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Abstract

Most venture capital (VC) investments on
startups fail, while a few yield outsized
gains. Accurately predicting startup suc-
cess is thus crucial. Graph-based mod-
els confirm the value of structural signals
but offer limited reasoning, whereas large
language models (LLMs) provide strong
reasoning and broad knowledge yet hal-
lucinate without domain grounding. A
core challenge is therefore to align LLM
reasoning with explicit multi-hop graph
paths and fuse these paths with unstruc-
tured evidence. Classic retrieval-augmented
generation (RAG) mitigates this via tex-
tual evidence but overlooks high-order
investor-company relations. Embedding-
based graph RAG encodes such relations
while discarding the explicit chains LLMs
exploit. We propose MIRAGE-VC, a multi-
perspective RAG framework for VC pre-
diction. Our approach couples semantic
retrieval with an information-gain—guided,
stepwise path retriever that selects a com-
pact set of cross-typed paths as explicit evi-
dence. Specialized agents analyze heteroge-
neous sources, and a learnable gate weights
their signals before a final LLM decision.
On a real-world VC dataset, MIRAGE-VC
achieves state-of-the-art performance with
a 5.0% relative F1 gain and a 16.6% rela-
tive Precision@b5 gain over the best baseline.
Our implementation is available.!

1 Introduction

In venture capital (VC), accurately identifying
high-potential startups is crucial given its high-
risk, high-reward nature: from 1985 to 2009,
roughly 60% of VC-backed firms lost money,
while only 10% returned over five times the
initial investment (Kerr et al., 2014). Conse-
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Figure 1: Illustration of how the path retrieved
from the graph by the path selector affects the
prediction.

quently, predicting startup success becomes an
increasingly important task.

Early approaches relied on firm-level features
and classic classifiers (e.g., logistic regression,
random forests) (Sharchilev et al., 2018). More
recent work leverages graph neural networks
(GNNs) to capture complex dependencies in
dynamic investment networks, demonstrating
that structured graph representations further
enhance VC prediction performance (Lyu et al.,
2021; Zhang et al., 2021). However, GNNs
rely solely on graph data and cannot perform
explicit reasoning or integrate external knowl-
edge. Recent advances in large language models
(LLMs) have further expanded the toolkit for
startup forecasting (Zhao et al., 2023). Un-
like GNNs, which are limited to the observed
graph structure, LLMs such as GPT (Achiam
et al., 2023), with their strong reasoning capa-
bilities and broad world knowledge, have been
applied to improve both prediction accuracy
and interpretability in this setting (Liu et al.,
2023; Maarouf et al., 2025; Ko and Lee, 2024).
However, LLMs are prone to hallucinations
and often lack the domain grounding required
for high-stakes, specialized tasks (Zhao et al.,
2023). Retrieval-augmented generation (RAG)
frameworks address this by integrating external
knowledge without requiring fine-tuning (Lewis
et al., 2020). Yet, classic RAG is optimized
for unstructured textual data (Barnett et al.,
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2024) and struggles to capture the high-order,
multi-hop relationships common in VC invest-
ment graphs. As a result, its effectiveness in
this domain remains limited.

Prior work extends RAG to graph-structured
data by leveraging GNN-derived node embed-
dings (Mavromatis and Karypis, 2024). How-
ever, embedding-based retrieval discards ex-
plicit relational chains, which are essential for
LLMs that excel at decomposing problems into
interpretable, stepwise reasoning (Wei et al.,
2022).
path-based retrieval enables extraction of se-
mantically meaningful investment chains - e.g.,
“WhatsApp < Sequoia — Google + Kleiner
Perkins — Amazon” which injects three action-
able signals—investor quality via repeated early
wins, cross-domain capability, and a reinforced
coalition of top-tier backers-thus increasing the
prior probability of success. These structured
paths align well with LLMs’ chain-of-thought
reasoning, facilitating more transparent and
accurate predictions.

Despite its promise, integrating multi-hop
relational paths with unstructured evidence
sources remains challenging. First, graph-
based reasoning is complex: shallow subgraphs
around a target company may lack signals (Yu
et al., 2021), yet as the hop count increases the
number of candidate paths grows exponentially,
and deeper expansions introduce noise through
redundant or weakly informative paths (Zhang
et al., 2025). Second, there is significant seman-
tic heterogeneity across information sources:
company documents offer business and mar-
ket insights; investor profiles reflect experience
and reputation, and graphs encode structural
investment patterns. Naively merging these
sources risks semantic conflicts and attention
dilution within LLM prompts (Lv et al., 2024).
Third, the relevance of each evidence type varies
by startup category. For example, technology
ventures often rely more on strong investor en-
dorsements and network position (Sorenson and
Stuart, 2001), while consumer-facing startups
are better judged by operational indicators like
market traction and growth rates (Belleflamme
et al., 2014). Without a mechanism for dynam-
ically weighting these perspectives, predictions
risk over-reliance on secondary signals.

To address these challenges, we propose
MIRAGE-VC, a multi-perspective retrieval-

In contrast, as shown in Figure 1,

augmented framework for VC prediction, com-
posed of three key components: Path-Level
Reasoning: We introduce an information-gain-
driven path retriever that iteratively selects a
small set of high-order, cross-type investment
chains from the VC graph, balancing informa-
tiveness and interpretability, to serve as ex-
plicit relational evidence. Multi-Perspective
Fusion: We construct three evidence streams
— company disclosures (Badertscher et al.,
2013), lead investor profiles (Bernstein et al.,
2022), and graph-based relational paths — each
formatted as a structured, timestamped text
blocks. Dedicated analysis agents reason over
each stream independently before passing inter-
mediate results to a central aggregation agent.
Adaptive Weighting: A learnable gating net-
work conditions on both the analysis outputs
and the target company’s profile to compute
normalized weights. These are injected into
the final decision prompt, enabling the model
to emphasize the most relevant evidence per
prediction. The contributions are as follows.

e We propose the first RAG-based VC pre-
diction framework that integrates unstruc-
tured document semantics with investment
network graphs, enabling real-time multi-
source knowledge injection and explicit
chain-of-thought reasoning without fine-
tuning the underlying LLM.

e We design a novel, information-gain-based
path retriever and a multi-perspective
fusion pipeline that transforms semanti-
cally heterogeneous company disclosures,
lead investor profiles, and graph-based
paths into structured prompts for dedi-
cated LLM-based agents.

e Under strict measures to prevent data leak-
age into the LLM, our method achieves
state-of-the-art performance on a real-
world VC dataset—yielding relative im-
provements of 5.0% in F1 and 16.6% in
Precision@b5 over the best baseline.

2 Related Work
Graph-based VC Prediction

Traditional machine learning predictors rely on
independent firm-level features and ignore re-
lational context (Arroyo et al., 2019; Bento,
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2017), whereas GNNs model investor-company
graphs to capture high-order relational sig-
nals. SHGMNN (Zhang et al., 2021) com-
bines predefined meta-paths, lightweight GNNs
and Markov random field inference to integrate
heterogeneous topologies and propagate labels
for large-scale early-stage startup identifica-
tion. GST (Lyu et al., 2021) applies unsuper-
vised graph self-attention to update a dynamic
startup-investor bipartite graph, improving
node embeddings via link prediction and node
classification to capture rich investor-company
relations. These studies demonstrate that the
structural properties of VC investment net-
works can significantly improve predictive accu-
racy. However, they remain limited by narrow
knowledge scopes, weak reasoning capabilities,
and a lack of interpretability.

2.2 Retrieval Augmented Generation

RAG has become a widely used strat-
egy for grounding LLMs in external knowl-
edge (Wiratunga et al., 2024; Jeong et al., 2024;
Wang et al., 2025a). The standard RAG frame-
work (Lewis et al., 2020) reduces hallucinations
by retrieving relevant passages. However, it
operates solely on linear, unstructured text
and lacks mechanisms to capture structural
dependencies or facilitate multi-hop reasoning
over heterogeneous investment networks. Re-
cent GNN-RAG frameworks (Mavromatis and
Karypis, 2024) attempt to bridge this gap by
retrieving contextually relevant nodes based
on node embedding similarity. While this cap-
tures local structural cues, it still lacks explicit
reasoning paths, preventing LLMs from fully
leveraging their inherent strengths in explicit,
stepwise, and interpretable chain-of-thought
reasoning (Wei et al., 2022). As a result, these
methods limit both the reasoning depth and
interpretability that LLMs can offer in graph-
based prediction tasks.

3 Preliminary

3.1 Problem definition

This study aims to predict the success of early-
stage start-ups, defined as companies that have
completed their first formal financing round
(seed or angel) but have not yet raised Series
A funding (Zhang et al., 2021). While success
is often measured by the attainment of Series

A financing (Zhang et al., 2021), prior studies
use varying observation windows, which can
introduce temporal bias. To mitigate this, we
adopt a consistent one-year observation win-
dow following the seed round. This approach
aligns with stage-based evaluation practices
and helps control for external environmental
factors (Boocock and Woods, 1997). The core
task is to predict whether an early stage startup
will secure subsequent financing within one year
of its initial funding.

3.2 Data overview

We use the PitchBook? Global VC dataset,
which spans investment activities from 2005 to
November 2023. The dataset includes detailed
investment records specifying the invested com-
pany, investor identity, funding amount, and fi-
nancing stage. It also contains demographic in-
formation on both entrepreneurs and investors,
including background, location, education, and
professional biographies. Additionally, startup-
level attributes are provided, such as team com-
position, industry classification, keyword tags,
and geographic location. In total, the dataset
encompasses 263,729 startups and 1,014,157
individuals.

3.3 VC investment network

We model the VC ecosystem as a time-stamped
heterogeneous information network G = (V, £),
where V = Vemp U Viny contains company nodes
and investor nodes. Each directed edge e =
(Uinv,vcmp,t) represents an investment event
from investor to company at time ¢, annotated
with attributes such as the financing round and
investment amount. For each company c¢* that
completes an angel or seed round at time ¢, we
assign a binary label y* = 1 if it secures Series
A funding within the following 12 months, and
y* = 0 otherwise.

4 Methodology

4.1 Overview of our method

As shown in Figure 2, our proposed framework
follows four sequential stages: (1) Graph re-
trieval: To supply the investment chain agent

2PitchBook is a financial data platform providing
comprehensive information on private and public capital
markets, including venture capital, private equity, and
M&A transactions.



Graph Retrieval

Multi-agent Analysis

Peer-Company
— Analyst

= Investor Profile
— Analyst

Dynamic Weighted Fusion

________________________ (e
@& nvestment Chain N B Gating Network?
— Analyst

-—
A || R @' Manager Agent

}

[wl,w2,w3] 5

_______________________________________________________

Figure 2: Overall Framework of MIRAGE-VC. It contains four key components: Graph Retrieval for path
selecting, Document Retrieval for companies and investor, Multi-agent Analysis for multi-perspective
information, Dynamic Weighted Fusion for adaptive information fusion.

with structured evidence, a learnable graph re-
triever extracts a high-value company—investor
path from the investment graph. (2) Document
retrieval: To provide the company and investor
agents with textual context, semantic matching
over public filings yields two textual views: (i) a
similar company context and (ii) a lead-investor
profile composed of demographics, career his-
tory, and labeled deal records. (3) Multi-agent
analysis: The three prompts are processed by
frozen LLM agents, each independently return-
ing a binary decision and supporting rationale.
(4) Perspective fusion: A lightweight gating
network embeds and weighs the agent outputs.
These are passed to a frozen manager agent,
which produces a calibrated success probability
and interpretable final decision.

4.2 Graph Retrieval
4.2.1 From classic IG to graph paths

As shown in Figure 3, path selection is framed
as a sequential node selection problem. Start-
ing from the target node c*, at each hop, we
choose the neighbor whose inclusion maximally
improves the model’s prediction accuracy. Al-
though this heuristic does not guarantee a glob-
ally optimal path, it provides an efficient ap-
proximation—analogous to decision-tree splits
via information gain—well suited to our multi-
hop retrieval setting (Quinlan, 1986):

IG(A)=H(Y)—-H(Y | A) (1)

We extend this principle to graphs by treating
each candidate node v as an “attribute” A and

estimating label uncertainty using the cross-
entropy of a frozen LLM predictor. The rest
of this section describes how these LLM-based
IG signals are annotated offline, and how a
lightweight selector model is trained to approx-
imate them during inference.

4.2.2 LLM-generated gain labels

To obtain oracle supervision for our path se-
lector, we use a frozen LLM to quantify the
task-specific information gain of each candi-
date expansion. For each target company c*,
we build a breadth-first expansion tree of depth
at most three, retaining up to three previously
unseen neighbors per node. At hop h € {0, 1,2}
let S = (¢*,...,u) denote a current path and
{v1,v9,v3} C N(u)\S™ the corresponding can-
didate set.

Prompt construction To measure the in-
cremental value of each candidate node v;, we
generate two prompts per expansion: (i) a base-
line prompt Pyaee that verbalizes nodes in .S (h),
and (ii) a candidate prompt P,, that verbal-
izes the extended path Sz(,?) = (c*,...,u,v;).
A frozen LLAMA-3.1-8B classifier returns the
success probabilities ppage and p,,. The proce-
dure for converting causal-LM logits into binary
probabilities p is detailed in Appendix.

Task-specific information gain Given the
gold label y € {0,1} (1 = Success, 0 = Failure),
we define the marginal gain from including v;
as:



Avi = CE(y, pbase) - CE(y, pvi)

cross-entropy reduction

+ Aconf(|pvi - 0'5’ - |pbase - O5|) (2)

where the first term rewards the reduction in
the prediction error (irrespective of y = 0 or
1); the second encourages confidence once the
correctness is taken into account. CE denotes
binary cross-entropy and A.ons € [0, 1] balances
correctness against confidence shift.

Training tuples FEach training instance con-
sists of: (S(h), 55?), Avi) The selector later
receives the baseline path S the extended
path Sz(,?), and the scalar gain A,, it should
learn to predict. Because gains are computed
for both successful and failed companies, the
selector is explicitly trained to prefer extensions
that push the LLMs towards the correct class
with higher confidence.

4.2.3 Selector training objective

Each hop h of a target company contributes
one ranking group G = {vy, vy, v3} with as-
sociated gains A, ,A,,, A, annotated as in
Eq. (2). For each candidate v € G™ | we com-
pute a difference feature:

Ly = [ebase | ew || (€w — ebase)] c R2304 (3)

where ep,s and e, are 768-dimensional sentence
embeddings extracted once by a frozen encoder.
A lightweight two-layer MLP sy : R?304 5 R
assigns a score to each expansion.

Listwise objective To match the full gain
pattern within each group we optimize a list-
wise objective. We first apply a within-group
shift r; = A,, — min; A, which preserves or-
dering while ensuring non-negativity (r; > 0
and arg max; r; = arg max; A, ). We then form
temperature-smoothed targets

o exp(ri/T) A
LY exp(r/7) o
pi = eXp(SQ(SL'UZ.)/T) (5)

31 exp(so(w,)/7)

The selector aligns its scores to the oracle dis-
tribution via

k
Ly (GM) =KL(q || p) = > ¢i(log g; — logpi) (6)

i=1

Company

. Investor

Figure 3: Illustration of how the path selector re-
trieves the best path from graph
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where 7 > 0 controls target smoothness.
Groups with ). r; = 0 carry no loss and are
skipped. The final objective sums the listwise
loss over all groups:

L(0) = List(GM) (7)
h

This listwise training reproduces the within-
group gain ranking and concentrates probabil-
ity mass on high-gain candidates, enabling top-1
expansion at inference without re-invoking the

LLM.

4.3 Document Retrieval

4.3.1 Company Retrieval

To place the target company with historically
comparable cases, we retrieve companies whose
public descriptions are semantically similar to
that of the target. The intuition is that com-
panies sharing industry focus, product form,
or market stage provide informative priors on
likely financing outcomes. We use a frozen sen-
tence encoder to embed each description and
rank candidates by cosine similarity (Mikolov
et al., 2013)—retaining the top-k peers N. To
avoid temporal leakage, we only consider firms
founded before the target.

4.3.2

Early capital often comes with intensive screen-
ing; hence the background of the lead investor
provides strong priors about a startup future
trajectory. We therefore identify, for the tar-
get company, the lead investor v* as the one
who committed the largest amount in its first
disclosed financing round at time tg.

From PitchBook entries for v*, we extract
two types of time-stamped records and discard
any entry with timestamp ¢ > to to avoid leak-
age: empirical records H®™P = {(r", ¢"")}

Investor Retrieval



and investment records H™ = {(civ, ¢iv)},
where 7P denotes a role or title held by v*
and C}CHV denotes a company previously backed
by v*. Both lists are ranked by recency and
truncated to the top n items.

For every invested company c}f" we attach
its brief profile and historical outcome la-
bel label(ci™) € {Succgss, FAILURE}. In
addition, we collect static demographic at-
tributes of v* (education, age, gender), de-
noted A*. The resulting structured summary
{A* H®™P [} ig verbalised into a investor-

analysis prompt.

4.4 Multi-agent Analysis

We instantiate three specialist LLM agents,
each mimicking a typical VC due-diligence role,
to elicit complementary evidence. The Peer-
Company Analyst (PC) agent examines
the similar-company prompt built from peer-
company documents. The Investor Profile
Analyst (IP) agent reads an investor-analysis
prompt that summaries the lead investor’s bi-
ography and historical portfolio. And the In-
vestment Chain Analyst (IC) agent rea-
sons over a graph-path prompt that presents
information-gain—optimized chains from the in-
vestment network. Each prompt is processed by
the same frozen GPT-3.5 Turbo, which outputs
a binary verdict and accompanying free-form
rationale. Because the LLM backbone is shared
and frozen, any differences in output reflect dif-
ferences in evidence alone.

4.5 Gating Network

We formalize rationale fusion as a supervised
weighting problem: each agent’s textual ra-
tionale is jointly embedded with the target
company’s structured profile, and a lightweight
gating network learns instance-specific weights
to aggregate evidence for binary classification.
This approach preserves richer evidence than
scalar scores, yields interpretable weights linked
to their supporting sentences, and maintains a
frozen backbone LLM.

For each target company, we dispose of three
rationales R; (i € {PC, IP, IC}) produced
by the specialist agents. FEach rationale is
embedded using a frozen sentence encoder:
7i = fenc(R;) € RY%. The company’s struc-
tured attributes (industry, stage, region) are
represented by a fixed vector a* € R%. A two-

layer MLP g4 scores every view conditioned on
the instance.

si = go([ i || a*]) (8)
exp(s;)
¥, expl(s;) ©

The weights w; vary from case to case. The
gated representation is the convex combination

Tt :Zwim e R%
i

w; =

(10)

which is concatenated with the attributes, is
passed to another two-layer MLP hg followed
by a sigmoid to obtain the success probability

p=o(ho([rclla’])) € (0,1) (11)

With ground-truth label y € {0,1} the gating
parameters {¢, 0} are learned by binary cross-
entropy

(12)

The softmax coefficients {w; } therefore offer an
explicit, per-instance attribution of how much
the company text, investor text, and graph path
perspectives contribute to the final verdict.

L($,0) = —ylogp — (1 —y)log(l —p)

4.6 Manager Agent

To obtain a comprehensive and human-readable
final decision, the following artifacts are col-
lated into a meta-prompt and forwarded to
an additional frozen GPT-3.5 Turbo instance
(the decision/manager agent): the target com-
pany’s profile, the four agent predictions g;, the
four rationales R;, and the learned importance
weights w;. Conditioned on this structured
input, the decision agent produces: (i) a fi-
nal binary decision Jgna € {T'rue, False} and
(ii) a natural language explanation grounded
in the individual rationales and their respec-
tive weights. This architecture provides inter-
pretable, multi-source decision-making aligned
with human VC analysis practices.

5 Experiments & Results

5.1 Datasets

1. Dataset Sampling and Splitting We
train both the Path Selector and Gate Network
on subsets drawn from the original investment
graph which contains a large pool of candidate



companies. To reduce computational overhead
and avoid redundancy, we randomly sample
2,000 and 11,000 companies—respecting the
overall success-to-failure ratio—for the Path
Selector and Gate Network, respectively. Each
subset is split into training, validation, and test
sets in a 70 : 15 : 15 ratio, with class balance
maintained across splits.

2. Final evaluation We select 2,507 startups
that successfully secured their first round of
financing between October 2021 to November
2023—entirely after the LLM’s pretraining cut-
off—to prevent any test instances from appear-
ing in the pretraining corpus and avoid data
leakage. This set includes 1,974 negative sam-
ples and 533 positive samples.

5.2 Baselines

We compare our model with state-of-the-art
baselines across four categories: GNN-based
methods (SHGMNN, GST), embedding-based
methods (BERT Fusion), RAG-based LLM
methods (RAG, GNN-RAG), and recent LLM-
driven VC predictors (SSFF).

SHGMNN (Zhang et al., 2021) aggregates
the heterogeneous network by meta-paths into
a graph and applies a diffusion GNN with con-
vex MAP inference in a variational EM loop
to model label dependencies. GST (Lyu et al.,
2021) models the evolving graph of startups
and investors with unsupervised graph self at-
tention, refines embeddings via link predic-
tion and node classification losses, and feeds
monthly graph snapshots into an LSTM to
predict success over five years. BERT Fu-
sion (Maarouf et al., 2025) concatenates BERT
embeddings of each startup’s Crunchbase? self-
description with structured fundamentals and
trains a lightweight neural classifier to predict
success. Standard RAG (Lewis et al., 2020)
uses a frozen dense retriever to embed queries
and passages into a shared semantic space, re-
trieves the top k similar company profiles and
investor summaries, and conditions a single
LLM on them via RAG Token and RAG Se-
quence. SSFF (Wang et al., 2025b) unites a
divide-and-conquer multi-agent analyst block,
an LLM-enhanced random-forest predictor with
a founder-idea-fit network, and a RAG external-

3Crunchbase is a public platform providing compre-
hensive data on companies, funding rounds, investors,
and market trends.

knowledge module to score startup prospects.
GNN-RAG (Mavromatis and Karypis, 2024)
couples a deep KGQA GNN that ranks candi-
date nodes and extracts shortest-path reasoning
traces with an LLM that consumes those ver-
balized paths, yielding graph-aware RAG for
KG question answering.

5.3 Evaluation Metrics

In evaluating binary classification tasks, stan-
dard metrics such as precision, recall, and F1
score are commonly used. However, to better
reflect the practical needs of investors selecting
high-potential startups, we adopt the Precision
at K (PQK) metric. PQK measures the pro-
portion of successful companies among the top
K model recommendations, where candidates
are ranked by the model’s predicted confidence.
This metric is well-established in VC predic-
tion research (Sharchilev et al., 2018; Zhang
et al., 2021; Lyu et al., 2021) for its ability
to highlight top-performing investments. Fur-
ther, to assess model performance over time, we
compute the Average Precision at K (APQK)
across monthly cohorts. A higher APQK in-
dicates that the model consistently prioritizes
successful companies, thereby offering greater
practical value to investors seeking to optimize
portfolio decisions.

5.4 Parameter Settings

To prevent leakage of evaluation data into the
LLM’s pretraining, we use OpenAl’s GPT-3.5
Turbo (knowledge cutoff: September 2021) to
ensure deterministic outputs during experimen-
tation. All training is conducted on a single
NVIDIA RTX 4090 GPU with 24 GB of mem-
ory. For text embedding, we use Sentence-
BERT to encode all textual inputs. Additional
implementation details and parameter settings
are provided in the Appendix.

5.5 Overall Performance Comparison

All reported metrics are averaged over five in-
dependent runs of the LLM. Table 1 shows
that MIRAGE-VC improves APQ5 by 16.6%,
AP@10 by 16.7%, and AP@20 by 8.0%—mea-
sures that directly capture retrieval quality
when only a handful of top candidates can
be pursued in practice. Notably, our model’s
APQK gains increase as K decreases, demon-
strating that higher confidence corresponds to



Table 1: Performance comparison with baselines. All values are percentages (the "%" sign is omitted).

APQK indicates the monthly-averaged Precision@k.

Methods AP@5 APQ10 AP@20 Precision Recall F1

SHGMNN 25.41 24.56 26.22 20.65 82.37 3297
GST 26.71 25.71 27.14 21.75 83.54 34.51
BERT Fusion 24.67 26.67 25.33 23.63 24.95  24.27
Standard RAG  24.43 24.12 25.23 23.12 60.34  33.43
SSFF 28.23 30.02 28.42 23.23 69.41 34.81
GNN-RAG 29.42 27.53 27.04 22.81 71.10  34.54
Ours 34.29 32.14 29.21 24.32 73.44  36.54

greater accuracy in identifying promising star-
tups—a property that is particularly valuable
in real-world decision-making. It also achieves
relative gains of 5.0% in F1 and 2.9% in Pre-
cision over the strongest baselines, indicating
a more balanced and accurate classification of
success outcomes. Compared to GNN-based
methods (GST and SHGMNN), which boost re-
call through broad structural coverage but suf-
fer precision drops from noisy neighbors; SSFF,
a recent LLM-driven VC predictor that com-
bines multi-agent analysis and RAG yet often
surfaces redundant evidence; and RAG-based
approaches (Standard RAG and GNN-RAG),
which ground predictions in text but ignore
explicit multi-hop relational chains—MIRAGE-
VC’s information-gain path retriever filters out
low-value graph paths, and its multi-view gat-
ing adaptively weighs heterogeneous evidence,
yielding balanced recall, higher precision, and
a stronger ability to surface top-performing in-
vestment candidates.

6 Ablation Study

Table 2 reports the results of our ablation stud-
ies. Removing the graph retrieval component
significantly cuts Precision by 1.3% and F1 by
2.5%, highlighting the essential role of struc-
tural evidence. Both naively concatenating all
3-hop neighbors and picking paths at random
degrade performance, demonstrating the supe-
rior noise-filtering capability of our path selec-
tor. Eliminating either similar company docu-
ments or the investor profiles also results in a
notable performance drop, indicating their com-
plementary value. In the fusion stage, aggregat-
ing all evidence within a single agent costs 1.4%
F1, and replacing the learnable gating mecha-
nism with fixed weights further costs 0.6% F1.

highlighting the necessity of multi-agent fusion
and adaptive gating. These results collectively
show that instance-level, multi-perspective rea-
soning combined with adaptive gating is crucial
for robust performance.

Table 2: Results of ablation studies.

Removed Sub-module Precision F1

w/o Graph Retrieval 23.01 34.06
w/o Path Selector (all) 22.72 33.29
w/o Path Selector (random) 23.24 34.76
w/o Similar Company 23.45 35.54
w/o Investor Analysis 23.32 35.43
w/o Multi-agent Fusion 22.97 35.13
w/o Gating Network 24.05 35.94
FULL 24.32 36.54

7 Conclusion

This paper presents the first multi-view RAG
framework for VC prediction, integrating both
document-based evidence and investment rela-
tionship graphs. To address the unique chal-
lenges of VC scenarios, we propose an infor-
mation gain-driven, chain-based path retrieval
mechanism. This method uses a frozen LLM to
estimate the marginal information gain at each
graph hop and trains a lightweight path selector
to efficiently extract concise, high-value reason-
ing chains for inference. In addition, we develop
a multi-agent collaborative inference strategy
coupled with an adaptive gating network that
dynamically fuses diverse perspectives from tex-
tual and structural evidence. This design en-
ables interpretable and accurate predictions
without fine-tuning the underlying LLMs. Ex-
tensive experiments on real-world PitchBook
datasets demonstrate that our framework out-
performs multiple state-of-the-art baselines.



Limitations

While MIRAGE-VC pioneers the integration of
graph-path retrieval with RAG in VC predic-
tion, it exhibits the following limitations:

e LLM-Driven Supervision Bias. Our path
selector relies on task-specific information
gains A computed by a frozen LLM back-
bone, which inherits that model’s calibra-
tion errors and prompt sensitivity. Con-
sequently, A may fluctuate across dif-
ferent LLM architectures or prompt de-
signs. Future work should cross—validate
A with multiple backbones, report in-
ter—-LLM agreement, and audit a stratified
subset with human judgment.

e Myopic Supervision Objective. The cur-
rent supervision scheme is local: A mea-
sures only the one-hop impact of adding a
single node, and our beam search optimizes
these immediate gains. This greedy strat-
egy may overlook globally optimal sub-
graphs or beneficial interactions among
multiple nodes. To address this, we
plan to explore look-ahead scoring mech-
anisms and sequence-level optimization
techniques—such as reinforcement learn-
ing over path sequences—to capture long-
term dependencies and holistic graph struc-
tures.

Ethical Considerations

Data provenance and consent. We rely
exclusively on publicly available and licensed
(PitchBook) company and investor level records,
using identifiers only for identity resolution. No
human-subject data are collected, and we do
not disclose raw documents and proprietary
records.

Privacy, licensing, and compliance. All
inputs come from public or licensed fields, with
strict temporal ordering to prevent future-event
leakage. Investor demographics (e.g., educa-
tion, gender) are used solely in aggregated sum-
maries. Users must honor the original data
licenses and must not attempt re-identification.
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A Appendix

A.1 More Related Work

With the rise of LLMs, a variety of LLM-
based financial and VC decision-support sys-
tems have been proposed (Liu et al., 2023;
Zhang et al., 2024; Ko and Lee, 2024). These
systems typically rely on textual and numerical
features or on simulation of real-world scenar-
ios to improve prediction accuracy. For ex-
ample, SSFF (Wang et al., 2025b) and Fin-
Con (Yu et al., 2024) systems establish a hier-
archical manager—analyst collaboration mecha-
nism, outperforming expert teams across mul-
tiple tasks; and StockGPT (Mai, 2024) is pre-
trained on extensive quantitative stock-market
data to autonomously learn price-movement
patterns, yielding substantial excess returns
and demonstrating the promise of generative
AT in complex financial decision making. How-
ever, none of these approaches directly inte-
grate graph-structured knowledge—such as in-
vestor—startup relationship networks—and thus
they are unable to fully capture path depen-
dencies.

Some KG-RAG approaches (Saleh et al.,
2024; Linders and Tomczak, 2025) retrieve rel-
evant triples or subgraphs, linearize them into
text, and condition an LLM for factoid question
answering. These frameworks excel at match-
ing and verifying discrete facts but lack any
mechanism to filter or rank multi-hop paths by
their downstream utility. In contrast, our VC
prediction task requires selecting concise, high-
value investment chains as explicit evidence
for node-classification inference, so standard
KG-RAG methods cannot be directly applied
without substantial adaptation.

A.2 Impact of Parameters on
Performance

We randomly sampled 1,000 companies from
the non-test portion of our PitchBook data and,
for each hyperparameter setting, ran each per-
spective’s retrieval-and-analysis component five
times to estimate mean F} scores and standard
errors (Figure 4). In the document retrieval
study (Figure 4 (a)), we varied the number of
similar-company shots K and lead-investor ré-
sumé entries N from 0 to 6: performance rose
sharply above the zero-shot baseline, peaked
at (K, N) = (4,5), and then plateaued, moti-
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Figure 4: (a) Document retrieval: effect of the
number of similar companies K and resume breadth
N on the agents’ Fy. (b) Graph retrieval: effect of
search depth dp.x and path count P on F;.

vating our choice of K = 4, N = 5. In the
graph retrieval grid (Figure 4 (b)), we swept
maximum search depths dpax € {1,...,6} and
path counts P € {1,...,4}; the highest F} was
observed at (P, dmax) = (2,4), which we adopt
in all main experiments.

A.3 Implementation Details

A.3.1 Path Selector

Binary probability of LLMs We follow the
mainstream likelihood-based scoring practice
that normalizes the token-level log-likelihoods
of verbalized labels (e.g., True/False) to obtain
a Bernoulli probability, as adopted and ana-
lyzed in recent work on zero-shot classification,
calibration, and probability-based prompt se-
lection (Zhou et al., 2023; Qian et al., 2025).
Given a prompt P, we verbalize labels as the
strings “True” (Success) and “False” (Failure).
For a string w = (t1,...,tmn), we use the string
log-likelihood

log P(w | P) =Y log P(t; | Pt<;).
j=1

Let
Ly =log P(“True” | P), Ly = log P(“False” | P)

The success probability is obtained by two-way
normalization:

Lt
€ 1

= U(LT—LF)7 Tfe-7

p:7€LT+eLF O'(x):
We only query log-probabilities for the target

strings.

Training Settings The trade-off weight in
Eq. (2), Acont € [0,1], is selected on the val-
idation split by a small grid search; Table 3
shows that performance is stable in the range
0.1—-0.3, and we therefore fix Aconr = 0.2 in



all experiments. Hyperparameter is listed in
Table 6.

Table 3: Validation NDCG@1 (%) under different
confidence—trade-off weights Acont-

Aconf 0 010 0.20 0.30 0.40 0.50
NDCGa@1l (%) 62.7 63.1 63.4 632 629 625

Evaluation and Results We evaluate the
Path Selector with two ranking metrics. Hit@1
measures whether the selector’s top-ranked can-
didate matches an oracle best-gain candidate in
the group. It directly reflects the success rate
of our top-1 expansion policy at inference, thus
aligning tightly with how the selector is actu-
ally used; a higher Hit@1 means we more often
choose the maximal-gain extension. NDCG@1
normalizes the gain of the selected candidate
by the maximum attainable gain in the group,
yielding a score in [0,1]. Unlike the binary
Hit@1, NDCG@]1 gives partial credit when the
chosen candidate is near-optimal, making it
more stable under noisy or close-valued oracle
gains and better for hyperparameter tuning.
A random baseline is obtained by drawing an
i.i.d. score from U(0, 1) for every candidate and
applying the same evaluation procedure. Com-
pared with random scoring, the Path Selector
improves Hit@1 by +0.0879 and NDCGQ1 by
40.1851, confirming its ability to consistently
priorities expansions of higher task-specific in-
formation gain.

Table 4: Selector performance on the held-out TEST
split.

Method NDCG@1 (%) Hit@l (%)
Random #/(0,1) 44.92 33.33
PATH SELECTOR 63.43 42.12

A.4 Gate Network

Data Preparation Each training instance
consists of the three agent rationales, encoded
by a frozen all-MiniLM-L6-v2 sentence encoder
into 384-dimensional vectors {h;}3_,. Static
company descriptors (industry, region, fund-
ing round) are one-hot-encoded into a 14-
dimensional vector ¢ and concatenated with
the agent embeddings.

Training Settings Query—key projections
W, Wi are applied to each h; to obtain
view-level attention scores. The attended view
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representations, together with ¢, are fed to a
two-layer MLP that outputs instance-specific
weights w € R3 (3, w; = 1). The weighted
sum of the three views is finally mapped by
a second two-layer MLP to the success prob-
ability. All remaining hyper-parameters are
summarized in Table 6.

Table 5: Performance of the gating network versus
a random-weight baseline on the held-out test set.

Method P (%) F1 (%)
Random 19.98 19.49
Ours 23.15 35.13

Evaluation and Results Following the
main task, the gating network is assessed on
Precision (P) and F1. As a sanity check we
replace the learned weights by a uniform ran-
dom choice (Random); its performance marks
the chance level of selecting the most informa-
tive view. Table 5 shows that the learned gate
substantially outperforms this baseline, con-
firming that the network has indeed captured
non-trivial view—-attribute interactions.

Table 6: Hyper-parameters for the Gate Network
(GN) and Path Selector (PS)

Parameter GN PS
Text vector dimension 384 384
Company key dimension 53 —
Batch size 256 256
Training epochs 50 30
Hidden width 256 256
Optimiser AdamW  AdamW
Learning rate 5x107% 3 x107*
Temperature 7 — 0.5

A.5 Text Embedding Model Analysis

Two pipeline components rely on a frozen
sentence-encoder to obtain text representations:
(i) the graph retriever, where the encoder em-
beds path descriptions, and (ii) the gate net-
work, where it embeds each agent’s generated
answer. Here we analyse whether swapping the
encoder markedly affects intermediate metrics.
Tables 7 and 8 show that across both mod-
ules the performance gap between alternative
encoders is marginal, confirming that our main
results are not sensitive to the specific choice
of text-embedding model.



Table 7: Impact of different text encoders on the
graph retriever.

Text encoder Dim. NDCG@1 (%) Hit@Q1 (%)
all-MiniLM-L6-v2 384 63.3 42.2
jina-embeddings-v2-base 768 63.4 42.1
eb-large-v2 1024 63.1 41.9

Table 8: Impact of different text encoders on the
gate network.

Text encoder Dim. P (%) Fi (%)
all-MiniLM-L6-v2 384 2345 3513
jina-embeddings-v2-base 768  23.12  35.31
eb-large-v2 1024 23.25  35.25

A.6 Resource Utilization and Latency

Our end-to-end pipeline comprises three phases:
(i) retrieval via GPT-3.5 API, (ii) oracle scor-
ing with Llama-3.1-8B and selector training,
and (iii) gating network training and ablation
studies. We issued approximately 40 000 GPT-
3.5 requests (under 12 000 tokens each), pro-
cessing ~ 480 million tokens (under 48 GPU
hour). Locally, we generated 16 857 gain labels
with Llama-3.1-8B (5 619 group expansions,
all within its 8 000-token window). Training
the listwise selector on an NVIDIA RTX 4090
(24 GB VRAM) for 50 epochs required about
5 minutes, and the gating network plus abla-
tions completed in under 10 minutes. Including
hyperparameter sweeps, total GPU time was
10 GPU h. At inference, producing three re-
trieval views via GPT-3.5 followed by the adap-
tive fusion pass completes in under 3 minutes
per company, demonstrating the pipeline’s effi-
ciency and suitability for low-latency decision
support.

A.7 Prompt Templates and Examples

This section provides the exact prompt tem-
plates used by each module and one illustrative
example per template.

A.7.1 Company and Investor Basic
Info Case

### Company Profile ###
Company name : ACME Robotics
Founded year : 2023

Headquarters : San Francisco, USA
Industry : Service Robotics
Employees : 35 (as of 2025)

Key prototype : Compact autonomous cleaning
robot for boutique hotels

Revenue status : Pre-revenue; paid pilots
scheduled Q4-2025

Funding to date : USD 3.5 M (Seed round, Jun
-2024)

Lead investors : FutureFund (Jane Doe),
SeedSpark Ventures

Company overview: ACME Robotics develops AI-
driven service robots that automate
routine cleaning tasks in hospitality and
small retail environments. The platform
combines low-cost modular hardware with on
-device perception and a subscription
software stack, aiming to deliver pay-as-
you-go automation for venues that cannot
afford traditional industrial solutioms.

### Lead-Investor Profile ###
Investor name: Jane Doe Partner @ FutureFund
Tenure : 2016 - present

Previous positions
® Senior Engineer, ABB Robotics (2008 - 2012)
global industrial-robotics leader.{
COMPANY_PROFILE} (success)
e Investment Associate, TechEdge Capital (2012
- 2016)early-stage deep-tech VC.\{COMPANY
\_PROFILE\} (success)

Focus sectors : Robotics @ Edge AI e IoT
Assets under mgmt: USD 1.4 B

Investment record

® RoboVacacquired by Dyson (2021). {
COMPANY_PROFILE} (success)

® MechArmIPO (2022). {COMPANY_PROFILE} (
success)

e NanoGripacquired by Bosch (2020). {
COMPANY_PROFILE} (success)

® ServolLinkceased operations (2019). {
COMPANY_PROFILE} (failure)

Board seats : MechArm e FlexDroid e SensorX
Awards : Forbes 30 Under 40 in VC (2023)

A.7.2 Path Analyst Prompt
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Role: You are a senior venture-capital analyst
who excels at step-by-step
reasoning over investment paths to judge
whether a seed / angel-stage
start-up is likely to secure Series-A
funding within the next year.

You are given three blocks of information:

(1) High-value investment path retrieved for {
COMPANY_NAME} : {PATH_TEXT}
Company profiles appearing in the path (
each with outcome labels; True raised
Series A
within 12 months after seed/angel, False
did not) : {COMPANY_PROFILES} Success/
Failure:{LABELS}
Investor profiles appearing in the path:{
INVESTOR_PROFILES}
Target company profile:{
TARGET_COMPANY_PROFILE}
Task:
® Analyse the evidence and predict whether {
COMPANY_NAME} will
raise a Series-A round within 12 months.

(2)

(3
(4)




® Qutput **exactly** in the format:

Prediction: True/False
Analysis: <your step-by-step reasoning>

® If evidence is insufficient, reason
cautiously but still decide.

® Qutput **exactly** in the format:

Prediction: True/False
Analysis: <your step-by-step reasoning>

® If evidence is insufficient, reason
cautiously but still decide.

A.7.3 Company Analyst Prompt

Role:
You are a senior venture-capital analyst who
excels at using information from
industry peers (similar companies) to judge
whether a seed/angel-stage target
will secure Series-A funding within the next
year.

You are given:

(1) Target company profile:q{
TARGET_COMPANY_PROFILE}

(2) Comparable companies (each with outcome
labels; True = raised Series A
within 12 months after seed/angel, False =
did not) : {COMPANY_PROFILES} Success/
Failure:{LABELS}

Task:
® Analyse the evidence and predict whether {
COMPANY_NAME} will
raise a Series-A round within 12 months.
® Qutput **exactly** in the format:

Prediction: True/False
Analysis: <your step-by-step reasoning>

® If evidence is insufficient, reason
cautiously but still decide.

A.7.4 Investor Analyst Prompt

Role:
You are a senior venture-capital analyst who
specialises in evaluating a
start-ups lead seed/angel investor record to
judge whether the target can

secure Series-A funding within the next year.

You are given:

(1) Target company profile:{
TARGET_COMPANY_PROFILE}

(2) Lead-investor rsum (prior operating roles

and portfolio companies,

each annotated as success or

failuresuccess = the company raised Series

A
within 12 months of its seed/angel round;
failure = it did not) :{INVESTOR_PROFILE}

Task:
® Analyse how the investors past successes
and failures relate to the target
companys sector, stage, and needs.
® Predict whether the target will raise a
Series-A round within 12 months.
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A.7.5 Manager Analyst Prompt

Role:
You are a senior venture-capital analyst who
excels at synthesizing other
experts viewpoints to decide whether a seed/
angel-stage start-up will secure
Series-A funding within the next year.

You are given:

(1) Path-analyst verdict

® Prediction: {PATH_PREDICTION}
® Analysis : {PATH_ANALYSIS}
(2) Similar-company analyst verdict
® Prediction: {SIM_PREDICTION}
® Analysis : {SIM_ANALYSIS}
(3) Lead-investor analyst verdict
® Prediction: {INV_PREDICTION}
® Analysis : {INV_ANALYSIS}
(4) Aggregate-weight advice

The historical importance of the three
perspectives is

{WEIGHTS_VECTOR}

(6) Target company profile
{TARGET_COMPANY_PROFILE}

Task:
® Produce a single, final prediction on
whether the target will raise a
Series-A round within 12 months.
® Qutput **exactly** in the format:

Prediction: True/False
Analysis: <your step-by-step reasoning>

® Tf evidence is insufficient, reason
cautiously but still decide.
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