
DAPO: An Open-Source LLM Reinforcement Learning System at Scale

Qiying Yu^{1,2,4*} Zheng Zhang^{1*} Ruofei Zhu¹ Yufeng Yuan¹ Xiaochen Zuo¹ Yu Yue¹
Weinan Dai^{1,2,4†} Tiantian Fan^{1†} Gaohong Liu^{1†} Juncai Liu^{1†} Lingjun Liu^{1†} Xin Liu^{1†}
Haibin Lin^{1†} Zhiqi Lin^{1†} Bole Ma^{1†} Guangming Sheng^{1,3†} Yuxuan Tong^{1,2,4†} Chi Zhang^{1†}
Mofan Zhang^{1†} Ru Zhang^{1†} Wang Zhang^{1†} Hang Zhu^{1†} Jinhua Zhu^{1†} Jiaze Chen¹
Jiangjie Chen^{1,4} Chengyi Wang¹ Hongli Yu^{1,2,4} Yuxuan Song^{1,2,4} Xiangpeng Wei¹
Hao Zhou^{2,4†} Jingjing Liu^{2,4} Wei-Ying Ma^{2,4} Ya-Qin Zhang^{2,4}
Lin Yan^{1,4} Yonghui Wu¹ Mingxuan Wang^{1,4†}

* Equal contribution. † Equal engineering contribution.

¹ ByteDance Seed ² Institute for AI Industry Research (AIR), Tsinghua University

³ The University of Hong Kong

⁴ SIA-Lab of Tsinghua AIR and ByteDance Seed

Abstract

Inference scaling empowers LLMs with unprecedented reasoning ability, with reinforcement learning as the core technique to elicit complex reasoning. However, key technical details of state-of-the-art reasoning LLMs are concealed (such as in OpenAI o1 blog and DeepSeek R1 technical report), thus the community still struggles to reproduce their RL training results. We propose the Decoupled Clip and Dynamic sAmpling Policy Optimization (**DAPO**) algorithm, and fully open-source a state-of-the-art large-scale RL system that achieves 50 points on AIME 2024 using Qwen2.5-32B base model. Unlike previous works that withhold training details, we introduce four key techniques of our algorithm that make large-scale LLM RL a success. In addition, we open-source our training code, which is built on the verl framework, along with a carefully curated and processed dataset. These components of our open-source system enhance reproducibility and support future research in large-scale LLM RL.

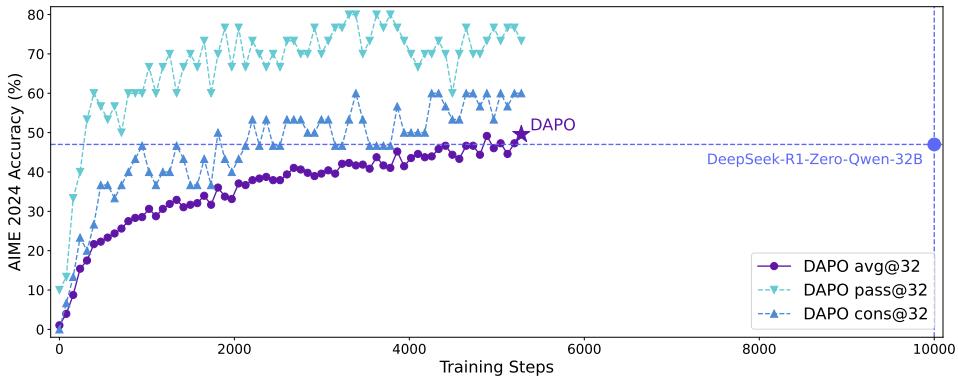


Figure 1: AIME 2024 scores of **DAPO** on the Qwen2.5-32B base model, outperforming the previous SoTA DeepSeek-R1-Zero-Qwen-32B using 50% training steps. The x-axis represents the gradient update steps.

† Correspondence to zhouhao@air.tsinghua.edu.cn, wangmingxuan.89@bytedance.com

1 Introduction

Test-time scaling such as OpenAI’s o1 [1] and DeepSeek’s R1 [2] brings a profound paradigm shift to Large Language Models (LLMs) [3, 4, 5, 6, 7]. Test-time scaling enables longer Chain-of-Thought thinking and induces sophisticated reasoning behaviors, which makes the models superior in competitive math and coding tasks like AIME and Codeforces.

The central technique driving the revolution is large-scale Reinforcement Learning (RL), which elicits complex reasoning behaviors such as self-verification and iterative refinement. However, the actual algorithm and key recipe for scalable RL training remains a myth, hidden from technical reports of existing reasoning models [1, 2, 8, 9, 10, 11]. In this paper, we reveal significant obstacles in large-scale RL training and open-source a scalable RL system with fully open-sourced algorithm, training code and dataset that provides democratized solutions with industry-level RL results.

We experiment over Qwen2.5-32B [12] as the pretrained model for RL. In our initial GRPO run, we achieved only 30 points on AIME — a performance significantly below DeepSeek’s RL (47 points). A thorough analysis reveals that the naive GRPO baseline suffers from several key issues such as entropy collapse, reward noise, and training instability. The broader community has encountered similar challenges in reproducing DeepSeek’s results [13, 14, 15, 16, 17, 18, 19] suggesting that critical training details may have been omitted in the R1 paper that are required to develop an industry-level, large-scale, and reproducible RL system.

To close this gap, we release an open-source state-of-the-art system for large-scale LLM RL, which achieves 50 points on AIME 2024 based on Qwen2.5-32B model, outperforming previous state-of-the-art results achieved by DeepSeek-R1-Zero-Qwen-32B [2] (47 points) using 50% training steps (Figure 1). We propose the **Decoupled Clip and Dynamic Sampling Policy Optimization (DAPO)** algorithm, and introduce 4 key techniques to make RL shine in the long-CoT RL scenario. Details are presented in Section 3.

1. **Clip-Higher**, which promotes the diversity of the system and avoids entropy collapse;
2. **Dynamic Sampling**, which improves training efficiency and stability;
3. **Token-Level Policy Gradient Loss**, which is critical in long-CoT RL scenarios;
4. **Overlong Reward Shaping**, which reduces reward noise and stabilizes training.

Our implementation is based on verl [20]. By fully releasing our state-of-the-art RL system including training code and data, we aim to reveal valuable insights to large-scale LLM RL that benefit the larger community.

2 Preliminary

2.1 Proximal Policy Optimization (PPO)

PPO [21] introduces a clipped surrogate objective for policy optimization. By constraining the policy updates within a proximal region of the previous policy using clip, PPO stabilizes training and improves sample efficiency. Specifically, PPO updates the policy by maximizing the following objective:

$$\mathcal{J}_{\text{PPO}}(\theta) = \mathbb{E}_{(q, a) \sim \mathcal{D}, o_{\leq t} \sim \pi_{\theta_{\text{old}}}(\cdot | q)} \left[\min \left(\frac{\pi_{\theta}(o_t | q, o_{\leq t})}{\pi_{\theta_{\text{old}}}(o_t | q, o_{\leq t})} \hat{A}_t, \text{clip} \left(\frac{\pi_{\theta}(o_t | q, o_{\leq t})}{\pi_{\theta_{\text{old}}}(o_t | q, o_{\leq t})}, 1 - \varepsilon, 1 + \varepsilon \right) \hat{A}_t \right) \right], \quad (1)$$

where (q, a) is a question-answer pair from the data distribution \mathcal{D} , ε is the clipping range of importance sampling ratio, and \hat{A}_t is an estimator of the advantage at time step t . Given the value function V and the reward function R , \hat{A}_t is computed using the Generalized Advantage Estimation (GAE) [22]:

$$\hat{A}_t^{\text{GAE}(\gamma, \lambda)} = \sum_{l=0}^{\infty} (\gamma \lambda)^l \delta_{t+l}, \quad (2)$$

where

$$\delta_l = R_l + \gamma V(s_{l+1}) - V(s_l), \quad 0 \leq \gamma, \lambda \leq 1. \quad (3)$$

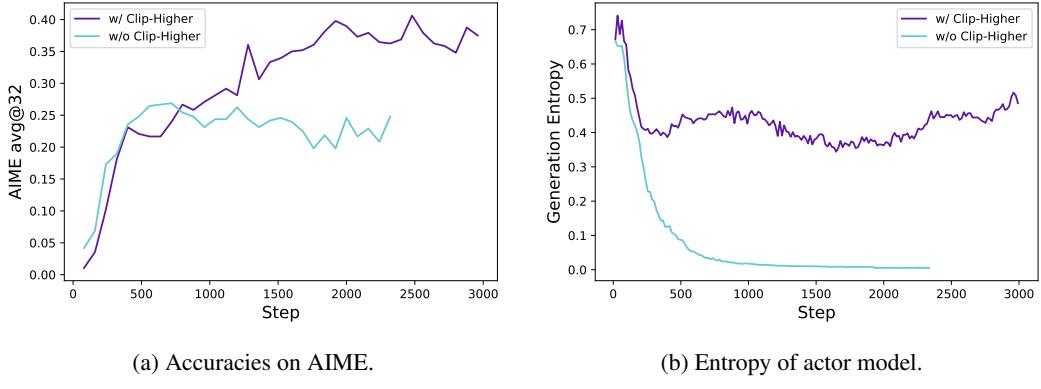


Figure 2: The accuracy on the AIME test set and the entropy of the actor model’s generated probabilities during the RL training process, both before and after applying **Clip-Higher** strategy.

2.2 Group Relative Policy Optimization (GRPO)

Compared to PPO, GRPO eliminates the value function and estimates the advantage in a group-relative manner. For a specific question-answer pair (q, a) , the behavior policy $\pi_{\theta_{\text{old}}}$ samples a group of G individual responses $\{o_i\}_{i=1}^G$. Then, the advantage of the i -th response is calculated by normalizing the group-level rewards $\{R_i\}_{i=1}^G$:

$$\hat{A}_{i,t} = \frac{r_i - \text{mean}(\{R_i\}_{i=1}^G)}{\text{std}(\{R_i\}_{i=1}^G)}. \quad (4)$$

Similar to PPO, GRPO adopts a clipped objective, together with a directly imposed KL penalty term:

$$\mathcal{J}_{\text{GRPO}}(\theta) = \mathbb{E}_{(q,a) \sim \mathcal{D}, \{o_i\}_{i=1}^G \sim \pi_{\theta_{\text{old}}}(\cdot|q)} \left[\frac{1}{G} \sum_{i=1}^G \frac{1}{|o_i|} \sum_{t=1}^{|o_i|} \left(\min \left(r_{i,t}(\theta) \hat{A}_{i,t}, \text{clip} \left(r_{i,t}(\theta), 1 - \varepsilon, 1 + \varepsilon \right) \hat{A}_{i,t} \right) - \beta D_{\text{KL}}(\pi_{\theta} || \pi_{\text{ref}}) \right) \right], \quad (5)$$

where

$$r_{i,t}(\theta) = \frac{\pi_{\theta}(o_{i,t} | q, o_{i,<t})}{\pi_{\theta_{\text{old}}}(o_{i,t} | q, o_{i,<t})}. \quad (6)$$

It is also worth noting that GRPO computes the objective at the sample-level. To be exact, GRPO first calculates the mean loss within each generated sequence, before averaging the loss of different samples. As we will be discussing in Section 3.3, such difference may have an impact on the performance of the algorithm.

2.3 Removing KL divergence

The KL penalty term is used to regulate the divergence between the online policy and the frozen reference policy. In the RLHF scenario [23], the goal of RL is to align the model behavior without diverging too far from the initial model. However, during training the long-CoT reasoning model, the model distribution can diverge significantly from the initial model, thus this restriction is not necessary. Therefore, we will exclude the KL term from our proposed algorithm.

2.4 Rule-based reward modeling

The use of reward model usually suffers from the reward hacking problem [24, 25, 26, 27, 28, 29]. Instead, we directly use the final accuracy of a verifiable task as the outcome reward:

$$R(\hat{y}, y) = \begin{cases} 1, & \text{is_equivalent}(\hat{y}, y) \\ -1, & \text{otherwise} \end{cases} \quad (7)$$

where y is the ground-truth answer and \hat{y} is the predicted answer. This is proved to be an effective approach to activating the base model’s reasoning capability, as shown in multiple domains such as automated theorem proving [30, 31, 32, 33], computer programming [34, 35, 36, 37], and mathematics competition [2].

3 DAPO

We propose the **Decouple Clip and Dynamic sAmpling Policy Optimization (DAPO)** algorithm. **DAPO** samples a group of outputs $\{o_i\}_{i=1}^G$ for each question q paired with the answer a , and optimizes the policy via the following objective:

$$\begin{aligned} \mathcal{J}_{\text{DAPO}}(\theta) = & \mathbb{E}_{(q,a) \sim \mathcal{D}, \{o_i\}_{i=1}^G \sim \pi_{\theta_{\text{old}}}(\cdot|q)} \\ & \left[\frac{1}{\sum_{i=1}^G |o_i|} \sum_{i=1}^G \sum_{t=1}^{|o_i|} \min \left(r_{i,t}(\theta) \hat{A}_{i,t}, \text{clip} \left(r_{i,t}(\theta), 1 - \varepsilon_{\text{low}}, 1 + \varepsilon_{\text{high}} \right) \hat{A}_{i,t} \right) \right] \quad (8) \\ \text{s.t. } & 0 < \left| \{o_i \mid \text{is_equivalent}(a, o_i)\} \right| < G, \end{aligned}$$

where

$$r_{i,t}(\theta) = \frac{\pi_{\theta}(o_{i,t} \mid q, o_{i,<t})}{\pi_{\theta_{\text{old}}}(o_{i,t} \mid q, o_{i,<t})}, \quad \hat{A}_{i,t} = \frac{R_i - \text{mean}(\{R_i\}_{i=1}^G)}{\text{std}(\{R_i\}_{i=1}^G)}. \quad (9)$$

The full algorithm can be found in Algorithm 1. In this section, we will introduce the key techniques associated with **DAPO**.

3.1 Raise the ceiling: Clip-Higher

In our initial experiments using naive PPO [21] or GRPO [38], we observed the entropy collapse phenomenon: the entropy of the policy decreases quickly as training progresses (Figure 2b). The sampled responses of certain groups tend to be nearly identical. This indicates limited exploration and early deterministic policy, which can hinder the scaling process.

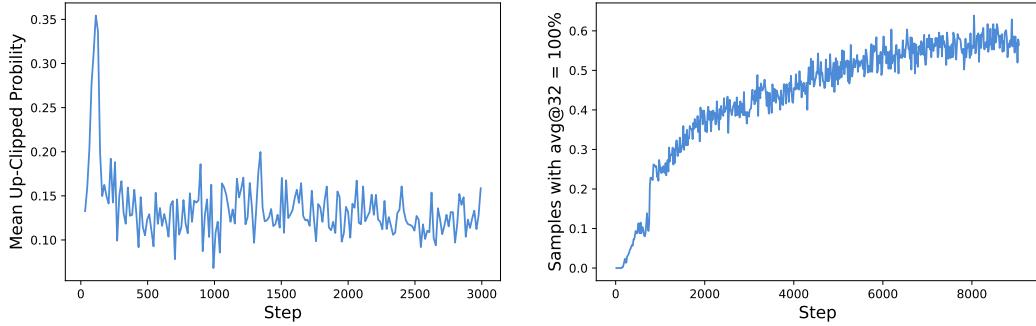
We propose the **Clip-Higher** strategy to address this issue. Clipping over the importance sampling ratio is introduced in Clipped Proximal Policy Optimization (PPO-Clip) [21] to restrict the trust region and enhance the stability of RL. We identify that the upper clip can restrict the exploration of the policy, where making an ‘exploitation’ token more probable is much easier yet the probability of an unlikely ‘exploration’ token is too tightly bounded to be uplifted.

Concretely, when $\varepsilon = 0.2$ (the default value of most algorithms) and $\hat{A}_{i,t} > 0$ (the system tries to increase the probability), consider two actions with probabilities $\pi_{\theta_{\text{old}}}(o_i \mid q) = 0.01$ and 0.9 . The upper bounds of the increased probabilities $\pi_{\theta}(o_i \mid q)$ are 0.012 and 1.08 , respectively ($\pi_{\theta_{\text{old}}} \cdot (1 + \varepsilon)$). This implies that ‘exploitation’ tokens with a higher probability (e.g., 0.9) are not constrained to get even extremely larger probabilities like 0.999 . Conversely, for low-probability ‘exploration’ tokens, achieving a non-trivial increase in probability is considerably more challenging. Empirically, we also observe that the mean probability of up-clipped tokens is low: $\pi_{\theta}(o_i \mid q) < 0.2$ (Figure 3a). This supports our intuition that the upper clipping threshold indeed restricts the probability increase of low-probability ‘exploration’ tokens, thereby potentially constraining the exploration of the system.

Adhering to the **Clip-Higher** strategy, we decouple the lower and higher clipping range as ε_{low} and $\varepsilon_{\text{high}}$, as highlighted in Equation 10:

$$\begin{aligned} \mathcal{J}_{\text{DAPO}}(\theta) = & \mathbb{E}_{(q,a) \sim \mathcal{D}, \{o_i\}_{i=1}^G \sim \pi_{\theta_{\text{old}}}(\cdot|q)} \\ & \left[\frac{1}{\sum_{i=1}^G |o_i|} \sum_{i=1}^G \sum_{t=1}^{|o_i|} \min \left(r_{i,t}(\theta) \hat{A}_{i,t}, \text{clip} \left(r_{i,t}(\theta), 1 - \varepsilon_{\text{low}}, 1 + \varepsilon_{\text{high}} \right) \hat{A}_{i,t} \right) \right] \quad (10) \\ \text{s.t. } & 0 < \left| \{o_i \mid \text{is_equivalent}(a, o_i)\} \right| < G. \end{aligned}$$

We increase the value of $\varepsilon_{\text{high}}$ to leave more room for the increase of low-probability tokens. As shown in Figure 2, this adjustment effectively enhances the policy’s entropy and facilitates the generation of more diverse samples. We keep ε_{low} as it is, because increasing it will suppress the probability of these tokens to 0, resulting in the collapse of the sampling space.



(a) Mean up-clipped probability.

(b) The proportion of samples with an accuracy of 1.

Figure 3: The mean up-clipped probability as well as the ratio of prompts with accuracy=1.

3.2 The more the merrier: Dynamic Sampling

Existing RL algorithm suffers from the gradient-decreasing problem when some prompts have accuracy equal to 1. For example for GRPO, if all outputs $\{o_i\}_{i=1}^G$ of a particular prompt are correct and receive the same reward, the resulting advantage for this group is *zero*. A zero advantage results in zero policy gradients, shrinking the magnitude and increasing the noise sensitivity of the batch gradient, thereby degrading sample efficiency. Empirically, the number of samples with accuracy equal to 1 continues to increase, as shown in Figure 3b. This means that the effective number of prompts in each batch keeps decreasing, which can lead to larger variance in gradient and dampens the gradient signals for model training.

To this end, we propose to **over-sample and filter out prompts with the accuracy equal to 1 and 0** as illustrated in Equation 11, leaving all prompts in the batch with effective gradients and keeping a consistent number of prompts. The sampling cost for each batch is dynamic. Before training, we keep sampling until the batch is fully filled with samples whose accuracy is neither 0 nor 1.

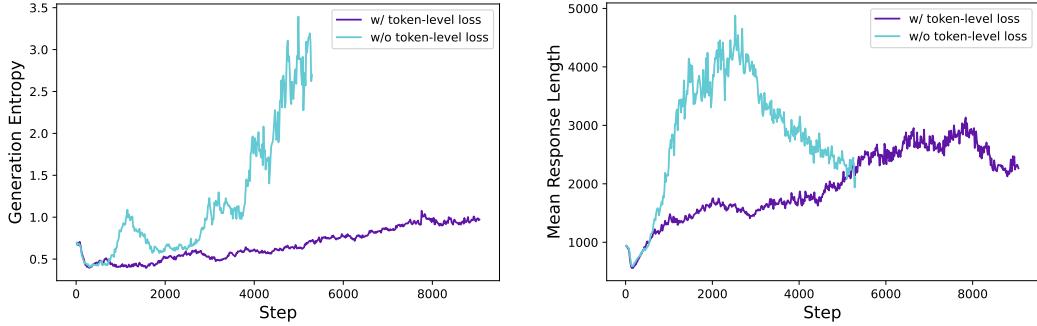
$$\begin{aligned}
 \mathcal{J}_{\text{DAPo}}(\theta) = & \mathbb{E}_{(q,a) \sim \mathcal{D}, \{o_i\}_{i=1}^G \sim \pi_{\theta_{\text{old}}}(\cdot|q)} \\
 & \left[\frac{1}{\sum_{i=1}^G |o_i|} \sum_{i=1}^G \sum_{t=1}^{|o_i|} \min \left(r_{i,t}(\theta) \hat{A}_{i,t}, \text{clip} \left(r_{i,t}(\theta), 1 - \varepsilon_{\text{low}}, 1 + \varepsilon_{\text{high}} \right) \hat{A}_{i,t} \right) \right] \quad (11) \\
 \text{s.t. } & 0 < \left| \{o_i \mid \text{is_equivalent}(a, o_i)\} \right| < G.
 \end{aligned}$$

Note that this strategy does not necessarily impede training efficiency, because the generation time is typically dominated by the generation of long-tail samples if the RL system is synchronized and the generation stage is not pipelined. Besides, we find that with dynamic sampling the experiment achieves the same performance faster as shown in Figure 6.

3.3 Rebalancing act: Token-Level Policy Gradient Loss

The original GRPO algorithm employs a sample-level loss calculation, which involves first averaging the losses by token within each sample and then aggregating the losses across samples. In this approach, each sample is assigned an equal weight in the final loss computation. However, we find that this method of loss reduction introduces several challenges in the context of long-CoT RL.

Since all samples are assigned the same weight in the loss calculation, tokens within longer responses may have a disproportionately lower contribution to the overall loss, which can lead to two adverse effects. First, for high-quality long samples, this effect can impede the model’s ability to learn reasoning-relevant patterns within them. Second, we observe that excessively long samples often exhibit low-quality patterns such as gibberish and repetitive words. Thus, sample-level loss calculation, due to its inability to effectively penalize those undesirable patterns in long samples, leads to an unhealthy increase in entropy and response length, as shown in Figure 4a and Figure 4b.



(a) Entropy of actor model’s generation probabilities. (b) Average length of actor model-generated responses

Figure 4: The entropy of the probability distribution of the actor model, as well as the changes in response length.

We introduce a **Token-level Policy Gradient Loss** in the long-CoT RL scenario to address the above limitations:

$$\begin{aligned} \mathcal{J}_{\text{DAPo}}(\theta) = & \mathbb{E}_{(q, a) \sim \mathcal{D}, \{o_i\}_{i=1}^G \sim \pi_{\theta_{\text{old}}}(\cdot | q)} \\ & \left[\frac{1}{\sum_{i=1}^G |o_i|} \sum_{i=1}^G \sum_{t=1}^{|o_i|} \min \left(r_{i,t}(\theta) \hat{A}_{i,t}, \text{clip} \left(r_{i,t}(\theta), 1 - \varepsilon_{\text{low}}, 1 + \varepsilon_{\text{high}} \right) \hat{A}_{i,t} \right) \right], \quad (12) \\ \text{s.t. } & 0 < \left| \{o_i \mid \text{is_equivalent}(a, o_i)\} \right| < G. \end{aligned}$$

In this setting, longer sequences can have more influence on the overall gradient update compared to shorter sequences. Moreover, from the perspective of individual tokens, if a particular generation pattern can lead to an increase or decrease in reward, it will be equally prompted or suppressed, regardless of the length of the response in which it appears.

3.4 Hide and seek: Overlong Reward Shaping

In RL training, we typically set a maximum length for generation, with overlong samples truncated accordingly. We find that improper reward shaping for truncated samples can introduce reward noise and significantly disrupt the training process.

By default, we assign a punitive reward to truncated samples. This approach may introduce noise into the training process, as a sound reasoning process can be penalized solely due to its excessive length. Such penalties can potentially confuse the model regarding the validity of its reasoning process.

To investigate the impact of this reward noise, we first apply an **Overlong Filtering** strategy which masks the loss of truncated samples. We find that this approach significantly stabilizes training and enhances performance, as demonstrated in Figure 5.

Furthermore, we propose **Soft Overlong Punishment** (Equation 13), a length-aware penalty mechanism designed to shape the reward for truncated samples. Specifically, when the response length exceeds the predefined maximum value, we define a punishment interval. Within this interval, the longer the response, the greater the punishment it receives. This penalty is added to the original rule-based correctness reward, thereby signaling to the model to avoid excessively long responses.

$$R_{\text{length}}(y) = \begin{cases} 0, & |y| \leq L_{\text{max}} - L_{\text{cache}} \\ \frac{(L_{\text{max}} - L_{\text{cache}}) - |y|}{L_{\text{cache}}}, & L_{\text{max}} - L_{\text{cache}} < |y| \leq L_{\text{max}} \end{cases} \quad (13)$$

3.5 Dataset transformation

Our dataset is sourced from the web and official competition homepages through a combination of web scraping and manual annotation. The answers of math dataset typically come in a variety of formats,

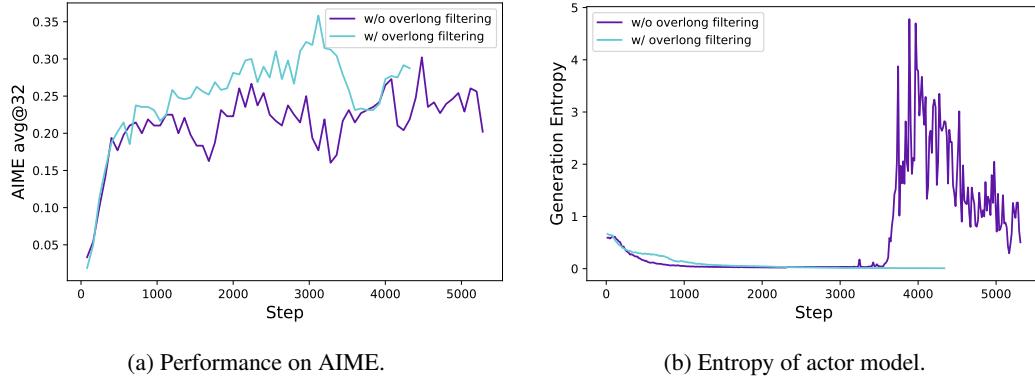


Figure 5: The accuracy of the actor model on AIME and the entropy of its generation probabilities, both before and after applying **Overlong Reward Shaping** strategy.

Algorithm 1 DAPO: Decoupled Clip and Dynamic sAmpling Policy Optimization

Input initial policy model π_θ ; reward model R ; task prompts \mathcal{D} ; hyperparameters $\varepsilon_{\text{low}}, \varepsilon_{\text{high}}$

- 1: **for** step = 1,...,M **do**
- 2: Sample a batch \mathcal{D}_b from \mathcal{D}
- 3: Update the old policy model $\pi_{\theta_{\text{old}}} \leftarrow \pi_\theta$
- 4: Sample G outputs $\{o_i\}_{i=1}^G \sim \pi_{\theta_{\text{old}}}(\cdot|q)$ for each question $q \in \mathcal{D}_b$
- 5: Compute rewards $\{r_i\}_{i=1}^G$ for each sampled output o_i by running R
- 6: Filter out o_i and add the remaining to the dynamic sampling buffer (**Dynamic Sampling** Equation (11))
- 7: **if** buffer size $n_b < N$:
- 8: **continue**
- 9: For each o_i in the buffer, compute $\hat{A}_{i,t}$ for the t -th token of o_i (Equation (9))
- 10: **for** iteration = 1, ..., μ **do**
- 11: Update the policy model π_θ by maximizing the **DAPO** objective (Equation (8))

Output π_θ

such as expression, formula and number, which makes it challenging to design comprehensive rules to parse them. To provide accurate reward signals using rules and minimize errors introduced by formula parsers, inspired by AIME, we select and transform the answers into integers, which are easy to parse. For example, if the original answer is expressed in the form of $\frac{a+\sqrt{b}}{c}$, we instruct the LLM to modify the question so that the expected answer becomes $a + b + c$. After selection and transformation, we obtained the **DAPO-Math-17K** dataset, which consists of 17K prompts, each paired with an integer as the answer.

4 Experiments

4.1 Training details

In this work, we focus specifically on mathematical tasks to evaluate our algorithm, which can be readily transferred to other tasks. We adopt the verl framework [20] for training. We use naive GRPO [38] as our baseline algorithm and estimate advantages using group reward normalization.

For hyper-parameters, we utilize the AdamW [39] optimizer with a constant learning rate of 1×10^{-6} , incorporating a linear warm-up over 20 rollout steps. For rollout, the prompt batch size is 512 and we sample 16 responses for each prompt. For training, the mini-batch size is set to 512, i.e., 16 gradient updates for each rollout step. For **Overlong Reward Shaping**, we set the expected maximum length as 16,384 tokens and allocate additional 4,096 tokens as the soft punish cache. Therefore, the maximum number of tokens for generation is set to 20,480 tokens. As for the **Clip-Higher**

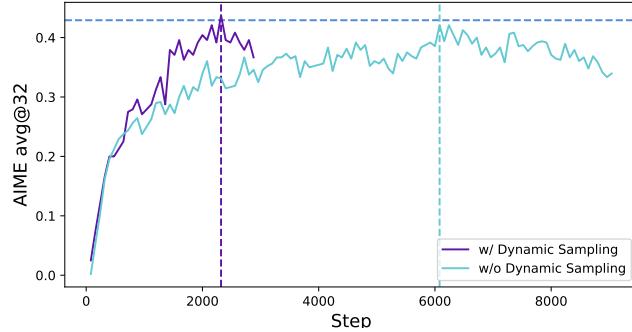


Figure 6: The training progress before and after applying dynamic sampling on a baseline setting.

Table 1: Main results of progressive techniques applied to **DAPO**

Model	AIME24 _{avg@32}
DeepSeek-R1-Zero-Qwen-32B	47
Naive GRPO	30
+ Overlong Filtering	36
+ Clip-Higher	38
+ Soft Overlong Punishment	41
+ Token-level Loss	42
+ Dynamic Sampling (DAPO)	50

mechanism, we set the clipping parameter ε_{low} to 0.2 and $\varepsilon_{\text{high}}$ to 0.28, which effectively balance the trade-off between exploration and exploitation. For evaluation on AIME, we repeat the evaluation set for 32 times and report avg@32 for results stability. The inference hyperparameters of evaluation are set to temperature 1.0 and topp 0.7.

4.2 Main results

Experiments on AIME 2024 demonstrate that **DAPO** has successfully trained the Qwen-32B model into a powerful reasoning model, achieving performance superior to DeepSeek’s experiments on Qwen2.5-32B using the R1 approach. In Figure 1, we observe a substantial improvement of performance on AIME 2024, with accuracy increasing from near 0% to 50%. Notably, this improvement is achieved with only 50% of the training steps required by DeepSeek-R1-Zero-Qwen-32B.

We analyze the contributions of each training technique in our methodology, as detailed in Table 1. The observed improvements demonstrate the effectiveness of these techniques in RL training, each contributing several accuracy points in AIME 2024. Notably, given the vanilla GRPO setting, only 30% accuracy can be reached by training from a Qwen2.5-32B base model. For token-level loss, although it brings less performance improvement, we find it enhances training stability and makes the length increase more healthily.

When applying **Dynamic Sampling**, although more data needs to be sampled due to the filtering out of zero-gradient data, the overall training time is not significantly affected. As shown in Figure 6, although the number of sampling instances increases, the model’s convergence time is even reduced, due to fewer training steps required.

4.3 Training dynamics and Case study

Reinforcement learning in large language models is an intrinsically complex system challenge characterized by the interdependence of various subsystems. Modifications to any single subsystem can propagate through the system, leading to unforeseen consequences due to the intricate interplay among these components. Even seemingly minor changes in initial conditions, such as variations in

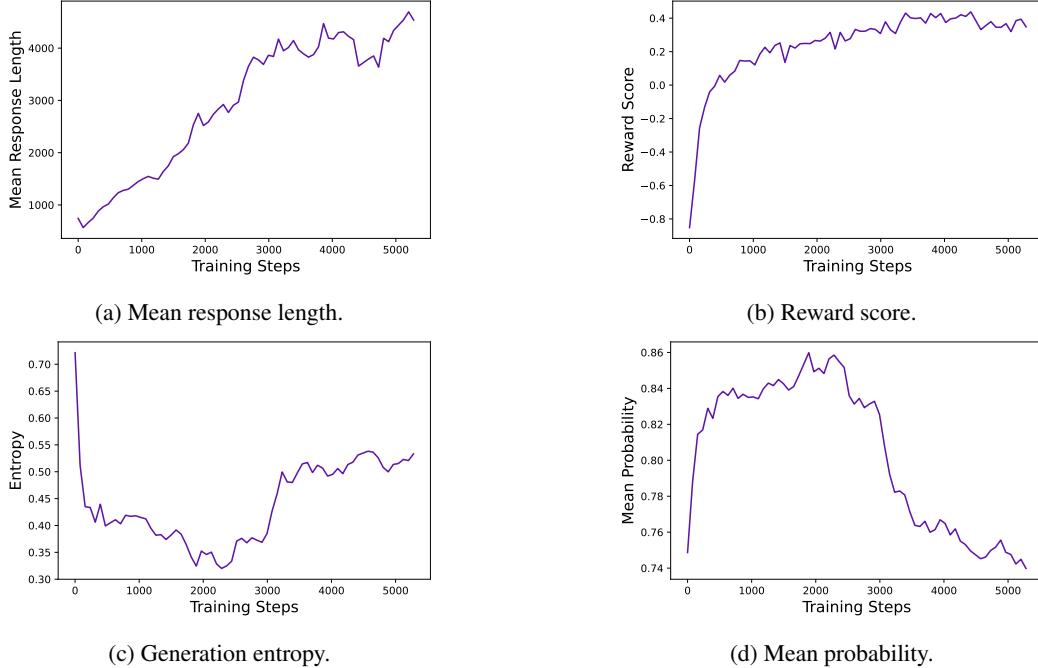


Figure 7: The metric curves of response length, reward score, generation entropy, and the mean probability of **DAPO**, which show the dynamics of RL training and serve as essential monitoring indicators to identify potential issues.

data and hyperparameters, can amplify through iterative reinforcement learning processes, yielding substantial deviations in outcomes. This complexity often confronts researchers with a dilemma: even after meticulous analysis and well-founded expectations that a modification will enhance specific aspects of the training process, the actual results frequently diverge from the anticipated trajectory. Therefore, monitoring of key intermediate results during experimentation is essential for swiftly identifying the sources of discrepancies and, ultimately, for refining the system.

4.4 Ablation study

We conduct ablation studies for the key hyperparameter of our proposed Clip-Higher technique, $\varepsilon_{\text{high}}$. The results are shown in Table 2. The default value of the $\varepsilon_{\text{high}}$ is 0.2. We can find that applying Clip-Higher can always achieve a better performance. When the $\varepsilon_{\text{high}}$ is set to 0.28 or 0.3, we can achieve 10 points better than the baseline. The ablation experiments are run for about 3K steps.

Table 2: Validation results of GRPO w/ Clip-Higher

$\varepsilon_{\text{high}}$	0.2	0.25	0.28	0.3	0.4
AIME24_{avg@32}	28.4	30.3	41.8	40.3	37.2

5 Conclusion

In this paper, we release a fully open-sourced system for large-scale LLM RL, including algorithm, code infrastructure, and dataset. The system achieves state-of-the-art large-scale LLM RL performance (AIME 50 using Qwen-32B pretrained model). We propose the **Decoupled Clip and Dynamic Sampling Policy Optimization (DAPO)** algorithm, and introduce 4 key techniques to make RL powerfully effective and efficient in the long-CoT RL scenario. Additionally, by open-sourcing the training code and dataset, we provide the broader research community and society with practical access to a scalable reinforcement learning solution, enabling all to benefit from these advancements.

References

- [1] OpenAI. Learning to reason with llms, 2024.
- [2] Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.
- [3] OpenAI. GPT4 technical report. *arXiv preprint arXiv:2303.08774*, 2023.
- [4] Anthropic. Claude 3.5 sonnet, 2024.
- [5] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.
- [6] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm: Scaling language modeling with pathways. *Journal of Machine Learning Research*, 24(240):1–113, 2023.
- [7] Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. *arXiv preprint arXiv:2412.19437*, 2024.
- [8] XAI. Grok 3 beta — the age of reasoning agents, 2024.
- [9] Google DeepMind. Gemini 2.0 flash thinking, 2024.
- [10] Qwen. Qwq-32b: Embracing the power of reinforcement learning, 2024.
- [11] Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with llms. *arXiv preprint arXiv:2501.12599*, 2025.
- [12] An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. *arXiv preprint arXiv:2412.15115*, 2024.
- [13] Zhipeng Chen, Yingqian Min, Beichen Zhang, Jie Chen, Jinhao Jiang, Daixuan Cheng, Wayne Xin Zhao, Zheng Liu, Xu Miao, Yang Lu, et al. An empirical study on eliciting and improving r1-like reasoning models. *arXiv preprint arXiv:2503.04548*, 2025.
- [14] Jingcheng Hu, Yinmin Zhang, Qi Han, Daxin Jiang, and Heung-Yeung Shum Xiangyu Zhang. Open-reasoner-zero: An open source approach to scaling reinforcement learning on the base model. <https://github.com/Open-Reasoner-Zero/Open-Reasoner-Zero>, 2025.
- [15] Jian Hu. Reinforce++: A simple and efficient approach for aligning large language models. *arXiv preprint arXiv:2501.03262*, 2025.
- [16] Ganqu Cui, Lifan Yuan, Zefan Wang, Hanbin Wang, Wendi Li, Bingxiang He, Yuchen Fan, Tianyu Yu, Qixin Xu, Weize Chen, et al. Process reinforcement through implicit rewards. *arXiv preprint arXiv:2502.01456*, 2025.
- [17] Jung Hyun Lee, June Yong Yang, Byeongho Heo, Dongyoon Han, and Kang Min Yoo. Token-supervised value models for enhancing mathematical reasoning capabilities of large language models. *arXiv preprint arXiv:2407.12863*, 2024.
- [18] Amirhossein Kazemnejad, Milad Aghajohari, Eva Portelance, Alessandro Sordoni, Siva Reddy, Aaron Courville, and Nicolas Le Roux. Vineppo: Unlocking rl potential for llm reasoning through refined credit assignment. *arXiv preprint arXiv:2410.01679*, 2024.
- [19] Yufeng Yuan, Yu Yue, Ruofei Zhu, Tiantian Fan, and Lin Yan. What’s behind ppo’s collapse in long-cot? value optimization holds the secret. *arXiv preprint arXiv:2503.01491*, 2025.

[20] Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng, Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. *arXiv preprint arXiv:2409.19256*, 2024.

[21] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

[22] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-dimensional continuous control using generalized advantage estimation, 2018.

[23] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F Christiano, Jan Leike, and Ryan Lowe. Training language models to follow instructions with human feedback. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors, *Advances in Neural Information Processing Systems*, volume 35, pages 27730–27744. Curran Associates, Inc., 2022.

[24] Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané. Concrete problems in ai safety, 2016.

[25] Tom Everitt, Victoria Krakovna, Laurent Orseau, Marcus Hutter, and Shane Legg. Reinforcement learning with a corrupted reward channel, 2017.

[26] Victoria Krakovna, Jonathan Uesato, Vladimir Mikulik, Matthew Rahtz, Tom Everitt, Ramana Kumar, Zac Kenton, Jan Leike, and Shane Legg. Specification gaming: the flip side of ai ingenuity, 2020.

[27] Tom Everitt, Marcus Hutter, Ramana Kumar, and Victoria Krakovna. Reward tampering problems and solutions in reinforcement learning: A causal influence diagram perspective, 2021.

[28] Leo Gao, John Schulman, and Jacob Hilton. Scaling laws for reward model overoptimization, 2022.

[29] Lilian Weng. Reward hacking in reinforcement learning. *lilianweng.github.io*, Nov 2024.

[30] Stanislas Polu and Ilya Sutskever. Generative language modeling for automated theorem proving, 2020.

[31] Trieu H Trinh, Yuhuai Wu, Quoc V Le, He He, and Thang Luong. Solving olympiad geometry without human demonstrations. *Nature*, 625(7995):476–482, 2024.

[32] Trieu Trinh and Thang Luong. Alphageometry: An olympiad-level ai system for geometry, 2024.

[33] AlphaProof and AlphaGeometry Teams. Ai achieves silver-medal standard solving international mathematical olympiad problems, 2024.

[34] Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio Savarese, and Steven Chu Hong Hoi. Coderl: Mastering code generation through pretrained models and deep reinforcement learning. *Advances in Neural Information Processing Systems*, 35:21314–21328, 2022.

[35] Noah Shinn, Federico Cassano, Edward Berman, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion: Language agents with verbal reinforcement learning, 2023.

[36] Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large language models to self-debug, 2023.

[37] Jonas Gehring, Kunhao Zheng, Jade Copet, Vegard Mella, Quentin Carbonneaux, Taco Cohen, and Gabriel Synnaeve. Rlef: Grounding code llms in execution feedback with reinforcement learning, 2025.

- [38] Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Mingchuan Zhang, YK Li, Y Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.
- [39] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In *International Conference on Learning Representations*, 2019.

A Training Dynamics

- **The Length of Generated Responses** is a metric closely related to training stability and performance, as shown in Figure 7a. The increase in length provides the model with a larger space for exploration, allowing more complex reasoning behaviors to be sampled and gradually reinforced through training. However, it is important to note that length does not always maintain a continuous upward trend during training. In some considerable periods, it can exhibit a trend of stagnation or even decline, which has also been demonstrated in [2]. We typically use length in conjunction with validation accuracy as indicators to assess whether an experiment is deteriorating.
- **The Dynamics of Reward** during training has always been one of the crucial monitoring indicators in reinforcement learning, as shown in Figure 7b. In the majority of our experiments, the trend of reward increase is relatively stable and does not fluctuate or decline significantly due to adjustments in experimental settings. This indicates that, given a reliable reward signal, language models can robustly fit the distribution of training set. However, we find that the final reward on the training set often exhibits little correlation with the accuracy on the validation set, which indicates overfitting to the training set.
- **The Entropy of the Actor Model and Generation Probability** are related to the model’s exploration capability and are key metrics that we closely monitor in our experiments. Intuitively, the model’s entropy needs to be maintained within an appropriate range. An excessively low entropy indicates that the probability distribution is overly sharp, leading to a loss of exploration capability. Conversely, an excessively high entropy is often associated with issues of over-exploration such as gibberish and repetitive generation. For the generation probability, the situation is exactly the opposite. As demonstrated in Section 3.1, by applying the Clip-Higher strategy, we effectively addressed the issue of entropy collapse. In subsequent experiments, we find that maintaining a slow upward trend in entropy is conducive to the improvement of model performance, shown in Figure 7c and Figure 7d.

B Dataset Transformation

Here is an example of data transformation, where we demonstrate the original problem, the transformed problem, and the model outputs during the transformation process (the original is in markdown text, which has been rendered for readability).

To ensure the model can complete this task with high accuracy, our goal is to have it perform comprehensive reasoning while avoiding hallucinations. We achieve this by providing a clear thinking framework that encourages thorough reasoning. Specifically, we employ Chain of Thought (CoT) reasoning along with four well-defined steps: extract the answer format, rewrite the problem statement, solve the modified problem and provide an integer as the final answer. For each step, we provide few-shot solutions or detailed guidelines to guide the model’s reasoning.

Through this approach, we have observed that in most cases, the LLM can generate reformulations with both format and quality that are satisfactory.

Original Problem

Let x and y be real numbers such that $x^2 + y^2 - 22x - 16y + 113 = 0$. Determine the smallest possible value of x . **Answer:** $11 - 2\sqrt{6}$

Transformed Problem

Let x and y be real numbers such that $x^2 + y^2 - 22x - 16y + 113 = 0$. Determine the smallest possible value of x . The original answer is in the form $k - m\sqrt{n}$, where k , m , and n are integers. Please find the value of $k + m + n$. **Answer:** 19

Model's output (Markdown Text)**Transformation Thought Process**

The original answer to the problem is an algebraic expression $11 - 2\sqrt{6}$. We need to transform this into an integer form. First, note that the answer consists of an integer part and a square root term. According to the given rule, we replace the integer and square root components with undetermined coefficients. The original problem uses x and y as variables, so we choose other letters as undetermined coefficients. We express the answer in the form $k - m\sqrt{n}$ and require the student to find $k + m + n$.

Answer Format

$k - m\sqrt{n}$

Transformed Problem

Let x and y be real numbers such that $x^2 + y^2 - 22x - 16y + 113 = 0$. Determine the smallest possible value of x . The original answer is in the form $k - m\sqrt{n}$, where k , m , and n are integers. Please find the value of $k + m + n$.

Answer Calculation for the Transformed Problem

- The original answer is: $11 - 2\sqrt{6}$.
- The required format is: $k - m\sqrt{n}$.
- Matching the coefficients: $k = 11$, $m = 2$, $n = 6$.
- The final result is: $k + m + n = 11 + 2 + 6 = 19$.

Final Answer

19

C Case study

Question:

Given that the base ABC of the tetrahedron $S - ABC$ is an equilateral triangle, the projection H of point A on the face SBC is the orthocenter of $\triangle SBC$, the dihedral angle $H - AB - C$ is 30° , and $SA = 2$, find the volume of the tetrahedron. The answer is in the form $\frac{k}{m}$, so give the value of $k + m$.

Response:

Let us consider the given problem: We need to determine ...

...
Next, let S have coordinates (x_0, y_0, z_0) . Since $SA = 2$, the distance formula gives us $\sqrt{(x_0)^2 + (y_0)^2 + (z_0)^2} = 2$, so we can write $x_0^2 + y_0^2 + z_0^2 = 4$. Now, remember that H is the orthogonal projection of

...

However, wait a moment, let's rethink about the dihedral angle involving planes in a more thoughtful geometric way. Consider the plane $\alpha_1 = ABC$, which lies entirely on the xy coordinate plane (as $z = 0$). Let the plane $\alpha_2 = SBC$. The point A projected perpendicularly to plane α_2 lands on H . The line $l = AB$...

...

Table 3: Emergence of Reflective Behavior in Reinforcement Learning

During the RL training process, we observe an interesting phenomenon: the reasoning patterns of the actor model evolve dynamically over time. Specifically, the algorithm not only reinforces existing reasoning patterns that facilitate correct problem-solving but also gradually gives rise to entirely new modes of reasoning that were initially absent. This finding reveals the adaptability and exploration capability of RL algorithms and offers new insights into the learning mechanisms of the model.

For example, in the early stages of model training, there was virtually no occurrence of checking and reflecting on previous reasoning steps. However, as training progresses, the model exhibits distinct behaviors of reflection and backtracking, as shown in Tables 3 and 4. This observation sheds light on further exploration into interpreting the emergence of reasoning abilities during RL, which we leave for future research.

D Limitations

This paper tackles the problem of LLM RL to elicit complex reasoning behaviors. However, only single-turn RL is considered, while multi-turn RL is much more powerful and closer to the real-world applications, which is worth exploring. Besides, for math problems, the paper focuses only on problems with numerical answers, while more challenging mathematical problems like proof questions are not considered. We leave multi-turn RL and proof scenario as future work.

Question:

Among the 900 residents of Aimeville, there are 195 who own a diamond ring, 367 who own a set of golf clubs, and 562 who own a garden spade. In addition, each of the 900 residents owns a bag of candy hearts. There are 437 residents who own exactly two of these things, and 234 residents who own exactly three of these things. Find the number of residents of Aimeville who own all four of these things.

Response:

Step by Step Solution:

1. Let's define the following variables:

Let A be the set of residents who own a diamond ring.

Let B be the set of residents who own a set of golf clubs.

Let C be the set of residents who own a garden spade.

Let D be the set of residents who own a bag of candy hearts. Since all 900 residents own a bag of candy hearts, $|D| = 900$.

Let a_i denote the number of residents who own exactly i out of the 4 items.

Let's use the principle of inclusion-exclusion for the union of 4 sets A, B, C, D .

$$\dots \\ a_4 = \frac{-219}{-4} = \frac{219}{4} = 54.75.$$

Since a_4 , the number of people owning all four items, must be a whole number, our current approach needs to be reconsidered in terms of the combinatorial counting of people owning different combinations of the items.

Instead of directly using the inclusion-exclusion principle, we can use a different approach involving the number of people owning combinations of the items A, B, C , and D .

Let x_i be the number of people owning exactly i item among A, B, C (excluding the item D which everyone owns).

Then the total number of people owning exactly k items among the A, B, C , and D can be broken down:

...

Table 4: A case of reflective behavior emergence.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [\[Yes\]](#)

Justification: In the abstract and introduction, we claim that the proposed method deals with some important issues of large-scale LLM RL and achieves state-of-the-art performance on AIME 2024. Major evidence is shown in Figure 1 and Table 1. Section 4 provides further details on the experiments.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [\[Yes\]](#)

Justification: The limitations are discussed in Section D.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [NA]

Justification: This paper does not contain theoretical results.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All information needed for reproduction can be found in Section 3, Section 4, and Appendix B. **The training code and dataset will be fully open-sourced.**

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
 - (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
 - (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
 - (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: The training code and dataset are fully open-sourced and attached in supplemental material.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-parameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: Training details are listed in Section 4.1.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All validation accuracies are averaged over 32 trials (avg@32). We also provide pass@32 and cons@32 in Figure 1.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer “Yes” if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).

- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [No]

Justification: This paper did not provide information about the computer resources needed.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics <https://neurips.cc/public/EthicsGuidelines>?

Answer: [Yes]

Justification: We have reviewed the NeurIPS Code of Ethics and the research conducted in the paper conforms with the NeurIPS Code of Ethics in every respect.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [NA]

Justification: Our work focuses on LLM RL algorithms. Thus, there is no foreseeable societal impact of it.

Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.

- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: The data used in our work is simply math questions paired with answers. And the model is trained for solving math problems. So there is no such risks.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do not require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: Our RL framework is built on verl under Apache-2.0 License. Refer to abstract and introduction for more details.

Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.

- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [Yes]

Justification: Our new assets include an open-source training dataset, which is well documented in the paper and released in the supplementary materials.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.

- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [\[Yes\]](#)

Justification: This paper proposes an algorithm for LLM RL.

Guidelines:

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (<https://neurips.cc/Conferences/2025/LLM>) for what should or should not be described.