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Abstract

Large language models (LLMs) are increasingly employed as judges for scalable
evaluation of Al systems, where an LLM is prompted to assess the outputs of
another model. This approach is particularly valuable for tasks with non-verifiable
answers, but its reliability ultimately depends on alignment with human judg-
ments. Because human annotations are expensive and time-consuming, especially
in domains that demand expert knowledge such as clinical text generation, it is
essential to reduce annotation effort while maintaining accurate estimates of judge
reliability. In this work, we study the problem of estimating the intraclass correla-
tion coefficient (ICC) between LLM judges and humans under limited annotation
budgets. We derive Chernoff bounds on the estimation error, providing theoretical
guarantees on sample requirements and reducing sample size requirements by
an average of 18% compared to the baseline. Building on this, we propose and
evaluate 6 sampling strategies designed to identify the most informative examples
for annotation. Experiments on 4 diverse real-world datasets demonstrate that our
methods yield narrower confidence intervals and achieve relative improvements of
5.5%-31% in ICC precision over random sampling baselines.

1 Introduction

Large language models (LLMs) are increasingly used for text generation tasks, but their rapid
adoption has outpaced our ability to evaluate them at scale [Thirunavukarasu et al., 2023| Meyer
et al., 2023} [Yuan et al., 2021} |Celikyilmaz et al.,2021]]. Human evaluation remains the gold standard
but is slow and expensive, particularly in domains like healthcare. To address these limitations,
the LLM-as-a-judge framework, in which one LLM evaluates the outputs of another model, has
emerged as a promising alternative [|Gu et al.| 2025]. Recent work has explored this direction through
human-labeled benchmarks [[Dubois et al., [2024]] and reference-free evaluation methods [Tan et al.|
2025]. However, the effectiveness of an LLM judge ultimately depends on alignment with human
judgments.

Human-annotated scores are typically treated as the gold standard when evaluating a target LLM.
However, human evaluation pipelines are slow and expensive, particularly in domains requiring
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Figure 1: Overview of the LLM judge evaluation framework and our approach. Given text
samples T to evaluate, we obtain inexpensive scores G from an LLM judge and expensive scores H
from human annotators. Our work addresses two key questions: (i) How many human annotations
are needed to reliably estimate agreement between G and H? We derive a Chernoff bound-based
sample size requirement (2.2). (ii) Which samples should be selected for human annotation? We
propose and evaluate 6 sampling strategies, with cluster-based selection achieving up to 31% relative
improvement in ICC estimation precision compared to random sampling under limited annotation

budgets ().

expert annotations such as healthcare [Liang et al., 2022} [Kiela et al., 2021, |Arndt et al., 2017]. This
creates a bottleneck for scalable evaluation: the cost of human labels directly limits the feasibility of
benchmarking and alignment studies. To quantify judge reliability, we follow prior work [Bedi et al.}
2025, L1 et al., 2024} |Croxford et al., [2025]] and adopt the intra-class correlation coefficient (ICC) as
a measure of agreement between LLM judges and humans. This leads to two central questions: (i)
How many human annotations are needed to accurately estimate ICC? (ii) How can we choose the
most informative samples to minimize annotation cost?

To address the first question, we derive a concentration inequality for ICC estimation using the
classical Chernoff bound [Chernoff} [1952]] on an asymptotic normal approximation of the ICC
distribution. This yields a lower bound on the number of annotations required to guarantee with high
probability that the empirical ICC is within ¢ of the population ICC.

For the second question, we empirically study how annotation efficiency can be improved through
principled sample selection. We frame subset selection for human annotation as a core-set selection
problem, assuming access to a fully LLM-annotated dataset. Building on ideas from statistical
sampling [[Cochranl [1977], clustering [Lloyd, |1982], and active learning [Settles and Craven, 2008],
we compare several sampling strategies against random selection and evaluate their impact on ICC
estimation under limited annotation budgets.

Given the pressing need to evaluate LLM judges under limited annotation budgets, we propose a
theoretical framework for ICC estimation and principled sampling strategies. Our contributions:

1. We derive a Chernoff bound—based concentration inequality for ICC estimation, provid-
ing theoretical guarantees on the number of annotations required for reliable LLM judge
evaluation.

2. We conduct a systematic empirical study of sampling strategies for annotation efficiency
across 4 diverse real-world datasets spanning 15 axes of assessment.

3. We show that principled selection consistently outperforms random sampling under tight
budgets (< 5% of data), with relative gains ranging from 5.5% to 31% in ICC estimation
precision.

2 Theoretical Foundations

2.1 Background on Intra-class Correlation Coefficient

Intra-class Correlation Coefficient (ICC) was originally proposed by [Fisher][1925]] as an extension
to interclass correlation coefficient (Pearson’s correlation coefficient (PCC)), and measures the



extent to which the total variance in observed data is due to differences between groups, rather than
within groups. In this perspective, the ICC is understood within the analysis of variance (ANOVA)
framework. As opposed to PCC, the data are pooled in the mean calculation.

In the generic version of our use case, ICC is considered a measure that quantifies inter-rater reliability
between k raters on n subjects, first introduced as an application of the metric in|Shrout and Fleiss
[1979]. ICC measures reliability by decomposing the total variance in human evaluations into
between-subjects variance and within-subjects error variance. The ICC determines the reliability of
ratings by comparing the variability of different ratings of the same individuals to the total variation
across all ratings and all individuals. As we only consider two raters, the human and the LLM, we
consider the case k = 2.

Analogously, modern ICC estimators derive ICC through the random effects model framework. In
the random effects model, X, rating j on subject 4, ¢ € [n],j € [k], is modeled as

Xl-j:/i—l-al-—l—cj—l—sij

such that y is an unobserved overall mean, «; is an unobserved random effect shared by all ratings
on subject 4, c; is an unobserved random effect shared by all subject ratings by rater j, and &;; is
an unobserved noise term. Each class of terms is assumed to be respectively identically distributed
with expected value 0, and the terms are assumed to be uncorrelated. For certain random effects
models, either o; or ¢; is neglected or considered fixed. We refer to [Liljequist et al.[[2019] for a
comprehensive overview of ICC definitions and derivations relating classical estimators to the random
effects model. See table in appendix for reproduced formulas.

In our specific use case, we use a two-way consistency average, i.e. ICC(3, k) as this formulation
treats raters as fixed effects, (i.e. ¢; is fixed), meaning the same evaluation panel assesses all LLM
outputs, and estimates reliability for the average rating across k evaluators rather than individual
rater consistency. The numerator (M S — M Sg) captures the true variance between different LLM
responses after removing measurement error, while the denominator represents the total variance in
averaged ratings, making ICC(3, k) particularly sensitive to systematic differences in how evaluators
rate different model outputs while accounting for random measurement error within the evaluation
process. With random effects model for ICC(3, k), the population ICC
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We utilize the associated formula as the ICC metric for our experiments due to the appropriateness of
the setting, random effects model, and use in previous empirical work [Bedi et al., 2025| |Croxford
et al., 2025} |Li et al.,[2024]. In our theoretical analysis, we provide bounds with ICC(3, 1), as the
expression resembles Fisher’s original proposal for ICC and follows previous theoretical work [Zoul
2012, Bonett, 2002, |Giraudeau and Mary, [2001]]. Under ICC(3, 1), the associated random effects
model dictates that the population ICC
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This is additionally the more commonly stated population ICC. Note that ICC(3, k) measures the
reliability of the measurement as the average of k raters, whereas ICC(3, 1) measures the reliability
of each single measurement. In the case where k = 2, these do not differ greatly. As previously
stated, we consider £ = 2 only in both our empirical and theoretical results.

2.1.1 Previous Work on Bounds for ICC

Previous work in bounding error in ICC estimation focuses on bounding the half-width of a confidence
interval [Zoul 2012} Bonett, 2002} |Giraudeau and Mary,2001]]. In the more recent of these works, used
empirically [Bedi et al.| [2025], |Zou|[2012] aims to determine the required sample size for estimating
the intraclass correlation coefficient (ICC) with a desired (1 — a))100% two-sided confidence interval
half-width, w and pre-specified assurance probability, 1 — 3. Thus,|Zou| [2012] sets

Zq/2V/ Var(p) < w]
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to obtain a minimum bound on the required sample size such that the half-width of the confidence
interval remains within the desired width with probability 1 — /3, where p,, denotes the sample
ICC(3,1) on n samples. Similarly, the variance Var here is assumed to be the sample variance as
opposed to population variance, so /Var(p) is simply the sample standard deviation &, where the
(1 —a)100% two-sided confidence (Wald) interval is given by p + z,, /25, thus clearly the half-width
of the confidence interval is 2z, /26 5.

Following this, Zou| [2012]] shows that for ICC(3, 1) with two raters (human and LLM), the required
sample size is:

- 2

Azq o + \/A222/2 + 4wzq /225 A| B
n=1+

w/2k(k —1)
: :
R A R I
=1+
2w

where the latter line comes from plugging in k = 2, A = (1 — p)[1L + (k — 1)p] = 1 — p?,
B =Fk—-2+42p—2kp = —2p (thus | B| = 2|p|), w is the desired half-width, and z, denotes the
upper v quantile of the standard normal distribution.

In the next section, we translate the question of bounding the half-width of the confidence interval
with high probability to that of bounding the difference between sample and population ICC with
high probability — a concentration inequality framework. The two frameworks are translatable, but
our concentration inequality framework is ideal for directly bounding the error with high probability,
and requires fewer assumptions than those present in the calculation of, for instance, a Wald interval,
as used in |[Zoul[2012].

2.2 An Approximate Chernoff bound for Intra-class Correlation Coefficient

Here, we derive a straightforward concentration inequality for the intra-class correlation coefficient
(ICC). Given annotation distributions, H and G, for human and LLM-generated, respectively, we
assume a bivariate normal joint distribution, such that H;, G; ~ N (1, ) independently and identi-
cally distributed (i.i.d.), and ¢ € {1,...,n}, where n number of samples. Denote the population ICC
between H and G as p and the observed (sample) ICC at n samples, jy,.

Fisher| [[1925] showed that given sufficient sample size n, and p not too close to its boundary
[—1, 1], the distribution of p,, approaches normal asymptotically. In particular, the distribution of p,,
212
approaches a Gaussian distribution with variance O;f 1) . Therefore, we can use the Chernoff bound
technique to derive a simple concentration inequality for the intra-class correlation coefficient.

We therefore obtain the following lemma.

Lemma 1 (Chernoff bound for approximate ICC) Let H, G be two random variables of interest,
and assume independently and identically distributed samples H;, G; ~ N (1, ) sampled from a
bivariate normal distribution. Let p denote the population ICC, and p,, denote the sample ICC, as
defined in Section Given desired bound parameter € > 0, n sufficiently large such that CLT
holds, and |p| not close to 1,

(n—1)e?
21— )
Therefore, given 6 > 0, with probability 1 — 0, the sample and population ICC are guaranteed to be

e-close if
2(1 — p?)? 2
nl 4+ Q= log 5

Pr[|pn — p| > €]2exp < -

See proof in Appendix[A.2)



We provide a comparison between our Chernoff bound and the bound from [Zou| [2012] in Table[T] As
the bound frameworks technically bound two different events, we must translate between the relevant
parameters. See Appendixfor more details. Effectively,e =wandd =1— (1 —a) - (1 — 3).
As shown in Table([l] the proposed Chernoff bound is more sample efficient, providing relative gains
over the current baseline of up to 25.0% for p = 0.8 and an average of 18.3% over all p value

Confidence Interval Parameters Chernoff Bound Parameters
P « w, half width B Zou|[2012] N e 5 (Ours) N
0.6 0.05 0.1 0.5 158 0.1 0.525 111
0.6 0.05 0.15 0.5 71 0.15 0.525 50
0.6 0.05 0.2 0.5 40 0.2 0.525 28
0.6 0.05 0.1 0.2 183 0.1 0.240 175
0.6 0.05 0.15 0.2 87 0.15 0.240 78
0.6 0.05 0.2 0.2 52 0.2 0.240 44
0.6 0.05 0.1 0.1 195 0.1 0.145 216
0.6 0.05 0.15 0.1 95 0.15 0.145 97
0.6 0.05 0.2 0.1 58 0.2 0.145 55
0.7 0.05 0.1 0.5 101 0.1 0.525 71
0.7 0.05 0.15 0.5 45 0.15 0.525 32
0.7 0.05 0.2 0.5 26 0.2 0.525 18
0.7 0.05 0.1 0.2 123 0.1 0.240 111
0.7 0.05 0.15 0.2 60 0.15 0.240 50
0.7 0.05 0.2 0.2 37 0.2 0.240 29
0.7 0.05 0.1 0.1 134 0.1 0.145 138
0.7 0.05 0.15 0.1 67 0.15 0.145 62
0.7 0.05 0.2 0.1 42 0.2 0.145 35
0.8 0.05 0.1 0.5 51 0.1 0.525 36
0.8 0.05 0.15 0.5 23 0.15 0.525 16
0.8 0.05 0.2 0.5 13 0.2 0.525 10
0.8 0.05 0.1 0.2 68 0.1 0.240 56
0.8 0.05 0.15 0.2 35 0.15 0.240 25
0.8 0.05 0.2 0.2 22 0.2 0.240 15
0.8 0.05 0.1 0.1 77 0.1 0.145 69
0.8 0.05 0.15 0.1 40 0.15 0.145 31
0.8 0.05 0.2 0.1 26 0.2 0.145 18
Table 1: The proposed Chernoff bound tighter in the required number of human annotations.

Relative to the interval-based bound of |Zou| [2012]], our Chernoff bound achieves tighter bound by
18.3% in required sample size, with a median reduction of 21.6%. The gains are more pronounced at
higher correlations: average improvements are 12.4% for p = 0.6, 17.6% for p = 0.7, and 25.0% for
p = 0.8. The bold entries in the table indicate the lower sample complexity between the two bounds.

3 Methods

3.1 Problem Formulation

We study the problem of evaluating LLM judges under limited annotation budgets. Assume we have
aset of items X = {x1,...,x,} for evaluation, with associated inexpensive labels G = {g;} from
an LLM judge. Similarly, there exists a set of gold labels H = {h;} from humans of which we are
only able to collect some subset of size b. Reliability is measured using the Intraclass Correlation
Coefficient (ICC(3, k)), which captures absolute agreement. Further information regarding the
calculation of ICC scores can be found in Appendix [A.T]

Given a budget b < n, we seek a subset S* C X of size b such that the ICC p, computed on
(Hg~,Gg~) closely approximates the ICC p,, on the full dataset (H, G):

5* = in |p(Hs,Gs) — pn(H,G))|.
argsggl‘g‘zblpb( s,Gs) — pn(H, G)|

We assume access to X and G, and a single-batch labeling regime (rather than an active iterative
setting) such that labels in Hg are obtained all at once for a chosen S. Thus, our subset selection
must rely solely on the items X and the inexpensive labels G E]

“Note that cases where the derived sample size is below 30, this violates the assumptions required for both
bounds (that n is sufficiently large according to CLT).

"As LLM-annotated data is inexpensive, we assume that n is large, and j,, effectively acts as a stand-in
for the population ICC p on the joint distribution (H|X, G|X), since we cannot access p in our evaluation.
Similarly, we allow some abuse of notation such that H = {h;};—; and G = {g; }i~, are assumed to capture
label distributions H|X and G|X, respectively.



3.2 Data Preparation

We provide empirical evaluations on 4 diverse real-world datasets: MSLR [Wang et al. 2023,
HANNA [Chhun et al., [2024]], MedVAL [Aali et al., 2025]], and SummEval [Fabbri et al., 2021]]. Each
dataset is annotated along multiple axes (e.g., faithfulness, accuracy, creativity) with a total of 15 sets
of human annotations by which to evaluate sampling performance, as shown in Table[2] All datasets
contain samples that are annotated by more than one human, creating a distribution of continuous
scores that requires the use of ICC over alternative ordinal or categorical agreement metrics. We take
the average score of a subject between total raters as the true score and compare to the LLM judge
score. All datasets use Likert scaling with a range of 1-5 [Joshi et al.,[2015]]. The evaluation axes
span from more objective to more subjective scores, capturing a broad spectrum of evaluation types.
We truncate each dataset to contain 300 human-labeled samples and perform evaluations on subsets
of this annotation set. We perform the evaluations over 100 rollouts, each with its own random seed
to account for variance in the predicted ICC value from the random components of the selection
mechanisms (i.e., random selection, cluster initialization, etc.).

Table 2: Datasets, evaluation axes, and number of raters per datapoint.

Dataset Axes of Evaluation Raters per datapoint

SummEval Coherence, Consistency, Fluency, Relevance 8

HANNA Relevance, Coherence, Empathy, Surprise, Engagement, 3
Complexity

MedVAL Safety 1-3

MSLR Fluency, Population, Intervention, Outcome 1-2

3.3 Sampling Methods

We compare 6 strategies for selecting S* as shown in Table [3|against random sampling. Additional
information regarding each algorithm is present in Appendix [A.4]

Table 3: Selection strategies for choosing & items from cheap ratings G.

Method Description Formula
Random Uniformly sample %k  Spng = UniformSample(NV, k)
items without replace-
ment
Stratified Partition ratings into k  Sgpa = U?:l UniformSample(Stratum;, 1)

quantile strata; sample
one per stratum

QBC Select items with largest  Sqpc = argmax|gj— Y _;cg |g§1) — gqu)|
inter-rater difference
Stratified QBC Combine stratified (k/2) Siqpc = S{42 U SU/2)
sQBC strat QBC
and QBC (k/2)
Cluster Choose item nearest to  Scug = {argmingeo; [gi — cj|}§?=1

each K-means centroid
Maximum-Variation ~Iteratively add items S;;; = S; U {argmax;¢g, ...}
maximizing variance

Density-Based Balance typical (high  Sgens = Shigh U Siow
density) and outliers (low
density)
4 Results

4.1 Estimation Error By Selection Method

As shown in Figure [2] the cluster method consistently achieves a lower estimation error than random
selection. Across all datasets and tasks, cluster-based selection consistently provides more sample-
efficient ICC estimation with n¢gpensive < 30, with up to 31% relative improvement over random



sampling in settings with < 5% of annotation budget available as shown in Table[d] We see saturation
of gains from cluster-based selection as the data budget (n¢ypensive) increases, as random sampling
is better able to capture the true distribution of samples with increased data points. While some
relative improvements are negative at larger nezpensive, the difference between estimation error from
cluster-based selection and random selection decreases as Negpensive iNCreases, so these negative
values represent small differences (absolute differences are present in Appendix Table[5). However, in
data-scarce settings, cluster selection consistently allows for lower estimation error between predicted
and true ICC values.

In addition to minimizing the estimation error between true and predicted ICC values, cluster-based
selections are also more stable and have a demonstrably smaller confidence interval than equivalent
random selection, as shown in Table El For datasets HANNA, MedVAL, and SummEval, the
improvement in confidence interval width is larger than with the MSLR dataset. Similarly, the MSLR
dataset also shows the smallest improvement against random in estimation error as well as confidence
interval width. We attribute this to the true ICC for all samples in this dataset against the judge model.
The ICC of MSLR is 0.346, while the ICC of HANNA, MedVAL, and SummEval, respectively,
are 0.655,0.716,0.627. This indicates that clustering selection provides the most benefit under the
assumption of a minimum ICC and concordance between the judge model and human scoring. When
the raters are dissimilar, the clustering method converges to perform similarly to random selection.

Estimation Error vs Number of Expensive Ratings Estimation Error vs Number of Expensive Ratings
Dataset: HANNA Dataset: MedVAL
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Figure 2: Cluster-based sample selection for annotation leads to consistently lower estimation
error. We compare 6 methods of sample selection against a random baseline, showing that cluster-
based approaches consistently perform at or above the precision level of random selection, providing
improved estimations of true ICC values.

4.2 Coverage Perspective on Clustering

As discussed in Section[3.1] we frame our task as selecting a subset of samples such that the empirical
intra-class correlation coefficient (ICC) on b annotated items, g, closely approximates the ICC on
the full dataset, p,,. Since human labels are not available a priori, we cannot sample based on them
directly. An optimal subset (Hg, Gs) should preserve the distributional properties of the full set
(H,G), specifically the variance structure that determines ICC. While the human-label variance
components are inaccessible, the inexpensive labels provide a coarse but useful proxy. Thus, our goal
is to select a subset Gg whose distribution approximates that of G, effectively minimizing regret with
respect to set coverage.



Tlexpensive \ Mean ICC Improvement over Random (%) \ CI Width Improvement of Cluster over Random (%)
\ HANNA MedVAL MSLR SummEval \ HANNA MedVAL MSLR SummEval

10 31.0% 15.0% 5.5% 21.0% 6.4% 32.4% —0.9% 24.1%
20 21.0% 24.0% 5.4% 7.1% 7.8% 18.3% 0.1% 21.9%
30 11.0% 23.0% 8.4% 1.4% 7.1% 13.9% —2.4% 18.4%
40 11.0% 20.0% 7.6% 0.0% 2.6% 9.7% —1.0% 14.6%
50 11.0% 9.0% 3.7% 0.0% 4.9% 9.4% —0.7% 14.0%
60 0.0% 6.8% 1.3% —5.6% 2.9% 2.1% 0.0% 11.3%
70 2.5% 10.0% 2.0% —-11.0% 3.5% 8.0% —0.4% 9.1%
80 3.2% —7.1% 0.0% —4.4% 1.5% 5.9% 0.0% 7.8%
90 7.5% 4.2% 3.4% 0.0% 1.8% 4.5% —1.3% 6.2%

Table 4: Cluster-based sampling can decrease estimation error and improve confidence intervals
in low data settings. Relative improvement (%) of Cluster over Random for both average ICC (left
block) and confidence interval width (right block). Negative values indicate cases where Cluster
underperforms Random.

This motivates the use of clustering approaches to adequately capture set variance. A known problem
in the context of set coverage is the k-Centers problem. Given a metric space (X, d), the objective of
the k-Centers problem [Hakimil [1964] is to find & centers C* = {cy,...,cp} C X such that

C*=arg min maxmind(c,z)
CCX,|C|=k z€X c€C

Although this problem is NP-hard, approximate solutions yield strong coverage guarantees [Lim et al.,
2005]. While k-means clustering optimizes a different criterion (minimizing within-cluster variance
rather than worst-case distance), it also provides effective coverage of the space [Wolf], [2011]]. By
covering the inexpensive label space, k-means ensures that the selected subset spans the diversity of
the dataset, which in turn helps recover the variance structure and ICC of the full population. Prior
work has similarly leveraged clustering for diverse sampling in related contexts [[Sener and Savarese),

2018].

5 Discussion

As LLMs become central in various workflows, the ability to evaluate their outputs at scale becomes
increasingly critical. LLM Judges emerge as the current state-of-the-art for scalable, non-verifiable
evaluation, but these methods are only as good as they are aligned with human preferences. One way
to quantify their correlation with human ratings is through the intra-class correlation coefficient (ICC).
LLM judge outputs can be compared to gold-standard human outputs with ICC, but human outputs
are expensive and time-intensive to obtain. We explore methods to reduce the human annotation
burden.

We introduce a Chernoff bound that allows practitioners to derive an approximate bound on the
minimum number of human annotations necessary to ascertain performance given a desired tolerance
¢ and probabilistic guarantee J. This bound improves upon current baseline methods of sample size
calculation by an average of 18.3% across parameter combinations. Additionally, we show that cluster-
based selection consistently provides the most sample-efficient estimation of the true ICC value across
a large range of potential "budget" ratios. The greatest improvements occur in low-budget settings,
with relative improvement of 5.5% to 31% compared to random in settings where annotation budget
is < 5% of total samples. This allows model practitioners to iterate on their LLM judge methodology
with higher fidelity without wasting annotation budget. We compare the confidence interval size
between randomly selected samples and samples selected using a cluster-based approach. We see that
the cluster-based approach provides tighter confidence intervals in addition to the empirical results of
more precise ICC estimates. This supports that in limited annotation settings, cluster-based selection
of points to receive human annotation decreases ICC estimation error as well as produces narrower
confidence intervals for the ICC estimate.

Future work can explore extensions beyond cluster-based methods to further reduce expensive
annotation requirements. The utilization of the subject text as a part of the selection process could
further act as a signal of diversity and coverage, thus allowing for improved sampling at lower budgets



and exploring associated bounds with specific data selection mechanisms. Currently, the cluster
method is most impactful under the key assumption that the LLM judge ratings are a reasonable
proxy for human ratings. Further exploration should provide means to evaluate this assumption a
priori, such that practitioners have a base understanding of what the alignment may be and whether
these assumptions hold.
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A Appendix

A.1 Intra-class Correlation Coefficient Definitions

See table below for reproduced formulas [Liljequist et al., 2019].

Name Notation Rater Model Use Case Formula
. MSR — MSg
One-way single ICC(1.1) Random Agreement of 1 random rater T ——
MSg + (k — 1)MSg
MSR — MSg
One-way average ICC(1.k) Random Agreement of average random raters T
R MSr — MSg
Two-way absolute single ICC(2,1) Random Absolute agreement of 1 random rater &
MSR + (k — 1)MSE + = (MSc — MSE)
MSR — MSEg
Two-way absolute average ICC(2,k) Random Absolute agreement of average raters _—
MSg + 7 (MSc — MSE)
MSR — MSg
Two-way consistency single ICC(3,1) Fixed Consistency of 1 fixed rater I
MSg + (k — 1)MSg
. ) . . X MSg — MSg
Two-way consistency average ICC(3,k) Fixed Consistency of average fixed raters _—

MSg
(i —@)(yi — 7)
(zi —2)? Xy — 9)?2

Pearson correlation T N/A Correlation only (not agreement) r=

Notation:
* MSg: Mean square between targets (rows)
* MSc: Mean square between raters (columns)
* MSg: Residual mean square (error)
* n: Number of targets

¢ k: Number of raters
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Formulas:

MSg = Z(Si - Ytot)2

k
n __
MS¢ = D (Mj —Xior)?

k—1+4
Jj=1
?:1 Z?:l(mij - Mj)2 -k Z?=1(Si — Ytot)2
MSg =
(n—1)k—-1)
1 k
Sl = E ;%

A.2 Chernoff Bound on Intra-class Correlation Coefficient

Given the population ICC stated in the previous section, we denote the sample ICC of n samples as fp,,
and calculate as the formula listed in our table for ICC(3, 1). In|Fisher| [[1925]], Fisher demonstrates
that with the assumption of sufficiently large number of samples, and given that p,, is not close to
—1 nor 1, the distribution of p,, on bivariate Gaussian random variables asymptotically approaches
Gaussian with parameters E[p,] = p and Var(p,,) = % As earlier work on sample bounds
for ICC leverage this approximation and associated assumptions [Zou, 2012], we consider these
assumptions and approximations reasonable. As stated in Section[2.2] we assume a bivariate normal
distribution for LLM-annotated and human annotated samples.

Thus, we only require a few additional (already extant) propositions to derive an approximate Chernoff
bound.

Proposition 2 [Chernoff, |1952|] For any random variable X, the Chernoff bound dictates that
> < —Xe
Pr(X >¢) < igfo wx(Ne

where @ x (A\) is the moment generating function for X.

For a Gaussian random variable X ~ A/(y, o?), the moment generating function px (\) = exp(uA+
0222 /2). Due to linearity of the Gaussian distribution, X —p1 ~ A(0, 02), and the moment generating
function is ¢ x (\) = exp(c?A?/2). Thus, the Chernoff bound for a Gaussian random variable is

2
PF(X—MZE)SeXp<—2€2>
ag

Analogously,

202

Therefore, as the events X — p > € and u — X > ¢ are mutually exclusive and constitute the event
| X — pul,

52
Pr(u—X>€)<exp<— )

2

9
Pr(|X — | >¢) <2 -
(X -l 2 6) < 20w (- 2 )

2\2
Combining this with the fact that g,, approaches Gaussian asymptotically with variance U;f 1) , we
obtain our desired approximate bound
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Pr[|p, — p| > €]2exp ( _ 2(Z”Ll_1p)2€)2>

As standard with concentration inequalities, we can derive the necessary n such that |p,, — p| > ¢
with at most probability J by setting § equal to our bound and solving for n.

()5
20 g (2) = a1
L 2R ()

A.3 Comparison between Confidence Interval and Concentration Inequality Bounds

In the context of the bound on a (1 — «)100% confidence interval, as detailed in Section ??, the
derived bound is technically on the confidence interval itself, in the case of [Zou} [2012]], a Wald
interval, i.e. z, /264, The (1 — a))100% two-sided confidence interval itself is already set such that
Pr[|pn — p|] = 1 — a. Thus, probability of the event |p,, — p| > € must be decomposed as:
Pr(|pn — p| = w] = Pr([pn — p| > 20265, N 207205, > W]

= Pr“ﬁn —pl > 204/25-ﬁn] ’ Pr[za/Q&ﬁn > w]

— (1-a) - Prlza 205, > u]
where indeed the latter term is the component bounded in |Zou| [2012] (and set to 1 — 3, with 8
the pre-specified assurance probability). Thus, to translate between the frameworks, ¢ = w and
d=1—(1—a)-(1— 7). Note that their analysis involves multiple parameters (c, 3) for our single
d, and thus is not directly translatable in the opposite direction, as many choices for a and S suffice.

However, o = 0.05 can be assumed to be effectively constant, as this is common practice in applied
statistics.

A.4 Selection Methods

A4.1 Random Selection
The baseline random selection strategy serves as our control method:
Standom = UniformSample(N, k)

where items are selected uniformly at random from the full set ' without replacement.

A.4.2 Stratified Selection

Stratified selection partitions the cheap ratings into & quantile-based strata and selects one representa-
tive from each stratum:

Q; = Quantile(G, %)
Stratum; = {i € N': Qj—1 < ¢g; < Q;}
k
Stratified = U UniformSample(Stratum;, 1)
j=1

forj=0,1,...,k
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A4.3 Query-by-committe (QBC)

This strategy prioritizes items where multiple cheap raters exhibit maximum disagreement, under the
hypothesis that such items are most informative:

di =gV — ¢g?| forieN
Sgc = arg maXZdi

IS1=k s
(1)

i

and g@)

where g i

represent ratings from two different cheap judges.

A.4.4 Stratified QBC Selection

The hybrid approach combines stratified and disagreement-based selection:

k/2 k/2
SsqBc = Ss(Q]éC) U S((QB/C)

where Sﬁt’;{” contains k/2 items selected via stratification and Sg;/g) contains the remaining items
selected by disagreement, excluding those already chosen.

A.4.5 Cluster-Based Selection

This method applies K-means clustering to identify k clusters in the cheap rating space and selects
the item closest to each cluster centroid:

{c1,¢ca,...,c,} = KMeans(G, z)
Seluster = {argmingi —cil:j=1,2,..., /4:}
i€Cj
where C; represents the set of items assigned to cluster j and c; is the corresponding cluster center.
A.4.6 Maximize-Variation Selection

Maximize- Variation selection aims to preserve the between-item variance crucial for ICC computation
by iteratively selecting items that maximize subset variance:

So = { argmin |g; — Median(G)| }
iEN

5’t+1 =S, U arg max VaI(GStU{Z-})
i€N\S

A4.7 Density-Based Selection

Density-based selection balances representation between high-density regions (typical cases) and
low-density regions (outliers) using kernel density estimation:

p; = KDE(g;|G) fori € N

Shigh = Sample <arg max Z Dis k‘/2)

ITI=k er

Slow = Sample < arg min Zpi, k:/2>

\T\:k,TﬁShigh:V) ieT

Sdensity = Shigh U Stow

where KDE(g;|G) represents the kernel density estimate of rating g; given the distribution of all
cheap ratings G.
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A.5 Judge Model Information

We use GPT-40-mini with API version 2023-05-15 as our primary model judge for this setting due
to the balance of accuracy and cost. We use a temperature score of 0.2. For QBC based selection
methods, we use Claude-3.5-Sonnet as an additional committee member. Future work should involve
exploring generalizability of claims across additional judge model architectures and families.

A.6 Absolute Improvement Between Clustering and Random

We include absolute improvement between clustering selection and random selection to further
ground the relative improvement results present above. We see from these results that occasions
where random selection outperforms cluster-based selection are outperforming by relatively small
margins compared to larger gains when Nezpensive < 20.

Tlexpensive HANNA MedVAL MSLR SummEval

10 0.073 0.026 0.014 0.051
20 0.031 0.028 0.010 0.010
30 0.013 0.021 0.014 0.002
40 0.011 0.016 0.011 0.000
50 0.010 0.006 0.005 0.000
60 0.000 0.004 0.001 -0.004
70 0.002 0.005 0.002 -0.007
80 0.002 0.003 0.000 -0.003
90 0.004 0.002 0.003 0.000

Table 5: Absolute Improvement Results across datasets for varying nexpensive-

A.7 Confidence Interval Visualization

We report the confidence interval width on the returned estimated subset ICC value from cluster-based
sampling and random sampling. We use Fisher’s Z transformation to derive the 95% confidence
interval width, and report the standard deviation of this width across k¥ = 100 iterations.

A.8 Ablation: Different judge model

We flip the main and QBC models to assess the reliance of our results on the specific judge model,
such that our main model becomes Claude-3.5-Sonnet and our QBC model becomes GPT-40-mini.
We see that while the exact estimation error varies as a result of the judge, the benefit of cluster-based
sampling over random sampling remains consistent.

A.9 Ablation: Different annotation budget ratio

We see with our full dataset of 300 samples that clustering outperforms random selection uniformly
until our data budget is Negpensive = 40, which is 13% of the dataset. We run an ablation with
the full dataset equal to 150 samples such that we can observe whether the trends correspond to the
magnitude of the budget or the proportion of the budget in relation to the total dataset size. Similarly,
with this subsample, we see that the first instance of random outperforming cluster selection is on the
MSLR dataset at N=20, which is 13% of the data. This supports the claim that these methods are
best suited for data scarce settings and that data scarcity can be defined in relation to the total data
available.

A.10 Large Language Model Usage
We used large language models during the brainstorming and writing phases of our project. For

writing, we used primarily for polishing grammar and improving flow between topics. We additionally
used LLMs to recommend citations that may be relevant to our particular work.
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Figure 3: Cluster selection yields more narrow confidence intervals than random selection.
95% confidence intervals for intraclass correlation coefficients (ICC) estimated using the Fisher Z
transformation.
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Figure 4: Cluster based sample selection for annotation leads to lower estimation error across
models. We perform a complementary analysis of all selection methods with Claude-3.5-Sonnet as
the judge model and observe consistency in trends, with cluster based selection still being a consistent
method for improving performance over random.
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Figure 5: Cluster based selection advantages scale with dataset size. We evaluate our selection
strategies with N=150 such that all 72¢,pensive TEpresent a larger fraction of the sample population and
observe that general trends hold as with N=300, specifically that cluster selection leads to monotonic
improvement until 13% of data is sampled and then improvement starts to converge with random
performance.
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