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Abstract

Inference scaling empowers LLMs with unprecedented reasoning ability, with
reinforcement learning as the core technique to elicit complex reasoning. However,
key technical details of state-of-the-art reasoning LLMs are concealed (such as
in OpenAl ol blog and DeepSeek R1 technical report), thus the community still
struggles to reproduce their RL training results. We propose the Decoupled Clip
and Dynamic sAmpling Policy Optimization (DAPO) algorithm, and fully open-
source a state-of-the-art large-scale RL system that achieves 50 points on AIME
2024 using Qwen2.5-32B base model. Unlike previous works that withhold training
details, we introduce four key techniques of our algorithm that make large-scale
LLM RL a success. In addition, we open-source our training code, which is built
on the verl framework, along with a carefully curated and processed dataset. These
components of our open-source system enhance reproducibility and support future
research in large-scale LLM RL.
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Figure 1: AIME 2024 scores of DAPO on the Qwen2.5-32B base model, outperforming the previous
SoTA DeepSeek-R1-Zero-Qwen-32B using 50% training steps. The x-axis represents the gradient
update steps.
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1 Introduction

Test-time scaling such as OpenAl’s ol [1] and DeepSeek’s R1 [2] brings a profound paradigm
shift to Large Language Models (LLMs) [3, 4, 5, 6, 7]. Test-time scaling enables longer Chain-of-
Thought thinking and induces sophisticated reasoning behaviors, which makes the models superior in
competitive math and coding tasks like AIME and Codeforces.

The central technique driving the revolution is large-scale Reinforcement Learning (RL), which elicits
complex reasoning behaviors such as self-verification and iterative refinement. However, the actual
algorithm and key recipe for scalable RL training remains a myth, hidden from technical reports
of existing reasoning models [1, 2, 8, 9, 10, 11]. In this paper, we reveal significant obstacles in
large-scale RL training and open-source a scalable RL system with fully open-sourced algorithm,
training code and dataset that provides democratized solutions with industry-level RL results.

We experiment over Qwen2.5-32B [12] as the pretrained model for RL. In our initial GRPO run, we
achieved only 30 points on AIME — a performance significantly below DeepSeek’s RL (47 points). A
thorough analysis reveals that the naive GRPO baseline suffers from several key issues such as entropy
collapse, reward noise, and training instability. The broader community has encountered similar
challenges in reproducing DeepSeek’s results [13, 14, 15, 16, 17, 18, 19] suggesting that critical
training details may have been omitted in the R1 paper that are required to develop an industry-level,
large-scale, and reproducible RL system.

To close this gap, we release an open-source state-of-the-art system for large-scale LLM RL, which
achieves 50 points on AIME 2024 based on Qwen2.5-32B model, outperforming previous state-of-
the-art results achieved by DeepSeek-R1-Zero-Qwen-32B [2] (47 points) using 50% training steps
(Figure 1). We propose the Decoupled Clip and Dynamic sAmpling Policy Optimization (DAPO)
algorithm, and introduce 4 key techniques to make RL shine in the long-CoT RL scenario. Details
are presented in Section 3.

1. Clip-Higher, which promotes the diversity of the system and avoids entropy collapse;
2. Dynamic Sampling, which improves training efficiency and stability;
3. Token-Level Policy Gradient Loss, which is critical in long-CoT RL scenarios;
4. Overlong Reward Shaping, which reduces reward noise and stabilizes training.
Our implementation is based on verl [20]. By fully releasing our state-of-the-art RL system including

training code and data, we aim to reveal valuable insights to large-scale LLM RL that benefit the
larger community.

2 Preliminary

2.1 Proximal Policy Optimization (PPO)

PPO [21] introduces a clipped surrogate objective for policy optimization. By constraining the
policy updates within a proximal region of the previous policy using clip, PPO stabilizes training
and improves sample efficiency. Specifically, PPO updates the policy by maximizing the following
objective:

Trpo(0) = E(ga)~D 02 ~rmayy (1a)

min moloe | ¢,0<t). Ay, clip molor | 4,0<t). 1—e,14¢|A,
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where (g,a) is a question-answer pair from the data distribution D, ¢ is the clipping range of

importance sampling ratio, and Ay, is an estimator of the advantage at time step ¢. Given the value

function V and the reward function R, A, is computed using the Generalized Advantage Estimation
(GAE) [22]:
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(a) Accuracies on AIME. (b) Entropy of actor model.

Figure 2: The accuracy on the AIME test set and the entropy of the actor model’s generated
probabilities during the RL training process, both before and after applying Clip-Higher strategy.

2.2 Group Relative Policy Optimization (GRPO)

Compared to PPO, GRPO eliminates the value function and estimates the advantage in a group-
relative manner. For a specific question-answer pair (g, a), the behavior policy 7y, samples a
group of GG individual responses {Oi}iG:y Then, the advantage of the i-th response is calculated by
normalizing the group-level rewards {R; }$

i ri—mean({R;}5 )
A = (RIS

“

Similar to PPO, GRPO adopts a clipped objective, together with a directly imposed KL penalty term:
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It is also worth noting that GRPO computes the objective at the sample-level. To be exact, GRPO
first calculates the mean loss within each generated sequence, before averaging the loss of different
samples. As we will be discussing in Section 3.3, such difference may have an impact on the
performance of the algorithm.

2.3 Removing KL divergence

The KL penalty term is used to regulate the divergence between the online policy and the frozen
reference policy. In the RLHF scenario [23], the goal of RL is to align the model behavior without
diverging too far from the initial model. However, during training the long-CoT reasoning model,
the model distribution can diverge significantly from the initial model, thus this restriction is not
necessary. Therefore, we will exclude the KL term from our proposed algorithm.

2.4 Rule-based reward modeling

The use of reward model usually suffers from the reward hacking problem [24, 25, 26, 27, 28, 29].
Instead, we directly use the final accuracy of a verifiable task as the outcome reward:

1, is_equivalent(,y)
, otherwise

(N



where y is the ground-truth answer and ¢ is the predicted answer. This is proved to be an effective
approach to activating the base model’s reasoning capability, as shown in multiple domains such as
automated theorem proving [30, 31, 32, 33], computer programming [34, 35, 36, 37], and mathematics
competition [2].

3 DAPO

We propose the Decouple Clip and Dynamic sAmpling Policy Optimization (DAPO) algorithm.
DAPO samples a group of outputs {0;}$ , for each question ¢ paired with the answer a, and
optimizes the policy via the following objective:

Toaro(0) = Eg.a)nd {018, ~rayy (lo)

[ i li min (m +(0)A; ¢, clip (rz +(0),1 — elow, 1 + €high) Alt) )
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The full algorithm can be found in Algorithm 1. In this section, we will introduce the key techniques
associated with DAPO.

3.1 Raise the ceiling: Clip-Higher

In our initial experiments using naive PPO [21] or GRPO [38], we observed the entropy collapse
phenomenon: the entropy of the policy decreases quickly as training progresses (Figure 2b). The
sampled responses of certain groups tend to be nearly identical. This indicates limited exploration
and early deterministic policy, which can hinder the scaling process.

We propose the Clip-Higher strategy to address this issue. Clipping over the importance sampling
ratio is introduced in Clipped Proximal Policy Optimization (PPO-Clip) [21] to restrict the trust
region and enhance the stability of RL. We identify that the upper clip can restrict the exploration of
the policy, where making an ‘exploitation’ token more probable is much easier yet the probability of
an unlikely ‘exploration’ token is too tightly bounded to be uplifted.

Concretely, when € = 0.2 (the default value of most algorithms) and flm > 0 (the system tries to
increase the probability), consider two actions with probabilities 7y, (0; | ¢) = 0.01 and 0.9. The
upper bounds of the increased probabilities 7y (o; | ¢) are 0.012 and 1.08, respectively (g, - (1 + €)).
This implies that ‘exploitation’ tokens with a higher probability (e.g., 0.9) are not constrained to get
even extremely larger probabilities like 0.999. Conversely, for low-probability ‘exploration’ tokens,
achieving a non-trivial increase in probability is considerably more challenging. Empirically, we also
observe that the mean probability of up-clipped tokens is low: 7y (0; | ¢) < 0.2 (Figure 3a). This
supports our intuition that the upper clipping threshold indeed restricts the probability increase of
low-probability ‘exploration’ tokens, thereby potentially constraining the exploration of the system.

Adhering to the Clip-Higher strategy, we decouple the lower and higher clipping range as €,y and
Enigh» as highlighted in Equation 10:

Toaro(0) = E (g a)D (0,16 ~may, (10)
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{o; | is_equivalent(a,Oi)}‘ <G.

We increase the value of ep;gn to leave more room for the increase of low-probability tokens. As shown
in Figure 2, this adjustment effectively enhances the policy’s entropy and facilitates the generation of
more diverse samples. We keep ¢y as it is, because increasing it will suppress the probability of
these tokens to 0, resulting in the collapse of the sampling space.
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Figure 3: The mean up-clipped probability as well as the ratio of prompts with accuracy=1.

3.2 The more the merrier: Dynamic Sampling

Existing RL algorithm suffers from the gradient-decreasing problem when some prompts have
accuracy equal to 1. For example for GRPO, if all outputs {o; }$, of a particular prompt are correct
and receive the same reward, the resulting advantage for this group is zero. A zero advantage results
in zero policy gradients, shrinking the magnitude and increasing the noise sensitivity of the batch
gradient, thereby degrading sample efficiency. Empirically, the number of samples with accuracy
equal to 1 continues to increase, as shown in Figure 3b. This means that the effective number of
prompts in each batch keeps decreasing, which can lead to larger variance in gradient and dampens
the gradient signals for model training.

To this end, we propose to over-sample and filter out prompts with the accuracy equal to 1 and 0
as illustrated in Equation 11, leaving all prompts in the batch with effective gradients and keeping a
consistent number of prompts. The sampling cost for each batch is dynamic. Before training, we
keep sampling until the batch is fully filled with samples whose accuracy is neither O nor 1.

Toaro(0) = E (g a)D (0,16, ~may, (1a)

G ol
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Note that this strategy does not necessarily impede training efficiency, because the generation time
is typically dominated by the generation of long-tail samples if the RL system is synchronized and
the generation stage is not pipelined. Besides, we find that with dynamic sampling the experiment
achieves the same performance faster as shown in Figure 6.

3.3 Rebalancing act: Token-Level Policy Gradient Loss

The original GRPO algorithm employs a sample-level loss calculation, which involves first averaging
the losses by token within each sample and then aggregating the losses across samples. In this
approach, each sample is assigned an equal weight in the final loss computation. However, we find
that this method of loss reduction introduces several challenges in the context of long-CoT RL.

Since all samples are assigned the same weight in the loss calculation, tokens within longer responses
may have a disproportionately lower contribution to the overall loss, which can lead to two adverse
effects. First, for high-quality long samples, this effect can impede the model’s ability to learn
reasoning-relevant patterns within them. Second, we observe that excessively long samples often
exhibit low-quality patterns such as gibberish and repetitive words. Thus, sample-level loss calcula-
tion, due to its inability to effectively penalize those undesirable patterns in long samples, leads to an
unhealthy increase in entropy and response length, as shown in Figure 4a and Figure 4b.
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Figure 4: The entropy of the probability distribution of the actor model, as well as the changes in
response length.

We introduce a Token-level Policy Gradient Loss in the long-CoT RL scenario to address the above
limitations:
Ipapo(0) = E (g a)~p, {0116~y (1)
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In this setting, longer sequences can have more influence on the overall gradient update compared to
shorter sequences. Moreover, from the perspective of individual tokens, if a particular generation
pattern can lead to an increase or decrease in reward, it will be equally prompted or suppressed,
regardless of the length of the response in which it appears.

3.4 Hide and seek: Overlong Reward Shaping

In RL training, we typically set a maximum length for generation, with overlong samples truncated
accordingly. We find that improper reward shaping for truncated samples can introduce reward noise
and significantly disrupt the training process.

By default, we assign a punitive reward to truncated samples. This approach may introduce noise into
the training process, as a sound reasoning process can be penalized solely due to its excessive length.
Such penalties can potentially confuse the model regarding the validity of its reasoning process.

To investigate the impact of this reward noise, we first apply an Overlong Filtering strategy which
masks the loss of truncated samples. We find that this approach significantly stabilizes training and
enhances performance, as demonstrated in Figure 5.

Furthermore, we propose Soft Overlong Punishment (Equation 13), a length-aware penalty mech-
anism designed to shape the reward for truncated samples. Specifically, when the response length
exceeds the predefined maximum value, we define a punishment interval. Within this interval, the
longer the response, the greater the punishment it receives. This penalty is added to the original
rule-based correctness reward, thereby signaling to the model to avoid excessively long responses.

07 |Z/| S Lmax - Lcache

Rlength(y) = {(Lmamehc)|y| Loax — Leache < ‘y| < Lo (13)

cache ’

3.5 Dataset transformation

Our dataset is sourced from the web and official competition homepages through a combination of web
scraping and manual annotation. The answers of math dataset typically come in a variety of formats,
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Figure 5: The accuracy of the actor model on AIME and the entropy of its generation probabilities,
both before and after applying Overlong Reward Shaping strategy.

Algorithm 1 DAPO: Decoupled Clip and Dynamic sAmpling Policy Optimization

Input initial policy model 7y; reawrd model R; task prompts D; hyperparameters €104, €nign
1: for step=1,...,.M do
Sample a batch D;, from D
3:  Update the old policy model 7g_,, < g
4:  Sample G outputs {0;}&, ~ 7, (-|q) for each question q € D,
5:  Compute rewards {r;}& ; for each sampled output o; by running R
6:  Filter out o; and add the remaining to the dynamic sampling buffer (Dynamic Sampling
T:
8:

Equation (11))
if buffer size n, < INV:
continue
9:  For each o; in the buffer, compute flu for the #-th token of o; (Equation (9))
10:  for iteration =1, ..., u do
11: Update the policy model 7y by maximizing the DAPO objective (Equation (8))
Output 7y

such as expression, formula and number, which makes it challenging to design comprehensive rules
to parse them. To provide accurate reward signals using rules and minimize errors introduced by
formula parsers, inspired by AIME, we select and transform the answers into integers, which are

easy to parse. For example, if the original answer is expressed in the form of %‘/5, we instruct the
LLM to modify the question so that the expected answer becomes a + b + c. After selection and
transformation, we obtained the DAPO-Math-17K dataset, which consists of 17K prompts, each
paired with an integer as the answer.

4 Experiments

4.1 Training details

In this work, we focus specifically on mathematical tasks to evaluate our algorithm, which can be
readily transferred to other tasks. We adopt the verl framework [20] for training. We use naive
GRPO [38] as our baseline algorithm and estimate advantages using group reward normalization.

For hyper-parameters, we utilize the AdamW [39] optimizer with a constant learning rate of 1 x 1076,
incorporating a linear warm-up over 20 rollout steps. For rollout, the prompt batch size is 512 and
we sample 16 responses for each prompt. For training, the mini-batch size is set to 512, i.e., 16
gradient updates for each rollout step. For Overlong Reward Shaping, we set the expected maximum
length as 16,384 tokens and allocate additional 4,096 tokens as the soft punish cache. Therefore,
the maximum number of tokens for generation is set to 20,480 tokens. As for the Clip-Higher
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Table 1: Main results of progressive techniques applied to DAPO

Model AIME24an@32
DeepSeek-R1-Zero-Qwen-32B 47
Naive GRPO 30
+ Overlong Filtering 36
+ Clip-Higher 38
+ Soft Overlong Punishment 41
+ Token-level Loss 42
+ Dynamic Sampling (DAPO) 50

mechanism, we set the clipping parameter ¢y, to 0.2 and epig to 0.28, which effectively balance the
trade-off between exploration and exploitation. For evaluation on AIME, we repeat the evaluation set
for 32 times and report avg @32 for results stability. The inference hyperparameters of evaluation are
set to temperature 1.0 and topp 0.7.

4.2 Main results

Experiments on AIME 2024 demonstrate that DAPO has successfully trained the Qwen-32B model
into a powerful reasoning model, achieving performance superior to DeepSeek’s experiments on
Qwen2.5-32B using the R1 approach. In Figure 1, we observe a substantial improvement of perfor-
mance on AIME 2024, with accuracy increasing from near 0% to 50%. Notably, this improvement is
achieved with only 50% of the training steps required by DeepSeek-R1-Zero-Qwen-32B.

We analyze the contributions of each training technique in our methodology, as detailed in Table 1.
The observed improvements demonstrate the effectiveness of these techniques in RL training, each
contributing several accuracy points in AIME 2024. Notably, given the vanilla GRPO setting, only
30% accuracy can be reached by training from a Qwen2.5-32B base model. For token-level loss,
although it brings less performance improvement, we find it enhances training stability and makes
the length increase more healthily.

When applying Dynamic Sampling, although more data needs to be sampled due to the filtering out
of zero-gradient data, the overall training time is not significantly affected. As shown in Figure 6,
although the number of sampling instances increases, the model’s convergence time is even reduced,
due to fewer training steps required.

4.3 Training dynamics and Case study

Reinforcement learning in large language models is an intrinsically complex system challenge
characterized by the interdependence of various subsystems. Modifications to any single subsystem
can propagate through the system, leading to unforeseen consequences due to the intricate interplay
among these components. Even seemingly minor changes in initial conditions, such as variations in



0.44

4000 4 024
0.0
3000 4

-0.21

2000

Reward Score

—0.64

Mean Response Length

1000 4
-0.8

0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Training Steps Training Steps

(a) Mean response length. (b) Reward score.

o
o
&
o 4
@ @
S 3

o
®
IN]

Mean Probability
S B

e
S
o

e
S
2

6 ldDU ZdOU 3600 40‘00 SUbO 6 ldOU ZdOU 3600 4060 SUbO
Training Steps Training Steps

(c) Generation entropy. (d) Mean probability.

Figure 7: The metric curves of response length, reward score, generation entropy, and the mean
probability of DAPQO, which show the dynamics of RL training and serve as essential monitoring
indicators to identify potential issues.

data and hyperparameters, can amplify through iterative reinforcement learning processes, yielding
substantial deviations in outcomes. This complexity often confronts researchers with a dilemma: even
after meticulous analysis and well-founded expectations that a modification will enhance specific
aspects of the training process, the actual results frequently diverge from the anticipated trajectory.
Therefore, monitoring of key intermediate results during experimentation is essential for swiftly
identifying the sources of discrepancies and, ultimately, for refining the system.

4.4 Ablation study

We conduct ablation studies for the key hyperparameter of our proposed Clip-Higher technique, epigh.
The results are shown in Table 2. The default value of the ey is 0.2. We can find that applying
Clip-Higher can always achieve a better performance. When the ey;gy is set to 0.28 or 0.3, we can
achieve 10 points better than the baseline. The ablation experiments are run for about 3K steps.

Table 2: Validation results of GRPO w/ Clip-Higher

Ehigh 02 025 028 03 04
AIME24,,,03, 284 303 41.8 403 372

5 Conclusion

In this paper, we release a fully open-sourced system for large-scale LLM RL, including algorithm,
code infrastructure, and dataset. The system achieves state-of-the-art large-scale LLM RL perfor-
mance (AIME 50 using Qwen-32B pretrained model). We propose the Decoupled Clip and Dynamic
sAmpling Policy Optimization (DAPO) algorithm, and introduce 4 key techniques to make RL
powerfully effective and efficient in the long-CoT RL scenario. Additionally, by open-sourcing the
training code and dataset, we provide the broader research community and society with practical
access to a scalable reinforcement learning solution, enabling all to benefit from these advancements.
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A Training Dynamics

* The Length of Generated Responses is a metric closely related to training stability and
performance, as shown in Figure 7a. The increase in length provides the model with a
larger space for exploration, allowing more complex reasoning behaviors to be sampled and
gradually reinforced through training. However, it is important to note that length does not
always maintain a continuous upward trend during training. In some considerable periods,
it can exhibit a trend of stagnation or even decline, which has also been demonstrated in
[2]. We typically use length in conjunction with validation accuracy as indicators to assess
whether an experiment is deteriorating.

* The Dynamics of Reward during training has always been one of the crucial monitoring
indicators in reinforcement learning, as shown in Figure 7b. In the majority of our exper-
iments, the trend of reward increase is relatively stable and does not fluctuate or decline
significantly due to adjustments in experimental settings. This indicates that, given a reliable
reward signal, language models can robustly fit the distribution of training set. However, we
find that the final reward on the training set often exhibits little correlation with the accuracy
on the validation set, which indicates overfitting to the training set.

* The Entropy of the Actor Model and Generation Probability are related to the model’s
exploration capability and are key metrics that we closely monitor in our experiments.
Intuitively, the model’s entropy needs to be maintained within an appropriate range. An
excessively low entropy indicates that the probability distribution is overly sharp, leading to
a loss of exploration capability. Conversely, an excessively high entropy is often associated
with issues of over-exploration such as gibberish and repetitive generation. For the generation
probability, the situation is exactly the opposite. As demonstrated in Section 3.1, by
applying the Clip-Higher strategy, we effectively addressed the issue of entropy collapse.
In subsequent experiments, we find that maintaining a slow upward trend in entropy is
conducive to the improvement of model performance, shown in Figure 7c and Figure 7d.

B Dataset Transformation

Here is an example of data transformation, where we demonstrate the original problem, the trans-
formed problem, and the model outputs during the transformation process (the original is in markdown
text, which has been rendered for readability).

To ensure the model can complete this task with high accuracy, our goal is to have it perform
comprehensive reasoning while avoiding hallucinations. We achieve this by providing a clear
thinking framework that encourages thorough reasoning. Specifically, we employ Chain of Thought
(CoT) reasoning along with four well-defined steps: extract the answer format, rewrite the problem
statement, solve the modified problem and provide an integer as the final answer. For each step, we
provide few-shot solutions or detailed guidelines to guide the model’s reasoning.

Through this approach, we have observed that in most cases, the LLM can generate reformulations
with both format and quality that are satisfactory.
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Original Problem
Let 2 and y be real numbers such that 2% + y? — 222 — 16y + 113 = 0. Determine the

smallest possible value of x. Answer: 11 — 26

Transformed Problem

Let = and y be real numbers such that 22 + y? — 222 — 16y + 113 = 0. Determine the
smallest possible value of z. The original answer is in the form k — m./n, where k, m, and
n are integers. Please find the value of k£ + m + n. Answer: 19

Model’s output (Markdown Text)

Transformation Thought Process

The original answer to the problem is an algebraic expression 11 —2+/6. We need to transform
this into an integer form. First, note that the answer consists of an integer part and a square
root term. According to the given rule, we replace the integer and square root components
with undetermined coefficients. The original problem uses x and y as variables, so we choose
other letters as undetermined coefficients. We express the answer in the form & — m+/n and
require the student to find k + m + n.

Answer Format
k — m+/n

Transformed Problem .
Let = and y be real numbers such that 22 + y2 — 22z — 16y + 113 = 0. Determine the

smallest possible value of z. The original answer is in the form k — m./n, where k, m, and
n are integers. Please find the value of k + m + n.

Answer Calculation for the Transformed Problem
* The original answer is: 11 — 21/6.

¢ The required format is: k& — m+/n.

* Matching the coefficients: £ = 11, m = 2, n = 6.

* The final resultis: k +m +n =11+ 2+ 6 = 19.
Final Answer

\19

~
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C Case study

Question:

Given that the base ABC' of the tetrahedron S — ABC' is an equilateral triangle, the
projection H of point A on the face SBC' is the orthocenter of ASBC, the dihedral angle
H — AB — C'is 30°, and SA = 2, find the volume of the tetrahedron. The answer is in the
form £, so give the value of k + m.

m’

Response:
Let us consider the given problem: We need to determine ...

Next, let S have coordinates (xq, Yo, 20). Since SA = 2, the distance formula gives us

vV (0)2 + (y0)2 + (20)% = 2, so we can write 73 + y2 + 22 = 4. Now, remember that H
is the orthogonal projection of

However, wait a moment, let’s rethink about the dihedral angle involving planes in a
more thoughtful geometric way. Consider the plane ov; = ABC, which lies entirely on
the xy coordinate plane (as z = 0). Let the plane oy = SBC. The point A projected
perpendicularly to plane «p lands on H. The linel = AB ...

Table 3: Emergence of Reflective Behavior in Reinforcement Learning

During the RL training process, we observe an interesting phenomenon: the reasoning patterns of the
actor model evolve dynamically over time. Specifically, the algorithm not only reinforces existing
reasoning patterns that facilitate correct problem-solving but also gradually gives rise to entirely new
modes of reasoning that were initially absent. This finding reveals the adaptability and exploration
capability of RL algorithms and offers new insights into the learning mechanisms of the model.

For example, in the early stages of model training, there was virtually no occurrence of checking and
reflecting on previous reasoning steps. However, as training progresses, the model exhibits distinct
behaviors of reflection and backtracking, as shown in Tables 3 and 4. This observation sheds light on
further exploration into interpreting the emergence of reasoning abilities during RL, which we leave
for future research.

D Limitations

This paper tackles the problem of LLM RL to elicit complex reasoning behaviors. However, only
single-turn RL is considered, while multi-turn RL is much more powerful and closer to the real-world
applications, which is worth exploring. Besides, for math problems, the paper focuses only on
problems with numerical answers, while more challenging mathmatical problems like proof questions
are not considered. We leave multi-turn RL and proof scenario as future work.
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Question:

Among the 900 residents of Aimeville, there are 195 who own a diamond ring, 367 who
own a set of golf clubs, and 562 who own a garden spade. In addition, each of the 900
residents owns a bag of candy hearts. There are 437 residents who own exactly two of
these things, and 234 residents who own exactly three of these things. Find the number of
residents of Aimeville who own all four of these things.

Response:

Step by Step Solution:

1. Let’s define the following variables:

Let A be the set of residents who own a diamond ring.

Let B be the set of residents who own a set of golf clubs.

Let C' be the set of residents who own a garden spade.

Let D be the set of residents who own a bag of candy hearts. Since all 900 residents own a
bag of candy hearts, | D| = 900.

Let a; denote the number of residents who own exactly ¢ out of the 4 items.

Let’s use the principle of inclusion-exclusion for the union of 4 sets A, B, C, D.

ag = =22 = 22 = 54.75.
Since ay4, the number of people owning all four items, must be a whole number, our current
approach needs to be reconsidered in terms of the combinatorial counting of people owning
different combinations of the items.

Instead of directly using the inclusion-exclusion principle, we can use a different approach
involving the number of people owning combinations of the items A, B, C, and D.

Let x; be the number of people owning exactly 7 item among A, B, C (excluding the item
D which everyone owns).

Then the total number of people owning exactly k items among the A, B, C, and D can be
broken down:

Table 4: A case of reflective behavior emergence.

16



NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In the abstract and introduction, we claim that the proposed method deals with
some important issues of large-scale LLM RL and achieves state-of-the-art performance on
AIME 2024. Major evidence is shown in Figure 1 and Table 1. Section 4 provides further
details on the experiments.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations are discussed in Section D.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

¢ The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: This paper does not contain theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All information needed for reproduction can be found in Section 3, Section 4,
and Appendix B. The training code and dataset will be fully open-sourced.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The training code and dataset are fully open-sourced and attached in supple-
mental material.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Training details are listed in Section 4.1.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All validation accuracies are averaged over 32 trials (avg@32). We also
provide pass@32 and cons @32 in Figure 1.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer:
Justification: This paper did not provide information about the computer resources needed.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the NeurIPS Code of Ethics and the research conducted in
the paper conforms with the NeurIPS Code of Ethics in every respect.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our work focuses on LLM RL algorithms. Thus, there is no foreseeable
societal impact of it.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

20


https://neurips.cc/public/EthicsGuidelines

11.

12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The data used in our work is simply math questions paired with answers. And
the model is trained for solving math problems. So there is no such risks.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Our RL framework is built on verl under Apache-2.0 License. Refer to abstract
and introduction for more details.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Our new assets include an open-source training dataset, which is well docu-
mented in the paper and released in the supplementary materials.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]
Justification: This paper proposes an algorithm for LLM RL.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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