Under review as a conference paper at ICLR 2026

AGENTICMATH: ENHANCING LLM REASONING VIA
AGENTIC-BASED MATH DATA GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

The creation of high-quality datasets to improve Large Language Model (LLM)
reasoning remains a significant challenge, as current methods often suffer from
generating low-quality/incorrect answers and limited information richness from
available data sources. To address this, we propose AgenticMath, a novel agentic
pipeline for generating high-quality mathematical question-answer pairs to en-
hance the supervised fine-tuning of LLMs. Our method operates through four
stages: (1) Seed Question Filter that selects questions with high information rich-
ness, complexity, and clarity; (2) an Agentic Question Rephrase step that employs
a multi-agent system to generate diverse, logically consistent paraphrases; (3) an
Answer Augment step where rewrite answers using chain-of-thought reasoning to
enhance numerical and logical correctness, without reliance on human-provided
labels; and (4) a final Question and Answer Evaluation that retains only the most
superior pairs. Extensive experiments demonstrate that, fine-tuning 3B-8B param-
eter LLMs on AgenticMath generated datasets (comprising only 30-60K math
samples) achieves competitive or superior performance on diverse in domain and
out-of-domain mathematical reasoning benchmarks compared to baselines trained
on much more data (e.g., 400K or 2.3M samples). Our work demonstrates that
targeted, high-quality data generation is a more efficient path to improving math-
ematical reasoning in LLMs than large-scale, low-quality alternatives.

1 INTRODUCTION

Large language models (LLMs) (Brown et al., [2020; |Achiam et al., 2023} |Chowdhery et al.| 2023
Touvron et al.l [2023) have achieved strong results across many domains, showing impressive gen-
eral reasoning and knowledge transfer. However, when applied to mathematical reasoning, open
models (Touvron et al.| |2023; Bai et al., [2023; Bi et al., [2024) still perform far below human levels,
struggling with the precision and consistency required. Mathematical problems demand long chains
of logic that combine symbolic manipulation, cross-domain knowledge, and step-by-step numeri-
cal accuracy (Ahn et al.| 2024} [Long et al., 2024). These requirements make math reasoning more
complex and error-prone than typical natural language tasks.

Limitations in Existing Math Reasoning Methods. To improve the mathematical proficiency of
LLMs, research has mainly followed two paths. The first uses prompt engineering (Fu et al.|[2022),
such as Chain-of-Thought (Wei et al.| 2022)) and Self-Consistency (Wang et al., [2022), which guide
models to produce reasoning chains at test time. This method is simple and training-free but its
gains are limited by model capacity and often unstable across problem types. The second path relies
on powerful base models to synthesize large numbers of question—solution pairs for supervised fine-
tuning (SFT) (Yu et al., [2023} L1 et al., [2024a; Yue et al. 2023; |Gou et al.l 2023). This reduces
annotation costs and boosts benchmark scores, yet performance is capped by the quality of the
synthetic data. When generated problems lack clarity, rigor, or diversity, the resulting models remain
far below the performance attainable with expert-annotated corpora. The core challenge is not just
producing solutions but enforcing strict quality control during problem synthesis, since the problem
statement shapes both the reasoning process and the useful information in the dataset.

Limitations in Multi-Agent Data Generation for Mathematics. Recent work has introduced
LLM-based multi-agent frameworks to improve synthetic corpora (Abdullin et al.,2024;|Chen et al.},
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Figure 1: The Overview of AgenticMath Pipeline.

2024a; Mitra et al., [2024a; Ge et al.,[2024} |Chen et al.,2024b; |Ye et al., 2024). Most of these methods
target general-purpose instruction data, where task formulation is relatively shallow. In mathematics,
the quality of the problem itself is decisive: precise formulation, logical coherence, and sufficient
variability not only ensure solvability but also drive the generation of rigorous solutions. Without
careful problem design, even advanced solution-generation strategies cannot compensate for poorly
posed questions, keeping the dataset far from its upper bound. Existing multi-agent methods rarely
enforce such domain-specific constraints, and prior attempts in mathematical data generation (Mitra
et al.,[2024b; Motwani et al., [2024) still lack systematic control at the problem construction stage.

How AgenticMath Tackles the Challenges. To address these challenges, we propose Agentic-
Math, an automated multi-agent framework that enforces quality control at every stage of mathe-
matical data generation. The framework leverages LLMs for generation, evaluation, and coordi-
nated decision-making. It proceeds in four stages: (1) Seed filtering extracts high-value problems
from human-authored corpora; (2) Problem synthesis engages cooperative agents to rephrase and
diversify questions under explicit quality-control criteria; (3) Solution generation employs a solver
agent to produce complete reasoning chains with rigor and correctness; and (4) Quality evaluation
aggregates multi-dimensional scores to assess each problem—solution pair. By retaining only top-
scoring samples, AgenticMath resolves the data quality bottleneck and follows the “Less Is More”
principle. The result is a data-efficient, high-quality dataset that directly addresses the challenges
of clarity, rigor, and diversity in mathematical reasoning tasks.

Empirical Results and Contributions. We evaluate AgenticMath on six mathematical reasoning
benchmarks, including in-domain tasks (GSM8K (Cobbe et al.l 2021), MATH (Hendrycks et al.|
2021)) and out-of-domain settings (CollegeMath (Tang et al., {2024}, DeepMind Mathematics (Sax-
ton et al., |2019), OlympiadBench (He et al., |2024)), TheoremQA (Chen et al., 2023)). AgenticMath
matches or surpasses previous methods that rely on hundreds of thousands or even millions of sam-
ples (e.g., 400K or 2.3M), while using far fewer data. With only 30K-60K samples, performance
improves by over 10 points on average, showing clear data efficiency and strong generalization to
out-of-domain tasks. These results establish AgenticMath as an efficient and competitive approach
to advancing mathematical reasoning. The main contributions of this work are as follows:

* Agentic Math Data Generation: We propose AgenticMath, an effective multi-agent framework
for synthesizing, evaluating, and refining mathematical problems and solutions, offering a system-
atic and scalable paradigm for building high-quality reasoning corpora.

* High-Quality Math Data: We release AgenticMathQA, a curated dataset in 30K, 60K, and 90K
versions. Unlike prior approaches that rely on scale, our dataset emphasizes clarity, correctness,
and diversity, providing higher-quality supervision for mathematical reasoning.

¢ Comprehensive Empirical Validation and Insights: Extensive experiments show that with only
5%-15% of the data size, AgenticMath matches or even surpasses methods trained on 400K-2M
samples. This result demonstrates that data quality, rather than dataset scaling alone, is the main
factor behind improvements in mathematical reasoning.
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2 RELATED WORK

LLM for Math Reasoning. Large language models (Brown et al. [2020; |Achiam et al.| 2023
Touvron et al., 2023} ?;|Chowdhery et al., 2023} B1 et al., 2024; Team et al., 2023; 2024; Grattafior1
et al.| [2024) show strong general ability and are increasingly applied to mathematical problem solv-
ing (Cobbe et al.,[2021; Hendrycks et al.L|2021; Zhang et al.,[2024a} Xia et al.,|2025)). Prompt-based
approaches (Wei et al.| [2022; Wang et al., 2022} [Fu et al.,[2022)) extend reasoning paths but yield lim-
ited improvements. Recent work thus emphasizes synthesizing math reasoning data for supervised
fine-tuning (Yu et al., 2023} |Luo et al., |2023; Tang et al.;[2024; |Li et al.| 2024a} Zhang et al.|[2024b;
Liu et al.| [2025a; [Tong et al., 2024). WizardMath (Luo et al., [2023) adds evolution directives and
reinforcement learning; MathFusion (Pei et al.|[2025)) fuses problems for relational reasoning. Other
methods integrate code tools (Yue et al.l 2023} Wang et al., 2023} [Hosseini et al., 2014} Toshniwal
et al., 2024; |Li et al., [2024b; [Lu et al.l [2024). In this work, we advance mathematical reasoning by
improving both the question formulation and answer quality in synthetic data.

Multi-Agent for Data Generation Multi-agent systems (Hong et al., 2023; [Wu et al., 2023} [Li
et al., 2023} jaut, |2023)) show strong ability and are increasingly applied to data synthesis. |Abdullin
et al.| (2024)) proposed a multi-intelligence framework for dialog generation, while MAGDi (Chen
et al.,|2024a) used graph-based interactions and MALLM-GAN (Ling et al.,|2024) employed gener-
ator—discriminator agents for tabular data. AgentInstruct (Mitra et al.,[2024al) and Orca-Math (Mitra
et al.,2024b) iteratively refined instructions, whereas role-driven synthesis was explored by Ge et al.
(2024) and VCR (Liu et al., [2025b). MALT (Motwanti et al., 2024) introduced generator, verifier,
and refiner agents for math problems. Despite these advances, ensuring high-quality data for math-
ematical reasoning remains challenging. To address this, we introduce seed filtering and quality
evaluate agents to guarantee reliable math reasoning data.

3 AGENTICMATH: MULTI-AGENT DESIGN FOR MATH REASONING

This section details the proposed AgenticMath (see Figure [T)), which is designed to generate high-
quality mathematical problems and reasoning solutions based on the GSM8K (Cobbe et al.l 2021}
and MATH (Hendrycks et al.| [2021) seed datasets. The framework consists of four stages: seed
problem filtering, agentic problem generation, reasoning-solution generation, and synthetic-data
evaluation. Using AgenticMath, we construct a high-quality math dataset to fine-tune LLMs and
enhance their mathematical reasoning ability. All agent prompts are provided in Appendix [A.8]

3.1 PROBLEM DEFINITION

Given a seed dataset Dyeeq = {qi}i]\il, where each ¢; denotes an original mathematical problem from
MATH (Hendrycks et al.|[2021)) and GSM8K (Cobbe et al.,[2021)), we employ large language models
(LLMs) to construct a new dataset of problem—solution pairs, eliminating ground-truth labels and
reducing costly human annotations. Formally, the transformation can be summarized as Dgeeq =
Diinal, Where the resulting dataset is denoted as Dny = {(qi, n)}fvzll The problem component ¢;
consists of both original problems from Dy and newly synthesized problems, while the solution
component r; is entirely generated by the LLM. This dataset Dgp, is subsequently used as training
data for supervised fine-tuning (SFT). The SFT objective is to maximize likelihood of the target
response given the prompt query. Specifically, the loss function is defined as:

N/
1
E(G):—FZIOgP(Ti | 4i30), (1
i=1
where 6 denotes model parameters, ¢; the input problem, and r; the generated solution.

3.2 STAGE 1: SEED PROBLEM FILTERING

Using seed problems as references to synthesize more problems can effectively enhance the model’s
mathematical capabilities. However, current methods ignore that low-quality, low-difficulty prob-
lems in the seed dataset may not be worthy of serving as references. Hence, we propose a training-
free and label-free filtering method to identify high-value seed problems.
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sions. As a result of this evaluation,
we obtain the scored dataset Dgycored

{(g*9; s, 5;)} Y, where each problem g;
is associated with both its dimension-wise scores s; and aggregated score §;.

Problem Filtering Dimensions and Prompt Example

Complexity: Does it integrate multiple mathematical domains (e.g., algebra + geometry) or de-
mand critical thinking?

Information Value: Does it contain useful knowledge or reasoning opportunities? Can it help
learners discover concepts, strategies, or patterns?

Clarity & Precision: Is the question unambiguous, logically consistent, and free of errors?
Poorly framed questions score lower.

Figure 2: Workflow of Stage 1 showing the filtering
process that removes low-quality seed problems and re-
tains high-value ones for subsequent synthesis.

Score Curation. To mitigate potential rating errors introduced by LLM-based evaluation, we ap-
ply a score curation procedure inspired by DS2 (Pang et al.| [2024) and the clusterability-based
method of (Zhu et al.,[2021). Starting from the scored dataset Dycqreq, We construct a Score Transi-
tion Matrix T to capture consistency patterns among neighboring problems in the embedding space.
By leveraging k-nearest neighbor agreement, problems whose ratings deviate from those of their
local neighborhood are adjusted toward more reliable estimates. This process yields the curated
dataset Deyraea = { (5%, 5;)}Y.,, where each problem ¢ is paired with its corrected overall
score §;, representing a refined estimate of problem quality.

Filtering Rule. In the final step, we impose a quality threshold of 7 = 3 on the curated scores.
The resulting dataset Dy is derived from D yraeq by retaining only those problems whose corrected
overall score 5; meets or exceeds this threshold. This filtering process excludes problems that are
overly simplistic, ambiguous, or uninformative, ensuring that the retained problems are well-formed
and valuable. The overall pipeline for seed problem filtering can be summarized as: Dgeeq =
Dscored = Dcurated = Dﬁltep

3.3 STAGE 2: AGENTIC PROBLEM GENERATION
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Under review as a conference paper at ICLR 2026

problem is expanded into six paraphrased variants by the Problem Rephrase Agent. The new col-

lection is denoted as Diephrase = {; M’ where each ;¥ corresponds to a rephrased version of
its seed problem. Rephrasing is guided by task-specific instructions to GPT-40-mini, designed to
preserve the mathematical intent while introducing greater difficulty, lexical richness, and syntactic

diversity.

Problem Review Agent. The rephrased dataset Drephrase = {q; M’ is passed to the Problem Re-

view Agent for evaluation. Each candidate problem is checked against its original version following
a review instruction. The assessment spans three dimensions: Clarity & Grammar, Logical Co-
herence & Completeness, and Mathematical Validity & Solvability. For every candidate, the agent
assigns a score in the range [1, 5] and, if needed, provides textual feedback for improvement. The
outcome is the reviewed dataset Dieyiew = {(qlr-ep S, altv) il‘ill, where each rephrased problem is
paired with its score and an optional suggestion.

Problem Review Dimensions and Prompt Example

Clarity & Grammar: The question must be grammatically correct, precisely phrased, and easy
to understand. It should avoid ambiguity in wording or phrasing.

Logical Coherence & Completeness: All elements of the problem (e.g., given information, con-
straints, relationships, objectives) must be logically interconnected and sufficient. The problem
should present a clear, sequential path for reasoning, without missing information required for
the specified solution approach.

Mathematical Validity & Solvability: The problem must be fundamentally a mathematics prob-
lem, with all its premises and conditions being mutually consistent and mathematically sound...

Problem Revise Agent. Based on the reviewed dataset Dieyiew, the Problem Revise Agent targets
rephrased problems with scores below the threshold 7.y, = 4.5. For each low-scoring case, the
problem ¢ is revised according to reviewer feedback af*'. This step corrects issues such as unclear
phrasing, weak logical flow, or invalid mathematical conditions. The result is the revised dataset

Drevise = {¢* M /1,, which retains only problems that reach the required quality level.

Problem Review—Revise Interaction. To further strengthen problem quality, an iterative loop
between the Review and Revise agents is applied. Starting from Dieyiew, all problems scoring below
Trey €nter this refinement process. In each round, the Review agent re-evaluates a candidate, assigns
a new score, and may suggest specific improvements. The Revise Agent incorporates this feedback
to produce an updated version. The loop runs for at most three iterations, with early stopping once
the threshold is met. Afterward, only problems with final scores above 4.5 are kept, while the
rest are discarded. The outcome is the refined dataset Diefined = {q§ef {;1, containing high-quality
rephrasings that meet the required standard.

3.4 STAGE 3: SOLUTION GENERATION

Solution Solver Agent. To provide . .
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where every problem from D*°¢ and D™ is paired with a synthetic solution a*! that explicitly
demonstrates the intermediate reasoning steps.

3.5 STAGE 4: SYNTHETIC DATA EVALUATION

In this stage, the scoring and curation
framework from Stage 1 is extended Stage 4: Synthetic Data Evaluation
to problem—solution pairs. The evalu- pmm————
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verse subset’ a ranking_based selection is Figure 5: Workflow of Stage 4 showing evaluation of
applied instead of a fixed threshold. Pairs problem—solution pairs for quality and diversity.

are first sorted by quality and grouped into

discrete score levels. We first group all samples by quality score (from 5 down to 0) and select
groups in descending order. When the remaining quota falls within a group larger than needed, we
rank samples inside that group using the long-tail diversity score. This strategy ensures that we
always take the highest-quality data available while promoting diversity when selecting from over-
sized groups. This yields the curated dataset D%} . = (q;"'f7 a;-"l)} 3L:1~ The final training dataset

selected
combines this curated set with the seed-based solutions: Dgpa = D:gllemd U D:géd, ensuring both
rigor and diversity for downstream fine-tuning.

Long-tail
Score

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Data Synthesis: We employed GPT-40-mini (2024-07-18) (Achiam et al., 2023)), following (Pei
et al., [2025), for all agents across the four stages, including evaluation scoring, problem synthesis,
and solution synthesis. Seed problems were sourced from the MATH (Hendrycks et al.,[2021) and
GSMSK (Cobbe et al., 2021) datasets. For the 30K setting, the final dataset consists of 15K seed
problems and 15K AgenticMath-synthesized problems. In Stage 1, we filtered seed problems with
scores above 3. In Stage 2, each seed problem was expanded into six rephrased variants, with a
review—revise loop requiring scores above 4.5 and running up to three iterations, keeping only those
exceeding the threshold. In Stage 4, we applied ranking-based selection with a target of 15K high-
quality problem—solution pairs. During all data generation steps, we used a temperature of 0.7 and
a maximum token length of 4096.

Training: We perform standard instruction tuning on the proposed AgenticMathQA. Following
DART-Math (Tong et al., 2024) and Mathfusion (Pei et al.| |2025), experiments cover both math-
specialized and general base models. For the math-specialized category, we use DeepSeekMath-
7B (sha,, 2024); for general models, we fine-tune Qwen2.5-3B (Team),2024), Mistral-7B (Jiang et al.},
2023)), and Llama3-8B (Grattafiori et al., [2024). The 30K dataset is built from 15K seed problems
(sourced from GSM8K and MATH) with corresponding solutions, together with 15K AgenticMath-
synthesized problem—solution pairs. Scaling to larger sizes is achieved by augmenting each 30K
problem with multiple solutions: duplicating once yields 60K (30K x2), and duplicating twice yields
90K (30K x3). More training details are provided in Appendix [A.2]

Evaluation: Following DART-Math (Tong et al.| 2024) and MathFusion (Pei et al., [2025), we
evaluate on six benchmarks spanning both in-domain and out-of-domain (OOD) settings. The in-
domain benchmarks are GSM8K (Cobbe et al., [2021) and MATH (Hendrycks et al., [2021}), while
the OOD benchmarks include CollegeMath (Tang et al.| 2024), DeepMind-Mathematics (Saxton
et al.| 2019), OlympiadBench-Math (He et al.l 2024), and TheoremQA (Chen et al.}|2023). Further
benchmark details are provided in the Appendix
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Model # Samples In-Domain Out-of-Domain AVG
MATH GSMS8K College DM  Olympiad Theorem
Qwen2.5-3B (3-8B General Base Model)

Qwen2.5-3B-RefAug 30K 40.9 69.7 324 425 10.7 11.4 34.6
Qwen2.5-3B-MathFusion (Sequemialﬁ 30K 39.9 72.1 28.9 50.0 23.0 14.6 38.1
AgenticMath-Qwen2.5-3B 30K 62.0 83.4 46.8 72.8 25.6 314 53.7
Qwen2.5-3B-MetaMath 60K 434 79.8 34.5 46.3 11.3 19.0 39.1
Qwen2.5-3B-MMIQC' 60K 473 78.2 35.6 51.2 14.7 17.1 40.7
Qwen2.5-3B-DART-Math’ 60K 53.9 84.3 423 59.2 18.4 26.4 474
Qwen2.5-3B-MathFusion’ 60K 40.5 72.7 29.1 524 25.5 15.3 39.3
AgenticMath-Qwen2.5-3B 60K 62.4 83.6 46.3 74.3 27.3 29.3 53.9
DeepSeekMath (7B Math-Specialized Base Model)
DeepSeekMath-7B-RefAug 30K 32.1 71.2 26.0 38.4 10.1 14.4 32.0
DeepSeekMath-7B-MathFusion (Sequential) 30K 49.9 76.6 38.8 64.6 21.6 22.8 45.7
AgenticMath-DSMath-7B 30K 524 80.1 42.6 66.8 18.2 26.9 47.8
" DeepSeekMath-7B-MetaMath ~— ~ ~ 60K~~~ 400 790 © 332 459 95 189 378
DeepSeekMath-7B-MMIQC 60K 26.3 60.6 19.2 41.5 10.4 6.8 27.5
DeepSeekMath-7B-RefAug 60K 33.1 71.6 26.2 354 10.5 14.0 31.8
DeepSeekMath-7B-DART-Math 60K 51.4 82.9 39.1 62.8 21.0 274 474
DeepSeekMath-7B-MathFusion 60K 53.4 77.9 39.8 65.8 23.3 24.6 475
AgenticMath-DSMath-7B 60K 55.0 80.1 43.6 69.9 20.0 27.0 49.3
Mistral-7B (3—-8B General Base Model)
Mistral-7B-RefAug 30K 15.1 61.1 104 154 3.1 11.0 19.4
Mistral-7B-MathFusion (Sequential) 30K 32.7 73.9 18.9 29.3 9.3 15.5 29.9
AgenticMath-Mistral-7B 30K 353 79.5 27.0 41.9 11.9 19.3 35.8
"~ Mistral-7B-MetaMath -~~~ 60K~ 227 ~  70.8 141 272 50 122 253
Mistral-7B-MMIQC 60K 17.3 61.4 11.1 13.5 5.0 59 19.0
Mistral-7B-RefAug 60K 17.4 63.1 12.5 18.1 39 11.1 21.0
Mistral-7B-DART-Math 60K 34.1 71.2 23.4 36.0 8.7 18.2 329
Mistral-7B-MathFusion 60K 41.6 79.8 243 39.2 13.6 18.1 36.1
AgenticMath-Mistral-7B 60K 39.5 82.3 28.7 47.1 124 20.5 384
Llama3-8B (3-8B General Base Model)
Llama3-8B-RefAug 30K 20.8 67.3 15.7 259 4.7 13.6 24.7
Llama3-8B-MathFusion (Sequential) 30K 38.8 77.9 25.1 42.0 12.6 17.0 35.6
AgenticMath-Llama3-8B 30K 36.8 78.4 29.6 40.3 11.4 20.4 36.2
" Llama3-8B-MetaMath ~ 60K~ 287 785 ~ 197 313 53 161 299
Llama3-8B-MMIQC 60K 24.4 69.7 13.4 30.9 52 10.6 25.7
Llama3-8B-RefAug 60K 20.3 68.6 15.5 29.1 5.5 13.0 25.3
Llama3-8B-DART-Math 60K 39.6 82.2 279 36.9 12.9 22.9 37.6
Llama3-8B-MathFusion 60K 46.5 79.2 279 434 17.2 20.0 39.0
AgenticMath-Llama3-8B 60K 404 80.1 31.6 46.7 14.1 22.6 39.3

Table 1: Evaluation results across in-domain and out-of-domain math benchmarks with 30K-60K
samples. Most baseline results are reported from (Pei et al., [2025), while entries marked with T
denote results reproduced by us. Bold numbers indicate the best performance within the same type
of sample size and base model. Rows highlighted in blue correspond to our AgenticMath results.

Baseline: 'We compare AgenticMath with state-of-the-art methods in two settings. For large-scale
training, we include MetaMath (Yu et al., [2023)), RFT (Yuan et al2023)), DART-Math (Tong et al.,
2024), MathScale (Tang et al.,[2024)), DeepSeekMath-7B-Instruct (shal,[2024), RefAug (Zhang et al.,
2024b), MMIQC (Liu et al. |2025a)), and WizardMath (Luo et al., |2023), all using 400K-2.3M
samples. For small-scale, we evaluate 30K and 60K subsets: RefAug and MathFusion provide
native 30K versions, while other baselines are randomly down-sampled to 60K from the large-scale
dataset above.

4.2 MAIN RESULTS

AgenticMath Achieves SOTA Performance at 30K-60K Data Scale. Table[I]shows that Agen-
ticMath consistently outperforms all baselines at both 30K and 60K scales. Across every base
model (Qwen2.5-3B, DeepSeekMath-7B, Mistral-7B, and Llama3-8B), our method achieves the
highest average score and sets new state-of-the-art performance under small-scale training. For
example, with 30K samples, AgenticMath-Qwen2.5-3B reaches 53.7 average accuracy, surpassing
MathFusion by over 15 points. At 60K, AgenticMath continues to improve and outperforms all
other baseline methods trained with the same number of samples. These results demonstrate that
rigorous multi-agent synthesis and quality control provide significantly better data efficiency than
prior methods.
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Model # Samples In-Domain Out-of-Domain AVG
MATH GSMSK College DM  Olympiad Theorem
DeepSeekMath (7B Math-Specialized Base Model)

DeepSeckMath-7B-RFT 590K 53.0 88.2 41.9 60.2 19.1 272 483
DeepSeekMath-7B-DART-Math 590K 53.6 86.8 40.7 61.6 21.7 322 494
DeepSeekMath-7B-Instruct 780K 46.9 82.7 37.1 522 14.2 28.1 435
DeepSeekMath-7B-MMIQC 2.3M 453 79.0 353 529 13.0 234 41.5
DeepSeckMath-7B-MathFusion-7B 195K 58.2 79.5 40.3 69.1 255 27.0 49.9
AgenticMath-DSMath-7B 30K 52.4 80.1 42.6 66.8 18.2 26.9 47.8
AgenticMath-DSMath-7B 60K 55.0 80.1 43.6 69.9 20.0 27.0 49.3
Mistral-7B (3—-8B General Base Model)
Mistral-7B-MetaMath 400K 29.8 76.5 19.3 28.0 5.9 14.0 289
Mistral-7B-WizardMath-V1.1 418K 323 80.4 23.1 38.4 7.7 16.6 33.1
Mistral-7B-RFT 590K 38.7 82.3 242 35.6 8.7 16.2 343
Mistral-7B-DART-Math 590K 455 81.1 294 45.1 14.7 17.0 38.8
Mistral-7B-MathScale 2.0M 352 74.8 21.8 - - - -
Mistral-7B-MMIQC 2.3M 374 754 28.5 38.0 9.4 16.2 342
AgenticMath-Mistral-7B 30K 353 79.5 27.0 419 11.9 19.3 35.8
AgenticMath-Mistral-7B 60K 39.5 82.3 28.7 47.1 124 20.5 384
Llama3-8B (3—-8B General Base Model)
Llama3-8B-MetaMath 400K 325 71.3 20.6 35.0 5.5 13.8 30.8
Llama3-8B-RFT 590K 39.7 81.7 23.9 41.7 9.3 14.9 35.2
Llama3-8B-MMIQC 2.3M 39.5 77.6 29.5 41.0 9.6 16.2 35.6
Llama3-8B-DART-Math 590K 46.6 81.1 28.8 48.0 14.5 194 39.7
AgenticMath-Llama3-8B 30K 36.8 784 29.6 40.3 114 204 36.2
AgenticMath-Llama3-8B 60K 40.4 80.1 31.6 46.7 14.1 22.6 39.3
AgenticMath-Llama3-8B 90K 42.8 81.4 33.0 48.6 13.9 21.8 40.3

Table 2: Results on math benchmarks comparing AgenticMath (30K/60K/90K) with large-scale
baselines trained on 400K-2.3M data. All baseline results are reported from their respective papers.
Bold numbers indicate the best performance within the same type of base model. Rows highlighted
in blue correspond to our AgenticMath results.

AgenticMath Matches or Surpasses Larger-Scale Baselines with Much Less Data. Table
shows that AgenticMath, even with only 30K-90K samples, matches or surpasses baselines trained
on hundreds of thousands or even millions of samples. For example, AgenticMath-DSMath-7B
(60K) achieves an average score of 49.3, close to DeepSeekMath-7B-MathFusion (195K, 49.9)
and higher than DeepSeekMath-7B-RFT (590K, 48.3). On general models, AgenticMath-Mistral-
7B (60K) reaches 38.4, comparable to Mistral-7B-DART-Math (590K, 38.8) and outperforming
Mistral-7B-RFT (590K, 34.3). Most notably, AgenticMath-Llama3-8B (90K) achieves 40.3, sur-
passing Llama3-8B-DART-Math (590K, 39.7) and all other large-scale Llama3 baselines. These
results confirm that AgenticMath delivers competitive or superior performance with much fewer
samples, highlighting its strong data efficiency.

4.3 UNDERSTANDING AGENTICMATH: ABLATIONS AND INSIGHTS

All Modules Contribute to Performance
Gains. To more clearly quantify the con-
tribution of each module in the Agentic-

Table 3: Ablation study on the contribution of different
pipeline stages.

Math pipeline, we perform ablation stud-  Method Samples AVG
ies on M1stral-7B using a fixed training set  ~p Rephrase 15K 314
of 15K synthesized samples. As shown + Seed Filtering 15K 32.01 0.6
in Table [3] the plpe.hne exhibits consis- + Problem Review—Revise 15K 3301 1.0
tent, stage-by-stage improvements. The + Synthetic Data Evaluation 15K 332102

initial Problem Rephrase step provides a
strong baseline (31.4 AVG). Introducing
Seed Filtering further improves performance by removing low-quality or noisy seed questions,
yielding a +0.6 gain. The subsequent Problem Review—Revise loop brings the largest additional
improvement (+1.0), demonstrating the importance of iterative refinement for producing clearer and
more logically coherent problems. Finally, the Synthetic Data Evaluation stage contributes a modest
but steady boost (+0.2), as most low-quality samples have already been filtered out in earlier stages.
Overall, these results show that the full pipeline is cumulatively beneficial, and that each stage plays
a meaningful role in improving data quality and downstream model performance.
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Figure 6: Llama3-8B performance across benchmarks as training size increases.
Problem Quality Directly Boosts Performance. We fur- Table 4: Performance with different

ther investigate the impact of different filtering thresholds thresholds for seed problem filtering.
in Stage 1 using Mistral-7B as the base model. Table

shows that the use of higher thresholds for the filtering of Threshold ~ Samples AVG
seed problems leads to better results, confirming that the Score = 2 30K 334
quality of the selected problems directly impacts the perfor- Score =3 30K 34.9
mance of reasoning. Although our main experiments adopt Score =4 30K 35.0

a threshold of score 3, increasing it to score 4 yields further
gains. This indicates that AgenticMath benefits from stricter quality control and still offers further
optimization space for even stronger performance.

Larger Training Samples Yield Stronger Reasoning Performance. We analyze how varying the
amount of training data affects model performance. Starting from a base setting with 7.5K MATH
samples, we gradually add synthetic data in increments of 2.5K, up to a total of 22.5K samples.
As shown in Figure[6] Llama3-8B shows consistent accuracy gains on different benchmarks as the
dataset grows, confirming a strong positive correlation between training size and reasoning abil-
ity. This upward trend demonstrates that increasing data with our multi-agent framework steadily
strengthens performance.

Ilustrative Cases of Enhanced Problem Quality Appendix provides several illustrative
cases refined by the Reviewer and Revise Agents, showing how our method improves clarity and
correctness of mathematical problems.

5 CONCLUSION

In this work, we introduced AgenticMath, a multi-agent framework for high-quality synthetic data
generation of mathematical problems and solutions. By coordinating agents for filtering, rephrasing,
revision, solution generation, and joint evaluation, AgenticMath provides a systematic and scalable
approach to generating high-quality math reasoning data. The resulting dataset, AgenticMathQA,
is released in curated 30K, 60K, and 90K versions, emphasizing clarity, correctness, and diversity
rather than data scale. Extensive experiments across multiple open-source base models show that
with only 5%—-15% of the data size scale, AgenticMath matches or surpasses methods trained on
400K-2.3M samples, achieving SOTA performances by referring to baselines with the same data
scale. These results highlight that data quality—supported by rigorous multi-agent design—plays a
more decisive role than dataset size in advancing mathematical reasoning in large language models.
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ETHICS STATEMENT

This work does not involve human subjects or sensitive personal data. All datasets used are publicly
available (MATH and GSM8K), and our synthetic data generation follows the ICLR Code of Ethics
by avoiding the release of harmful or biased content. The proposed framework, AgenticMath, is
intended purely for advancing research in mathematical reasoning and does not introduce applica-
tions that could cause societal harm. We release our curated datasets and code in compliance with
licensing terms to ensure transparency, reproducibility, and fair access for the research community.

REPRODUCIBILITY STATEMENT

We have taken multiple steps to ensure reproducibility. Details of the multi-agent pipeline design,
training and evaluation are provided in the main text. Additional training details, hyperparameters
are included in the Appendix. All benchmarks used (MATH, GSMS8K, CollegeMath, DeepMind-
Mathematics, OlympiadBench, and TheoremQA) are publicly available. The full AgenticMathQA
dataset and implementation code will be released upon publication to enable independent verifica-
tion of our results.
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A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this work, LLMs are used to assist with text revision and grammar refinement, ensuring concise
and fluent writing. LLMs further support formatting adjustments for figures and tables, improving
readability and consistency across the paper. LLMs are also applied to refine mathematical notation,
adjust formula symbols, and standardize technical expressions, helping maintain clarity and preci-
sion throughout the manuscript. LLMs serve only as auxiliary tools, with all final decisions and
edits made by the authors.

A.2 TRAINING AND INFERENCE DETAILS

All models—including our baseline reproductions—are fine-tuned for 3 epochs using a global
batch size of 96 on 6 xNVIDIA A800 GPUs. We adopt a peak learning rate of le-6 (5e-6 for
DeepSeekMath-7B), combined with a linear warm-up over the first 3% of steps and cosine decay
thereafter. The maximum sequence length is fixed at 4096 tokens.

During inference, we fix the sampling temperature to 0 to ensure deterministic outputs, and set the
maximum generation length (max tokens) to 2048 for all models. We use a fixed random seed of 0
for reproducibility and set the number of inference trials to 1 for every evaluation. For our primary
models, we adopt a standard Chain-of-Thought (CoT) prompting scheme. Specifically:

* Training prompt: Question: {problem} Answer:

* Evaluation prompt: Question: {problem} Answer: Let’s think step
by step.

This prompt design follows common practice in mathematical reasoning tasks and encourages the
model to generate explicit intermediate reasoning steps. For Mistral 7B and Llama 3 8B, we instead
use the Alpaca instruction-following template during inference:

Below is an instruction that describes a task. Write
a response that appropriately completes the request:
### Instruction:

{problem}

### Response:

We adopt this template because our preliminary experiments showed that Alpaca-style instructions
consistently yield better reasoning quality on these two architectures compared with the CoT-style
prompt. This observation is also aligned with the findings reported in MathFusion, where Alpaca-
style prompting was similarly found to be more effective.

A.3 EVALUATION BENCHMARKS

We provide detailed descriptions of the six benchmarks used in our evaluation:

In-Domain: (i) GSMS8K (Cobbe et al., 2021), consisting of grade-school arithmetic word problems
that are relatively simple. (ii)) MATH (Hendrycks et al., [2021]), a large-scale dataset of competition-
level problems that are significantly more challenging.

Out-of-Domain (OOD): (i) CollegeMath (Tang et al., 2024), with 2,818 college-level problems
drawn from nine textbooks across seven domains (e.g., linear algebra, differential equations), de-
signed to test generalization to complex mathematics. (ii) DeepMind-Mathematics (Saxton et al.,
2019), a collection of 1,000 problems covering a national school curriculum (up to age 16), assess-
ing basic reasoning across varied types. (iii) OlympiadBench-Math (He et al.,[2024), providing 675
Olympiad-level problems (English text-only subset) targeting the most challenging reasoning tasks.
(iv) TheoremQA (Chen et al.,[2023)), consisting of 800 problems that require applying mathematical
theorems across mathematics, physics, and engineering, testing theoretical reasoning in STEM.
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Table 5: 10K-sample comparison using the same teacher model.

Dataset # Samples MATH GSMS8K College DM  Olympiad Theorem AVG
MetaMath 10K 249 70.4 19.0 28.5 5.1 13.8 26.9
DARTMath 10K 29.3 66.4 21.3 374 8.7 16.7 29.9
ScaleQuest 10K 249 66.4 17.5 27.3 7.7 14.1 26.3
AgenticMath (ours) 10K 29.6 73.8 24.6 38.2 7.4 16.3 31.6

A.4 FAIRNESS CONCERNS REGARDING TEACHER MODELS

For further strengthen the fairness discussion, we conduct an additional 10K-sample controlled com-
parison across MetaMath, DARTMath, ScaleQuest, and our AgenticMath, all trained under the same
SFT configuration (Mistral-7B) and, where applicable, using the same teacher model (GPT-40-mini,
2024-07-18) for solution generation. As shown in Table 5] AgenticMath achieves the highest av-
erage performance among all methods. This controlled experiment confirms that the observed im-
provements do not arise from using a stronger teacher model—since all datasets share the same
teacher—but rather from the design of our synthesis pipeline itself.

A.4.1 SENSITIVITY ANALYSIS ON THE REVISE THRESHOLD

To further examine the impact of the revise threshold, we conduct a sensitivity study with 7., €
{3.5, 4.0, 4.5} using Llama3-8B under a fixed 30K SFT setting. The results are reported in Table@

Table 6: Sensitivity analysis of the revise threshold 7., using Llama3-8B.

Tree Samples MATH GSM8K College DM  Olympiad Theorem AVG

4.5 30K 36.8 78.4 29.6 40.3 11.4 20.4 36.2
4.0 30K 36.6 71.5 28.2 43.1 11.5 20.0 36.2
35 30K 37.8 77.4 274 41.0 10.3 20.0 35.7

As shown in Table|§|, the settings 7y = 4.0 and 4.5 produce highly consistent results, demonstrating
that the review-revise mechanism remains stable across reasonable threshold choices. In contrast,
Trev = 3.0 yields lower overall performance, which is expected since a looser threshold admits more
low-quality candidates into subsequent stages, ultimately weakening the final dataset quality.

A.4.2 ANALYSIS OF THE THREE REVIEW—REVISE ITERATIONS.

To further address the reviewer’s question regarding the choice of three review-revise iterations,
we evaluate the quality of the problems that pass each round using GPT-40-mini. Specifically, we
compute the average complexity, information value, and clarity scores for all accepted problems
after each iteration.

Table 7: Quality metrics across three review—revise iterations.

Metric Round1 Round2 Round3
Complexity 3.86 3.93 3.92
Information Value 3.96 4.03 4.02
Clarity 4.35 4.44 4.45
Avg 4.06 4.13 4.13

As shown in Table [/} the first two review—revise iterations produce consistent improvements across
all metrics. By the third iteration, however, the gains largely stabilize, indicating diminishing returns.
This analysis supports our design choice of using three iterations: it captures most of the quality
improvements while avoiding unnecessary computation beyond the point of saturation.
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A.5 ADDITIONAL ANALYSIS OF SYNTHETIC DATA QUALITY AND CHARACTERISTICS

To provide further quantitative evidence of the quality and semantic composition of the synthesized
data, we conduct a post-hoc analysis using GPT-40-mini as an external evaluator. Specifically,
we (i) assign quality scores to the refined problems and (ii) classify each problem into standard

mathematical topics.

A.5.1 QUALITY SCORE DISTRIBUTION

Table [§]reports the quality distribution assigned by GPT-40-mini over the 18,679 refined problems.
The majority of synthesized questions receive a score of > 4, indicating strong clarity, coherent
reasoning, and non-trivial complexity across the dataset.

Table 8: Quality score distribution of 18,679 refined problems, evaluated by GPT-40-mini.

Quality Score Count Percentage
1 307 1.64%
2 1175 6.29%
3 5053 27.05%
4 12142 65.00%
5 2 0.01%

A.5.2 Toric DISTRIBUTION OF THE FINAL 15K DATASET

GPT-40-mini is further used to classify each problem in the final 15,000-sample dataset into standard
mathematical domains. The resulting topic distribution is shown in Table[0] The distribution demon-
strates broad semantic coverage across major mathematical disciplines, with strong representation
in combinatorics, geometry, algebra, and number theory.

Table 9: Topic distribution of the final 15K synthetic dataset (classified by GPT-40-mini).

Topic Count Percentage
Counting & Probability 3705 24.70%
Geometry 3326 22.17%
Algebra 2446 16.31%
Number Theory 1475 9.83%
Calculus 1470 9.80%
Precalculus 1456 9.71%
Intermediate Algebra 907 6.05%
Prealgebra 123 0.82%
Linear Algebra 71 0.47%
Others 21 0.14%

A.6 DETAILED STATISTICS OF THE DATA GENERATION PIPELINE

To provide a clearer understanding of the robustness and transparency of our data generation
pipeline, we report detailed statistics for all major stages, including seed scoring, rephrase expan-
sion, the multi-round review—revise refinement process, and the final data evaluation. These analyses
illustrate how the pipeline progressively improves problem diversity, clarity, and complexity, which
are key for enhancing downstream mathematical reasoning ability.
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A.6.1 SEED DATA SCORING

We first evaluate all raw seed questions using our label-free scoring mechanism. A total of 7,001
questions satisfy the filtering threshold (score > 3). The full distribution is shown in Table[T0] This
stage ensures that only seed questions with sufficient structural soundness and baseline complexity
are used for further synthesis.

Table 10: Score distribution for GSM8K and MATH seed datasets.

Dataset Score=0 Score=1 Score=2 Score=3 Score=4 Score=5 Score > 3

GSMBK 823 3522 1849 1188 91 0 1279
MATH 69 825 884 2053 3415 254 5722

A.6.2 REPHRASE EXPANSION

To enhance problem complexity and diversity while preserving core semantics, each filtered seed
question is rephrased six times. All 42,006 synthesized candidates proceed to the review—revise
process. This expands the problem pool as follows:

Table 11: Rephrase expansion of filtered seed questions.

Stage Count Calculation  Total
Rephrase Expansion (1279 4+ 5722) x 6 42,006

A.6.3 REVIEW-REVISE LOOP

Our three-round review-revise process progressively improves clarity, logical correctness, and
mathematical validity. Across rounds, vague or low-quality questions are removed, while clearer
and more coherent problems are retained. Table[I2]summarizes the filtering behavior across rounds.

Table 12: Statistics of the three-round review—revise refinement.

Round Total Inputs Passed Pass Rate
1 42,006 7,438 17.71%
2 34,568 6,526 18.88%
3 28,042 4,718 16.83%
All Rounds - 18,682 -

18



Under review as a conference paper at ICLR 2026

GSMB8K (Blue) vs AgenticMath (Red) MATH (Blue) vs AgenticMath (Red)

Dataset 100 Dataset

GSM8K MATH
75 AgenticMath AgenticMath
75

50
50

25

Dimension 2
°
Dimension 2

-100 -75 =50 =25 o 25 50 75 100 -100 -75 -50 =25 o 25 50 75 100
Dimension 1 Dimension 1

Figure 7: t-SNE Semantic Distribution.

A.6.4 SYNTHETIC DATA QUALITY DISTRIBUTION

After refinement, 18,679 high-quality synthetic problems remain. The fact that 65% of the questions
are assigned a score of 4, with another 27% scoring 3, demonstrates that the majority of synthesized
problems exhibit strong clarity, coherent reasoning, and meaningful complexity. Their quality dis-
tribution (evaluated by GPT-40-mini) is shown in Table @

Table 13: Quality score distribution of 18,679 refined synthetic problems.

Score Count Percentage

1 307 1.64%
2 1175 6.29%
3 5053 27.05%
4
5

12,142 65.00%
2 0.01%

A.6.5 FINAL DATASET CONSTRUCTION

To construct the final 15K dataset used in our experiments, we jointly rank all refined samples using a
combination of the quality score and the long-tail diversity score. This ranking procedure prioritizes
both overall quality and distributional diversity. The top 15,000 problems from this ranked list form
the final synthetic dataset.
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A.7 EXAMPLES OF PROBLEM REVISION

A.7.1 EXAMPLES OF PROBLEM REVISIONS FROM GSM8K

Example of problem refinement by the Reviewer and Revise Agents.

Original Seed Problem: Ivory got four more riddles than Josh did. Taso got twice as many
riddles as Ivory did. If Josh has 8 riddles, how many riddles does Taso have?

Rephrased Problem: Josh is participating in a school riddle competition. He has 8 riddles.
Ivory, his friend, has four more riddles than Josh. Taso, another competitor, has twice as many
riddles as Ivory. If Josh decides to give away 3 of his riddles and that affects the total number of
riddles in the competition, how many riddles does Taso have after accounting for Josh’s decision?

Review Score: 3,4,4.

Review Agent Suggestions:

(1) Clarify the influence of Josh giving away his riddles on Taso’s total. For instance, specify that
Taso’s riddle count is independent and remains unchanged despite Josh’s actions. This removes
ambiguity regarding the competition’s overall structure.

(2) Rephrase the question for better clarity. Instead of saying “and that affects the total number
of riddles in the competition,” use Josh’s decision to give away his riddles does not change
how many riddles Taso has.” This direct statement enhances comprehension and ensures readers
understand that Taso’s initial count remains constant.

(3) Consider providing context as to whether the riddles given away affect only Josh or extend
to others. A statement like “regardless of how many riddles Josh gives away, Taso’s number of
riddles is based on the original count” would maintain logical clarity.

Revised Problem: Josh is participating in a school riddle competition. He has 8 riddles. Ivory,
his friend, has four more riddles than Josh. Taso, another competitor, has twice as many riddles
as Ivory. Josh’s decision to give away 3 of his riddles does not change how many riddles Taso
has. Regardless of how many riddles Josh gives away, Taso’s number of riddles is based on the
original count. How many riddles does Taso have?
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Example of problem refinement by the Reviewer and Revise Agents.

Problem: Stella and Twinkle are filling a truck with a capacity of 6000 stone blocks at the rate
of 250 blocks per hour per person. They work for four hours without any breaks, after which
they are joined by 6 other people who work at the same rate. Calculate the total time taken to
fill the truck. Additionally, if the blocks are in the shape of cubes with a side length of 2 units,
determine the area of the base of the truck that would hold these blocks when filled to capacity.
Provide the total hours taken and the area of the base in square units.

Rephrased Problem: Stella and Twinkle are filling a truck with a capacity of 6000 cubic blocks
at the rate of 250 blocks per hour per person. They work for four hours without any breaks.
After this, they are joined by 6 additional people who work at the same rate. Calculate the
total time taken to fill the truck. To begin, calculate the total number of blocks filled by both
Stella and Twinkle during their initial 4 hours. Next, determine how long it will take for all
workers (Stella, Twinkle, and the 6 additional people) to finish filling the truck. Additionally,
the blocks are in the shape of cubes with a side length of 2 units. Calculate the area of the
rectangular base of the truck needed to accommodate the cubes when filled to its full capac-
ity, expressed in square units. Provide the total hours taken and the area of the base in square units.

Review Score: 4,4,4.

Review Agent Suggestions:

(1) Rephrase the initial sentence to: “Stella and Twinkle are filling a truck with a capacity of
6000 cubic blocks, working at a rate of 250 blocks per hour each for four hours without breaks.”
This enhances clarity by simplifying the phrase structure.

(2) Provide a clearer description of the mathematical operations to carry out after working
four hours. For instance, ”After 4 hours of work, determine the total blocks filled, and then
calculate the time required for the remaining blocks with the help of the additional workers.”
This improves logical coherence by clarifying the task transition.

(3) Clearly request the output format by stating, “Finally, report both the total hours taken to
fill the truck and the area of the rectangular base in square units,” ensuring the conclusion is
definitive and straightforward for the reader to apprehend.

Revise Problem: Stella and Twinkle are filling a truck with a capacity of 6000 cubic blocks,
working at a rate of 250 blocks per hour each for four hours without breaks. After 4 hours of
work, determine the total blocks filled by both Stella and Twinkle, and then calculate the time
required for the remaining blocks with the help of 6 additional workers who work at the same
rate. Finally, report both the total hours taken to fill the truck and the area of the rectangular base
in square units needed to accommodate the blocks when filled to its full capacity, given that each
block is a cube with a side length of 2 units.
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Example of problem refinement by the Reviewer and Revise Agents.

Problem: Tom’s rabbit can run at a speed of 25 miles per hour, while his cat runs at 20 miles
per hour. If the cat gets a 15-minute head start, during which it covers a distance on a flat
path, determine the time (in hours) it will take the rabbit to catch up with the cat assuming that
for every mile, the rabbit encounters terrain that slows it down by 1 minute for every 5 miles
traveled. Additionally, calculate the total distance (in square miles) covered by both animals until
the rabbit catches up, assuming their paths can be represented as lines on a coordinate plane.

Rephrased Problem: Tom’s rabbit can run at a speed of 25 miles per hour, while his cat
runs at a speed of 20 miles per hour. The cat gets a 15-minute head start, covering a distance
on a flat path during this time. Determine the time (in hours) it will take for the rabbit to
catch up to the cat, defined as the moment when both animals have traveled the same linear
distance from the starting point. Consider that for every mile the rabbit travels, it encounters
terrain that slows its speed by an additional minute for every 5 miles traveled. Finally, cal-
culate the total distance traveled (in miles) by both animals until the rabbit catches up with the cat.

Review Score: 3,4,3.

Review Agent Suggestions:

(1) Streamline the question for clarity. For example, state: “Tom’s rabbit runs at 25 mph and
his cat at 20 mph. The cat has a 15-minute head start. When will the rabbit catch up to the cat,
considering that every mile the rabbit travels adds an extra minute to its speed?” This revision
reduces complexity and provides clearer instructions.

(2) Clarify the impact of the terrain on the rabbit’s speed. Instead of stating that its speed will
decrease, specify how to adjust the time taken due to the terrain. For instance, rephrase the
condition regarding the rabbit’s speed to enhance understanding, such as, ’For every 5 miles the
rabbit runs, add 1 extra minute to its travel time.”

(3) Remove unnecessary details and ensure the question leads to a unique solution. Consider
separating the catch-up time and total distance calculations into distinct questions or minimizing
the effects of terrain to make the problem more straightforward. This way, students can focus
on the primary aspects of the problem without layers of complexity that introduce potential for
confusion.

Revised Problem: Tom’s rabbit runs at 25 mph and his cat at 20 mph. The cat has a 15-minute
head start. For every 5 miles the rabbit travels, add an extra minute to its travel time. How long
(in hours) will it take for the rabbit to catch up to the cat? Also, calculate the total distance (in
miles) traveled by both animals when the rabbit catches up.

\. .
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A.7.2 EXAMPLES OF PROBLEM REVISIONS FROM MATH

Example of problem refinement by the Reviewer and Revise Agents.

Problem: I have 5 marbles numbered 1 through 5 in a bag. Suppose I take out two different
marbles at random. What is the expected value of the sum of the numbers on the marbles?

Rephrased Problem: You have a bag containing 5 marbles numbered 1 through 5. You
randomly draw two different marbles. If marble 1 is drawn first, then the drawn marbles are put
back in the bag, and you draw again. If the first marble drawn is not 1, you keep it and draw the
second marble without replacement. What is the expected value of the sum of the numbers on
the marbles drawn, given that if you draw an odd-numbered marble first, you will always draw
marble 2 next, while if you draw an even-numbered marble first, you will draw the next higher
number available if possible? Calculate the sum for each scenario and give the overall expected
value.

Review Score: 3,4,3.

Review Agent Suggestions:

(1) Simplify the language used in the problem statement for better clarity. For instance, instead
of saying “if marble 1 is drawn first, then the drawn marbles are put back in the bag,” you could
say “if marble 1 is drawn first, put the marbles back and draw again.” This succinctly conveys the
same information without ambiguity.

(2) Clearly define what happens in all scenarios after each draw. It would be beneficial to write
separate scenarios or cases explicitly (e.g., drawing 1, drawing an odd number, drawing an even
number), ensuring that all potential outcomes are evident to the reader to aid in understanding
and solving the problem.

Revised Problem: You have a bag with 5 marbles numbered 1 through 5. You will randomly
draw two different marbles according to the following rules: 1. If you draw marble 1 first, put it
back in the bag and draw again. 2. If the first marble drawn is not marble 1, you keep that marble
and draw a second marble without putting the first back. Additionally: - If the first marble drawn
is odd (3 or 5), you will draw marble 2 next. - If the first marble drawn is even (2 or 4), you will
draw the next higher number available (for example, if you draw 2 first, you will draw 3 next; if
you draw 4, you will draw 5 next). Calculate the expected value of the sum of the numbers on the
marbles drawn, considering each scenario.

23



Under review as a conference paper at ICLR 2026

Example of problem refinement by the Reviewer and Revise Agents.

Problem: Find the number of ordered pairs of positive integers (a,b) such that a+b=1000 and
neither a nor b has a zero digit.

Rephrased Problem: In a community project, two teams need to collectively gather exactly
1000 units of resources. Let (a) represent the units collected by Team A and (b) represent those
collected by Team B, such that (a + b = 1000). If neither team can collect resources in amounts
represented by a number containing the digit zero, how many ordered combinations of (a, b) can
the teams realistically plan for their collection, considering all above constraints?

Review Score: 4,4,3.

Review Agent Suggestions:

(1) Clarify the constraint regarding the digit zero by explicitly stating that both (a) and (b) can
only consist of the digits 1-9. This can help eliminate any potential confusion about what is
meant by not containing the digit zero.

(2) Define what is meant by “ordered combinations”. It could be interpreted in different
ways—does it mean different pairings of (a) and (b) that total 1000, or is it simply asking for
the number of distinct pairs? Providing examples or additional context could further enhance
comprehension.

(3) Instead of stating “the teams realistically plan for their collection,” consider specifying that
this refers to the mathematical combinations that satisfy all conditions. This would reinforce the
focus of the question on mathematics rather than a broader planning context.

Revised Problem: In a community project, two teams need to collectively gather exactly 1000
units of resources. Let (a) represent the units collected by Team A and (b) represent those col-
lected by Team B, such that (a + b = 1000). Both (a) and (b) must be composed exclusively of the
digits 1 through 9, meaning neither can include the digit zero. How many distinct ordered pairs
((a, b)) satisfy this condition, ensuring all constraints are met?

24



Under review as a conference paper at ICLR 2026

A.8 AGENT PROMPT

Example 1: Problem Rating Prompt

As a mathematics quality evaluator, your task is to rigorously assess whether a given
mathematical question is high-quality and valuable as a reference for synthesizing new
questions. Use the following criteria:

1. Complexity (1-10): How many logical steps or conceptual layers are required? Does
it integrate multiple mathematical domains (e.g., algebra + geometry) or demand critical
thinking?

2. Information Value: Does it contain useful knowledge or reasoning opportunities? Can it
help learners discover concepts, strategies, or patterns?

3. Clarity & Precision (1-10): Is the question unambiguous, logically consistent, and free
of errors? Poorly framed questions score lower.

** Scoring Guidelines **:

- Please rate the sample on a scale from 1 to 10 for each criterion, and return an overall
rating on a scale from 1 to 10, where a higher score indicates higher level of quality.

- Ensure that the ratings are not overly concentrated around a specific score. If multiple
samples have similar qualities, consider spreading the scores more evenly to reflect subtle
differences.

- Penalize heavily for ambiguity, errors, or oversimplification.

Please carefully evaluate the following data sample and return the integral evaluation scores
using the JSON format:

”Complexity”: <number, 1-10>,
”Information Value”: <number, 1-10>,
”Clarity”: <number, 1-10>,

”Overall rating”: <number, 1-10>

}
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Example 2: Problem Rephrase Prompt

Act as an expert mathematics educator specializing in problem complexity escalation.
Systematically transform the given problem while preserving its core concepts, using the
following framework:

**Stage 1: Problem Deconstruction®*

- Domain Identification: [Algebra/Geometry/Calculus/etc.]

- Core Competencies: [List specific theorems/formulas/methods]

- Baseline Difficulty: [Level 1-5 using Krathwohl’s Cognitive Rigor Index]

**Stage 2: Escalation Protocol**

Select >3 complexity dimensions from:

1. Multi-stage Transformation: Designs a single, cohesive mathematical problem where the
complete solution inherently demands multiple, sequentially dependent calculations. The
output of one implicit intermediate step must serve as the essential and sole input for the
next, creating a longer chain of necessary computational derivation for the solver to reach
the definite final answer.

2. Cross-domain Integration: Create hybrid problems combining >2 mathematical disci-
plines

3. Real-world Parameterization: Embed contextual constraints with multivariate relation-
ships

4. Conditional Branching: Introduce layered constraints requiring decision-tree analysis

5. Inverse Problem Design: Reverse-engineer given solutions to reconstruct premises

6. Uncertainty Integration: Incorporate measurement errors/probabilistic factors

7. Optimization Extension: Convert closed solutions into multi-objective optimization
challenges

**Stage 3: Revise question**

- Must be a definitive mathematical problem: The question must require mathematical
reasoning, calculation, or logical deduction.

- Must have a unique and specific mathematical answer: The problem should lead to a sin-
gle, verifiable numerical or analytical solution, avoiding open-ended questions, subjective
evaluations, or non-mathematical tasks.

Please reply strictly in the following format:
Stage 1

#Problem Deconstruction#:

Stage 2

#Escalation Protocol#:

Stage 3

#Finally Rewritten question#:
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Example 3: Problem Review Prompt

As a mathematics quality checker, your task is to rigorously assess whether a given
mathematical question is high-quality and provide rewrite suggestions:

1. Clarity & Grammar (1-5): The question must be grammatically correct, precisely
phrased, and easy to understand. It should avoid ambiguity in wording or phrasing.

2. Logical Coherence & Completeness (1-5): All elements of the problem (e.g., given
information, constraints, relationships, objectives) must be logically interconnected and
sufficient. The problem should present a clear, sequential path for reasoning, without
missing information required for the specified solution approach.

3. Mathematical Validity & Solvability (1-5): The problem must be fundamentally a
mathematics problem, with all its premises and conditions being *mutually consistent®
and *mathematically sound*. It must lead to a *unique, solvable numerical or analytical
answer* that adheres to all mathematical rules and specified ranges (e.g., probabilities
summing to 1, valid geometric properties, real number solutions). If any condition leads
to a mathematical contradiction or an impossible/undefined solution (e.g., total probability
> 1 after adjustments, an equation with no valid solution within given constraints), this
criterion rates very low, and the exact mathematical inconsistency must be pinpointed.
Avoid open-ended or non-mathematical questions.

** Scoring Guidelines **:

- Please rate the sample on a scale from 1 to 5 for each criterion, and return an overall rating
on a scale from 1 to 5, where a higher score indicates higher level of quality.

Rephrased question: {rephrased_question}

**QOutput Requirements**

Respond in the following plain-text format **only** (do not include JSON or any additional
commentary):

###thought###

<Analytical reasoning addressing each criterion sequentially, especially for
rephrased_question >

#iHrating_score###

<Clarity & Grammar score >, <Logical Consistency score >, <Mathematical Relevance
& Solvability score >

###suggestions##

###Specific improvement 1###

<Specific improvement 1 >

###Specific improvement 2###

<Specific improvement 2 >

...more improvements if needed...

Noice:

- “rating_score” represents evaluate score of Rephrased question.

- when generate ’suggestions”, please give more details and reasons for each improvement.
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Example 4: Problem Revise Prompt

As an expert in mathematical question improvement, please optimize the question according
to the following suggestions:
{suggestions}

Optimization requirements:

1. Clarity & Grammar (1-5): The question must be grammatically correct, precisely
phrased, and easy to understand. It should avoid ambiguity in wording or phrasing.

2. Logical Coherence & Completeness (1-5): All elements of the problem (e.g., given
information, constraints, relationships, objectives) must be logically interconnected and
sufficient. The problem should present a clear, sequential path for reasoning, without
missing information required for the specified solution approach.

3. Mathematical Validity & Solvability (1-5): The problem must be fundamentally a
mathematics problem, with all its premises and conditions being *mutually consistent®
and *mathematically sound*. It must lead to a *unique, solvable numerical or analytical
answer* that adheres to all mathematical rules and specified ranges (e.g., probabilities
summing to 1, valid geometric properties, real number solutions). If any condition leads
to a mathematical contradiction or an impossible/undefined solution (e.g., total probability
exceeds 1 after adjustments, an equation with no valid solution within given constraints),
this criterion rates very low, and the exact mathematical inconsistency must be pinpointed.
Avoid open-ended or non-mathematical questions.

original question: {rephrased_question}

** Qutput Requirements **

Respond in the following plain-text format **only** (do not include JSON or any additional
commentary):

#iftrevised _question###

<improved full question>

###revision_notes###

<Specific revision note>
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Example 5: Solution Generation Prompt (GSMS8K)

As a mathematics problem solving expert, analyze and answer the following question.

Workflow:

1. Analyze and Deconstruct:

- First, systematically break down the problem into its core components.

- Explicitly list all given data, variables, constraints, and the final objective of the problem.
2. Clarify Ambiguities:

- Before starting calculations, if any part of the problem statement is ambiguous, you must
state your interpretation and the reasoning behind it.

3. Step-by-Step Derivation and Process Demonstration:

- For each component of the problem, provide a detailed step-by-step derivation.

- You must show all intermediate calculation steps, formulas used, and logical judgments.
Do not skip or summarize critical calculation processes.

- For any step involving complex calculations, multi-case analysis, or iterative enumeration
(e.g., filtering combinations that meet a condition, solving systems of equations, analyzing
multiple scenarios), you must clearly list all cases or combinations considered.

4. Synthesis and Final Calculation:

- Integrate the results from all preceding steps to perform the final calculation.

- Clearly show the final calculation that leads to the final answer.

Respond in the following plain-text format **only** (do not include JSON or any additional
commentary):
##thought### <step-by-step reasoning process> ###answer### <final answer>

Output Notice:

- Replace <step-by-step reasoning process> with your detailed derivation.

- Replace <final answer> with the concise final answer (e.g., a number or fraction), without
units or extra words.

Output Example 1:

Question: A cleaning company produces two sanitizer sprays. One spray kills 50%
of germs, and another spray kills 25% of germs. However, 5% of the germs they kill are
the same ones. What percentage of germs would be left after using both sanitizer sprays
together?

Output(must match the specified format exactly):

###thought### To correctly calculate the percentage of germs left, we must use the
Principle of Inclusion-Exclusion to find the total percentage of unique germs killed ......
###answer### 30

Question: {question}

Output:
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Example 6: Solution Generation Prompt (MATH)

As a mathematics problem solving expert, analyze and answer the following question.

Workflow:

1. Analyze and Deconstruct:

- First, systematically break down the problem into its core components.

- Explicitly list all given data, variables, constraints, and the final objective of the problem.
2. Clarify Ambiguities:

- Before starting calculations, if any part of the problem statement is ambiguous, you must
state your interpretation and the reasoning behind it.

3. Step-by-Step Derivation and Process Demonstration:

- For each component of the problem, provide a detailed step-by-step derivation.

- You must show all intermediate calculation steps, formulas used, and logical judgments.
Do not skip or summarize critical calculation processes.

- For any step involving complex calculations, multi-case analysis, or iterative enumeration
(e.g., filtering combinations that meet a condition, solving systems of equations, analyzing
multiple scenarios), you must clearly list all cases or combinations considered.

4. Synthesis and Final Calculation:

- Integrate the results from all preceding steps to perform the final calculation.

- Clearly show the final calculation that leads to the final answer.

Respond in the following plain-text format **only** (do not include JSON or any additional
commentary):
##thought### <step-by-step reasoning process> ###answer### <final answer>

Output Notice:

- Replace <step-by-step reasoning process> with your detailed derivation.

- Replace <final answer> with the concise final answer (e.g., a number or fraction), without
units or extra words.

Output Example 1:

Question: A box contains 5 white balls and 6 black balls. Two balls are drawn out
of the box at random. What is the probability that they both are white?

Output(must match the specified format exactly):

#i#thought### To solve for the probability of drawing two white balls from a box contain-
ing 5 white and 6 black balls, we’ll use......

2
#Htanswert#H —

11
Question: {question}

Output:
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