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Abstract

This paper studies a bilinear matrix-valued regression model where both predic-
tors and responses are matrices. For each observation ¢, the response Y; € R"*P
and predictor X; € R™*? satisfy Y; = A*X,B* + E;, with A* € R} (row-
wise £1-normalized), B* € R9*?, and F; independent Gaussian noise matrices.
The goal is to estimate A* and B* from the observed pairs (X, Y;). We propose
explicit, optimization-free estimators and establish non-asymptotic error bounds,
including sparse settings. Simulations confirm the theoretical rates. We illustrate
the practical utility of our method through an image denoising application.

1 Introduction

Supervised learning is a core task in modern data analysis, often applied to high-dimensional
datasets. With recent advances in data acquisition technologies, many real-world datasets now ex-
hibit intrinsic matrix structures. Examples include spatiotemporal measurements, dynamic imaging,
and multivariate longitudinal studies, where rows and columns encode distinct dimensions such as
time, space, or experimental conditions [8, 27)]. In such settings, both the covariates and the re-
sponses may be naturally represented as matrices.

Traditional linear regression models are designed to predict a scalar outcome from a vector-valued
covariate.. When the response is vector-valued, a naive approach consists in fitting a separate linear
model to each coordinate. However, this strategy ignores the multivariate structure of the response.
To address this, several works [6l [18 3] propose modeling the stacked regression coefficients as a
low-rank matrix, leading to the multivariate linear regression model. Other works have focused on
predicting scalar responses from matrix-valued covariates [38| 28], leading to the trace regression
model where the parameter becomes a matrix, usually assumed to have a low-rank structure. In
our setting, both the covariates and responses are matrix-valued. It is again not appropriate to fit
independent trace regression models to each entry of the output matrix. Thus, we propose a bilinear
model that explicitly couples the row and column structures of the input and output matrices.

In this paper, we extend these lines of work by studying a bivariate matrix-valued linear regres-
sion (BMLR) model, where both the predictor and the response are matrix-valued. This framework
captures richer structural dependencies and arises naturally in applications such as spatiotemporal
forecasting and dynamic network modeling. The BMLR model considers 7" independent observa-
tions (X, Y;)7_,, where each predictor matrix X, € R™>? and response matrix Y; € R™*? satisfy
the relationship

Vi =A"XyB*+ E;, te[l]:={1,...,T} (1)

The unknown parameter matrices are A* € Rixm and B* € R?*P. The non-negativity con-

straint helps ensuring identifiability and interpretability. In many applications, A* represents mixing
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weights, attention coefficients, or interaction strengths that are naturally non-negative. Note that
the model in (T) remains unchanged if A* is scaled by a positive constant and B* is divided by
the same constant. To resolve this identifiability issue, we impose the constraint that each row
of A* has unit £;-norm. The noise matrices (E;)7_; € R™*P have independent and identically
distributed entries, each drawn from a centered Gaussian distribution with variance o2. We dis-
cuss more general noise structures in Appendix [A] The goal is to estimate the parameters A* and
B* from the observed data (X;,Y;)Z ;. Once estimated, these parameters can be used to pre-
dict the out-of-sample response Yy given a new covariate matrix Xp,q € R™*9. This model
builds on a growing literature dedicated to matrix-valued regression with matrix-valued observations
(32, 123] [16} 29, [7, [11} 4], and complements recent advances in matrix autoregression and dynamic
systems [9, 110, 48, 149|124, 43| [2, 30, 141} I50]]. These approaches leverage the matrix structure of the
data to improve interpretability and predictive performance.

Notice that for any ¢ € [T], A* captures the link between the rows of Y; and the rows of X;B*
while B* captures the link between the columns of Y; and the columns of A*X;. This bilinear
structure encodes interactions along both matrix dimensions and is inherently richer than what stan-
dard multivariate regression models capture. If one ignores the matrix structure and vectorizes both
sides, the model becomes vec(Y;) = (B*)T ® A* - vec(X;) + vec(E}), where vec(-) denotes the
column-wise vectorization of a matrix and ® is the Kronecker product [21]. In this formulation,
the regression reduces to a standard multivariate linear model with 7" vectorized observations and
coefficient matrix M* = (B*)" ® A*, which can be estimated directly using ordinary least squares
[L1]]. However, this vectorized approach hides the problem structure. Estimating A* and B* from
an estimate M of M* amounts to solving a Kronecker factorization problem. It reduces to finding
the nearest rank-one matrix in the Kronecker product space [33]]. This is a non-convex problem that
discards the individual matrix roles of A* and B*. Moreover, the vectorized formulation leads to
estimators with high variance when nmpq > T, as it fails to exploit the low-dimensional structure
induced by the bilinear form.

In contrast, our approach preserves and exploits the bilinear structure directly in the matrix domain,
allowing for interpretable and efficient estimation of A* and B* without solving the intractable
Kronecker decomposition problem.

1.1 Context

Given the observations (X;,Y;)?,, the linear regression framework models the relationship be-
tween the responses and the predictors using an unknown linear map f : R™*9 — R™*P_ For each
t € [T this relationship is expressed as Y; = f(X;) + E; where E; represents the noise term. The
goal is to learn the unknown function f only using the given observations. In a parametric setting
we assume that f belongs to a predefined class of functions.

A naive approach would be to break down the linear relationship by focusing on each entry of the
responses individually. This leads to consider for ¢ € [n] and j € [p] a linear functional f;; :
R™*49 — R such that

(Yilij = fij (Xe) + [Edlsj,  t € [T],

where [Y;];; denotes the coefficient on the i*" row and j* column of the matrix Y;. Riesz represen-

tation theorem [5]] ensures the existence of a unique matrix Ml”; € R™*? such that
[Yilij = Tr (X, M) + B, te€[T),

where X! stands for the transposed of X; and Tr (X, M};) denotes the trace of the square matrix

X, M;;. In this model, the objective is to estimate the np matrices (M i ). This problem is equivalent
to considering np independent trace regression models [38]. Hence, this naive approach ignores the
multivariate nature of the possibly correlated entries of each response Y;.

To overcome this issue, we consider for i € [n] and j € [p] the vectors a; € R7* and §; € R and
assume M;; = ;3] . For identifiability issues we assume that for all i € [n], |||y = 1. This

model ensures that the matrices (M;;) share a common structure. It also implies that they share
the same rank, namely one here. Hence this model now accounts for the multivariate nature of the
problem. It has n(m — 1) 4 pq free parameters and rewrites as follows:

th]lj =Tr (XtTOélBJT) + [Et]ija t e [T] .



Consider A* the matrix obtained by stacking the n row vectors «; and B* the matrix obtained by
stacking the p column vectors /3;. This leads to the BMLR model ().

1.2 Related works

The BMLR model, first introduced in [23], has gained notable attention as a powerful framework for
examining relationships between matrix-structured responses and predictors. In the development of
estimation techniques for this model, two principal methods have been explored: alternating mini-
mization and spectral aggregation.

Alternating Minimization, usually presented in a Maximum Likelihood Estimation [[16] or a least
squares Estimation(LSE) context [23]]. As the objective is non convex in both parameters, a two-step
iterative algorithm is usually derived to construct the estimators.

Spectral Methods, presented in a factor model framework in [7], offers an alternative that lever-
ages the spectral properties of the target matrices. Authors propose a new estimation method, the
a-PCA, that aggregates the information in both first and second moments and extract it via a spectral
method. They show that for specific values of the hyperparameter o, namely o = —1, the a-PCA
method corresponds to the least squares estimator. However, the procedure is non convex and they
rely on approximate solution by alternating minimization. More specifically they maximize row and
column variances respectively after projection.

Kronecker Product Factorization: The Kronecker Product Factorization (KRO-PRO-FAC)
method has recently introduced new possibilities for estimation within matrix-valued linear regres-
sion. [11] present this approach, which leverages Kronecker products to decompose complex ma-
trices into simpler components. A key advantage of this method is that it circumvents the need
to estimate the covariance between individual entries of the response matrix, significantly reduc-
ing computational complexity. The KRO-PRO-FAC algorithm is accompanied by non-asymptotic
bounds on the estimation of the Kronecker product between the parameters. However, an important
limitation of this approach is the lack of direct control over the estimation accuracy of each param-
eter separately. This restricts its applicability in scenarios where parameter-wise interpretability or
precision is critical, leaving a gap that motivates alternative methodologies, such as the optimization-
free estimators proposed in this work.

Autoregressive Frameworks: In autoregressive settings, where X; := Y;_; in (I), the pri-
mary focus is on capturing temporal dependencies by minimizing the residual sum of squares
(9, 48,149, 24| 43]]. These frameworks are particularly relevant for modeling dynamic systems and
matrix-valued time series. However, parameter estimation in autoregressive frameworks typically
relies on computationally intensive procedures, such as iterative optimization or matrix decomposi-
tions. These methods become increasingly impractical as the dimensions of the data grow, creating
a significant bottleneck in high-dimensional settings. This challenge is especially pronounced in
applied studies, where the scale and complexity of datasets continue to expand, underscoring the
need for more efficient and scalable estimation techniques.

1.3 Summary of Contributions

This work studies the estimation problem of the matrix parameters A* and B* in (I). Our
contributions are the following:

Noiseless Case Analysis: In Section |2} we study an oracle case and establish that, in the absence
of noise, the true parameters can be exactly retrieved. This analysis highlights the fundamental
identifiability properties of the model.

Optimization-Free Estimators: In Section [3] we propose explicit, optimization-free estimators B
and A defined in (@) and @) respectively. They significantly simplify the estimation process and
are particularly advantageous in high-dimensional settings where traditional optimization-based
methods become computationally prohibitive. Theoretical guarantees are provided in Theorems|3.3|
and[3.6] We establish non-asymptotic bounds characterizing the dependence of estimation accuracy
on the problem dimensions (n, p, m, ¢q) and the sample size T'. For A € R™™™ | the performance
improves with larger sample size 1" and larger values of p and ¢, the column dimensions of the
response and predictor matrices, respectively. However, the performance deteriorates as n and m,
which determine the size of A*, increase. In contrast, for B € RaxP , the convergence rate improves
with increases in 7" and n, showcasing a "blessing of dimensionality" effect in the row dimension
of the target matrices. Nonetheless, the performance decreases with larger values of p, ¢, and m.



Numerical Validation: In Section we validate our theoretical findings through extensive
numerical simulations. On synthetic datasets, we show that the empirical convergence rates
align closely with theoretical predictions, see Figure [I] For real-world data from the CIFAR-10
dataset, we demonstrate the practical effectiveness of our procedures by introducing controlled
noise, estimating the correction matrices A and B on the training set, and evaluating denoising
performance on the test set. The results, presented in Figures[2]and [3] highlight the effectiveness of
the proposed estimators in practical scenarios.

Sparse Adaptive Estimators: Extending the framework to sparse settings, we introduce in
Appendix hard-thresholded estimators, BS and A®, defined in (@) and (6) respectively. These
estimators exploit the sparsity of the true parameters to achieve improved convergence rates, as
established in Theorems and Moreover, we demonstrate that these estimators can recover
the exact support of the true parameters with high probability, providing strong practical guarantees.
These estimators exhibit the same dependency on the problem dimensions (n,p, m,q) and the
sample size T as their dense counterpart B and A.

2 Analysis at the population level

In this oracle case we consider T observations (X, M;) that satisfy the relationship
M, =A"X;B*, tell], (2)

where A* € R’ and B* € R7* are the unknown parameters to be recovered. The matrix A* is
assumed to have rows with unit L;-norm, ensuring identifiability of the model.

Understanding this oracle case will allow to establish baseline results that will guide the analysis
at the sample level (I)) involving noise. The primary goal here is to derive conditions under which
the matrices A* and B* can be uniquely recovered, as well as to propose efficient algorithms for
their recovery. This involves leveraging the structure of the observed predictors (X;)7_; and the
constraints on the parameters.

In this section, we assume that the matrices (X;)7_, form a generating family of R4, which
implies that 7" is larger than mq. We define two matrices, M := (vec(M),... ,vec(MT))T €
RTX" and X := (vec(X}),...,vec(Xr)) € RTxma,

Remark 2.1. When the design matrices (X;)7_; are generated randomly, X X is invertible under
mild conditions [13} 36,39, 40].

We note E(;, ;) the canonical basis matrix with 1 at entry (k,[) and define the unobserved matrix
C € R™1*"P g5 C := (Vec(A*E(k)l)B*))ke[m], Ielg] where each row of C corresponds to the
vectorized form of A* E;, ;) B*. The entry of C located at the k + (I — 1)m-th row and i + (j — 1)n-
th column is denoted by [C] E;cjl)) . By construction, each entry of the matrix C is defined as [C] E;v]lg =

[A*)ik - [B*]ij, forall i € [n], k € [m], 1 € [g], and j € [p]. Moreover, in the model (Z), the matrix
C can be exactly reconstructed from the observations, as shown in Lemma|[C.2]in the supplementary
material. Corollary [2.4]shows how A* and B* and can be exactly recovered from this quantity

Proposition 2.2. In the model @), where the design matrices (X;)L_, form a generating family of
R™*4, the parameter matrices A* € R™*™ and B* € R?*P satisfy the following relationships:

(.)€ lal x [p): By = Y [CI7) . Vi € [,

V(i,k) € [n] x [m]:  [A*]i = =, forany (1, j) € [q] x [p] such that [B*];; # 0.

Remark 2.3. For fixed (I, ) € [q] x [p], the entries ([(C] &Jl))) ) share the same sign, as each entry

is the product of [A*];;, which is non-negative and [B*];; .

The following corollary provides a representation of the entries of A* and B* as averages. This
characterization will be particularly useful at the sample level, leading to plug-in estimators.



Corollary 2.4. Let Dy C [p] X [q] denote the set of indices (j,1) such that [B*;; # 0 and let

F := [n] x [m]. Then the entries of the matrices A* and B* can be expressed as:
(i:3)
o2, Clacn .
* s * i, J
Ao = P Bl = 30 (G
(i:DyeDe J (ik)€F
Remark 2.5. The magnitude of [B*];; can be expressed as |[B*];;| = % ; kzl [(C]E;Jl))‘ .

3 Analysis at the sample level

We now consider 7" observations (X, Y;) that satisfy (I)). Our objective is to estimate A* and B*.

From the observations (Xy,Y;)Z,, we construct Y := (vec(Y3),...,vec(Yr))' € RT*"P and
X := (vec(X1),...,vec(Xy)) | € RTxma,

We assume that the design matrices (X;)7_; form a generating family of R™*¢, This assumption
implies that 7' > mq and ensures that X X € R™%™4 is invertible. Following Remark thisis a
mild assumption. We further define the unobserved noise matrix E := (vec(E}),. .., vec(ET))—r €

RT*"P and the unobserved signal matrix M := (vec(M)),...,vec(My))' € RT*"P where
(E;)L, are the noise matrices defined in () and for t € [T], M, := A* X, B*.

Following Lemma |C.2| we define the unobserved matrix C := (XTX)f1 XT™™ € R™2x"P, To
analyze the influence of noise in the estimation process, we define D := (XTX) “'XTE € Rmaxne,
Finally, we derive from the observations C := (XTX) “!XTY € R™a%7P_ This leads to C = C+D.

A} (4,4)

We assume that for all (i, j, k) € [n] x [p] x [g], the row sums >, | [(C o are nonzero. It ensures

that the plug-in estimator for A* is well-defined. Notably, this assumption holds almost surely when
the noise matrices (E;)7_; are drawn from a continuous distribution, as is the case in this study.

3.1 Definition of the estimators

Leveraging the results from Corollary we define the plug-in estimators B € R7%? of B*,
defined for all (4,1) € D := [p] x [g] and the plug-in estimator A € R™*™ of A*, defined for all
(i,k) € [n] x [m], as follows:

~1(69)
- 1 ~1(69) ~ (j,HED [q (&0
Bly= 3 (€], Wa=""2g ©)
(i.k)EF : > (Bl
(4,1)eD

. n m r.q(ryg ~
where [Bh(j) =3 % {C]( ;) . In the definition of [A];;, we ensure that the terms in the
77:;:&'1L s=1 (s,0)

numerator do not appear in the denominator to preserve statistical independence of both terms. It
is important to note that the entries of A are defined as the ratio of random variables. While the
behavior of such ratios has been studied in the literature, particularly in Gaussian cases [[17, 34], the
results obtained through this approach would require heavy assumptions and remain challenging to
interpret in our context.

When the Gaussian variables in the ratio are centered, the distribution of the ratio is known as
the Cauchy distribution [25]. However, for non-centered Gaussian variables, the probability density
function of the ratio takes a significantly more complex form [22], making the analysis cumbersome.
Under certain conditions, it is possible to approximate the ratio with a normal distribution [15]], but
this requires additional assumptions on the model and would still yield results that are difficult
to decipher. Consequently, we opt for a different approach that avoids these complications while

retaining interpretability. Specifically, we observe that the plug-in estimator A does not fully exploit



a key property of the model: the entries of the matrix A* are constrained to lie between 0 and 1. This
additional structure could be leveraged to improve the estimator’s performance. Hence we define

the estimator A € R"*™ of A*, defined for all (i, k) € [n] x [m], as:
[A];4 := max (0, min ([A]ik, 1)) . (4)

3.2 Theoretical analysis with known variance

We present the matrix normal case with known fixed variance under the ORT assumption. The
matrix normal distribution generalizes the multivariate normal distribution to matrix-valued random
variables [20} |1} 135]]. The sparse case is presented in the section@

Lemma 3.1. Under the assumption that X' X is full rank, the matrix C = (XTX)_I XTY €
R™IX"P sqtisfies C~ MN g xnp (C, (XTX) -1 ,UZIW,) .

Following the vast literature on linear regression and Gaussian sequence models [44, [19] [37, [12]],
we make the ORT assumption to capture a better understanding of the phenomenon at play. This
assumption serves primarily to facilitate the theoretical analysis. Notably, the numerical experiments
in Sectiond]are conducted without relying on the ORT condition. We discuss relaxation of the ORT
assumption in Appendix [A]

Assumption 3.2 (ORT assumption). We assume that the design matrix X satisfies X' X =T+ I,,,,.

Under Assumption Lemma ensures that the entries of C are independent and normally
distributed. The following theorem establishes non-asymptotic upper bounds on the convergence
rates of B under various norms.

Theorem 3.3. Under Assumption the estimator B introduced in @) satisfies the following non-
asymptotic bounds for any € > 0:

pqoV2m Tne? A 9 Tne 2pq
—_ —7,IF’[B—B* <2 ——+ —),
N expl— s s P (I8 = B[ > o] < 2exp(—g 1 + )
2
evnT
Vp.q

20/m

P [HB ~ By > e} <

P {HB — B*”Op > e:| <2exp | — <

+
Here, 1y, 4 = M

and |

- ||+ is the elementwise maximum norm, || - ||op is the operator norm,

- || is the Frobenius norm.

We observe that the convergence rate of the estimator B exhibits the anticipated dependence on the
sample size 7', improving as the number of observations increases. Notably, our analysis reveals a
"blessing of dimensionality" effect, wherein the convergence rate accelerates as the row dimension
n of the observed target matrices (Y;)Z_, grows. Conversely, the convergence rate is negatively
affected by the size pg of B*. Furthermore, the variance parameter o also exerts a detrimental
influence on the convergence rate, as intuitively expected.

The following Lemma provides a probabilistic control over the event where the plug-in estimator A,
defined in (@), coincides with its modified version A defined in {@). We assume that the entries of
A* are strictly bounded from below by 0 and from above by 1. We also assume that the sum of the
entries of B* is positive.

Assumption 3.4. We assume that for all (¢, k) € [n] x [m] we have 0 < [A*];1, < 1. In addition we

1 P 4
assume that 5* > 0 where 8* := — 5~ 37 [B*],..
Pq j=11=1

In model (I)), A* has non-negative entries with rows summing to one, so its entries lie in [0, 1].
Assumption [3.4] strengthens this to entries in |0, 1[. The sparse case is discussed in Appendix

Lemma 3.5. Under Assumptions and the estimators A and A introduced in and
satisfy the following property for any (i, k) € [n] x [m]:

i 1 G Tpqu, o Tpqv},
B (Al £ ] < — T exp (201 /Ay
[Alie # [ Al | < ik 2pgTm P ( 252 + VitV 2pqT T P 202




where Wik = p%] Z?:l Z?:l[B*}lj (1 — [A*L*k), Vi 1= [A*]zkﬁ* and o = o/1+ %

We first note that under Assumption[3.4} the quantities j¢;, and v;;, are positive. We then observe that
as the sample size T increases, the plug-in estimator A is more likely to coincide with its modified

version A. The intuition behind this result is straightforward: as the sample size grows, [fl]ik con-
verges to [A*];x, which inherently lies between 0 and 1. Consequently, the modifications introduced

in A become unnecessary as [A];, naturally satisfies the constraints of the model. A similar phe-
nomenon occurs as p, the number of columns of the response matrices, and g, the number of columns
of the predictor matrices, increase. Larger p and g effectively provide more information about the

structure of the model, leading to improved accuracy of the plug-in estimator A and reducing the
need for corrections by A.

The following theorem provides a finite-sample analysis of the performance of A.
Theorem 3.6. Under Assumptions and the estimator A introduced in @) satisfies for any

e > 0:
) 2 2 [ Tpge? Jm Tpg(n — 1)e2
P {HA — A% > ¢ ] < 7nma\f exp (— pq26 ) + n exp (_pq(n 3 )e )
+ 187 e/pqTm I 20 (n—1) 2mo

_& exp | — Tpgp® ogexp | — Tpgv?
L_m 202 . 202
vV2pqT'T " v ’

where v := ming j, Vg, ju := ming i, pui, with pig, Vi and & defined in Lemma 3.5]

We observe that the finite-sample performance of the estimator A improves with the sample size
T, reflecting the benefit of more observations. Additionally, the convergence rate is positively in-
fluenced by increases in the column dimension p of the observed target matrices (Y;)7_,; and the
column dimension ¢ of the predictor matrices (X;)7_,. This reflects a "blessing of dimensionality"
effect, as additional columns provide richer information for the estimation process. Notably, this
behavior contrasts with that of B, as detailed in Theorem (3.3} where increases in p and ¢ have a
detrimental impact. Moreover, the magnitude of 5* plays a crucial role in determining the conver-
gence rate, with larger values of |3*| leading to faster convergence. Conversely, the performance of
A deteriorates as the size nm of A* increases and the variance parameter o negatively affects the
convergence rate. Higher noise levels degrade the accuracy. We note that the degradation of both
rates with increasing m breaks the symmetry between A* and B*. This is because of the assumption
we impose on A*.

3.3 Sparse Case with Known Variance

In this part, we extend our theoretical analysis to incorporate sparsity assumptions on the parameters
A* and B*. By leveraging the sparse structure, we aim to develop estimation strategies tailored for
high-dimensional settings, where many entries of the parameters are expected to be zero. This sparse
framework addresses practical scenarios where dimensionality reduction is critical.

We propose the hard-thresholding estimator [19,37) B, defined as follows for all (1, 5) € [q] x [p]:

(B = [Blij - Lys), 50m) o)

where [B] 1; are the entries of the initial estimator B defined in (@), and 7 > 0 is a user-defined
threshold. The hard-thresholding operation enforces sparsity by setting small entries of B to zero,
aligning the estimator with the sparse structure of B*.

The following theorem establishes a non-asymptotic upper bound on the convergence rate of BS for
the Frobenius norm under sparsity assumptions on the parameter B*.

Theorem 3.7. Under Assumption for any § € (0,1), the estimator B® introduced in (@),
with the threshold T = o4/ i—? ( log(2pq) + 4/log (%)) , enjoys the following non-asymptotic
properties on the same event holding with probability at least 1 — §:



1. If || B*||o denotes the number of nonzero coefficients in B*, then

1B — B*||% < 168", 7°.

2. If the entries of B* satisfy mineqg) jeip)|[B*]i;| > 37, then the support of BS perfectly

matches that of B*, namely supp(BS) = supp(B*), where supp(-) denotes the set of in-
dices corresponding to the nonzero entries of a matrix.

Theorem highlights the performance of the sparse estimator BS under sparsity assumptions
on the true parameter B*. The convergence rate of BS improves as the sparsity of B* increases,
demonstrating the benefits of leveraging sparse structures. The threshold 7 exhibits favorable scaling
with the sample size 1" and row dimension n, both of which contribute to reducing 7, enhancing the
estimator’s performance. Conversely, 7 increases with the dimensions p and ¢, reflecting the greater
challenge of estimation in higher-dimensional settings. Moreover the threshold 7 scales with o,
capturing the adverse impact of higher noise levels on the estimation accuracy. This emphasizes the
observations from Theorem [3.3] Finally the condition on the minimum magnitude of the entries of
B* ensures that the threshold 7 enables exact recovery of the support of B*, with high probability.

We now propose the hard-thresholding estimator AS, defined as follows for all (i, k) € [n] x [m)]

here A o L 22 5 [6]7
where ;5 1= L { ] :
Pz b kD

[A%Tik = [Alik - 13,1520y (6)

The following theorem establishes a non-asymptotic upper bound on the convergence rate of AS for
the Frobenius norm under sparsity assumptions on the parameter A*.

Theorem 3.8. Under Assumption forany 6 € (0,1), the estimator AS defined in (0), with the
threshold T .= o, /Tipq (w /log(2nm) + /log (%)) , satisfies the following non-asymptotic prop-
erties on an event holding with probability at least 1 — 24:

1. If ||A*||o denotes the number of nonzero coefficients in A*, then

1A% — A%|[3 < 1871721 4% |lo (265 + 37)°,

« . 1 X0 q ] : oV2Zm _ Tpqt]
where * = .50 1 >4 [By. and ts satisfies tg\/WeXp< e | t+

V2 _ Tpgt;\ _
AV Tk exp( 2oz | = 0.

2. If the entries of A* satisfy min;en) kepm)|[A*]ix| > 37 and if 3™ > 1, then the support of
AS perfectly matches that of A*, namely supp(/ls) = supp(A*).

Remark 3.9. The parameter ¢s5, which determines the concentration properties of the estimator, de-

creases as T, p, and g increase. Consequently, the estimator AS benefits from improved performance
as the sample size 7" and latent dimensions p and g grow.

Theorem [3.8| characterizes the non-asymptotic properties of the sparse estimator AS under sparsity
assumptions on the true parameter matrix A*. The first result provides a Frobenius norm error bound
that scales with the sparsity level || A*||o. This bound is inversely related to the squared magnitude of
B* (the average entry in B*), indicating that stronger signals in the underlying parameter matrix B*
lead to improved estimation accuracy. This is similar to the phenomenon described in Theorem [3.6]
The error bound also depends on both the threshold parameter 7 and the concentration parameter ¢,
which capture the impact of noise and sample size on the estimation performance. The threshold 7
exhibits several important dependencies. It decreases with the sample size 7', reflecting improved
estimation with more observations. It similarly decreases with dimensions p and ¢, showcasing a
beneficial effect of higher dimensionality. Conversely it scales with the noise level o, capturing
the detrimental impact of increased noise levels. Finally it grows logarithmically with the matrix
dimensions n and m, indicating a mild sensitivity to the size of A*. The second result establishes
conditions for perfect support recovery of A*. Specifically, when the minimum magnitude of the



nonzero entries in A* exceeds three times the threshold 7, and the average effect 5* is sufficiently
large (38* > 1), the sparse estimator exactly recovers the support of A*.

As noted in Remark [3.9] the concentration parameter ¢5 decreases with larger values of 7', p, and
q. This property, combined with the similar behavior of 7, demonstrates that the sparse estima-
tor benefits from both increased sample size and higher latent dimensions, a particularly favorable
characteristic for high-dimensional settings.

4 Numerical Simulations

4.1 Synthetic data

Now we evaluate the performance of the proposed estimators through numerical simulations.

Simulation Setup: The simulations involve the generation of matrices A*, B*, X;, E; and Y;. By
default, the parameters are set asn = 15, m = 13, p = 14, ¢ = 12, T = 2000, and ¢ = 1.
These default parameter values are adjusted to analyze the effects of n, m, p, ¢, T, and ¢ on the
performance of the proposed estimators. A* is a n X m matrix with random entries sampled from
a uniform distribution over [0, 1) and rows then normalized to sum to 1. B* is a ¢ X p matrix with
random entries sampled from a uniform distribution over [0, 1). (X}) is a sequence of T matrices of
size m x ¢ with random entries sampled from a uniform distribution over [0, 1). (E}) is a sequence
of T' noise matrices of size n X p, with entries drawn from a Gaussian distribution with mean 0 and
standard deviation o = 1. (Y;) is a sequence of T" observation matrices, where Y; = A* X, B* + E}.

Estimation and Evaluation: The estimators A and B are computed using @) and (3) respectively.
To evaluate their performances, we vary the parameters n, m, p, g, and 1" to observe their impact on
the estimation accuracy. For each parameter setting, we compute the Frobenius norm of the errors

|A—Allp and ||B—B| r together with the Operator norm of the errors || A—A||,, and ||B—
Bl|op- These errors are plotted as functions of the varying parameters in Figure

Validation of Theoretical Properties: From the plots, we observe that as 7" increases, Figure
the errors in A and B decrease, indicating improved estimation accuracy with more data. As p and
q increase, Figures|1 E and. the errors in A decrease and the errors in B increase. As mn increases,
Figures[1b} both the errors in A and B increase. As n increases, Flgure | the errors in A increase

and the errors in B decrease. These results confirm the theoretical properties of the estimators,
detailed in Theorems[3.6and[3.3] Additionally, we have performed numerical simulations to support
the statement from Corollary [2.4] Appendix [B.2]provides additional experiments.

(@) EVwrtn M®)EV w.rtm (c)EVwrtp () EV w.rtq () EVwrtT

Figure 1: Evolution (EV) of the Frobenius norm (resp. operator norm) of A— A (in blue, resp. in
green) and of B — B* (in orange, resp. in red) with respect to (w.r.t.) different parameters.

‘We observe that the empirical error rates align closely with the theoretical rates (derived under ORT).
It suggests that deviations from orthogonality may lead only to a mild degradation in performance.
Moreover, the degradation of both rates with increasing m is confirmed by the simulations (Fig-
ure[Tb). Thus, this observed asymmetry is not an artifact of loose analysis, but a consequence of the
model’s structural assumptions.

4.2 Real-world data

We also evaluate our proposed methods on real-world data using the CIFAR-10 dataset. It contains
50,000 training and 10,000 test RGB images, each of size 32 x 32 x 3. The pixel values are nor-



malized to [0, 1] for computational consistency. Our goal is to simulate noisy image transformations
and assess the effectiveness of the correction techniques.

Noisy Transformations: We simulate noisy image transformations via left and right matrix multi-
plications with A* and B* respectively. First, we define A = I35 + e¢Ey, where E; is a 32 x 32
matrix with i.i.d. entries from a standard Gaussian distribution, and A* is obtained by normalizing
each row of A to sum to 1. Similarly, matrix B* is given by B* = I35 + €FE5, where E5 is a 32 x 32
matrix with i.i.d. standard Gaussian entries. The parameter e controls the noise level in both trans-
formations. For both training and test images, the noisy transformation is applied independently
to each color channel. The transformation for a given channel ¢ € {1, 2,3} (corresponding to red,

green, and blue) is defined as X, (@ — (A*)~1 X (B*)~!, where x4 represents the ¢ channel

noisy ~—

of the original image and X (©)

noisy 1S the corresponding noisy version.

Correction Process: The correction process is learnt on the training set. From the noisy transformed
and B using @) and (@), processing color

images, we estimate the correction matrices Al irain

train
channel independently. Once the correction matrices At(r(;gn and Bt(rfii)n are computed, they are applied
to the noisy test images to reconstruct the corrected test images. For each channel in a test image,
the corrected channel is computed as Xc(gr)r = At(rﬁn - X [Esi)sy . Bt(rzi)n. Figureshows an example from

the test set, illustrating the original image, its noisy version for e = 0.02, and the corresponding

corrected image respectively.
FE :b: o IEL i
= ™ f
| * L -

4

- Efe

Figure 2: Original, noisy, and corrected versions of the 11" image from the test set for ¢ = 0.02.

Evaluation of Correction Quality: To evaluate the effectiveness of the correction process, we

3
compute Dy, == 3 [ X5 — X9 ||2., the Frobenius distance between the original image and its
c=1

noisy

3
noisy version, and D, = > ||X(§rC ) §§2r||‘fp the Frobenius distance between the original image

c=1
and its corrected version. We plot in Figure|3|D0,n and D, as functions of the noise factor € averaged
over the entire test set. Appendix [B.3]presents additional plots showing how reconstruction accuracy
varies with the effective signal-to-noise ratio (SNR) under both Frobenius and max norms.

MSE as a Function of Noise Factor

3000
—&— Original vs Noisy

—b— original vs Corrected
2500

2000

1500

MSE (Frobenius)

1000

500

0.01 0.02 0.03 0.04 0.05
Noise Factor

Figure 3: D, , (blue) and D, (orange), averaged on the test set, as functions of e. Error bars indicate
standard deviations.

Conclusion

The results demonstrate that the proposed correction process effectively mitigates the impact of
noise. The corrected images closely approximate the original images, as shown by both qualitative
(Figure[2) and quantitative (Figure[3) metrics. This methodology generalizes well to real-world data,
underscoring the applicability of our framework beyond synthetic simulations.
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A On the Validity and Relaxation of Assumptions

In the main text, we assume that the noise matrices (E;)7_; have independent entries drawn from a
centered Gaussian distribution with constant variance . This corresponds to a matrix normal dis-
tribution with isotropic row and column covariances, and facilitates clean non-asymptotic analysis.
However, our results can be extended to more general settings under mild additional technical effort.

In some proofs, we extend the analysis to a more general setting in which each E, is drawn indepen-
dently from a matrix normal distribution M./\/nxp((), ¥, 2e) (141147, 20L [1L35]), where X, € R™*™
and ¥, € RP*P capture row-wise and column-wise dependencies in the noise. Imposing the nor-
malization condition ¥, ® ¥, = 021, corresponds to the setting presented in the core of the paper.
Under this condition, the general matrix normal setting is equivalent to the isotropic case presented
in the core paper.

This formulation allows us to present certain proofs, such as Lemma [3.1} within a broader frame-
work.

ORT assumption. Consider the setting where each E; follows a matrix normal distribution
MN G xp(0,%,,5,), where £, @ X, = O’QInp but without the ORT assumption. In this relaxed
setting, Lemma 3.1| remains valid and continues to characterize the distribution of the central quan-

tity C, although the matrix D now exhibits an anisotropic row covariance structure.

Extending the proofs of Theorems [3.6] and [3.3] to this setting is conceptually straightforward, but
technically more involved. One would need to rely on concentration bounds for random matrices
with independent but non-isotropic columns. These are available, for instance, in Section 5.5 of [46].
In this case, collinearities in X' X would naturally appear in the resulting bounds, as illustrated in
results such as Theorem 5.62 of the same reference

Homoskedasticity. Assuming ¥, ® %, = O'QInp, or equivalently that (Et)thl have independent
entries drawn from a centered Gaussian distribution with constant variance o2 plays a role analogous
to the homoskedasticity assumption in classical linear regression. It reflects a setting in which the
signal is entirely explained by the model, and the residuals are unstructured. While restrictive, this
assumption is standard in theoretical analysis and provides a tractable foundation for deriving error
bounds.

Relaxing this assumption to allow for general row-wise dependence while keeping column indepen-
dence, still under the ORT Assumption, would require concentration results for random matrices
with independent but non-identically distributed rows (see Section 5.4 of [46]). In this case, the
noise term in our analysis would be governed by the full tensor-product covariance . ® >,., which
would explicitly appear in the resulting bounds (e.g., Theorem 5.44 in [46]).

Relaxing both assumptions simultaneously presents a more significant challenge. To the best of
our knowledge, current probabilistic tools do not yet offer sharp and tractable results in this fully
general setting. However, this remains a promising direction for future work, potentially requiring
new matrix concentration inequalities tailored to specific structured settings.

In summary, although the core analysis assumes isotropic Gaussian noise for clarity and tractability,
the main techniques extend to more general noise structures under appropriate assumptions and with
access to suitable matrix concentration inequalities.

B Additional Numerical Analyses

This appendix presents complementary numerical studies that assess the robustness of the proposed
estimators and quantify the alignment between empirical convergence rates and the theoretical pre-
dictions.

B.1 Robustness to the Distribution and Normalization of A* and B*

To verify that the simulation results in Section ff] are not sensitive to the amplitude or normalization
of the true parameters, we repeated all experiments with entries of both A* and B* independently
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drawn from a Uniform|0, ¢) distribution with ¢ € {1,2,3,5}, followed by row-wise ¢; normal-
ization of A* to ensure identifiability. Across all values of ¢, the empirical convergence rates and
qualitative dependencies with respect to the parameters (n, m, p, ¢, T') remain unchanged. This con-
firms that the results reported in Figure[I]are not specific to the original choice ¢ = 1.

Theoretical analysis shows that the model is identifiable once one of the parameter matrices is nor-
malized. If instead the normalization were imposed on B*, the algebraic expressions of Proposi-
tion[2.2]and Corollary [2.4) would be modified by exchanging the roles of m (the number of columns
of A*) and ¢ (the number of rows of B*). Consequently, the dependencies on these dimensions in
the non-asymptotic bounds of Theorems [3.3] and [3.6] would also be interchanged. This structural
asymmetry stems from the identifiability constraint itself and highlights that several normalization
choices are possible. The decision to normalize A* is primarily motivated by interpretability—its
nonnegative, row-stochastic structure aligns with the notion of activation or mixing weights—and
by analytical tractability of the resulting expressions.

B.2 Quantitative Comparison Between Empirical and Theoretical Rates

This section reports the quantitative comparison between the empirical convergence slopes of the

estimators (/1, B) and the theoretical predictions derived from the finite-sample analysis. The ob-
jective is to evaluate how the estimation error scales with each model dimension (n,m,p, q) and
with the sample size 7" under three norms: Frobenius, operator, and maximum absolute.

Experimental setup. For each parameter d € {n,m, p, q, T}, we generated independent datasets

while keeping all other quantities fixed, recomputed (121, B ), and measured their reconstruction er-
rors

Brrg(d) = [M = M*|lo, O e{[l-lle 0l llop, | - l[max}-
The dependence of log(Err(d)) on d was then fitted with a linear model
log(Err(d)) = apa + s f(d) + e,
where the function f(d) corresponds to:
logd, d=T (log-logregression),
fld) = ; .
d, d € {n,m,p,q} (linear—log regression).
This distinction reflects that, in the simulations, both axes were represented on logarithmic scale for
T, while for (n,m,p, q) the z-axis was linear and only the y-axis (error) was plotted in log scale.
The fitted slope sfiu) quantifies the empirical rate of variation of the estimation error with respect

to d. For the sample size T, the theoretical prediction is S,(TD) = —%.

Empirical slopes. Table [I] summarizes the fitted slopes for all parameters and norms. Positive
slopes indicate that the error increases with the corresponding dimension, while negative slopes
indicate a decrease.

Table 1: Empirical slopes s&D) of log(Err) vs. log(d) for A and B under the three norms.
A B
Parameter Max Frobenius  Operator Max Frobenius  Operator
+0.003  +0.011 +0.008 —0.011  —0.011 —0.012
+0.007  +40.015 +0.011  +0.018  +0.016 +0.016
—0.012 —0.011 —0.011  +0.002 +0.011 +0.008

—0.006  —0.005 —0.005  +0.008 +0.017 +0.013
—-0.532 —0.496 —-0.474 —-0.579  —0.526 —0.526

NS IS

Findings. Several patterns emerge consistently across all norms:

* Sample-size dependence. For both A and B, the slopes with respect to 7' lie between
—0.58 and —0.47, matching the theoretical prediction s = —%. This confirms that esti-

mation errors decay at the expected 7~'/2 rate.
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* Dimensional dependencies. For A, errors increase with m and decrease with (p,q),
whereas for B the opposite trend holds—errors increase with (m,p, q) but slightly de-
crease with n. This asymmetric pattern is consistent with the theoretical structure of the
r{lodel, where the identifiability constraint on A* leads to mirrored dependencies in Aand
B.

* Norm-specific behavior. The Frobenius norm shows the strongest sensitivity to dimen-
sional changes, reflecting its dependence on all matrix entries; the operator norm shows
a weaker dependence consistent with a (,/p + /q) scaling; and the maximum norm lies
between these two regimes.

* Goodness of fit. The linear relationships between log(Err) and log(d) exhibit high ex-
planatory power for most dimensions, with R? values above 0.9 in the majority of cases,
confirming the robustness of the observed trends.

Plots. Figure {4 illustrates the empirical error curves for all parameters. Each subplot reports the
average reconstruction error (in logarithmic scale) for A and B under the three norms. The first four
panels correspond to variations in the structural dimensions (n, m, p, q), while the bottom panel
shows the dependence on the sample size 7. The trends confirm the fitted slopes in Table [T} errors
decrease approximately linearly on the log scale as T grows, consistent with the 7~/ rate, and
vary smoothly with (n, m, p, ¢) according to the theoretical sign pattern. Notably, B exhibits larger
sensitivity to ¢ and smaller sensitivity to n, while A shows the opposite, reflecting the asymmetric
normalization of A*. Across all panels, the Frobenius norm produces the steepest gradients, the
operator norm the weakest, and the maximum norm lies in between, reproducing the hierarchy
predicted by the theoretical bounds.

Summary. The empirical analysis confirms that the proposed estimators obey the predicted non-
asymptotic scaling laws. The T~'/2 convergence rate holds precisely, and the dependence on
(n,m, p, q) follows the signs and magnitudes expected from the theoretical bounds. These quantita-
tive findings validate that the theoretical error expressions accurately capture the dominant sources
of variation in finite-sample performance.
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Figure 4: Empirical reconstruction errors of A and B versus model dimensions and sample size T',
displayed on a logarithmic scale. Each curve corresponds to a given norm (Frobenius, operator, or

max).

B.3 Reconstruction Error as a Function of Noise Level

To further evaluate robustness to noise, we examined the reconstruction quality of the bilinear esti-
mator under controlled perturbations of A* and B*. For each noise level ¢, we generated perturbed
matrices

A6:I+€ZA7
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B.=1+¢7p,

where Z 4, Zp are Gaussian random matrices with i.i.d. N'(0, 1) entries, followed by row-wise nor-
malization of A, to preserve identifiability. Each perturbed pair (A, B.) was used to transform the
training and test datasets, and the reconstruction was then estimated using the procedure described
in Section 4l




Effective signal-to-noise ratio (SNR). Rather than plotting the reconstruction error directly
against €, we parameterize the x-axis in terms of an effective signal-to-noise ratio (SNR), defined as

Xl
SNRp := 201log; (IIXHX!F> 7
noisy

where X is the original image and X,isy its transformed version. This reparametrization provides a
scale-invariant measure of perturbation strength and directly reflects the degradation of signal energy
in Frobenius norm.

Results. Figure[5|reports the reconstruction error as a function of the effective SNR for the Frobe-
nius distance, while Figure [§] shows the analogous result for the element-wise maximum norm. In
both cases, the distance between the original and corrected images (orange) is consistently below
that between the original and noisy images (blue), confirming that the estimator effectively compen-
sates for multiplicative perturbations in A* and B*. The monotonic growth of both curves as SNR
decreases quantifies the degradation rate, with the Frobenius error emphasizing global reconstruc-
tion quality and the max-norm capturing local, element-wise discrepancies.

Reconstruction Error vs Effective SNR (Frobenius)

60 —#— original vs Noisy (Fro)
~~ original vs Corrected (Fro)

MSE (Frobenius)

Effective SNRr (dB)

Figure 5: Reconstruction error versus effective SNR (Frobenius norm). Lower distances indicate
improved correction quality. The x-axis is expressed in dB following the definition SNRr =
201og;o (| X[[6 /[ X = Xnoisy[|r)-

Reconstruction Error vs Effective SNR (Max Norm)

—4— Original vs Noisy (Max)
~é~ Original vs Corrected (Max)

MSE (max absolute)

15 10 5 0 -5
Effective SNR (dB) [Frobenius-based definition]

Figure 6: Reconstruction error versus effective SNR (element-wise maximum norm). This comple-
mentary metric highlights the preservation of fine-scale details under increasing noise.

Overall, the analysis confirms that the proposed correction procedure maintains stable performance
across a broad range of noise intensities and that the reconstructed images preserve both global and
local structure in accordance with the theoretical robustness guarantees.
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C Proofs

C.1 Proofs of Section 2]

We first analyze a simplified case of (2)) where the design matrices (X;)]_; are the elements of the
canonical basis of R”*4, In this setup we are given T' = mq observations (X, Mt)g;l where each
predictor X is a matrix with all entries set to zero except for a single entry equal to one. This setting
is well studied in the vector case, typically referred to as a Sequence Model. Such models have been
widely explored in the literature [44} [26]. By focusing on this simple scenario, we aim to uncover

insights that can extend to more complex cases.

Formally, for (k,1) € [m] x [q], let M4, ;) corresponds to the basis element E;, ;), where E(y, ;) is
the matrix with all entries equal to zero except for a one in the k-th row and /-th column. The model
can then be expressed as:

M1y = A*Eqg.yB”, (N

which corresponds to () for t = k + (I — 1)m. The matrix E; ;y acts as a selector, isolating the
effect of the k-th row of A* and the [-th row of B*.

Lemma C.1. In the model (1), the parameters A* and B* can be explicitly recovered from the
observed matrices My, 1y as follows:

m

V(l,7) € lql x [p] : [B*]i; = Z[M(k,l)]ija Vi € [n],
=1
V(i k) € [n] x [m] : [A%]ikx = []\[451]123}”7

forany (1, j) € [q] % [p] such that [B*];; # 0.

Proof of Lemma From the model (7)), we have
M1y = A" Eqey B

where E ;) is the matrix with a single entry of 1 at the (k,[)-th position and zeros elsewhere.
Expanding this relationship element-wise gives:

[(Meplig = [A7lik - [B*]iz, (i, 4, k1) € [n] x [p] x [m] x [g].

Step 1: Recovery of [B*];;.
Summing over k € [m)] for fixed [, j, i, we observe that:

m m

D [Munlis =Y (A% - By

k=1 k=1
Since the rows of A* have unit L;-norm, it follows that:

m

[B*];j = Y [Mrpij, ¥(1,4,4) € q] x [p] x [n].

Step 2: Recovery of [A*];y.
From the model equation, for each (k, ), we isolate [A*];;, by dividing [M(;, ;y];; by [B*]1;, provided
that [B*];; # 0:
M, i
[A*]i = [[gi’l)]], V(i,k) € [n] x [m], where [B*];; # 0.
lj

O

Lemma C.2. In the model [2), where the design matrices X form a generating family of R™*9,
the unobserved matrix C € R™1*"P satisfies the following equality:

C=(X"X)" XM,
Here, M := (vec(My), . .., vec(Mr)) " € RT*"™ and X := (vec(X),...,vec(Xr))" € RTxm4
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Proof of Lemma|[C.2] We notice that M = XC by construction, which concludes the proof. O

Proof of Proposition[2.2] From Lemma|[C.2} the unobserved matrix C can be expressed as:
C=(X"X)" X"M.

This means that C can be computed directly from the observations (Xy, M;):e[r), provided that

XTX is invertible, which is ensured by the assumption that the design matrices (X;)7_, form a
generating family of R™*4,

Step 1: Relating C to A* and B*. N
By the definition of C, each entry [C] E;vjl% corresponds to:
(€158 = (A7 - (B,

forall i € [n], k € [m],l € [q], and j € [p]. This bilinear structure allows us to recover A* and B*
separately by exploiting their roles in this product.

Step 2: Recovering B*. N
To isolate [B*];;, we sum [C] 8@% over all k € [m] for a fixed [, 7, i. Specifically:
€167 =37 (A - [Bg) -

1 k=1

NE

k

Since the rows of A* satisfy the Ly -norm constraint (i.e., > -, [A*];x = 1), the summation simpli-
fies to:

> [CG = B

k=1
This establishes the second equation in the proposition:

m

By = > [Tl -

Step 3: Recovering A*.
To isolate [A*];x, we use the bilinear relationship:

(€150 = (A" - [B]yy-

For a fixed 4, k, [, j, we can solve for [A*];, provided that [B*];; # 0:

(4,9)
[A™ ik = [C](k’l).
[B*]i
This establishes the first equation in the proposition:
I 1 :
(A" = [Bi];% for [B*]i; # 0.
J

O

Proof of Corollary[2.4] The result on B* follows immediately from Proposition 2.2} To prove
the result on A*, we need to prove that for any n € N*, if there exist (a1,...,a,) € R™ and

(B1s- -+ Bn) € R™ such that:
(6751 Oy
’yn = = e = -,
61 Bn

then it follows that:




Specifically, since the entries of A* can be expressed as different ratios, all being equal, applying
this result to the equations satisfied by A* in Proposition [2.2] completes the proof.

We prove this result by induction on n.
Initially at n = 1 the result is trivially true.

Assume the statement holds at step n, i.e., if

e O
n /81 ﬁn )
then:
n
>
i=1
7771 = n :
> B
j=1
‘We now prove that the statement holds at step n + 1.
Suppose:
~ o _ Qpyr
] i= o == .
" 61 ﬁn+1
By the definition of v, and the assumption of step n being true, we can write:
n
>
i=1 +1
: r Tn+1 and = = Yn+1
. ﬂn+1
> Bi
j=1
This allows to write:
n n a
n+1
Y= (L)
i=1 j=1 +1

Hence we deduce:

n n
> it (Z@>Eﬁ+%ﬂ

i=1 - Jj=1
> B+ Bntr > B+ Bnt1
j=1 j=1
il ﬂ,-)
=
+1
= an+1 ™y ﬁn+1 .
E Bj + 6’n+1
j=1
Finally multiplying the numerator by 3,,+1 and dividing v, 1 by the same factor provides:
D i+
i=1 _ Qpy1
D T Bae MH
> B+ Bt n
j=1
Thus, the statement holds at step n + 1. O

C.2 Proofs of Section 3]
Proof of Lemma @ We first recall that, by construction, we have:

C=X"X)"' XM+ (X'X) ' X'E=C+D.
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Next we prove the following, which will conclude:
D~ Mquan (quxnp7 (XTX)il 72(: & Er) .

First we recall that the noise matrices (F;)7_, are assumed to be independent and follow the same
matrix normal distribution, namely MN, » Onxp, Er, Xe). Hence by definition of the matrix
normal distribution:

vec(Er) ' Ny (0pp, Se @ 51) .
This leads to derive the distribution of the matrix E € R”*"P defined in (??) as follows:

E ~ MNTan (0T><np7]T><T7 Ec & Er) .

Finally, the matrix (XTX)_l XT being of full rank mq and (XTX)_l being symmetric, by def-
inition of the matrix D € R™%*™ and by property of affine transformations of matrix gaussian
distributions, we conclude that

D~ Mquan (OTan7 (XTX)71 726 & Er) .

O

Proof of Theorem[3.3] We start by deriving the finite-sampled inequalities on B. From Lemma

P Ec Zr . .
and Assumption [3.2) we deduce that vec(C) ~ Ny gnp (vec((C), ?i) As mentioned in the

introduction ¥, ® ¥, = 0?1, np Which ensures that all entries of vec(@) are independent and follow
the same Gaussian distribution. Hence for all (k, 1,4, j) € [m] x [q] x [n] x [p] we have C(y 1) (i j) —

y 2
Cr) (i) B Ar <0, ;) Using the results from Proposition and (3) lead to, for all (/,5) €
[a] > [];
nT
Mill’s inequality, Theorem [E.1] ensures that for all (, j) € [q] x [p], for any € > 0,

P 811> = 2y e (5

The first inequality is then deduced by using a union bound.

) . 2
[Blyy - [By; "~ N <0’ ma) ' (8)

The second inequality is immediately derived from the concentration of extreme singular values of
Gaussian matrices with independent entries, see Corollary 5.35 in [46].

. a P, 2
For the third inequality, we first note that | B — B*||%. = > ) ( [B]i; — [B*] lj) follows a m;
I=1j=1 n
X% (pq) distribution. Then, Lemma 1 from [31]] ensures that a random variable Z following a x?(pq)
distribution satisfies, for any ¢ > 0:

P(Z > pq + 24/pge + 2¢) < exp(—e).

Hence we deduce that

m02

T (0 2V 20 ) < expl—o).

P(||B—-B*|% >
(18- 51>

We notice that, for any € > 0, the following inequality holds:

2 mo?
2 2¢) < 2
7 (P + 2¢/pge + 2€) < — o (2pg + 3¢)
It leads to:
® * (|2 m02
P{[B—- Bz = T (2pg + 3¢) | < exp(—e).
The stated result follows by a change of variable. O
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Proof of Lemma[33] Let us fix (i,k) € [n] x [m]. Using the definitions of A and A from (@) and

(@), respectively, we find that [A];;, = [A]; if and only if [A]), € [0, 1]. Hence [A];, = [A];, if and
only if the event A holds, where:

a A6 & 0
A =0<330(E] < DONTIBI ¢
j=11=1 ’ j=11=1
and
p q p .
A=Y <Y (e
j=11=1 j=11=1 (k1)

Using Fréchet inequalities stated in Theorem [E.2] we get:
PA] > max(P[A,], P[A_]).

Under Assumption [3.2] Lemma[3.T] gives:

N Ll
~Y * 9
k ,0) (’V k,i)? qu> ) ( )
where: b g

X 1 7 (i.g)

Yo = == > [€]

pq == (k1)

and

2
Bw/v( ‘””) (10)
where:

4 1 Pt ) . 1 I,
:]TqZZ[B]U and f ::EZZ[B lij -

j=11=1 j=11=1

By construction, ’AY(k,i) and BAZ are independent. In addition, as 72‘,6 o = [A*];1 8%, Assumption
ensures that their expected values satisfy:

0 <Y(p,iy <B"
Using the symmetry of the Gaussian distribution, we deduce:
PlAy] >P[A_] and P[A] >P[A4].

The event A holds if By and B; hold simultaneously, where:

Bi:={0<Awn}t, Bo:= {’?(k,i) < 5:}
Using Fréchet inequalities, stated in Theorem [E.2}
PlAL] > P[Bi] +P[By] — 1.
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We now bound from above the probability of the events 3; and B, separately. For B, we note:
By = {’7(*!@,7;) > ’YEkk,i) - ’3’(1671')} :

The complementary event 3 is:
B, = {V?k,i) < "Y?k,z‘) - ’AY(kvi)} :

As we have 7(j, ;) > 0, using () and Mill’s inequality stated in TheoremlE;flprovides:

P [B:] g Tr <7€kvi))2

S === "€Xp
Vr.iyV2PaT™ 202

For By we note that:
By = {8 = i) 2 (8" = 1) — (B — )} -
The complementary event B, is:

Bo = {8~y < (8" ~ e — (B~ 00 |-

As we have 8* — ( ;> 0, using independence of §(,;) and f3;. results from (@), (TO) and Mill’s
inequality ensures:

Toq (8 )

o1+ -Trexp | — 557

P[B:] <
5 (B* = Y(x,iy)V2paTT
Finally, using: ~ ~
P[A:]>1-P[B)] - P[B],
we deduce the result. O

Proof of Theorem[3.6] Let us fix (i, k) € [n] x [m]. We work on the event A := {[A]ik = [/l]lk}
Using (@), we get:

L4 ZZ[B*]U -2 > Clny -

By definition of 8* and using the reverse triangle’s inequality we get:

|31 - ‘[fﬂik — [A"]ik| < ’ﬁ(k,i) — VFk,i) + ‘[[l]ik Bi — B*|,
where: ) o
A 1 =100 1 1 (6.9)
= g o2 [Pl dwa =5, 52 [€]
Pq =04 Ly Pq == (k1)
and
1 2
Vi) = 54 2D [Clui -
j=11=1



Under Assumption[3.2] (9) and (I0) hold. Using (9) and Mill’s inequality stated in Theorem [E-T] we
get for any € > 0:

: \ oV2 pgT
P H’Y(k,z‘) = Vi) exp | — :

> <
1= e/ pgTm 202

Using (10) and Mill’s inequality, we find for any € > 0:

2 2pqT7
]P’[ >e}<0mexp( € pd n),

b= ~ ev/pqTnm  2mo?

where 1 := (n — 1).

Finally, on the event A, we have [/I]Zk < 1. We then use the result from Lemma , Fréchet
inequality stated in Theorem [E.2] and we conclude with a union bound. O

Proof of Theorem[3.7} For all (I, j) € [g] x [p], (B) ensures that:

[Blij = [B*ij + a5

. 2
Ay

where:

nT’
From the results in Appendix [D} we obtain that the event .4 holds with probability at least 1 — &

where A is the event
2m 2
i el <o/ o ( log(2pq) + 4/ log <5>> :

J€lp]

‘We recall the definition of the threshold:

Ti= a@( log(2pq) + 4/ log (?)) )

On the event A, we observe the following:
« If |[B];j| > 2, then:
[[B*]15] > |[Blis] — leij| > 7.

« If |[B];;| < 27, then:
(B 1| < [[Blij| + lei;| < 3.

From these observations, we deduce:
‘[B]lj —[B*]y;
[[B*]i51,

. if |[B]y] > 2,
if |[B];] < 27

‘[BS]U - [B*hj‘ = {

Rewriting this equality with indicator functions, we have:
=Jes |1 (I[Bly] > 27)

1Byl (|(Bly] <2r).

1851, — [B"),

This leads to the bound:

B = [B'l| <rL(1B)y] > 7).
+ 371 (|[B*]i;] < 37).
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Finally, we conclude:
|[B5); = [B"]15] < 4min (7, |[B"]) -

By definition of the Frobenius norm, we obtain:

N 2
HBS -5 <16)B7, 7

This proves the first point.
For the second point, on the event A and under the stated assumption, we observe the following:
e If |[B*];;| # 0, then |[B*];;| > 37. This provides the bound:
Bl = |[B")ij + €3] > 2.
Hence |[B®];;| # 0.
« If |[B®];;| # 0, then |[B];;| > 27. This provides the bound:
B*is| = |[Blij| = lew| = 7.

Hence |[B*];;] # 0.

Proof of Theorem[3.8] For all (i, k) € [n] x [m], (9) ensures that:
Fir = [v"lik + €k,

where:
and

Proposition [2.2] ensures that
Yiw = [A%a 5"

From the results in Appendix [D} we obtain that the event A holds with probability at least 1 — &

where A is the event
max |e;x| < oy / 2 log(2nm) + 4 /lo (2>
X |€ik| <oy —=— Z .
i€[n] k Tpq & & 1)

ke[m]

‘We recall the definition of the threshold:

T = U\/Tqu ( log(2nm) + 4 /log <§>> .

On the event .4, we observe the following:
o If |9k | > 27, then:
ikl = ikl = leix] > 7.
Thus we have [A*];;, # 0 and because [A*];; is bounded from above by 1 we also have
pr=r.

o If |43x] < 27, then:
Virel < 1Firl + leir| < 3.
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From these observations, we deduce:

1450 - [A%)ae| =

{([A]m — [Aa],if [l > 2,
ATk if [Jix] < 27,

Rewriting this with indicator functions and using the previously stated implications, we have:

[A%]i — [A"]ik

< [l = [4%1ae] L (el > 7).
1Al 2 (] < 37)

Multiplying all terms by |5*| leads to the bound:
1671 - 11415 = [A"]i] <1687] [ ALk — [ATare| L (175l > 7) 4
+ [kl L (17| < 37).

Using the equality
1871 | (A — [A]in
and the triangle inequality leads to
1871 1A% — [A"]axl <M + MG (1] > 7).
+ ik (k| < 37),

= |(8" = B)[Alo + BlALux — 5'14")an

where

MY =18 = B |[Ali

and

MY = |B[Aly, — B*[A*)ik

Moreover we notice that @
M = Fik — Vil -
Equations (9) and (I0), together with Mill’s inequality, stated in Theorem[E.T] provide for any ¢ > 0:

. V2 Tpqt?
P{ﬁ*—/)">t}§&exp _—pa
tv/npqT T 202m
and 3 9
. ovV?2 Tpqt
Py — Akl > t] < ————= — .
[|72k Pyk‘ ] = tmexp< 20_2 )

Finally, we get for any ¢ € (0, 1) with probability at least 1 — ¢:
18°] - 1A%, — [A%]in] <251 (A3 # 0) 1 (17| > 7)
Fvinl 1 (|yi] < 37).
Dividing by |3*|~! and using that v}, = [A*];x3* ensures that with probability at least 1 — 4:
1A%k — [ATin] <2¢6]87| 7' L (A5 #0) L (1877 < 771)
+ [A*]i 1 ([A%)a < 3718771 .
Finally we get with probability at least 1 — 4:
1A%, = [ATa| <IB"|7"1 (A7, # 0) (2t5 + 37).
By definition of the Frobenius norm, we obtain with probability at least 1 — 4:

. 2
|45 — || <1872 147l (2t + 37)°

For the second point, on the event .4 and under the stated assumptions, we observe the following:
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o If |[[A*];x| # O, then |[A*];z| > 37. Using the equality ;. = 8*[A*];x and the assumption
on the bound satisfied by 5* provide:

Fik| = |vik + €| > 38" —7 > 0.
Hence |[AS);1| # 0.

o If |[A];x| # 0, then |4, > 27. This provides the bound:
Vil = gl — el > 7
Hence |7};| # 0 and thus [A*];, # 0.

D Tails of the Maximum of Absolute Gaussian Variables

In this appendix, adapted from [45], we analyze the upper and lower tails of the random variable
maxi<;<n | X;|, where Xy, ..., X, are independent and identically distributed (i.i.d.) random vari-
ables following a standard normal distribution A'(0,1). Specifically, we aim to establish bounds
for the upper and lower tails of this random variable with high probability, which is crucial for
understanding the behavior of maxima in Gaussian settings.

We begin by stating the main result.

Theorem D.1. Fix§ € (0,1), and let X1, ..., X, be i.i.d. N'(0,1). With probability at least 1 — 4,
7r
- _ < )
/5 VIou T2~ TogTog(278) < oo X,
max 1X;| < V2 (\/log(Qn) + \/10g(2/5)) :

The asymmetry in the tails arises from the fact that max; <;<y, | X;| is bounded below by zero almost
surely, it is not bounded above by any fixed constant. To establish the theorem, we separately analyze
the upper and lower tails and combine these results with a union bound.

D.1 Upper Tail

The upper tail is analyzed using concentration results for the suprema of Gaussian processes. The
key tool is Talagrand’s concentration inequality, Lemma 2.10.6 in [42], stated in a simpler version
as follows:

Lemma D.2. Consider T C R™ and let g ~ N(0,1). Then, for any u > 0,

2
P {sup<t,g> _E [sup<t,g>] 5 u} < exp {“} ,
teT teT 2s

where s := sup,cp E[(t, g)?]"/2.

To apply this inequality, we consider " = {ey, ..., e,, —€1,. .., —e, }, Where e; is the i-th canoni-
cal basis vector in R™. For g ~ N(0, I), this gives

ax [g;], and E[{t,9)’] = E[g]] = 1.
<i<n

sup(t,g) =
sup(t, 9) = 1

Applying Lemma|D.2] we obtain, for any 6 > 0:

, ) <
P (1rgz_a<xn|Xl >E LIEKXTLXA] + 210g(1/5)> <.

Thus, with probability at least 1 — §:

1<i<n

max | X;| <E {max |Xi|} + v/2log(1/9). (11)
1<i<n
The next step is to bound E [max;<;<,|X;|] from above.
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D.2 Expected Maximum of Gaussian Variables

We now bound E [max;<;<n|X;|]-

Proposition D.3. Let Z1,...,Z, be n random variables (not necessarily independent) with
marginal distribution N'(0,1). Then,

E {max Zi} < v/2logn.

1<i<n
Proof. Fix any A > 0. Observe that

E I:e)\maxlgign Zi] < ZE [e/\Zi] — ne)\2/2.

Taking the logarithm of both sides,

22
logE [e)\mamgign Zz'] <logn + ?

Applying Jensen’s inequality,
A Z A?
| < maxi<i<n Zi| < .
AE Lrg%l ZZ} < logE [e | <logn + 5

Dividing through by A,

+ .

E[max Z; 3 5

1<i<n

}Slogn A

Optimizing by setting A = /2 log n, we conclude

E Lrgag( Zi} < v/2logn.

O
For X1, ..., X,, i.i.d. following a standard normal distribution A/(0, 1), considering the 2n variables
(X1,..., X, —X1,...,—X,,), we have:
E Lrg;zx |X1|} < +/2log(2n).

Substituting this into (T1])) completes the proof of the upper tail.

D.3 Lower Bound

We now analyze the lower tail of max;<;<,|X;|. Fix a positive 7 > 0. Then,
Pr{ max | X;| < 7'} =Pr(|Xq| <7, | X < 7).
1<i<n
Using the independence of X1, ..., X,,, we get:
i < = i<
Pr {121@&5)(an| < T} l:IlPr(|XZ\ <7)

The Gauss error function, defined as

allows then to write:



The inequality erf(z)? < 1 — e~4e°/7

n/2
Pr{ max | X;| < 7'} < (1 — e_%Tz)

1<i<n

, which holds for all z > 0, provides:

Finally, the inequality 1 — z < e~*, which holds for all x € R ensures:

Pr{ max | X;| < T} < exp (—ge_%Tz) .

1<i<n

To derive the lower bound, set
exp (——ne z72) =4
2 ’

and solve for 7. We find that with probability at least 1 — 9,

max | X;| > \/ g log(n/2) — gloglog(l/é).

1<i<n

E Probability bounds and inequalities
E.1 Mill’s inequality

Theorem E.1 (Mill’s Inequality). Let X be a Gaussian random variable with mean p and variance
o2, Then, for any t > 0, the following inequality holds:

o t2
PX —p>t) < e 202,
(X —p>t)< T
By symmetry, we also have:
g t2
P(X —pu<—t)< e 202,
( H )< 21
Proof. A proof of this theorem can be found in [37]. O

E.2 Fréchet inequalities

Theorem E.2 (Fréchet inequalities). Ler A and B be two events. The probability of their intersection
satisfies:
max(0,P(A) + P(B) — 1) <P(AN B) < min(P(A),P(B)).

The probability of their union satisfies:
max(P(A4),P(B)) < P(AU B) < min(1,P(A) + P(B)).
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Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

» All assumptions should be clearly stated or referenced in the statement of any theo-
rems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides a detailed description of the experimental setup, including
the data generation process, model parameters, and evaluation metrics used in all simula-
tions. Each figure in the results section is directly tied to a clearly defined experimental
protocol. The code is included in the supplementary material and all information necessary
to reproduce the results relevant to the main claims and conclusions is fully disclosed. The
experiments serve to validate the theoretical findings, and no critical step is omitted in their
description.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.
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* While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The full implementation is provided as a Jupyter notebook in the supple-
mentary material, including all code and data needed to reproduce the main experimental
results. The notebook contains clear documentation and step-by-step instructions, ensuring
that the simulations and figures presented in the paper can be faithfully reproduced. This
supports the transparency and reproducibility of the empirical claims made in the work.
Seehttps://github.com/nayelbettache/BMLR.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: For the synthetic experiments, all parameters, such as sample size, matrix
dimensions, noise levels, and distributional assumptions, are fully specified. The estimators
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are closed-form and do not involve optimization or hyperparameter tuning, so no additional
training procedure is required. For the real-data experiments on CIFAR-10, the paper uses
the standard train/test split provided by the dataset’s official loader, which is explicitly
mentioned in the text. No additional tuning or fine-tuning is performed, and all relevant
details are disclosed to ensure full understanding of the results.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of
detail that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: For the simulated data, the paper evaluates performance across a wide range
of parameter settings (e.g., sample size, matrix dimensions, noise levels), which helps mit-
igate the effects of randomness and ensures that the empirical results robustly reflect the
theoretical predictions. This systematic variation serves as a form of sensitivity analysis.
For the real-world CIFAR-10 experiments, the paper explicitly reports error bars to convey
the variability of the estimators and support the statistical significance of the results.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* Itis OK to report 1-sigma error bars, but one should state it. The authors should prefer-
ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The experiments consist primarily of synthetic simulations and closed-form
estimators, which are computationally lightweight and do not require specialized hardware.
No GPU is needed, and all experiments can be run on a standard laptop or CPU-based ma-
chine. While exact runtimes are not reported, the simplicity and efficiency of the estimators
ensure that the results are reproducible without significant computational resources.

Guidelines:
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9.

10.

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The research adheres fully to the NeurIPS Code of Ethics. The work is the-
oretical and empirical in nature, with experiments conducted on synthetic data and the
publicly available CIFAR-10 dataset. No personal, sensitive, or proprietary data is used.
All methods are described transparently, reproducibility is supported through open supple-
mentary materials, and no foreseeable negative societal impacts or misuse of the research
have been identified.

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

¢ The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: No dedicated section is included in the paper to discuss societal impacts.
However, the work is theoretical in nature and focuses on a methodological contribution
to matrix-valued regression. As such, it does not directly target any high-risk applica-
tion domains. While the methods may have positive downstream impact in areas such as
spatiotemporal modeling or image analysis, no immediate or foreseeable negative societal
impacts are associated with the research.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.
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13.

* If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not involve the release of high-risk models or datasets. It fo-
cuses on theoretical analysis and simulation-based evaluation, along with experiments on
the publicly available CIFAR-10 dataset. No pretrained models, sensitive data, or genera-
tive systems are used.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All external assets used in the paper are publicly available and properly cred-
ited. The CIFAR-10 dataset is cited appropriately and used in accordance with its terms of
use. Any third-party libraries or tools used for simulations or experiments (e.g., NumPy,
TensorFlow, scikit-learn) follow open-source licenses and are acknowledged either directly

in the text or within the supplementary notebook. No proprietary or restricted-use resources
are employed.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets
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14.

15.

Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [Yes]

Justification: The paper introduces new simulation code and experiments, which are pro-
vided in a well-documented Jupyter notebook included in the supplementary material. The
code includes clear instructions, parameter settings, and explanations necessary to repro-
duce the results. No new datasets or models involving human subjects or requiring consent
are introduced. All assets are anonymized to comply with the double-blind review policy.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing or research with human subjects.
All experiments are conducted on synthetic data and the publicly available CIFAR-10
dataset, which does not contain personally identifiable information or require participant
interaction.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

* Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve human subjects or study participants. All ex-
periments are conducted using synthetic data or the CIFAR-10 dataset, which is publicly
available and does not involve any human interaction or identifiable information. There-
fore, no IRB approval was required.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

* Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: The core methods, theoretical analysis, and experimental components of the
paper do not involve the use of large language models (LLMs) in any important, original,

or non-standard way. Any use of LLMs was limited to editing support and does not affect
the scientific contributions of the work.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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