation I ∈ RB×3×H×W , we first encode it into
latent space and derive conditional signals as:

cfreq = FFTEncoder(X), ctext = TextEncoder(X), (4)

z0 = E(Iϕ) · s, c(t)m = CrossAttn(MLP([ctext; cfreq]), zt), (5)

where E(·) represents the frozen pre-trained VAE, s is the latent space scaling factor (see Appendix D.1
for detailed derivation). cfreq ∈ RB×(2DL+2) captures periodic patterns through frequency analy-
sis while ctext ∈ RB×dmodel encodes statistical properties and domain knowledge through natural
language descriptions. For inference step t, condition cm is updated with denoised zt. Our frame-
work provides flexibility for integrating multi-modal conditional embeddings across. The detailed
implementations of the aforementioned FFTEncoder and TextEncoder are provided in Appendix D.4.

Forward Diffusion Process. Our forward process implements a variance-preserving Markov chain
that gradually injects Gaussian noise into the latent representations. By operating in compressed
latent space rather than pixel space, this approach enables efficient learning of temporal patterns
across different scales while preserving the intrinsic information from vision transformations. For a
given initial latent representation z0, we define the forward diffusion process distribution q as:

q(zt|zt−1, Iϕ) = N (zt;
√
αtzt−1, (1− αt)I), (6)

q(zt|z0, Iϕ) = N (zt;
√
ᾱtzt, (1− ᾱt)I), ᾱt =

t∏
s=1

αs, t ∈ {1, ..., T}, (7)

where {αt}Tt=1 defines a scaled linear noise schedule, and ᾱt controls the cumulative noise level
across t timesteps. N denotes a multivariate Gaussian distribution.

MMCG-UNet De-noising Process. The reverse process employs a parameterized U-Net architec-
ture to denoise the representations, exploiting cross-modal conditioning mechanisms. By incorporat-
ing frequency and semantic embeddings, this process uniquely captures complex temporal dynamics
while maintaining coherent long-term dependencies. The denoising process is formulated as:

pθ(zt−1 | zt, c(t)m ) = N
(
zt−1; µθ(zt, t, c

(t)
m ), Σθ(zt, t)

)
, (8)

µθ(zt, t, c
(t)
m ) =

1
√
αt

(
zt −

1− αt√
1− ᾱt

ϵθ(zt, t, c
(t)
m )

)
, (9)

where ϵθ is the MMCG-UNet that predicts the noise sample given the noisy latent zt, timestep t, and
cross-modal condition embedding cm. We pre-compute and cache diffusion parameters including αt,√
αt, cumulative products ᾱt to improves training and inference efficiency. The reconstructed image

Ît = D(zt/s) is obtained by decoding the denoised latent representation through the VAE decoder
D(·), and the visual feature zv = MMCG(Î0) is computed via up/downsampling followed by GeLU.
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3.3 MULTI-MODAL PREDICTION AND OPTIMIZATION

Multi-modal Feature Fusion. While the latent diffusion model captures global patterns effectively,
local temporal dynamics and distribution shifts require explicit modeling. As shown in Fig. 3,
we utilize a temporal projection (TP) that complements the diffusion process through three key
components: patch embedding, attention-based projection, and multi-modal gated fusion. Given
input sequence X ∈ RB×L×D, we adopt the patch embedding strategy Dosovitskiy (2020); Nie et al.
(2023b) to encode temporal hidden states, which are then processed through l layers encoders, where
Xnorm = LN(X). The resulting embeddings are constructed as follows:

h0 = Embed(Xnorm) ∈ RB×Np×d, h′l = hl−1 + MSA(LN(hl−1)), (10)

hl = h′l + MLP(LN(h′l)), zh = Linear(hl) ∈ RB×Lpred×D, (11)

where Np denotes patch count, h is hidden states and d is the hidden dimension.
MSA(·) and LN(·) represent multi-head self-attention and layer normalization respectively.

Normalization
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Vision Encoder

Flatten & Projection Temporal Projection
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Time Ser ies Data
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Figure 3: The forward process of LDM4TS.

Forecasting and Optimization Objective. We
employ a gated fusion mechanism to combine tem-
poral features zh and visual features zv derived
from the reconstruction Î for point predictions:

zv = Linear(Flatten(F̂(Î))), (12)

g = σ(MLP([zh; zv])), (13)

Ŷ = g ⊙ zh + (1− g)⊙ zv, (14)

where σ denotes the activation function, ⊙ repre-
sents element-wise multiplication, and g are learn-
able gating weights that dynamically balance the
contributions from each modality. The operator
F̂(·) denotes the inverse of F(·), a V2T decoder
that maps visual representations back to the origi-
nal value range of the normalized time series.

The model is trained using mean squared error (MSE) loss for point prediction. For probabilistic
forecasting in Appendix C, we exploit the inherent stochasticity of the diffusion process to generate
a predictions set {Ŷ (s)}Ss=1 by sampling S latent trajectories. Our implementation leverages the
deterministic nature of time series forecasting while accounting for inherent uncertainties, providing
accurate predictions and well-calibrated prediction intervals.

4 EXPERIMENTS

4.1 SETTINGS

Dataset and Metrics. We evaluate LDM4TS on seven widely used time series datasets spanning
diverse domains, including energy consumption (ETTh1, ETTh2, ETTm1, ETTm2), weather fore-
casting, and electricity load prediction (ECL; 321 variables), Zhou et al. (2021); Lai et al. (2018).
These benchmarks are widely adopted for long-term forecastingWu et al. (2022) and cover a range
of sampling frequencies, dimensionalities, and temporal structures. These datasets are chosen for
their varying characteristics in terms of sampling frequency, dimensionality, and temporal patterns.
Our experiments primarily focus on point forecasting, evaluated by Mean Absolute Error (MAE) and
Mean Squared Error (MSE), following standard practice. Due to space constraints, we additionally
reported performance on irregular time series in Appendix C.1 and evaluated the Quantile Interval
Calibration Error (QICE) Han et al. (2022) for probabilistic forecasting against diffusion-based
models and report comparative results in Appendix C. Further dataset and metric details are provided
in Appendices A.1 and A.3.
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Table 1: Long-term forecasting results. All results are averaged from four forecasting horizons: H ∈
{96, 192, 336, 720}. A lower value indicates better performance. Red: best, Blue: second best.

Methods LDM4TS ETSformer Stationary Autoformer FEDformer DLinear Informer TimesNet LightTS Reformer PatchTST GPT4TS
(Ours) (2022) (2022b) (2021) (2022) (2023) (2021) (2022) (2023) (2020) (2023b) (2023)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 0.439 0.452 0.542 0.510 0.570 0.537 0.504 0.492 0.440 0.460 0.460 0.457 1.040 0.799 0.460 0.455 0.590 0.544 1.006 0.745 0.468 0.454 0.465 0.455
ETTh2 0.377 0.412 0.439 0.452 0.526 0.516 0.467 0.468 0.439 0.451 0.564 0.519 4.551 1.742 0.407 0.421 1.260 0.678 2.531 1.244 0.408 0.425 0.381 0.412
ETTm1 0.349 0.385 0.429 0.425 0.481 0.456 0.576 0.526 0.471 0.470 0.404 0.408 0.867 0.690 0.477 0.443 0.427 0.437 1.013 0.737 0.387 0.401 0.388 0.403
ETTm2 0.283 0.329 0.293 0.342 0.306 0.347 0.307 0.351 0.318 0.366 0.304 0.349 1.593 0.908 0.299 0.333 0.830 0.614 1.874 1.009 0.293 0.337 0.284 0.339
Weather 0.229 0.277 0.271 0.334 0.288 0.314 0.329 0.375 0.333 0.375 0.246 0.306 0.634 0.549 0.265 0.288 0.259 0.315 1.229 0.858 0.258 0.281 0.264 0.284

ECL 0.182 0.273 0.208 0.323 0.193 0.296 0.253 0.352 0.612 0.377 0.225 0.319 0.378 0.438 0.208 0.303 0.243 0.343 0.326 0.404 0.188 0.275 0.205 0.290

Table 2: Few-shot learning on 10% training data. We use the same protocol in Table 1.

Methods LDM4TS ETSformer Stationary Autoformer FEDformer DLinear Informer TimesNet LightTS Reformer iTransformer PatchTST
(Ours) (2022) (2022b) (2021) (2022) (2023) (2021) (2022) (2023) (2020) (2024) (2023b)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 0.471 0.468 1.180 0.834 0.915 0.639 0.701 0.596 0.638 0.561 0.691 0.599 1.199 0.808 0.869 0.628 1.375 0.877 1.249 0.833 0.660 0.551 0.633 0.542
ETTh2 0.371 0.405 0.894 0.713 0.462 0.455 0.488 0.499 0.466 0.475 0.608 0.538 3.871 1.512 0.479 0.465 2.655 1.159 3.485 1.486 0.435 0.439 0.415 0.431
ETTm1 0.371 0.393 0.980 0.714 0.797 0.578 0.802 0.628 0.721 0.605 0.411 0.429 1.192 0.820 0.479 0.465 0.970 0.704 1.426 0.856 0.450 0.431 0.501 0.466
ETTm2 0.270 0.331 0.447 0.487 0.332 0.366 1.341 0.930 0.463 0.488 0.316 0.368 3.369 1.439 0.319 0.353 0.987 0.755 3.978 1.587 0.305 0.349 0.296 0.343
Weather 0.229 0.276 0.318 0.360 0.318 0.323 0.300 0.342 0.284 0.283 0.241 0.283 0.597 0.494 0.279 0.301 0.289 0.322 0.526 0.469 0.272 0.290 0.242 0.279

Table 3: Few-shot learning on 5% training data. Red: best, Blue: second best.

Methods LDM4TS ETSformer Stationary Autoformer FEDformer DLinear Informer TimesNet LightTS Reformer PatchTST
(Ours) (2022) (2022b) (2021) (2022) (2023) (2021) (2022) (2023) (2020) (2023b)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 0.458 0.456 0.398 0.850 0.662 1.026 0.722 0.599 0.659 0.562 0.750 0.611 1.225 0.817 0.926 0.648 1.451 0.903 1.242 0.835 0.687 0.722
ETTh2 0.388 0.412 0.809 0.681 0.470 0.489 0.470 0.489 0.441 0.457 0.828 0.616 3.923 1.654 0.464 0.454 3.206 1.268 3.527 1.473 0.827 0.615
ETTm1 0.407 0.412 1.125 0.783 0.857 0.598 0.796 0.621 0.731 0.593 0.401 0.417 1.163 0.791 0.717 0.561 1.123 0.766 1.264 0.827 0.526 0.476
ETTm2 0.311 0.353 0.534 0.547 0.341 0.373 0.388 0.433 0.381 0.404 0.399 0.426 3.658 1.489 0.345 0.373 1.416 0.871 3.582 1.487 0.315 0.353
Weather 0.258 0.294 0.333 0.371 0.327 0.328 0.311 0.354 0.310 0.353 0.264 0.309 0.584 0.528 0.298 0.318 0.306 0.345 0.447 0.453 0.269 0.303

Compared Methods. We compared point forecasting with a set of recent competitive models,
including ❶ time-series specific models PatchTSTNie et al. (2023b), FEDformer Zhou et al. (2022),
Autoformer Wu et al. (2021), Informer Zhou et al. (2021), ETSformer Woo et al. (2022), Reformer Ki-
taev et al. (2020), DLinear Zeng et al. (2023), TimesNet Wu et al. (2022), ESTformer Woo et al.
(2022), Non-Stationary Transformer Liu et al. (2022a), LightTS Zhang et al. (2022), and ❷ advanced
models like PatchTST Nie et al. (2023b), iTransformer Liu et al. (2024), Timemixer++ Wang et al.
(2024a), FITS Xu et al. (2023) and TimeVLM Zhong et al. (2025), VisionTS Chen et al. (2024),
GPT4TS Zhou et al. (2023) with pre-trained components. ❸ For probabilistic forecasting, we selected
six strong baselines including TimeGrad Rasul et al. (2021a), CSDI Tashiro et al. (2021), TimeD-
iff Shen & Kwok (2023), TMDM Li et al. (2024), DiffusionTS Yuan & Qiao (2024) and NsDiff Ye
et al. (2025). More details of these methods are in Appendix B.

Implementation Details. The models are trained using the Adam optimizer with a learning rate
of 10−3, batch size of 32, and a maximum of 10 epochs, applying an early stopping strategy. All
experiments are conducted on an Nvidia RTX A6000 GPU with 48GB memory. All training and
model parameter settings are detailed in Appendix A.2.

4.2 RESULTS

Long-term Forecasting. We evaluate the long-term forecasting capabilities of LDM4TS across
multiple prediction horizons. As shown in Table 1, LDM4TS consistently outperforms state-of-the-
art baselines. On the ETT datasets family, our approach demonstrates significant improvements,
achieving the best MSE of 0.349 on ETTm1 compared to the second-best performer GPT4TS (0.381),
and reducing MSE by 7.37% on ETTh2 (0.377) compared to TimesNet (0.407). The advantages
extend to high-dimensional scenarios, achieving superior results on Electricity (321 variables, MSE:
0.182 vs PatchTST 0.188). Overall, LDM4TS achieves competitive performances among these
datasets, validating that our vision-enhanced modeling strategy effectively captures complex temporal
dynamics across diverse forecasting scenarios.

Few-shot Forecasting. To evaluate model robustness under data scarcity, we conduct experiments
using only 10% and 5% of the training data. As shown in Table 2, LDM4TS achieves optimal or the
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Table 4: Zero-shot learning results among the ETT dataset family. Red: best, Blue: second best.

Methods LDM4TS ETSformer Stationary Autoformer FEDformer DLinear Informer ETSformer LightTS Reformer CSDI
(Ours) (2022) (2022b) (2021) (2022) (2023) (2021) (2022) (2023) (2020) (2021)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1→ETTh2 0.458 0.452 0.589 0.589 0.591 0.530 0.582 0.548 0.495 0.501 0.493 0.488 2.292 1.169 0.589 0.589 1.075 0.699 2.119 1.125 0.500 0.527
ETTh1→ETTm2 0.369 0.400 0.569 0.568 0.437 0.439 0.457 0.483 0.373 0.424 0.415 0.452 2.167 1.124 0.569 0.568 1.058 0.700 2.228 1.165 0.410 0.444
ETTm1→ETTh2 0.452 0.434 0.704 0.620 0.921 0.676 0.470 0.479 0.587 0.565 0.464 0.475 1.526 0.945 0.704 0.620 0.572 0.556 1.663 1.081 0.504 0.515
ETTm1→ETTm2 0.354 0.367 0.603 0.578 0.493 0.470 0.469 0.484 0.424 0.463 0.335 0.389 1.521 0.951 0.603 0.578 0.466 0.495 2.017 1.111 0.405 0.440
ETTm2→ETTh2 0.426 0.435 1.693 0.958 0.903 0.629 0.423 0.439 0.545 0.516 0.455 0.471 1.663 0.955 1.693 0.958 1.051 0.730 2.056 1.043 0.482 0.498
ETTm2→ETTm1 0.588 0.487 0.728 0.607 1.055 0.796 0.755 0.591 0.819 0.618 0.649 0.537 0.854 0.637 0.728 0.607 0.716 0.550 0.941 0.698 1.039 0.763

Table 5: Ablation study results on different components on the Weather dataset. We compare the full LDM4TS
model with variants excluding key components: latent diffusion model (w/o LDM), vision encoder (w/o VE),
temporal encoder (w/o TE), textual conditioning (w/o TC), and frequency conditioning (w/o FC). We also
investigate the impact of individual visual transformation methods. %Deg denotes the degradation percentage.

Horizon LDM4TS - Full w/o LDM w/o VE w/o TE w/o TC w/o FC w/o SEG w/o GAF w/o RP

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

96 0.154 0.210 0.164 0.216 0.213 0.266 0.213 0.266 0.161 0.215 0.163 0.214 0.162 0.213 0.160 0.215 0.162 0.213
192 0.199 0.251 0.224 0.274 0.259 0.298 0.259 0.299 0.206 0.256 0.207 0.257 0.211 0.259 0.211 0.259 0.211 0.259
336 0.245 0.294 0.280 0.311 0.267 0.302 0.276 0.311 0.260 0.296 0.260 0.295 0.265 0.300 0.265 0.300 0.269 0.304
720 0.318 0.353 0.364 0.364 0.342 0.357 0.337 0.354 0.336 0.348 0.354 0.370 0.331 0.348 0.330 0.345 0.344 0.360

Avg 0.229 0.277 0.258 0.291 0.270 0.306 0.271 0.307 0.241 0.279 0.246 0.284 0.242 0.280 0.242 0.280 0.247 0.284
%Deg – – 12.66% 5.05%↑ 18.00%↑ 10.35%↑ 18.42%↑ 10.91%↑ 5.05%↑ 0.54%↑ 7.47%↑ 2.54%↑ 5.78%↑ 1.05%↑ 5.47%↑ 0.92%↑ 7.60%↑ 2.43%↑

second-best performance on all 5 datasets in both MSE and MAE metrics. LDM4TS outperforms the
time series specific methods, with notable MSE reductions: 25.5% on ETTh1 (0.471 vs 0.630), 3.2%
on ETTh2, and 9.7% on ETTm1 (0.371 vs 0.411). On the Weather dataset, LDM4TS outperforms
the advanced methods like FEDformer and DLinear. Even with further reduced 5% training data,
LDM4TS maintains strong performance by achieving the best results on 4 MSE and 5 MAE metrics
across datasets. The robust performance under extreme data scarcity demonstrates how our vision-
enhanced approach captures intrinsic patterns to address missing and sparse data challenges in
real-world forecasting applications.

Zero-shot Forecasting. To evaluate cross-domain generalization, we conduct zero-shot transfer
experiments across different datasets without any fine-tuning. As shown in Table 4, LDM4TS
achieves the best performance in 4 MSE and 5 MAE metrics out of 6 scenarios, demonstrating strong
cross-domain transferability. For challenging transfer tasks like ETTh1 → ETTh2 and ETTh1 →
ETTm2, LDM4TS achieves MSE of 0.458 and 0.369 respectively, outperforming both DLinear
(0.493, 0.415) and FEDformer (0.495, 0.373). The model also achieves the best on ETTm1 →
ETTh1 (0.452, 0.434) and ETTm2 → ETTm1 (0.588, 0.487). The advantages are particularly
pronounced when compared to other diffusion models like CSDI, with LDM4TS achieving from
9.9% to 36.1% improvements across all transfer scenarios. Notably, while most baselines exhibit
significant performance degradation under cross-dataset transfer, LDM4TS maintains stable and
competitive accuracy, underscoring its robust and reliable generalization capacity.

4.3 MODEL ANALYSIS

Overall Performance Analysis. LDM4TS demonstrates superior performance across various fore-
casting scenarios, excelling in long-term, few-shot, and zero-shot predictions, while maintaining
computational efficiency with only 5.4M learnable parameters and fast inference speed (see Ap-
pendix F for detailed analysis). Through comprehensive experiments, we observe that our approach
effectively captures both global trends and local patterns in time series data. As shown in Figure 4,
LDM4TS achieves good performance in forecasting structured patterns, such as the clear periods
in the Traffic datasets (MSE: 0.496) and regular consumption patterns in ECL data (MSE: 0.182).
The performance shows slight degradation on datasets with irregular patterns or abrupt changes,
suggesting potential areas for future improvement in handling non-stationary patterns.

Visual Encoding Effectiveness. For consistency across all experiments, we exclusively use a
three-channel image representation composed of SEG, GAF, and RP transformations as our visual
encoding strategy. The complementary nature of these encodings is particularly evident, and the
combination achieves MSE reduction ranging from 5.6% to 7.5% compared to using any single
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encoding method in the ETT datasets. Our framework provides a highly flexible architecture for
combining different transformation strategies to extract intrinsic temporal features and preserve them
within image structures. The current implementation supports various transformation methods beyond
the three used in experiments, with detailed specifications and guidelines provided in Appendix E.
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Figure 4: Qualitative visualization of long-term forecasting results generated by the proposed
LDM4TS model across all benchmark datasets under the input-96-predict-96 setting.
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Figure 5: Hyperparameter sensitivity analysis on the ETTh1. The results illustrate the impact of input
sequence length (left), model dimension (middle), and fusion dimension (right) on performance.

Ablation Study. Table 5 presents ablation studies on key components of LDM4TS. Both vision
encoder and temporal encoder prove to be crucial, with their removal leading to significant per-
formance degradation (18.00% and 18.42% MSE increase respectively), validating that our visual
representations successfully capture essential temporal characteristics. The latent diffusion also plays
a vital role (12.66% MSE increase when removed), demonstrating effective bridging between image
reconstruction and time series prediction. Furthermore, removing individual transformation methods
results in performance drops (5.78%, 5.47%, and 7.60% respectively), confirming that each view
captures complementary temporal information to enhance forecasting performance. This validates
our multi-view strategy that extracts and preserves diverse temporal features within the visual space.

Parameter Sensitivity Analysis. We further performed a parameter sensitivity analysis to investi-
gate the effect of key hyperparameters on the model performance, as shown in Figure 5(a) shows the
best performance at around 512 timesteps as input sequence length, while the performance of longer
sequences decreases due to increased noise. The hidden dimension shows an optimum point between
32 and 64, balancing model capacity and risk of overfitting. For the hidden dimension values between
64 and 128 produce better results, suggesting that compact representations are more effective for
integrating cross-modal information.

5 CONCLUSION

In this paper, we present LDM4TS, a novel framework that adapts the latent diffusion model with
cross-modal conditional-guided mechanism for time series forecasting. By transforming temporal
data into multi-view visual representations and reconstructing future images, LDM4TS effectively
bridges the strengths of visual feature extraction and probabilistic generative modeling. Extensive
experiments demonstrate that our method significantly outperforms existing diffusion-based methods
and specialized forecasting models and excels at various forecasting tasks, providing a novel vision-
enhanced perspective to address the key challenges of intrinsic temporal pattern extraction and
uncertainty modeling. Future work will focus on exploring diffusion models’ potential in broader
time series applications and developing comprehensive benchmarks.
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A EXPERIMENTAL DETAILS

A.1 DATASET DETAILS

Table 6: Summary of the benchmark datasets. Each dataset contains multiple time series (Dim.) with
different sequence lengths and is split into training, validation and testing sets. The data are collected
at different frequencies across various domains. ”Uncert.Var.” means uncertainty variation.

Dataset Dim. Series Length Dataset Size Frequency Domain Uncert.Var.
ETTm1 7 {96, 192, 336, 720} (34465, 11521, 11521) 15 min Temperature 2.53
ETTm2 7 {96, 192, 336, 720} (34465, 11521, 11521) 15 min Temperature 1.27
ETTh1 7 {96, 192, 336, 720} (8545, 2881, 2881) 1 hour Temperature 2.50
ETTh2 7 {96, 192, 336, 720} (8545, 2881, 2881) 1 hour Temperature 1.29
Electricity 321 {96, 192, 336, 720} (18317, 2633, 5261) 1 hour Electricity 3.94
Weather 21 {96, 192, 336, 720} (36792, 5271, 10540) 10 min Weather -

We conduct experiments on the above real-world datasets to evaluate the performance of our proposed
model and follow the same data processing and train-validation-test set split protocol used in TimesNet
benchmark Wu et al. (2022), ensuring a strict chronological order to prevent data leakage. Different
datasets require specific adjustments to accommodate their unique characteristics:

ETT Dataset Kim et al. (2022) The Electricity Transformer Temperature (ETT) dataset consists
of both hourly (ETTh) and 15-minute (ETTm) frequency data, with 7 variables (enc in = dec in =
c out = 7) measuring transformer temperatures and related factors. For ETTh data, we set periodicity
to 24 with hourly frequency, while ETTm data uses a periodicity of 96 with 15-minute intervals.
Standard normalization is applied to each feature independently, and the model maintains the same
architectural configuration across both temporal resolutions.

ECL Dataset Wu et al. (2021) The electricity consumption dataset contains 321 variables monitor-
ing power usage patterns. We employ robust scaling techniques to handle outliers and implement
sophisticated missing value imputation strategies. The model incorporates adaptive normalization
layers to address the varying scales of electricity consumption across different regions and time
periods. The daily periodicity is preserved through careful temporal encoding, while the high feature
dimensionality is managed through efficient attention mechanisms.

Weather Dataset Wu et al. (2021) This multivariate dataset encompasses 21 weather-related
variables, each with distinct physical meanings and scale properties. Our approach implements
feature-specific normalization to handle the diverse variable ranges while maintaining their physical
relationships. The model captures both daily and seasonal patterns through enhanced temporal
encoding, with special attention mechanisms designed to model the complex interactions between
different weather variables. We maintain consistent prediction quality across all variables through
carefully calibrated cross-attention mechanisms.

A.2 OPTIMIZATION SETTINGS

A.2.1 MODEL ARCHITECTURE PARAMETERS

The core architecture of our diffusion-based model consists of several key components, each with
specific parameter settings. The autoencoder pathway is configured with an image size of 64× 64
and a patch size of 16, providing an efficient latent representation while maintaining temporal
information. The diffusion process uses 20 timesteps with carefully tuned noise scheduling (βstart =
0.00085, βend = 0.012) to ensure stable training.

For the transformer backbone, we employ a configuration with d model = 256 and 8 attention
heads, which empirically shows strong performance across different datasets. The encoder-decoder
structure uses 2 encoder layers and 1 decoder layer, striking a balance between model capacity and
computational efficiency.
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Table 7: Default Model Architecture Parameters

Parameter Default Value Description
Visual Representation Parameters
image size 64 Size of generated image representation
patch size 16 Size of patches for input processing
grayscale True Whether to use grayscale images
Diffusion Process Parameters
training timesteps 20 Number of diffusion training steps
inference timesteps 20 Number of inference steps
num samples 100 Samples generated for the distribution
beta start 0.00085 Initial value of noise schedule
beta end 0.012 Final value of noise schedule
use ddim True Whether to use DDIM sampler
unet layers 1 Number of layers in UNet
Model Architecture Parameters
d model 256 Dimension of model hidden states
d ldm 256 Hidden dimension of LDM
d fusion 256 Dimension of gated fusion module
e layers 2 Number of encoder layers
d layers 1 Number of decoder layers
Training Configuration
freeze ldm True Whether to freeze LDM parameters
save images False Whether to save generated images
output type full Type of output for ablation study

Table 8: Default Training Parameters

Parameter Default Value Description
Basic Training Parameters
batch size 32 Number of samples per training batch
learning rate 0.001 Initial learning rate for optimization
train epochs 10 Total number of training epochs
patience 3 Epochs before early stopping
loss MSE Type of loss function
label len 48 Length of start token sequence
seq len 96/168(for probabilistic) Length of input sequence
norm const 0.4 Coefficient for normalization
padding 8 Size of sequence padding
stride 8 Step size for sliding window
pred len 96/192/336/720 Available prediction horizons
Dataset-specific Parameters

c out

7 (ETTh1/h2/m1/m2)
21 (Weather)
321 (Electricity)
862 (Traffic)

Dataset-specific output dimensions

periodicity
24 (ETTh1/h2/Electricity/Traffic)
96 (ETTm1/m2)
144 (Weather)

Natural cycle length per dataset
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A.2.2 TRAINING PARAMETERS

We adopt a comprehensive training strategy with both general and task-specific parameters. The
model is trained with a batch size of 32 and an initial learning rate of 0.001, using the AdamW
optimizer. Early stopping with a patience of 3 epochs is implemented to prevent over-fitting. For
time series processing, we use a sequence length of 96 and a prediction length of 96, with a label
length of 48 for teacher forcing during training.

The training process employs automatic mixed precision (AMP) when available to accelerate training
while maintaining numerical stability. We use MSE as the primary loss function, supplemented by
additional regularization terms for specific tasks.

A.3 EVALUATION METRICS

For point forecasting evaluation metrics, we utilize the mean square error (MSE) and mean absolute
error (MAE) to measure the accuracy of the predicted values compared to the ground truth. For proba-
bilistic forecasting, we choose the quantile interval calibration error (QICE) to quantify the deviation
between the proportion of true data contained within each interval and the optimal proportion. The
calculations of these metrics are as follows:

MSE =
1

H

H∑
h=1

(Yh − Ŷh)
2, MAE =

1

H

H∑
h=1

|Yh − Ŷh|, QICE =
1

M

M∑
m=1

|rm − 1

M
|,

where H denotes the number of data points (i.e., prediction horizon in our cases). Yh and Ŷh are
the h-th ground truth and prediction where h ∈ {1, · · · ,H}. For QICE, rm represents the actual
coverage rate of the m/M -quantile interval, and M is the number of quantile intervals evaluated (set
to M = 10 in our experiments).

B DETAILS OF BASELINE METHODS

We compare our approach with three categories of baseline methods used for comparative evaluation:
transformer-based architectures, diffusion-based models, and other competitive approaches for time
series forecasting.

Transformer-based Models: FEDformer Zhou et al. (2022) integrates wavelet decomposition
with a Transformer architecture to efficiently capture multi-scale temporal dependencies by process-
ing both time and frequency domains. Autoformer Wu et al. (2021) introduces a decomposing
framework that separates the time series into trend and seasonal components, employing an autocorre-
lation mechanism for periodic pattern extraction. ETSformer Woo et al. (2022) extends the classical
exponential smoothing method with a Transformer architecture, decomposing time series into level,
trend, and seasonal components while learning their interactions through attention mechanisms.
Informer Zhou et al. (2021) addresses the quadratic complexity issue of standard attention mecha-
nisms through ProbSparse self-attention, which enables efficient handling of long input sequences.
Reformer Kitaev et al. (2020) optimizes attention computation via Locality-Sensitive Hashing
(LSH) and reversible residual networks, significantly reducing memory and computational costs.
PatchTST Nie et al. (2023b) treats time series as a sequence of patches and employs a transformer
architecture for long-term forecasting, showing strong performance through its patch-based approach.
Non-Stationary Transformer Liu et al. (2022b) rethinks the stationarity assumption in time series
forecasting by explicitly modeling non-stationary components within the Transformer framework.
TimeMixer++ Wang et al. (2024b) enhances multiscale mixing capabilities through improved
decomposition strategies and adaptive temporal fusion mechanisms.

Diffusion-based Models: TimeGrad Rasul et al. (2021b) pioneers diffusion for time series by
incorporating autoregressive components for multivariate probabilistic forecasting. CSDI Tashiro
et al. (2021) is tailored for irregularly-spaced time series, learning a score function of noise distribu-
tion under given conditions to generate samples for forecasting. TimeDiff Shen & Kwok (2023)
introduces non-autoregressive conditional diffusion models for time series prediction, improving
on previous autoregressive approaches. TMDM Li et al. (2024) employs transformer-modulated
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diffusion models for probabilistic multivariate time series forecasting, combining the strengths of
transformers and diffusion processes. DiffusionTS Yuan & Qiao (2024) presents an interpretable
diffusion framework for general time series generation with enhanced controllability. NsDiff Ye et al.
(2025) addresses non-stationary characteristics in time series through specialized diffusion modeling
techniques. ScoreGrad Song et al. (2020) utilizes a continuous-time framework for progressive
denoising from Gaussian noise to reconstruct the original signal, allowing for adjustable step sizes
during the denoising process.

Other Competitive Models: DLinear Zeng et al. (2023) proposes a linear transformation approach
directly on time series data, simplifying the prediction process under the assumption of linear changes
over time. TimesNet Wu et al. (2022) focuses on multi-scale feature extraction using various
convolution kernels to capture temporal dependencies of different lengths, automatically selecting
the most suitable feature scales. LightTS Campos et al. (2023) aims to build lightweight time
series forecasting models, streamlining structures and parameters to reduce computational resource
requirements while maintaining high predictive performance. iTransformer Liu et al. (2024) is an
inverted Transformer for TSF that embeds each variate’s entire history as a variate token, and applies
self-attention across variates to model multivariate correlations. FITS Xu et al. (2023) operates on
the principle that time series can be manipulated through interpolation in the complex frequency
domain. VisionTS Chen et al. (2024) leverages pre-trained vision models by transforming time series
into visual representations. Time-VLM Zhong et al. (2025) explores multimodal vision-language
models for time series forecasting by integrating temporal, visual, and textual modalities with frozen
pre-trained VLMs.

Table 9: Probabilistic forecasting comparison by QICE (lower is better). Input length = 168, horizon
= 192. We draw 100 samples per method to estimate predictive distributions.

Dataset TimeGrad CSDI TimeDiff TMDM DiffusionTS NsDiff LDM4TS
(2021b) (2021) (2023) (2024) (2024) (2025) (ours)

ETTh1 6.731 3.107 14.931 2.821 6.423 1.470 1.589
ETTh2 9.488 5.331 14.813 4.471 9.577 2.074 1.598
ETTm1 6.693 2.828 14.795 2.567 5.605 2.041 1.590
ETTm2 6.962 8.106 13.385 2.610 9.959 2.030 1.589
ECL 7.118 7.506 15.466 10.562 8.205 6.685 1.580

C PROBABILISTIC FORECASTING

While LDM4TS is primarily evaluated on point forecasting tasks, diffusion-based uncertainty model-
ing naturally extends to probabilistic forecasting. To evaluate the probabilistic forecasting capabilities
of our model, we selected six strong baselines including TimeGrad Rasul et al. (2021a), CSDI Tashiro
et al. (2021), TimeDiff Shen & Kwok (2023), TMDM Li et al. (2024), DiffusionTS Yuan & Qiao
(2024) and NsDiff Ye et al. (2025). More details of these methods are in Appendix B. and employ
the Quantile Interval Calibration Error (QICE) Han et al. (2022), which measures the calibration
of prediction intervals across multiple quantiles. By leveraging the stochastic nature of the reverse
diffusion process, we generate multiple samples that effectively quantify prediction uncertainty. As
shown in Table 9, LDM4TS achieves superior performance on probabilistic metrics across most
datasets. Especially on the ETT dataset family, LDM4TS consistently outperforms other previous
diffusion-based methods, with a dramatic 10 times improvement compared to TimeDiff (1.589 vs
14.931) on ETTh1, and 43.77% improvement of CSDI on ETTm1 (1.590 vs 2.828). The advantages
are particularly significant on larger datasets, where LDM4TS achieves only 23.63% QICE of the
best baseline NsDiff (1.580 vs 6.685) on the ECL dataset.

C.1 ANALYSIS OF PERFORMANCE ON IRREGULAR TIME SERIES

To further evaluate the robustness and generalizability of our approach, we conduct additional
experiments on the Exchange rate dataset, which represents a particularly challenging scenario for
time series forecasting due to its irregular temporal patterns and absence of clear periodic structures.
Beyond the popular SOTA model PatchTST Nie et al. (2023b), we additionally compare recent
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state-of-the-art models from 2024-2025, including iTransformer Liu et al. (2024), FITS Xu et al.
(2023), and TimeMixer++ Wang et al. (2024b). We also compare against methods with pre-trained
components, including VisionTS Chen et al. (2024) and Time-VLM Zhong et al. (2025), to ensure
fair comparison within the same paradigm of leveraging pre-trained foundation models.

Table 10: Performance evaluation on irregular time series (Exchange dataset). The input sequence length is set
to 96 for all baselines, and the average results of prediction lengths {96, 192, 336, 720} are reported.

Dataset LDM4TS PatchTST iTransformer FITS TimeMixer++ VisionTS Time-VLM
(Ours) (2023b) (2024) (2023) (2024b) (2024) (2025)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Exchange 0.393 0.416 0.427 0.436 0.441 0.457 0.458 0.457 0.471 0.467 0.483 0.461 0.555 0.481

The experimental results on the Exchange dataset demonstrate LDM4TS’s superior performance
on irregular time series, achieving MSE of 0.393 and MAE of 0.416, which represents 8.0% and
4.6% improvements over the second-best method PatchTST (0.427/0.436). Notably, our approach
significantly outperforms other vision-enhanced methods, with 18.6% lower MSE than VisionTS
(0.483) and 29.2% lower MSE than Time-VLM (0.555). These results validate that our multi-
view transformation strategy and conditional diffusion framework effectively capture subtle temporal
dependencies even in challenging datasets without clear periodic structures, extending the applicability
of vision-enhanced forecasting to diverse real-world scenarios.

D PREREQUISITES OF LATENT DIFFUSION MODELS

D.1 AUTOENCODER FRAMEWORK

Latent Diffusion Models (LDMs) leverage the autoencoder architecture to facilitate efficient learning
in the latent space. An autoencoder comprises two primary components: an encoder and a decoder.
The encoder E compresses high-dimensional input data x ∈ RD into a lower-dimensional latent
representation z ∈ Rd, where d ≪ D. This compression not only reduces the computational
complexity but also captures the essential features of the data. In our implementation, we utilize
the pre-trained AutoencoderKL from the stable-diffusion-v1-4, which has demonstrated remarkable
capabilities in image compression and reconstruction. Mathematically, this process is described as:

z = E(x) (15)

Latent Space Scaling In practice, the latent representations produced by the encoder are typically
scaled by a factor s = 0.18215 to ensure numerical stability and optimal distribution characteristics:

zscaled = s · E(x) (16)

This specific scaling factor originates from the VAE design in Stable Diffusion and is derived through
empirical optimization. The value is calculated to minimize the KL divergence between the scaled
latent distribution and the standard normal distribution:

s∗ = argmin
s

Ex∼pdata
[DKL(s · E(x)∥N (0, 1))] (17)

where DKL represents the Kullback-Leibler divergence. In our framework, this scaling operation
serves multiple critical purposes. It ensures numerical stability during the diffusion process by
maintaining consistent value ranges while facilitating better optimization dynamics by bringing the
latent distribution closer to the standard normal. This operation also maintains compatibility with the
pre-trained weights while allowing for efficient processing of our visual time series representations.

The optimization process involves collecting latent representations z = E(x) from a large dataset,
computing their empirical statistics µz and σ2

z , and determining the optimal scaling factor s such
that sσz ≈ 1 to match the target standard deviation. This process has been extensively validated in
the context of both image generation and, in our case, time series visual representations. During
decoding, the inverse scaling is applied to restore the original magnitude:

x̂ = D(zscaled/s) (18)
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The autoencoder is trained to minimize the reconstruction loss:

LAE = ∥D(E(x))− x∥22 (19)

However, in the context of LDMs, the autoencoder enables operations to be performed in the
compressed latent space, thereby enhancing efficiency without significant loss of information. In our
implementation, we freeze the pre-trained autoencoder parameters in the LDM4TS model during
training, focusing the optimization process on diffusion dynamics and temporal feature extraction.
This design choice significantly reduces computational overhead while maintaining the benefits of
well-learned representations from the compressed latent space.

D.2 FOUNDATIONS OF DIFFUSION MODELS

Diffusion models define a principled framework for generative modeling through gradual noise
addition and removal. In our LDM4TS framework, we adapt this process specifically for time series
visual representations while maintaining the fundamental probabilistic structure.

Forward Process The forward diffusion process follows a Markov chain that progressively adds
Gaussian noise:

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI) (20)

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I) (21)

Here, q(xt|xt−1) describes the transition from step t− 1 to t, where βt controls the noise schedule.
In our implementation, we adopt a linear noise schedule with carefully tuned parameters βstart =
0.00085 and βend = 0.012. The second equation gives the direct relationship between any noisy
sample xt and the original data x0, where ᾱt =

∏t
s=1(1− βs) represents the cumulative product of

noise levels.

Reverse Process The reverse process learns to gradually denoise data through:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)) (22)

where the mean and variance are parameterized as:

µθ(xt, t) =
1

√
αt

(xt −
βt√
1− ᾱt

ϵθ(xt, t)) (23)

Σθ(xt, t) =
1− ᾱt−1

1− ᾱt
βt (24)

In our framework, we modify the noise prediction network ϵθ to accept additional conditioning
information, transforming the reverse process into:

pθ(xt−1|xt, c) = N (xt−1;µθ(xt, t, c),Σθ(xt, t)) (25)

where c represents the concatenated frequency domain embeddings and encoded textual descriptions.
This modification allows the model to leverage both spectral and semantic information during the
denoising process while maintaining the same variance schedule.

Sampling Methods Different sampling strategies offer various trade-offs between generation
quality and computational efficiency. In our implementation, we primarily utilize DDIM for its
deterministic nature and faster sampling capabilities, though both approaches are supported:

• DDPM: Uses the full chain of T steps with stochastic sampling:

xt−1 = µθ(xt, t) + σtϵ, ϵ ∼ N (0, I) (26)

• DDIM: Enables faster sampling through deterministic trajectories:

xt−1 =
√
ᾱt−1

(
xt −

√
1− ᾱtϵθ(xt, t)√

ᾱt

)
+
√

1− ᾱt−1ϵθ(xt, t) (27)

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

D.3 U-NET ARCHITECTURE

The U-Net architecture serves as the backbone for noise prediction in our framework, combining
multi-view processing with skip connections specifically designed for time series visual patterns. Our
implementation modifies the standard U-Net structure to better handle temporal dependencies while
maintaining spatial coherence.

Encoder-Decoder Structure The architecture consists of multiple resolution levels:

• Downsampling path: Progressive feature compression

hl = ResBlock(Down(hl−1)), l = 1, . . . , L (28)

• Upsampling path: Gradual feature reconstruction

h′l = ResBlock(Up(h′l+1)) + hl, l = L, . . . , 1 (29)

• Skip connections: Feature preservation across scales

h′l = h′l + Project(hl) (30)

Feature Extraction Each resolution level processes features through a sequence of operations:

Fl = Conv(GroupNorm(Attention(hl))) (31)

These operations are augmented with timestep embeddings, which provide temporal information to
guide the denoising process:

γt = MLP(SinusoidalPos(t)) (32)
In our implementation, the timestep embedding is projected through a two-layer MLP with SiLU
activation, following the design choices in Stable Diffusion for consistency and stability.

D.4 CONDITIONAL GENERATION

Our framework implements a sophisticated dual-conditioning mechanism that leverages both fre-
quency domain features and semantic descriptions to guide the diffusion process. This multi-modal
approach enables robust capture of both temporal patterns and contextual information:

Frequency Conditioning To effectively encode the rich spectral information inherent in time series
data, we implement a sophisticated frequency domain transformation pipeline. This process begins
with the application of a Hann window function, which is crucial for minimizing spectral leakage and
enhancing frequency resolution:

wt = 0.5(1− cos(
2πt

L− 1
)) (33)

The frequency features are then systematically extracted through a carefully designed three-step
process. First, we apply the window function to the input sequence:

Xwin = X ⊙ w (34)

Next, we transform the windowed signal into the frequency domain using the Fast Fourier Transform:

Xfft = FFT(Xwin) =

L−1∑
t=0

Xwin(t) · e−2πikt/L (35)

Finally, to preserve the complete spectral information, we concatenate the real and imaginary
components of the FFT output:

cfreq = Concat[Xfftreal
, Xfftimag ] ∈ RB×(2DL+2) (36)

where L denotes the sequence length, w represents the Hann window function, and ⊙ indicates
element-wise multiplication. The terms Xfftreal

and Xfftimag
correspond to the real and imaginary

components of the Fourier transform respectively. This comprehensive encoding strategy enables
our model to capture both amplitude and phase information across multiple frequency bands, while
maintaining computational efficiency through strategic dimensionality reduction.
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Text Conditioning To provide semantic guidance for the diffusion process, we automatically
generate descriptive prompts by extracting key characteristics from the input time series. The prompt
generation function dprompt(X) captures the following statistical properties:
• Statistical measures: minimum, maximum, and median values
• Temporal dynamics: overall trend direction and lag patterns
• Context information: prediction length and historical window size
• Domain knowledge: dataset-specific descriptions
These features are combined into a structured prompt template. A typical generated prompt follows
the format:

”< |start prompt| >Dataset description: {description}. Task: forecast the next
{pred len} steps given the previous {seq len} steps. Input statistics: min value
{min}, max value {max}, median value {median}, trend is {trend direction}, top-5
lags are {lags}.< |end prompt| >”

The prompts are then processed through a frozen BERT-base-uncased model (110M parameters)
to extract semantic features. Specifically, each prompt is first tokenized using BERT’s WordPiece
tokenizer with a maximum sequence length of 77 tokens:

htoken = BERT(dprompt(X)) ∈ RB×Lseq×dff (37)

where Lseq is the sequence length after tokenization and dff = 768 is BERT’s hidden dimension. The
token-level features are aggregated through mean pooling to obtain a sequence-level representation:

hpool =
1

Lseq

Lseq∑
i=1

htoken[:, i, :] ∈ RB×dff (38)

The pooled features are then projected to match the latent dimension through a learnable transforma-
tion:

ctext = TextEncoder(X) = TextProj(hpool) ∈ RB×dmodel (39)

where TextProj(·) consists of a linear layer that projects from dff to dmodel, followed by layer
normalization and ReLU activation to enhance feature expressiveness.

The frequency and text conditions are fused through a cross-modal attention mechanism:

c = CrossAttn(MLP([ctext; cfreq])) ∈ RB×dmodel (40)

where the MLP first projects the concatenated features to a higher dimension for better feature
interaction, and the cross-attention layer enables dynamic feature selection based on the latent
representation. This combined conditioning signal guides the diffusion process by injecting both
semantic and frequency information into each denoising step through the attention blocks of the
U-Net architecture.

E ANALYSIS OF VISION TRANSFORMATION METHODS

Time series analysis faces the fundamental challenge of capturing complex temporal dynamics that
manifest simultaneously across multiple scales. While traditional methods excel at specific temporal
resolutions, they often struggle to comprehensively capture the full spectrum of patterns ranging from
rapid local variations to gradual global trends. This limitation motivates our investigation into vision
transformation techniques that can effectively encode rich temporal information into spatial patterns,
making them amenable to powerful vision-based processing approaches.

Our framework introduces a systematic approach to time series visualization through theoretically-
grounded transformation methods. Each method targets distinct yet complementary aspects of
temporal dynamics, providing a comprehensive representation of the underlying time series structure.
The transformation method we implemented in the repository is described below:
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E.1 SEGMENTATION REPRESENTATION (SEG)

The SEG transformation addresses the challenge of preserving local temporal structures while
enabling efficient detection of periodic patterns. This method operates by restructuring a time series
x ∈ RL into a matrix M ∈ R⌈L/T⌉×T , where T represents the period length. The transformation
process can be formally expressed as:

Mi,j = x(i−1)T+j , for i ∈ {1, . . . , ⌈L/T ⌉}, j ∈ {1, . . . , T}, (41)

This segmentation approach offers several theoretical and practical advantages:

• Local Structure Preservation: Each row in the matrix represents a complete segment of
length T , maintaining the original temporal relationships at the finest granularity.

• Periodic Pattern Detection: The vertical alignment of segments facilitates the identification
of recurring patterns across different time periods.

• Multi-scale Analysis: By varying the period length T , the transformation can capture
patterns at different temporal scales, enabling hierarchical pattern discovery.

The optimal period length T is determined through an optimization process that maximizes temporal
correlation:

T = argmax
k

⌈L/k⌉∑
i=1

k−1∑
j=1

Corr(Mi,j ,Mi,j+1), (42)

where Corr(·, ·) denotes the correlation between adjacent columns. This optimization ensures optimal
alignment of periodic patterns while maintaining temporal fidelity.

E.2 GRAMIAN ANGULAR FIELD (GAF)

The GAF transformation provides a sophisticated approach to encoding temporal relationships through
polar coordinate mapping and trigonometric relationships. This method preserves both magnitude
and temporal correlation information through a series of carefully designed transformations.

First, given a time series x = [x1, x2, . . . , xT ] ∈ RT , we normalize each element xi to a bounded
interval. For the Gramian Angular Field, this normalization typically maps values to [−1, 1] or [0, 1]
using min-max scaling:

x̃i =
xi −min(x)

max(x)−min(x) + ϵ
, i ∈ 1, 2, . . . , T , (43)

where ϵ is a small constant (e.g., 10−8) added to prevent division by zero when the series has constant
values. The normalized values x̃i are then encoded in a polar coordinate system. For each time step i,
we compute:

ϕi = arccos(x̃i), ri =
i

N
, (44)

where ϕi represents the angular coordinate, ri represents the radial coordinate, and N is a constant
scaling factor that regularizes the span of the polar coordinates (typically N = T ). The Gramian
Angular Field (GAF) is then constructed as a matrix G ∈ RT×T where each element Gi,j encodes
the trigonometric relation between points (ϕi, ri) and (ϕj , rj). For the Gramian Angular Summation
Field (GASF) and Gramian Angular Difference Field (GADF), we have:

GGASF
i,j = cos(ϕi + ϕj) = x̃ix̃j −

√
1− x̃2i

√
1− x̃2j , (45)

GGADF
i,j = sin(ϕi − ϕj) = x̃j

√
1− x̃2i − x̃i

√
1− x̃2j . (46)

Both preserve the temporal correlation patterns in the original time series. The GAF transformation
offers several key advantages:

• Scale Invariance: The polar encoding ensures that the representation is robust to amplitude
variations.
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• Temporal Correlation Preservation: The Gramian matrix captures both local and global
temporal dependencies.

• Dimensionality Reduction: The transformation provides a compact representation while
preserving essential temporal information.

E.3 RECURRENCE PLOT (RP)

The RP transformation leverages phase space reconstruction to visualize the recurrent behavior in
dynamical systems. Based on Taken’s embedding theorem, this method first reconstructs the phase
space trajectory:

x⃗i = (xi, xi+τ , ..., xi+(m−1)τ ), (47)
where m is the embedding dimension and τ is the time delay. The recurrence matrix is then
constructed as:

Ri,j = Θ(ϵ− ∥x⃗i − x⃗j∥), (48)
where Θ is the Heaviside function and ϵ is a threshold distance. This transformation reveals funda-
mental dynamical properties through several characteristic patterns:

• Diagonal Lines: Parallel to the main diagonal, indicating similar evolution of trajectories
and revealing deterministic structures

• Vertical/Horizontal Lines: Representing periods of state stagnation or laminar phases
• Complex Patterns: Non-uniform structures indicating chaos or non-linear dynamics

E.4 SPECTROGRAM - SHORT-TIME FOURIER TRANSFORM (STFT)

STFT provides a powerful representation of time series in the time-frequency domain, allowing
for the analysis of how frequency content evolves over time. Unlike the standard Discrete Fourier
Transform (DFT), which only describes the intensity f(w) of each constituent frequency w across the
entire signal but lacks temporal localization, STFT addresses this limitation by computing localized
frequency information within overlapping time windows. Given a time series x = [x1, x2, . . . , xT ] ∈
RT , the STFT is defined as:

F(w, τ) =

T∑
t=1

xtg(t− τ)e−iwt, S(w, τ) = log(1 + |F(w, τ)|2), (49)

where w is the frequency variable, τ represents the position of the sliding window (time localization),
g(t) is a window function that confines the analysis to a local segment, and F(w, τ) describes the
complex amplitude of frequency w at time step τ . To generate a spectrogram image, we compute the
power spectrum |F(w, τ)|2 and often apply logarithmic scaling for vision modality normalization.

STFT spectrograms reveal periodic components and their temporal evolution, and separate noise
into distinct frequency bands. The method highlights characteristic frequency signatures of temporal
patterns and provides partial invariance to phase shifts and temporal warping.

E.5 SPECTROGRAM - WAVELET

Wavelet Transform offers an alternative time-frequency representation that overcomes the fixed
resolution limitations of STFT. By using basis functions (wavelets) that are localized in both time
and frequency domains, this method provides multi-resolution analysis with adaptive time-frequency
windows. The Continuous Wavelet Transform (CWT) of a time series x ∈ RT is defined as:

C(s, τ) =
∫ ∞

−∞
x(t)

1

s
ψ∗

(
t− τ

s

)
dt, (50)

where s is the scale parameter controlling frequency resolution, τ is the translation parameter
indicating time position, ψ∗ is the complex conjugate of the mother wavelet, and C(s, τ) represents
the wavelet coefficient at scale s and position τ . In discrete implementation, this becomes:

C(s, τ) =
T∑

t=1

xt
1

s
ψ∗

(
t− τ

s

)
. (51)
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The scale parameter s has an inverse relationship with frequency—larger scales correspond to more
stretched wavelets capturing lower frequencies, while smaller scales focus on higher frequencies and
finer temporal details. The wavelet scalogram is created by computing |C(s, τ)|2 and visualizing it as
a heatmap with scales (or equivalent frequencies) on the vertical axis and time on the horizontal axis.

Wavelet transforms provide superior time-frequency localization compared to STFT, offer better
resolution for transient events and rapid changes, adapt naturally to multi-scale patterns in data, and
preserve important non-stationary characteristics that might be obscured in other transformations.

E.6 SPECTROGRAM - MEL FILTERBANK

Mel Filterbank transformation adapts spectral analysis to better align with human auditory perception,
where frequency discrimination varies across the spectrum. Though originally designed for audio
processing, this method offers valuable representations for general time series analysis.

Given a time series x ∈ RT , the Mel Filterbank process begins with a pre-emphasis filtering step to
amplify higher frequencies:

x̂t = xt − αxt−1, (52)
where α is a pre-emphasis coefficient (typically 0.95-0.97). Next, STFT is applied to obtain the
power spectrum |f(w, τ)|2. The core innovation comes from applying a bank of M triangular filters
to the power spectrum, where these filters are spaced according to the Mel scale. The conversion
from linear frequency f to the Mel scale is given by:

m(f) = C1 log10

(
1 +

f

C2

)
, (53)

where C1 = 2595 and C2 = 700 are Mel-scale constants derived from psychoacoustic research
modeling human pitch perception. Each triangular filter Hm(w) is centered at frequency fm on the
Mel scale, with the filterbank output calculated as:

f̂(m, τ) =

N/2∑
w=0

|f(w, τ)|2Hm(w), for m = 1, 2, . . . ,M. (54)

The resulting Mel spectrogram is visualized with Mel bands on the vertical axis and time on the
horizontal axis, often with logarithmic compression:

S(m, τ) = log(f̂(m, τ) + ϵ), (55)

Mel Filterbank transformation captures perceptually relevant frequency information, reduces dimen-
sionality while preserving essential spectral characteristics, emphasizes patterns in frequency ranges
most critical for signal interpretation, and enhances detection of subtle spectral variations.

E.7 MARKOV TRANSITION FIELD (MTF)

The Markov Transition Field (MTF) transformation provides a principled approach to visualizing the
dynamics of temporal transitions within a time series. By encoding the transition probabilities of
quantized states, MTF captures both the temporal evolution and the underlying stochastic patterns of
the sequence, making it particularly suitable for analyzing non-linear or non-stationary time series.
Given a time series x = [x1, x2, . . . , xT ], we first normalize and quantize the data:

qt = Q

(
xt −min(x)

max(x)−min(x) + ϵ

)
, t = 1, . . . , T, (56)

where Q assigns each value to one of n discrete bins, and ϵ is a small constant. The one-step Markov
transition probability matrix P ∈ Rn×n is estimated as:

Pi,j =

∑T−1
t=1 I(qt = i, , qt+1 = j)∑T−1

t=1 I(qt = i)
, (57)

where I(·) is the indicator function. Finally, the Markov Transition Field M ∈ RT×T is constructed
by mapping transition probabilities to all pairs of time steps:

Ms,t = Pqs,qt , 1 ≤ s, t ≤ T. (58)
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This process efficiently encodes the temporal dynamics of the quantized sequence into a two-
dimensional field, suitable for visual analysis and downstream vision-based modeling. The MTF
transformation exhibits several noteworthy advantages:

• Stochastic Pattern Encoding: By leveraging Markovian transition probabilities, MTF
captures the probabilistic structure and dynamics of the underlying process.

• Temporal Structure Preservation: The two-dimensional field preserves temporal localiza-
tion and global transition patterns simultaneously.

• Compatibility with Vision Models: The resulting matrix can be interpreted as an im-
age, making it directly amenable to convolutional neural networks and other vision-based
architectures.

• Parameter Flexibility: The resolution and sensitivity of the representation can be tuned by
adjusting the number of quantization bins n, allowing adaptation to different data types and
noise levels.

For long time series, computational efficiency can be improved via downsampling or segment-wise
processing, with minimal loss of essential transition information. The MTF transformation thus offers
a powerful and flexible mechanism for encoding both local and global temporal dependencies in a
unified visual format, facilitating downstream tasks such as classification, anomaly detection, and
similarity analysis.

F EFFICIENCY ANALYSIS OF DIFFUSION FORWARDS

Table 11: Computational efficiency on ETTh1. We report trainable parameters and per-batch inference
latency (milliseconds) across prediction horizons H . Lower latency is better.

Model # Params Inference Time (ms)

H=96 H=192 H=336 H=720

LDM4TS (Ours) 5.4M 76.88 80.31 193.44 192.19

TimeGrad 3.1M 870.20 1854.50 3119.70 6724.10
CSDI 10.0M 90.40 142.80 398.90 513.10
SSSD 32.0M 418.60 645.40 1054.20 2516.90

We evaluate computational efficiency on ETTh1 by measuring per-batch inference latency across
multiple horizons and by comparing model sizes with strong diffusion-based baselines. As summa-
rized in Table 11, LDM4TS attains consistently low latency despite operating a generative diffusion
backbone: (i) at short horizons (H=96, 192), LDM4TS is 11.3×–23.1× faster than TimeGrad and
5.5×–8.0× faster than SSSD; (ii) at long horizons (H=336, 720), it remains 16.1×–35.0× faster
than TimeGrad and 5.5×–13.1× faster than SSSD. Compared to CSDI, LDM4TS is markedly faster
at H=336, 720, while being competitive at short horizons.

G ANALYSIS OF TEXTUAL CONDITIONING

In this section, we conduct a detailed analysis of how textual conditioning influences the diffusion
process and overall forecasting performance. While our primary experiments use BERT-based-
uncased to encode statistical and domain descriptions as textual embedding, we investigate multiple
variants to understand the optimal approach for integrating language representations into time series
forecasting. We aim to illustrate the full utilization of the textual modalities and flexibility of our
proposed method.

G.1 EFFECT OF NUMERIC INFORMATION IN TEXTUAL PROMPTS

Textual conditioning (TC) can substantially improve forecasting, yet we observed occasional vari-
ability and even degradations when naively applying generic language embeddings. A plausible
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cause is that off-the-shelf language models are not inherently optimized for encoding numeric tokens
that are critical in TSF (e.g., range statistics, medians, nominal horizons). We therefore conduct a
controlled study on ETTh1 to quantify the role of explicit numeric cues in prompts.

Concretely, we compare three variants on the ETTh1 dataset: (i) w. TC, where prompts include
dataset- and instance-specific numeric descriptors (min/max/median, trend, horizon); (ii) w/o. TC,
where textual conditioning is entirely removed; and (iii) TC w/o number, where prompts retain
structure but strip numeric values. We also substitute different text encoders (BERT-base-uncased,
GPT-2-small, RoBERTa-base) to assess encoder choice. As reported in Table 12, adding numeric
information consistently improves both MSE and MAE over the non-numeric variant, confirming
that numerical summaries provide salient contextual signals that generic text alone fails to capture.
The gain becomes especially pronounced at long horizons (H=720), where numeric prompts reduce
MSE by 29.4% relative to non-numeric prompts.

Table 12: ETTh1: Impact of numeric cues in prompts and choice of text encoder. Lower is better.
Best and second-best per row are highlighted.

Horizon w. TC w/o. TC TC w/o number BERT-base GPT-2-small RoBERTa-base

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

96 0.388 0.411 0.426 0.433 0.425 0.433 1.652 0.962 0.483 0.455 0.544 0.480
192 0.412 0.430 0.425 0.444 0.439 0.448 0.526 0.491 0.527 0.479 0.462 0.470
336 0.471 0.473 0.479 0.472 0.461 0.455 0.666 0.592 0.456 0.469 0.521 0.484
720 0.501 0.502 0.769 0.592 0.710 0.577 1.652 0.962 1.041 0.737 1.097 0.732

Avg 0.443 0.454 0.525 0.485 0.509 0.479 0.843 0.627 0.627 0.535 0.656 0.542

G.2 COMPARISON OF DIFFERENT LANGUAGE MODELS

As shown in Table 12, we conducted experiments to compare how different pre-trained language
models perform when their embeddings are used as the entire conditioning embedding input for time
series forecasting. We experimented with three widely-used models: BERT-base-uncased (default),
GPT-2-small, and RoBERTa-base. The results reveal that textual conditioning is crucial for our model,
as removing it leads to significant performance degradation, particularly for long-horizon forecasting
(H=720) where MSE increases from 0.501 to 0.769. Among the three language models compared,
both GPT-2-small (average MSE=0.627) and RoBERTa-base (average MSE=0.656) outperform
BERT-base-uncased (average MSE=0.843), with BERT-base-uncased showing particularly poor
performance for long-term predictions (MSE=1.652). Despite these results, we chose BERT as
our default encoder to minimize redundancy in textual information, as its simpler architecture is
sufficient for extracting essential statistical patterns without overfitting linguistic nuances. However,
our approach is flexible for easy substitution of text encoders, suggesting promising future directions
for exploring specialized language models pre-trained on time series data. While integrating language
models with time series forecasting remains challenging, properly implemented textual conditioning
serves as a valuable complementary signal to frequency-domain features, particularly for complex
time series with domain-specific characteristics.

H STATEMENT ON LLM USAGE

We use LLMs solely to aid and polish writing, including covering spell checking, grammar fixes,
style refinement, and minor wording suggestions. LLMs did not contribute to any scientific or
technical content: all conceptualization, method design, implementation, experiments, result analysis,
figures/tables, and conclusions were performed and verified by the authors. All cited works were
independently retrieved, fully read, and manually verified using official sources; LLMs were never
treated as authoritative references and were not used to generate or fabricate citations or results.
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