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Abstract

LLM-as-a-judge is increasingly dominant as a framework for scalable evaluation of1

artificial intelligence (AI) systems and agents. The technique involves prompting2

a large language model (LLM) to assess the capabilities of another AI model.3

Although the system reduces human annotation requirements, the need for human4

oversight is still required to gauge the performance of the judge LLM. However,5

human annotations can be expensive to obtain, particularly in domains that require6

expert annotations, such as clinical text generation. Thus, the problem drives the7

questions: (1) Can we bound the number of human annotations necessary to gauge8

the performance of our judge LLM? and (2) Can we curate the subset of data for9

human annotation in a principled way? In this paper, we answer (1) through a10

Chernoff bound for intraclass correlation coefficient (ICC), the primary metric for11

measuring LLM-as-judge performance relative to human labels. To explore (2),12

we propose 7 sampling methods and demonstrate the utility of these algorithms13

relative to random sampling in simulated and real-world data. We show tighter14

bounds for sampling requirements and up to a 41% relative improvement in ICC15

precision compared to random baselines.16

1 Introduction17

As large language models (LLMs) increase in prevalence for various tasks, particularly in text18

generation, the task of scalable evaluation of LLM output increases in importance [Thirunavukarasu19

et al., 2023, Meyer et al., 2023, Yuan et al., 2021, Celikyilmaz et al., 2021]. The LLM-as-a-judge20

framework – in which an LLM evaluates another artificial intelligence (AI) agent – is becoming21

increasingly accepted as an effective and scalable method for evaluation [Gu et al., 2025]. As such,22

considerable attention has been devoted to the assessment of judge LLMs, including human-labeled23

benchmarks [Dubois et al., 2024], and reference-free evaluations [Tan et al., 2025].24

In the case of text generation by a subject LLM 1, we consider human-annotated scores to be25

gold-standard. Previous research constructing evaluation frameworks and benchmarks highlight the26

challenges of costly and slow human evaluation pipelines [Liang et al., 2022, Kiela et al., 2021].27

These efforts further motivate the need for scalable alternatives such as LLM-as-a-judge, where28

annotation impacts the practicality of evaluation at scale. To reduce unnecessary annotation collection29

and human labor, we consider the following question in our paper: can we derive a minimum number30

of annotations required such that we are guaranteed with high probability an accurate measure of31

performance of our judge LLM?32

Different metrics have been proposed to measure performance of judge LLMs relative to human33

labels, largely originating from classic statistics literature, such as intra-class correlation coefficient34

1We refer to the LLM to be evaluated as the subject LLM.
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(ICC), Cohen’s kappa, Cronbach’s alpha, etc. [Shrout and Fleiss, 1979, Cohen, 1960, Cronbach,35

1951]. Due to its relation to Pearson’s correlation coefficient, and previous work [Salnikov, 2024],36

we utilize ICC as the primary metric in our theoretical and experimental results.37

To address our initial question, we leverage the classic Chernoff bound technique [Chernoff, 1952] on38

intra-class correlation coefficient between LLM-generated and human annotations. Thus, we provide39

a simple concentration inequality for intra-class correlation under some limiting assumptions and40

approximations. With the concentration inequality, we derive an approximate lower bound on the41

number of annotations necessary to guarantee with high probability that the measured (sample) ICC42

is ε-close to the population ICC (see Section 2.1).43

With a bound on sample size for i.i.d. samples, we extend the question and ask if we can reduce the44

required number of samples further if we curate a subset of data for human annotation in a principled45

manner. To interrogate this empirically, we formulate the problem of curating a subset of data for46

human annotation as an optimization problem. We assume a fully LLM-annotated dataset and assume47

in-distribution data (out-of-distribution generalization is beyond our scope). With this foundation,48

we build on previous methods in statistical sampling, clustering, and active learning [Cochran, 1977,49

Lloyd, 1982, Settles and Craven, 2008], and extend them to the emerging challenge of scalable50

LLM-as-a-judge evaluation. We propose 7 sampling methods (in addition to random sampling51

as a baseline) for subset selection, and study how these strategies impact reliability estimates and52

annotation efficiency.53

We evaluate each of our provided algorithms on simulation data, in which we demonstrate the54

significant utility of 4 sampling methods over random sampling. In real-world text datasets, we55

find that all proposed sampling methods outperform random selection under extreme annotation56

constraints, with the best strategy outperforming random selection by a relative improvement of57

41%.58

2 Related Work59

Large language models (LLMs) are increasingly used as automatic evaluators of other AI systems,60

offering a scalable alternative to costly human assessment. Early studies benchmarked LLM judg-61

ments against human annotations in tasks such as summarization, dialogue, and reasoning [Gilardi62

et al., 2023, Zheng et al., 2023], while more recent frameworks like AlpacaEval 2.0 and Arena-Hard63

integrate human and LLM judgments or introduce more challenging comparative tasks [Li et al.,64

2023, 2024]. These works highlight the importance of measuring judge reliability, often using metrics65

such as accuracy, agreement, or correlation with human preferences; intraclass correlation coefficient66

(ICC) has emerged as a standard for evaluating continuous or ordinal judgments [Bedi et al., 2025].67

The statistical foundation for ICC estimation and sample size planning is well-established [Fisher,68

1925, Bonett, 2002, Zou, 2012], motivating the use of concentration inequalities such as Chernoff69

bounds to provide formal guarantees on judge reliability. In parallel, reducing reliance on human70

labels has been extensively studied in active learning and sample-efficient annotation, where the goal71

is to identify the most informative examples [Settles, 2009, Wei et al., 2022]. Strategies such as72

uncertainty sampling [Roy and McCallum, 2001], core-set selection [Sener and Savarese, 2018], and73

diversity-driven sampling [Brinker, 2003] demonstrate that principled subset selection can achieve74

reliable evaluation with fewer annotations. These directions connect naturally to deeper statistical75

and machine learning traditions: classical sampling theory provides foundations for stratified and76

variance-weighted designs [Cochran, 1977, Fedorov, 1972], while clustering [Lloyd, 1982] and77

density-based approaches [Silverman, 1986] ensure representativeness in diverse datasets. Active78

learning has likewise explored uncertainty- and density-driven criteria [Nguyen and Smeulders, 2004,79

Settles and Craven, 2008], which we adapt to LLM-as-a-judge pipelines to design resource-aware80

evaluation strategies that balance annotation cost with statistical reliability.81

2.1 Theoretical Foundations82

Here, we derive a simple and loose concentration inequality for the intra-class correlation coef-83

ficient (ICC) with some limiting assumptions and approximations. The expression for ICC was84

originally proposed by Fisher [1925], as an extension of Pearson’s correlation coefficient, but since85
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has been revised under the random effects model and several other formulas have been proposed (see86

Appendix A.1 for definitions, and correct formula).87

Given annotation distributions, H and G, for human and LLM-generated, respectively we assume a88

bivariate normal joint distribution, such that Hi, Gi ∼ N (µ,Σ) independently and identically dis-89

tributed (i.i.d.), and i ∈ {1, . . . , n}, where n number of samples. Denote the population ICC between90

H and G as ρ and the observed (sample) ICC at n samples, ρ̂n. Fisher [1925] showed that under91

certain assumptions, the distribution of ρ̂n approaches Gaussian asymptotically (see Appendix A.1.292

for relevant parameters). We therefore obtain the following lemma (see Appendix A.1.2 for proof93

and necessary assumptions).94

Lemma 1 (Chernoff bound for approximate ICC) Given ε, δ > 0, under critical assumptions on95

n and ρ,96

Pr[|ρ̂n − ρ| ≥ ε] ≲ 2 exp

(
− (n− 1)ε2

2(1− ρ2)2

)
Therefore, with probability 1− δ, the sample and population ICC are guaranteed to be ε-close if97

n ≳ 1 +
2(1− ρ2)2

ε2
log

(
2

δ

)

3 Methods98

3.1 Problem Formulation99

We study the problem of evaluating LLM judges under limited annotation budgets. Let N =100

{1, . . . , n} denote the set of items, with gold labels H = {hi} from humans and inexpensive labels101

G = {gi} from an LLM judge. Reliability is measured using the Intraclass Correlation Coefficient102

(ICC(3,k)), which captures absolute agreement.103

Given a budget z < n, we seek a subset S∗ ⊆ N of size z such that the agreement computed on104

(HS , GS) closely approximates the agreement on (H,G):105

S∗ = arg min
|S|=z

|I(HS , GS)− I(H,G)| .

3.2 Sampling Methods106

We compare eight strategies for selecting S∗:107

• Random: Uniform baseline.108

• Stratified: Quantile-based partitioning of G.109

• Disagreement: Prioritizes items where multiple LLM judges diverge most.110

• Hybrid: Combines stratified and disagreement sampling.111

• Active: Greedy selection maximizing coverage and diversity.112

• Cluster-based: K-means centroids in cheap rating space.113

• Variance-weighted: Maximizes variance and range coverage to preserve ICC sensitivity.114

• Density-based: Balances common and rare cases using kernel density estimates.115

Formal definitions and derivations of each sampling strategy are provided in Appendix A.2. Additional116

information for judge model parameters is given in Appendix E.117

4 Results118

4.1 Simulation Data119
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Figure 1: Difference between true ICC and pre-
dicted ICC by sampling method for Gaussian-
distributed data scores.

We simulate ICC estimation under a 10% bud-120

get (z = 30 of N = 300 items) with a true121

ICC of 0.71, using Gaussian-distributed syn-122

thetic data. Figure 1 shows the average er-123

ror across eight selection strategies. Several124

methods outperform random sampling, with ac-125

tive, variance-weighted, cluster, and strati-126

fied selection yielding the most accurate and127

stable ICC estimates. Confidence intervals are128

more narrow for these methods as compared to129

random selection, which can be found in Ap-130

pendix C. Results are also robust across varia-131

tions in dataset size, budget ratio, and true ICC132

values, as detailed in Appendix D.133

4.2 Real-World Data134

We next evaluate on three real-world datasets:135

MSLR [Wang et al., 2023], HANNAStories [Chhun et al., 2024], and SummEval [Fabbri et al., 2021],136

each annotated along multiple axes (e.g., faithfulness, accuracy, creativity) with a total of 15 sets of137

human annotations by which to evaluate algorithmic performance. As shown in Table 1, the cluster138

method achieves the lowest mean error and reduced standard error compared to random, confirming139

that simulation findings generalize to real data. Across all datasets and tasks, cluster-based selection140

consistently provides more sample-efficient ICC estimation, with up to 41% relative improvement141

over random sampling in settings with <5% of annotation budget available.142

Interestingly, all methods outperform random sampling with limited budget but different methods143

plateau at different rates. The clustering approach outperforms all methods (including random) at all144

evaluated budget ratios, indicating that it is more reliable as a selection proxy.

Budget Active Cluster Density Disagree Hybrid Random Stratified Var-Weighted

0.033 .276±.118 .184±.122 .286±.395 .240±.142 .226±.196 .311±.449 .211±.190 .265±.125
0.067 .226±.105 .134±.106 .194±.188 .187±.095 .178±.149 .188±.170 .154±.148 .229±.095
0.100 .181±.080 .121±.095 .161±.135 .145±.082 .150±.109 .131±.131 .144±.145 .184±.071
0.133 .160±.056 .102±.098 .157±.158 .134±.113 .143±.101 .108±.095 .111±.099 .158±.064
0.167 .155±.055 .082±.059 .130±.155 .141±.148 .115±.074 .095±.089 .101±.092 .153±.060
0.200 .135±.046 .078±.060 .114±.120 .118±.104 .114±.076 .085±.066 .088±.076 .132±.051
0.233 .119±.045 .070±.047 .093±.087 .103±.109 .103±.088 .080±.064 .080±.080 .118±.043
0.267 .107±.041 .067±.061 .070±.067 .096±.089 .098±.076 .069±.053 .086±.078 .107±.041
0.300 .098±.041 .060±.051 .076±.067 .086±.080 .087±.063 .064±.053 .081±.076 .098±.040

Avg .162±.065 .100±.078 .142±.152 .139±.107 .135±.103 .126±.130 .117±.109 .161±.066
Table 1: Performance of sampling strategies across annotation budgets, where budget is fraction of
total data allocated for human annotation. Bold indicates lowest mean error per row. The final row
reports average mean error and standard error across budgets.

145

5 Discussion146

Given a desired tolerance ε and probabilistic guarantee δ, a practitioner can derive an approximate147

bound on the minimum number of human annotations necessary to ascertain performance from148

Lemma 1. Future work can focus on removing the limiting assumptions and tighter bound techniques.149

We see from Table 1 that cluster-based selection consistently provides the most-sample efficient150

estimation of true ICC value across a large range of potential "budget" ratios. There is greatest151

improvememnt in low-budget settings, with relative improvement of 41% compared to random in152

settings where annotation budget is <5% of total samples. This allows model practitioners to iterate153

on their LLM judge methodology with higher fidelity without wasting annotation budget. Future154

work can explore extensions of these algorithms in order to further reduce expensive annotation155

requirements and exploring associated bounds with specific data selection mechanisms.156
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A Appendix256

A.1 Intra-class Correlation Coefficient Theoretical Analysis257

A.1.1 Intra-class Correlation Coefficient Definitions258

Intra-class Correlation Coefficient (ICC) was originally proposed by Fisher [1925] as an extension259

to interclass correlation coefficient (Pearson’s correlation coefficient (PCC)), and measures the260

extent to which the total variance in observed data is due to differences between groups, rather than261

within groups. In this perspective, the ICC is understood within the analysis of variance (ANOVA)262

framework. As opposed to PCC, the data are pooled in the mean calculation.263

In the generic version of our use case, ICC is considered a measure that quantifies inter-rater reliability264

between k raters on n subjects. ICC measures reliability by decomposing the total variance in human265

evaluations into between-subjects variance and within-subjects error variance. The ICC determines266

the reliability of ratings by comparing the variability of different ratings of the same individuals to267

the total variation across all ratings and all individuals. As we only consider two raters, the human268

and the LLM, we consider the case k = 2.269

Analogously, modern ICC estimators derive ICC through the random effects model framework. In270

the random effects model, Xij , rating j on subject i, i ∈ [n], j ∈ [k], is modeled as271

Xij = µ+ αi + cj + εij

such that µ is an unobserved overall mean, αi is an unobserved random effect shared by all ratings on272

subject i, cj is an unobserved random effect shared by all ratings by subject j and εij is an unobserved273

noise term. Each class of terms is assumed to be respectively identically distributed with expected274

value 0, and the terms are assumed to be uncorrelated. For certain random effects models, either αi or275

cj is neglected or considered fixed. We refer to Liljequist et al. [2019] for a comprehensive overview276

of ICC definitions and derivations relating classical estimators to random effects model. See table277

below for reproduced formulas.278

Name Notation Rater Model Use Case Formula

One-way single ICC(1,1) Random Agreement of 1 random rater
MSR − MSE

MSR + (k − 1)MSE

One-way average ICC(1,k) Random Agreement of average random raters
MSR − MSE

MSR

Two-way absolute single ICC(2,1) Random Absolute agreement of 1 random rater
MSR − MSE

MSR + (k − 1)MSE + k
n (MSC − MSE)

Two-way absolute average ICC(2,k) Random Absolute agreement of average raters
MSR − MSE

MSR + 1
n (MSC − MSE)

Two-way consistency single ICC(3,1) Fixed Consistency of 1 fixed rater
MSR − MSE

MSR + (k − 1)MSE

Two-way consistency average ICC(3,k) Fixed Consistency of average fixed raters
MSR − MSE

MSR

Pearson correlation r N/A Correlation only (not agreement) r =

∑
(xi − x̄)(yi − ȳ)√∑

(xi − x̄)2
∑

(yi − ȳ)2

279

Notation:280

• MSR: Mean square between targets (rows)281

• MSC: Mean square between raters (columns)282

• MSE: Residual mean square (error)283

• n: Number of targets284

• k: Number of raters285
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Formulas:286

MSR =
k

n− 1

n∑
i=1

(Si −Xtot)
2

MSC =
n

k − 1

k∑
j=1

(Mj −Xtot)
2

MSE =

∑n
i=1

∑k
j=1(xij −Mj)

2 − k
∑n

i=1(Si −Xtot)
2

(n− 1)(k − 1)

Si =
1

k

k∑
j=1

xij

Mj =
1

n

n∑
i=1

xij

Xtot =
1

k · n

n∑
i=1

k∑
j=1

xij

In our specific use case, we use a two-way consistency average, i.e. ICC(3, k) this formulation287

treats raters as fixed effects, (i.e. cj is fixed), meaning the same evaluation panel assesses all LLM288

outputs, and estimates reliability for the average rating across k evaluators rather than individual289

rater consistency. The numerator (MSR −MSE) captures the true variance between different LLM290

responses after removing measurement error, while the denominator represents the total variance in291

averaged ratings, making ICC(3, k) particularly sensitive to systematic differences in how evaluators292

rate different model outputs while accounting for random measurement error within the evaluation293

process. With random effects model for ICC(3, k), the population ICC294

ρ =
σ2
α

σ2
α + σ2

ε/k

We utilize the associated formula as the ICC metric for our experiments due to the appropriateness of295

the setting and random effects model. In our theoretical analysis, we provide bounds with ICC(3, 1),296

as the expression resembles Fisher’s original proposal for ICC and follows previous theoretical297

work [Zou, 2012]. Under ICC(3, 1), the associated random effects model dictates that the population298

ICC299

ρ =
σ2
α

σ2
α + σ2

ε

This is additionally the more commonly stated population ICC. As previously stated, we consider300

k = 2 only in both our empirical and theoretical results.301

A.1.2 Chernoff Bound on Intra-class Correlation Coefficient302

Given the population ICC stated in the previous section, we denote the sample ICC of n samples as ρ̂n303

and calculate as the formula listed in our table for ICC(3, 1). In Fisher [1925], Fisher demonstrates304

that with the assumption of sufficiently large number of samples, and given that ρ̂n is not close to305

−1 nor 1, the distribution of ρ̂n on bivariate Gaussian random variables asymptotically approaches306

Gaussian with parameters E[ρ̂n] = ρ and Var(ρ̂n) =
(1−ρ2)2

n−1 . As earlier work on sample bounds307

for ICC leverage this approximation and associated assumptions [Zou, 2012], we consider these308

assumptions and approximations reasonable. As stated in Section 2.1, we assume a bivariate normal309

distribution for LLM-annotated and human annotated samples.310

Thus, we only require a few additional (already extant) propositions to derive an approximate Chernoff311

bound.312

Proposition 2 [Chernoff, 1952] For any random variable X , the Chernoff bound dictates that313

Pr(X ≥ ε) ≤ inf
λ≥0

φX(λ)e−λε

where φX(λ) is the moment generating function for X .314
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For a Gaussian random variable X ∼ N (µ, σ2), the moment generating function φX(λ) = exp(µλ+315

σ2λ2/2). Due to linearity of the Gaussian distribution, X−µ ∼ N (0, σ2), and the moment generating316

function is φX(λ) = exp(σ2λ2/2). Thus, the Chernoff bound for a Gaussian random variable is317

Pr(X − µ ≥ ε) ≤ exp

(
− ε2

2σ2

)
Analogously,318

Pr(µ−X ≥ ε) ≤ exp

(
− ε2

2σ2

)
Therefore, as the above events are mutually exclusive,319

Pr(|X − µ| ≥ ε) ≤ 2 exp

(
− ε2

2σ2

)

Combining this with the fact that ρ̂n approaches Gaussian asymptotically with variance (1−ρ2)2

n−1 , we320

obtain our desired approximate bound321

Pr[|ρ̂n − ρ| ≥ ε] ≲ 2 exp

(
− (n− 1)ε2

2(1− ρ2)2

)
As standard with concentration inequalities, we can derive the necessary n such that |ρ̂n − ρ| ≥ ε322

with at most probability δ by setting δ equal to our bound and solving for n.323

δ = 2 exp

(
− (n− 1)ε2

2(1− ρ2)2

)
log

(
2

δ

)
=

(n− 1)ε2

2(1− ρ2)2

2(1− ρ2)2

ε2
log

(
2

δ

)
= (n− 1)

1 +
2(1− ρ2)2

ε2
log

(
2

δ

)
= n

A.2 Selection Methods324

A.2.1 Random Selection325

The baseline random selection strategy serves as our control method:

Srandom = UniformSample(N , k)

where items are selected uniformly at random from the full set N without replacement.326

A.2.2 Stratified Selection327

Stratified selection partitions the cheap ratings into k quantile-based strata and selects one representa-
tive from each stratum:

Qj = Quantile(G,
j

k
) for j = 0, 1, . . . , k

Stratumj = {i ∈ N : Qj−1 ≤ gi ≤ Qj}

Sstratified =

k⋃
j=1

UniformSample(Stratumj , 1)
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A.2.3 Disagreement Selection328

This strategy prioritizes items where multiple cheap raters exhibit maximum disagreement, under the
hypothesis that such items are most informative:

di = |g(1)i − g
(2)
i | for i ∈ N

Sdisagreement = argmax
|S|=k

∑
i∈S

di

where g
(1)
i and g

(2)
i represent ratings from two different cheap judges.329

A.2.4 Hybrid Selection330

The hybrid approach combines stratified and disagreement-based selection:

Shybrid = S
(k/2)
strat ∪ S

(k/2)
disagree

where S
(k/2)
strat contains k/2 items selected via stratification and S

(k/2)
disagree contains the remaining items331

selected by disagreement, excluding those already chosen.332

A.2.5 Active Selection333

Active selection employs a greedy algorithm that iteratively selects items to maximize range coverage
and rating diversity:

Score(S, i) =
max(GS∪{i})−min(GS∪{i})

max(G)−min(G)
+ 0.3 · Std(GS∪{i})

Sactive = GreedyMax(Score, k)

where GS = {gi : i ∈ S} denotes the subset of cheap ratings corresponding to selection S.334

A.2.6 Cluster-Based Selection335

This method applies K-means clustering to identify k clusters in the cheap rating space and selects
the item closest to each cluster centroid:

{c1, c2, . . . , cz} = KMeans(G, z)

Scluster =

{
argmin

i∈Cj

|gi − cj | : j = 1, 2, . . . , k

}
where Cj represents the set of items assigned to cluster j and cj is the corresponding cluster center.336

A.2.7 Variance-Weighted Selection337

Variance-weighted selection aims to preserve the between-item variance crucial for ICC computation
by iteratively selecting items that maximize subset variance:

S0 =

{
argmin

i∈N
|gi − Median(G)|

}

St+1 = St ∪

{
argmax
i∈N\St

[
Var(GSt∪{i}) + 0.1 · Coverage(St ∪ {i})

]}

where Coverage(S) = max(GS)−min(GS)
max(G)−min(G) measures the range coverage of the selected subset.338
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A.2.8 Density-Based Selection339

Density-based selection balances representation between high-density regions (typical cases) and
low-density regions (outliers) using kernel density estimation:

ρi = KDE(gi|G) for i ∈ N

Shigh = Sample

(
argmax
|T |=k

∑
i∈T

ρi, k/2

)

Slow = Sample

(
argmin

|T |=k,T∩Shigh=∅

∑
i∈T

ρi, k/2

)
Sdensity = Shigh ∪ Slow

where KDE(gi|G) represents the kernel density estimate of rating gi given the distribution of all340

cheap ratings G.341

B Simulation Robustness Analyses342

In the main text (Section 4), we reported results using a fixed configuration (N = 300, z = 30, true343

ICC = 0.71). Here we provide additional robustness checks. We varied:344

• Subject set size N ∈ {100, 200, 300, 400},345

• Budget size z ∈ {10, 20, 30, 40, 50, 60, 70, 80, 90},346

• True ICC values across low, medium, and high agreement regimes.347

Across all conditions, random sampling was consistently outperformed by cluster, activate, variance-348

weighted and density-based methods. These methods remained the most sample-efficient in both low-349

and high-variance regimes.350

Figure 2: Simulation robustness: performance of sampling strategies across different dataset sizes,
budgets, and true ICC values (rollouts = 5).

C Simulation Confidence Intervals351

We see that clustering has a more narrow confidence interval as compared to random selection in352

simulation, supporting the claim that this method allows users to increase confidence in their ICC353

estimation from selected points. We can also compare other methods against random, identifying354

that random has the largest confidence interval in simulation outside of the "hybrid" approach. This355

supports the need for more systematic selection mechanisms to improve confidence of reported ICC356

score.357

D Real Data Visualization358

We plot mean preservation error by budget aggregated across all datasets as a corollary to Table 1359

such that we can visualize ICC improvement. We see from the below visualization that cluster-based360

selection for these 15 tasks remains on the pareto-frontier of performance, and additionally that all361

methods outperform random at low human annotation budget (number of expensive ratings), but362

cluster-based selection continues to outperform random as budget increases.363
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Figure 3: Simulation robustness: performance of sampling strategies across different dataset sizes,
budgets, and true ICC values (rollouts = 5).

Figure 4: Simulation robustness: performance of sampling strategies across different dataset sizes,
budgets, and true ICC values (rollouts = 5).

E Judge Model Information364

We use GPT-4o-mini as our model judge for this setting due to the balance of accuracy and cost. We365

use temperature 0.7, and sample twice from the model when needed for disagreement-based selection366

methods. Future work should involve exploring generalizability of claims across different judge367

model architectures and families.368
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