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Abstract001

Most venture capital (VC) investments on002
startups fail, while a few yield outsized003
gains. Accurately predicting startup suc-004
cess is thus crucial. Graph-based mod-005
els confirm the value of structural signals006
but offer limited reasoning, whereas large007
language models (LLMs) provide strong008
reasoning and broad knowledge yet hal-009
lucinate without domain grounding. A010
core challenge is therefore to align LLM011
reasoning with explicit multi-hop graph012
paths and fuse these paths with unstruc-013
tured evidence. Classic retrieval-augmented014
generation (RAG) mitigates this via tex-015
tual evidence but overlooks high-order016
investor-company relations. Embedding-017
based graph RAG encodes such relations018
while discarding the explicit chains LLMs019
exploit. We propose MIRAGE-VC, a multi-020
perspective RAG framework for VC pre-021
diction. Our approach couples semantic022
retrieval with an information-gain–guided,023
stepwise path retriever that selects a com-024
pact set of cross-typed paths as explicit evi-025
dence. Specialized agents analyze heteroge-026
neous sources, and a learnable gate weights027
their signals before a final LLM decision.028
On a real-world VC dataset, MIRAGE-VC029
achieves state-of-the-art performance with030
a 5.0% relative F1 gain and a 16.6% rela-031
tive Precision@5 gain over the best baseline.032
Our implementation is available.1033

1 Introduction034

In venture capital (VC), accurately identifying035

high-potential startups is crucial given its high-036

risk, high-reward nature: from 1985 to 2009,037

roughly 60% of VC-backed firms lost money,038

while only 10% returned over five times the039

initial investment (Kerr et al., 2014). Conse-040

1https://anonymous.4open.science/r/
MIRAGE-VC-C1E0
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Figure 1: Illustration of how the path retrieved
from the graph by the path selector affects the
prediction.

quently, predicting startup success becomes an 041

increasingly important task. 042

Early approaches relied on firm-level features 043

and classic classifiers (e.g., logistic regression, 044

random forests) (Sharchilev et al., 2018). More 045

recent work leverages graph neural networks 046

(GNNs) to capture complex dependencies in 047

dynamic investment networks, demonstrating 048

that structured graph representations further 049

enhance VC prediction performance (Lyu et al., 050

2021; Zhang et al., 2021). However, GNNs 051

rely solely on graph data and cannot perform 052

explicit reasoning or integrate external knowl- 053

edge. Recent advances in large language models 054

(LLMs) have further expanded the toolkit for 055

startup forecasting (Zhao et al., 2023). Un- 056

like GNNs, which are limited to the observed 057

graph structure, LLMs such as GPT (Achiam 058

et al., 2023), with their strong reasoning capa- 059

bilities and broad world knowledge, have been 060

applied to improve both prediction accuracy 061

and interpretability in this setting (Liu et al., 062

2023; Maarouf et al., 2025; Ko and Lee, 2024). 063

However, LLMs are prone to hallucinations 064

and often lack the domain grounding required 065

for high-stakes, specialized tasks (Zhao et al., 066

2023). Retrieval-augmented generation (RAG) 067

frameworks address this by integrating external 068

knowledge without requiring fine-tuning (Lewis 069

et al., 2020). Yet, classic RAG is optimized 070

for unstructured textual data (Barnett et al., 071

1

https://anonymous.4open.science/r/MIRAGE-VC-C1E0
https://anonymous.4open.science/r/MIRAGE-VC-C1E0


2024) and struggles to capture the high-order,072

multi-hop relationships common in VC invest-073

ment graphs. As a result, its effectiveness in074

this domain remains limited.075

Prior work extends RAG to graph-structured076

data by leveraging GNN-derived node embed-077

dings (Mavromatis and Karypis, 2024). How-078

ever, embedding-based retrieval discards ex-079

plicit relational chains, which are essential for080

LLMs that excel at decomposing problems into081

interpretable, stepwise reasoning (Wei et al.,082

2022). In contrast, as shown in Figure 1,083

path-based retrieval enables extraction of se-084

mantically meaningful investment chains - e.g.,085

“WhatsApp ← Sequoia → Google ← Kleiner086

Perkins → Amazon” which injects three action-087

able signals—investor quality via repeated early088

wins, cross-domain capability, and a reinforced089

coalition of top-tier backers-thus increasing the090

prior probability of success. These structured091

paths align well with LLMs’ chain-of-thought092

reasoning, facilitating more transparent and093

accurate predictions.094

Despite its promise, integrating multi-hop095

relational paths with unstructured evidence096

sources remains challenging. First, graph-097

based reasoning is complex: shallow subgraphs098

around a target company may lack signals (Yu099

et al., 2021), yet as the hop count increases the100

number of candidate paths grows exponentially,101

and deeper expansions introduce noise through102

redundant or weakly informative paths (Zhang103

et al., 2025). Second, there is significant seman-104

tic heterogeneity across information sources:105

company documents offer business and mar-106

ket insights; investor profiles reflect experience107

and reputation, and graphs encode structural108

investment patterns. Naively merging these109

sources risks semantic conflicts and attention110

dilution within LLM prompts (Lv et al., 2024).111

Third, the relevance of each evidence type varies112

by startup category. For example, technology113

ventures often rely more on strong investor en-114

dorsements and network position (Sorenson and115

Stuart, 2001), while consumer-facing startups116

are better judged by operational indicators like117

market traction and growth rates (Belleflamme118

et al., 2014). Without a mechanism for dynam-119

ically weighting these perspectives, predictions120

risk over-reliance on secondary signals.121

To address these challenges, we propose122

MIRAGE-VC, a multi-perspective retrieval-123

augmented framework for VC prediction, com- 124

posed of three key components: Path-Level 125

Reasoning: We introduce an information-gain- 126

driven path retriever that iteratively selects a 127

small set of high-order, cross-type investment 128

chains from the VC graph, balancing informa- 129

tiveness and interpretability, to serve as ex- 130

plicit relational evidence. Multi-Perspective 131

Fusion: We construct three evidence streams 132

— company disclosures (Badertscher et al., 133

2013), lead investor profiles (Bernstein et al., 134

2022), and graph-based relational paths — each 135

formatted as a structured, timestamped text 136

blocks. Dedicated analysis agents reason over 137

each stream independently before passing inter- 138

mediate results to a central aggregation agent. 139

Adaptive Weighting: A learnable gating net- 140

work conditions on both the analysis outputs 141

and the target company’s profile to compute 142

normalized weights. These are injected into 143

the final decision prompt, enabling the model 144

to emphasize the most relevant evidence per 145

prediction. The contributions are as follows. 146

• We propose the first RAG-based VC pre- 147

diction framework that integrates unstruc- 148

tured document semantics with investment 149

network graphs, enabling real-time multi- 150

source knowledge injection and explicit 151

chain-of-thought reasoning without fine- 152

tuning the underlying LLM. 153

• We design a novel, information-gain-based 154

path retriever and a multi-perspective 155

fusion pipeline that transforms semanti- 156

cally heterogeneous company disclosures, 157

lead investor profiles, and graph-based 158

paths into structured prompts for dedi- 159

cated LLM-based agents. 160

• Under strict measures to prevent data leak- 161

age into the LLM, our method achieves 162

state-of-the-art performance on a real- 163

world VC dataset—yielding relative im- 164

provements of 5.0% in F1 and 16.6% in 165

Precision@5 over the best baseline. 166

2 Related Work 167

2.1 Graph-based VC Prediction 168

Traditional machine learning predictors rely on 169

independent firm-level features and ignore re- 170

lational context (Arroyo et al., 2019; Bento, 171
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2017), whereas GNNs model investor–company172

graphs to capture high-order relational sig-173

nals. SHGMNN (Zhang et al., 2021) com-174

bines predefined meta-paths, lightweight GNNs175

and Markov random field inference to integrate176

heterogeneous topologies and propagate labels177

for large-scale early-stage startup identifica-178

tion. GST (Lyu et al., 2021) applies unsuper-179

vised graph self-attention to update a dynamic180

startup-investor bipartite graph, improving181

node embeddings via link prediction and node182

classification to capture rich investor–company183

relations. These studies demonstrate that the184

structural properties of VC investment net-185

works can significantly improve predictive accu-186

racy. However, they remain limited by narrow187

knowledge scopes, weak reasoning capabilities,188

and a lack of interpretability.189

2.2 Retrieval Augmented Generation190

RAG has become a widely used strat-191

egy for grounding LLMs in external knowl-192

edge (Wiratunga et al., 2024; Jeong et al., 2024;193

Wang et al., 2025a). The standard RAG frame-194

work (Lewis et al., 2020) reduces hallucinations195

by retrieving relevant passages. However, it196

operates solely on linear, unstructured text197

and lacks mechanisms to capture structural198

dependencies or facilitate multi-hop reasoning199

over heterogeneous investment networks. Re-200

cent GNN-RAG frameworks (Mavromatis and201

Karypis, 2024) attempt to bridge this gap by202

retrieving contextually relevant nodes based203

on node embedding similarity. While this cap-204

tures local structural cues, it still lacks explicit205

reasoning paths, preventing LLMs from fully206

leveraging their inherent strengths in explicit,207

stepwise, and interpretable chain-of-thought208

reasoning (Wei et al., 2022). As a result, these209

methods limit both the reasoning depth and210

interpretability that LLMs can offer in graph-211

based prediction tasks.212

3 Preliminary213

3.1 Problem definition214

This study aims to predict the success of early-215

stage start-ups, defined as companies that have216

completed their first formal financing round217

(seed or angel) but have not yet raised Series218

A funding (Zhang et al., 2021). While success219

is often measured by the attainment of Series220

A financing (Zhang et al., 2021), prior studies 221

use varying observation windows, which can 222

introduce temporal bias. To mitigate this, we 223

adopt a consistent one-year observation win- 224

dow following the seed round. This approach 225

aligns with stage-based evaluation practices 226

and helps control for external environmental 227

factors (Boocock and Woods, 1997). The core 228

task is to predict whether an early stage startup 229

will secure subsequent financing within one year 230

of its initial funding. 231

3.2 Data overview 232

We use the PitchBook2 Global VC dataset, 233

which spans investment activities from 2005 to 234

November 2023. The dataset includes detailed 235

investment records specifying the invested com- 236

pany, investor identity, funding amount, and fi- 237

nancing stage. It also contains demographic in- 238

formation on both entrepreneurs and investors, 239

including background, location, education, and 240

professional biographies. Additionally, startup- 241

level attributes are provided, such as team com- 242

position, industry classification, keyword tags, 243

and geographic location. In total, the dataset 244

encompasses 263,729 startups and 1,014,157 245

individuals. 246

3.3 VC investment network 247

We model the VC ecosystem as a time-stamped 248

heterogeneous information network G = (V, E), 249

where V = Vcmp∪Vinv contains company nodes 250

and investor nodes. Each directed edge e = 251

(vinv, vcmp, t) represents an investment event 252

from investor to company at time t, annotated 253

with attributes such as the financing round and 254

investment amount. For each company c∗ that 255

completes an angel or seed round at time t, we 256

assign a binary label y∗ = 1 if it secures Series 257

A funding within the following 12 months, and 258

y∗ = 0 otherwise. 259

4 Methodology 260

4.1 Overview of our method 261

As shown in Figure 2, our proposed framework 262

follows four sequential stages: (1) Graph re- 263

trieval: To supply the investment chain agent 264

2PitchBook is a financial data platform providing
comprehensive information on private and public capital
markets, including venture capital, private equity, and
M&A transactions.
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Figure 2: Overall Framework of MIRAGE-VC. It contains four key components: Graph Retrieval for path
selecting, Document Retrieval for companies and investor, Multi-agent Analysis for multi-perspective
information, Dynamic Weighted Fusion for adaptive information fusion.

with structured evidence, a learnable graph re-265

triever extracts a high-value company–investor266

path from the investment graph. (2) Document267

retrieval: To provide the company and investor268

agents with textual context, semantic matching269

over public filings yields two textual views: (i) a270

similar company context and (ii) a lead-investor271

profile composed of demographics, career his-272

tory, and labeled deal records. (3) Multi-agent273

analysis: The three prompts are processed by274

frozen LLM agents, each independently return-275

ing a binary decision and supporting rationale.276

(4) Perspective fusion: A lightweight gating277

network embeds and weighs the agent outputs.278

These are passed to a frozen manager agent,279

which produces a calibrated success probability280

and interpretable final decision.281

4.2 Graph Retrieval282

4.2.1 From classic IG to graph paths283

As shown in Figure 3, path selection is framed284

as a sequential node selection problem. Start-285

ing from the target node c∗, at each hop, we286

choose the neighbor whose inclusion maximally287

improves the model’s prediction accuracy. Al-288

though this heuristic does not guarantee a glob-289

ally optimal path, it provides an efficient ap-290

proximation—analogous to decision-tree splits291

via information gain—well suited to our multi-292

hop retrieval setting (Quinlan, 1986):293

IG(A) = H(Y )−H
(
Y | A

)
(1)294

We extend this principle to graphs by treating295

each candidate node v as an “attribute” A and296

estimating label uncertainty using the cross- 297

entropy of a frozen LLM predictor. The rest 298

of this section describes how these LLM-based 299

IG signals are annotated offline, and how a 300

lightweight selector model is trained to approx- 301

imate them during inference. 302

4.2.2 LLM-generated gain labels 303

To obtain oracle supervision for our path se- 304

lector, we use a frozen LLM to quantify the 305

task-specific information gain of each candi- 306

date expansion. For each target company c∗, 307

we build a breadth-first expansion tree of depth 308

at most three, retaining up to three previously 309

unseen neighbors per node. At hop h ∈ {0, 1, 2} 310

let S(h) = ⟨c∗, . . . , u⟩ denote a current path and 311

{v1, v2, v3} ⊆ N(u)\S(h) the corresponding can- 312

didate set. 313

Prompt construction To measure the in- 314

cremental value of each candidate node vi, we 315

generate two prompts per expansion: (i) a base- 316

line prompt Pbase that verbalizes nodes in S(h), 317

and (ii) a candidate prompt Pvi that verbal- 318

izes the extended path S
(h)
vi = ⟨c∗, . . . , u, vi⟩. 319

A frozen Llama-3.1-8B classifier returns the 320

success probabilities pbase and pvi . The proce- 321

dure for converting causal-LM logits into binary 322

probabilities p is detailed in Appendix. 323

Task-specific information gain Given the 324

gold label y ∈ {0, 1} (1 = Success, 0 = Failure), 325

we define the marginal gain from including vi 326

as: 327
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∆vi = CE(y, pbase)− CE(y, pvi)︸ ︷︷ ︸
cross-entropy reduction

328

+ λconf

(
|pvi − 0.5| − |pbase − 0.5|

)
(2)329

where the first term rewards the reduction in330

the prediction error (irrespective of y = 0 or331

1); the second encourages confidence once the332

correctness is taken into account. CE denotes333

binary cross-entropy and λconf ∈ [0, 1] balances334

correctness against confidence shift.335

Training tuples Each training instance con-336

sists of:
(
S(h), S

(h)
vi , ∆vi

)
The selector later337

receives the baseline path S(h), the extended338

path S
(h)
vi , and the scalar gain ∆vi it should339

learn to predict. Because gains are computed340

for both successful and failed companies, the341

selector is explicitly trained to prefer extensions342

that push the LLMs towards the correct class343

with higher confidence.344

4.2.3 Selector training objective345

Each hop h of a target company contributes346

one ranking group G(h) = {v1, v2, v3} with as-347

sociated gains ∆v1 ,∆v2 ,∆v3 annotated as in348

Eq. (2). For each candidate v ∈ G(h), we com-349

pute a difference feature:350

xv =
[
ebase ∥ ev ∥ (ev − ebase)

]
∈ R2304 (3)351

where ebase and ev are 768-dimensional sentence352

embeddings extracted once by a frozen encoder.353

A lightweight two-layer MLP sθ : R2304→ R354

assigns a score to each expansion.355

Listwise objective To match the full gain356

pattern within each group we optimize a list-357

wise objective. We first apply a within-group358

shift ri = ∆vi −minj ∆vj , which preserves or-359

dering while ensuring non-negativity (ri ≥ 0360

and argmaxi ri = argmaxi∆vi). We then form361

temperature-smoothed targets362

qi =
exp(ri/τ)∑k
j=1 exp(rj/τ)

(4)363

364

pi =
exp(sθ(xvi)/τ)∑k
j=1 exp(sθ(xvj )/τ)

(5)365

The selector aligns its scores to the oracle dis-366

tribution via367

Llist(G
(h)) = KL(q ∥ p) =

k∑
i=1

qi
(
log qi − log pi

)
(6)368

1

2

3

4

1

2

3

4

Company

Investor

Beam search expansions

Selected subgraph path

Figure 3: Illustration of how the path selector re-
trieves the best path from graph

where τ > 0 controls target smoothness. 369

Groups with
∑

i ri = 0 carry no loss and are 370

skipped. The final objective sums the listwise 371

loss over all groups: 372

L(θ) =
∑
h

Llist(G
(h)) (7) 373

This listwise training reproduces the within- 374

group gain ranking and concentrates probabil- 375

ity mass on high-gain candidates, enabling top-1 376

expansion at inference without re-invoking the 377

LLM. 378

4.3 Document Retrieval 379

4.3.1 Company Retrieval 380

To place the target company with historically 381

comparable cases, we retrieve companies whose 382

public descriptions are semantically similar to 383

that of the target. The intuition is that com- 384

panies sharing industry focus, product form, 385

or market stage provide informative priors on 386

likely financing outcomes. We use a frozen sen- 387

tence encoder to embed each description and 388

rank candidates by cosine similarity (Mikolov 389

et al., 2013)—retaining the top-k peers Nk. To 390

avoid temporal leakage, we only consider firms 391

founded before the target. 392

4.3.2 Investor Retrieval 393

Early capital often comes with intensive screen- 394

ing; hence the background of the lead investor 395

provides strong priors about a startup future 396

trajectory. We therefore identify, for the tar- 397

get company, the lead investor v∗ as the one 398

who committed the largest amount in its first 399

disclosed financing round at time t0. 400

From PitchBook entries for v∗, we extract 401

two types of time-stamped records and discard 402

any entry with timestamp t ≥ t0 to avoid leak- 403

age: empirical records Hemp = {(remp
k , temp

k )} 404
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and investment records H inv = {(cinvk , tinvk )},405

where remp
k denotes a role or title held by v∗406

and cinvk denotes a company previously backed407

by v∗. Both lists are ranked by recency and408

truncated to the top n items.409

For every invested company cinv
k we attach410

its brief profile and historical outcome la-411

bel label(cinv
k ) ∈ {Success,Failure}. In412

addition, we collect static demographic at-413

tributes of v∗ (education, age, gender), de-414

noted A∗. The resulting structured summary415

{A∗, Hemp, H inv} is verbalised into a investor-416

analysis prompt.417

4.4 Multi-agent Analysis418

We instantiate three specialist LLM agents,419

each mimicking a typical VC due-diligence role,420

to elicit complementary evidence. The Peer-421

Company Analyst (PC) agent examines422

the similar-company prompt built from peer-423

company documents. The Investor Profile424

Analyst (IP) agent reads an investor-analysis425

prompt that summaries the lead investor’s bi-426

ography and historical portfolio. And the In-427

vestment Chain Analyst (IC) agent rea-428

sons over a graph-path prompt that presents429

information-gain–optimized chains from the in-430

vestment network. Each prompt is processed by431

the same frozen GPT-3.5 Turbo, which outputs432

a binary verdict and accompanying free-form433

rationale. Because the LLM backbone is shared434

and frozen, any differences in output reflect dif-435

ferences in evidence alone.436

4.5 Gating Network437

We formalize rationale fusion as a supervised438

weighting problem: each agent’s textual ra-439

tionale is jointly embedded with the target440

company’s structured profile, and a lightweight441

gating network learns instance-specific weights442

to aggregate evidence for binary classification.443

This approach preserves richer evidence than444

scalar scores, yields interpretable weights linked445

to their supporting sentences, and maintains a446

frozen backbone LLM.447

For each target company, we dispose of three448

rationales Ri (i ∈ {PC, IP, IC}) produced449

by the specialist agents. Each rationale is450

embedded using a frozen sentence encoder:451

ri = fenc(Ri) ∈ Rdr . The company’s struc-452

tured attributes (industry, stage, region) are453

represented by a fixed vector a∗ ∈ Rda . A two-454

layer MLP gϕ scores every view conditioned on 455

the instance. 456

si = gϕ
(
[ ri ∥ a∗]

)
(8) 457

wi =
exp(si)∑
j exp(sj)

(9) 458

The weights wi vary from case to case. The 459

gated representation is the convex combination 460

rf =
∑
i

wi ri ∈ Rdr (10) 461

which is concatenated with the attributes, is 462

passed to another two-layer MLP hθ followed 463

by a sigmoid to obtain the success probability 464

p = σ
(
hθ([ rf∥a∗])

)
∈ (0, 1) (11) 465

With ground-truth label y ∈ {0, 1} the gating 466

parameters {ϕ, θ} are learned by binary cross- 467

entropy 468

L(ϕ, θ) = − y log p− (1− y) log(1− p) (12) 469

The softmax coefficients {wi} therefore offer an 470

explicit, per-instance attribution of how much 471

the company text, investor text, and graph path 472

perspectives contribute to the final verdict. 473

4.6 Manager Agent 474

To obtain a comprehensive and human-readable 475

final decision, the following artifacts are col- 476

lated into a meta-prompt and forwarded to 477

an additional frozen GPT-3.5 Turbo instance 478

(the decision/manager agent): the target com- 479

pany’s profile, the four agent predictions ŷi, the 480

four rationales Ri, and the learned importance 481

weights wi. Conditioned on this structured 482

input, the decision agent produces: (i) a fi- 483

nal binary decision ŷfinal ∈ {True, False} and 484

(ii) a natural language explanation grounded 485

in the individual rationales and their respec- 486

tive weights. This architecture provides inter- 487

pretable, multi-source decision-making aligned 488

with human VC analysis practices. 489

5 Experiments & Results 490

5.1 Datasets 491

1. Dataset Sampling and Splitting We 492

train both the Path Selector and Gate Network 493

on subsets drawn from the original investment 494

graph which contains a large pool of candidate 495

6



companies. To reduce computational overhead496

and avoid redundancy, we randomly sample497

2,000 and 11,000 companies—respecting the498

overall success-to-failure ratio—for the Path499

Selector and Gate Network, respectively. Each500

subset is split into training, validation, and test501

sets in a 70 : 15 : 15 ratio, with class balance502

maintained across splits.503

2. Final evaluation We select 2,507 startups504

that successfully secured their first round of505

financing between October 2021 to November506

2023—entirely after the LLM’s pretraining cut-507

off—to prevent any test instances from appear-508

ing in the pretraining corpus and avoid data509

leakage. This set includes 1,974 negative sam-510

ples and 533 positive samples.511

5.2 Baselines512

We compare our model with state-of-the-art513

baselines across four categories: GNN-based514

methods (SHGMNN, GST), embedding-based515

methods (BERT Fusion), RAG-based LLM516

methods (RAG, GNN-RAG), and recent LLM-517

driven VC predictors (SSFF).518

SHGMNN (Zhang et al., 2021) aggregates519

the heterogeneous network by meta-paths into520

a graph and applies a diffusion GNN with con-521

vex MAP inference in a variational EM loop522

to model label dependencies. GST (Lyu et al.,523

2021) models the evolving graph of startups524

and investors with unsupervised graph self at-525

tention, refines embeddings via link predic-526

tion and node classification losses, and feeds527

monthly graph snapshots into an LSTM to528

predict success over five years. BERT Fu-529

sion (Maarouf et al., 2025) concatenates BERT530

embeddings of each startup’s Crunchbase3 self-531

description with structured fundamentals and532

trains a lightweight neural classifier to predict533

success. Standard RAG (Lewis et al., 2020)534

uses a frozen dense retriever to embed queries535

and passages into a shared semantic space, re-536

trieves the top k similar company profiles and537

investor summaries, and conditions a single538

LLM on them via RAG Token and RAG Se-539

quence. SSFF (Wang et al., 2025b) unites a540

divide-and-conquer multi-agent analyst block,541

an LLM-enhanced random-forest predictor with542

a founder-idea-fit network, and a RAG external-543

3Crunchbase is a public platform providing compre-
hensive data on companies, funding rounds, investors,
and market trends.

knowledge module to score startup prospects. 544

GNN-RAG (Mavromatis and Karypis, 2024) 545

couples a deep KGQA GNN that ranks candi- 546

date nodes and extracts shortest-path reasoning 547

traces with an LLM that consumes those ver- 548

balized paths, yielding graph-aware RAG for 549

KG question answering. 550

5.3 Evaluation Metrics 551

In evaluating binary classification tasks, stan- 552

dard metrics such as precision, recall, and F1 553

score are commonly used. However, to better 554

reflect the practical needs of investors selecting 555

high-potential startups, we adopt the Precision 556

at K (P@K) metric. P@K measures the pro- 557

portion of successful companies among the top 558

K model recommendations, where candidates 559

are ranked by the model’s predicted confidence. 560

This metric is well-established in VC predic- 561

tion research (Sharchilev et al., 2018; Zhang 562

et al., 2021; Lyu et al., 2021) for its ability 563

to highlight top-performing investments. Fur- 564

ther, to assess model performance over time, we 565

compute the Average Precision at K (AP@K) 566

across monthly cohorts. A higher AP@K in- 567

dicates that the model consistently prioritizes 568

successful companies, thereby offering greater 569

practical value to investors seeking to optimize 570

portfolio decisions. 571

5.4 Parameter Settings 572

To prevent leakage of evaluation data into the 573

LLM’s pretraining, we use OpenAI’s GPT-3.5 574

Turbo (knowledge cutoff: September 2021) to 575

ensure deterministic outputs during experimen- 576

tation. All training is conducted on a single 577

NVIDIA RTX 4090 GPU with 24 GB of mem- 578

ory. For text embedding, we use Sentence- 579

BERT to encode all textual inputs. Additional 580

implementation details and parameter settings 581

are provided in the Appendix. 582

5.5 Overall Performance Comparison 583

All reported metrics are averaged over five in- 584

dependent runs of the LLM. Table 1 shows 585

that MIRAGE-VC improves AP@5 by 16.6%, 586

AP@10 by 16.7%, and AP@20 by 8.0%—mea- 587

sures that directly capture retrieval quality 588

when only a handful of top candidates can 589

be pursued in practice. Notably, our model’s 590

AP@K gains increase as K decreases, demon- 591

strating that higher confidence corresponds to 592

7



Table 1: Performance comparison with baselines. All values are percentages (the "%" sign is omitted).
AP@K indicates the monthly-averaged Precision@k.

Methods AP@5 AP@10 AP@20 Precision Recall F1

SHGMNN 25.41 24.56 26.22 20.65 82.37 32.97
GST 26.71 25.71 27.14 21.75 83.54 34.51
BERT Fusion 24.67 26.67 25.33 23.63 24.95 24.27
Standard RAG 24.43 24.12 25.23 23.12 60.34 33.43
SSFF 28.23 30.02 28.42 23.23 69.41 34.81
GNN-RAG 29.42 27.53 27.04 22.81 71.10 34.54
Ours 34.29 32.14 29.21 24.32 73.44 36.54

greater accuracy in identifying promising star-593

tups—a property that is particularly valuable594

in real-world decision-making. It also achieves595

relative gains of 5.0% in F1 and 2.9% in Pre-596

cision over the strongest baselines, indicating597

a more balanced and accurate classification of598

success outcomes. Compared to GNN-based599

methods (GST and SHGMNN), which boost re-600

call through broad structural coverage but suf-601

fer precision drops from noisy neighbors; SSFF,602

a recent LLM-driven VC predictor that com-603

bines multi-agent analysis and RAG yet often604

surfaces redundant evidence; and RAG-based605

approaches (Standard RAG and GNN-RAG),606

which ground predictions in text but ignore607

explicit multi-hop relational chains—MIRAGE-608

VC’s information-gain path retriever filters out609

low-value graph paths, and its multi-view gat-610

ing adaptively weighs heterogeneous evidence,611

yielding balanced recall, higher precision, and612

a stronger ability to surface top-performing in-613

vestment candidates.614

6 Ablation Study615

Table 2 reports the results of our ablation stud-616

ies. Removing the graph retrieval component617

significantly cuts Precision by 1.3% and F1 by618

2.5%, highlighting the essential role of struc-619

tural evidence. Both naively concatenating all620

3-hop neighbors and picking paths at random621

degrade performance, demonstrating the supe-622

rior noise-filtering capability of our path selec-623

tor. Eliminating either similar company docu-624

ments or the investor profiles also results in a625

notable performance drop, indicating their com-626

plementary value. In the fusion stage, aggregat-627

ing all evidence within a single agent costs 1.4%628

F1, and replacing the learnable gating mecha-629

nism with fixed weights further costs 0.6% F1.630

highlighting the necessity of multi-agent fusion 631

and adaptive gating. These results collectively 632

show that instance-level, multi-perspective rea- 633

soning combined with adaptive gating is crucial 634

for robust performance.

Table 2: Results of ablation studies.

Removed Sub-module Precision F1

w/o Graph Retrieval 23.01 34.06
w/o Path Selector (all) 22.72 33.29
w/o Path Selector (random) 23.24 34.76
w/o Similar Company 23.45 35.54
w/o Investor Analysis 23.32 35.43

w/o Multi-agent Fusion 22.97 35.13
w/o Gating Network 24.05 35.94

FULL 24.32 36.54
635

7 Conclusion 636

This paper presents the first multi-view RAG 637

framework for VC prediction, integrating both 638

document-based evidence and investment rela- 639

tionship graphs. To address the unique chal- 640

lenges of VC scenarios, we propose an infor- 641

mation gain-driven, chain-based path retrieval 642

mechanism. This method uses a frozen LLM to 643

estimate the marginal information gain at each 644

graph hop and trains a lightweight path selector 645

to efficiently extract concise, high-value reason- 646

ing chains for inference. In addition, we develop 647

a multi-agent collaborative inference strategy 648

coupled with an adaptive gating network that 649

dynamically fuses diverse perspectives from tex- 650

tual and structural evidence. This design en- 651

ables interpretable and accurate predictions 652

without fine-tuning the underlying LLMs. Ex- 653

tensive experiments on real-world PitchBook 654

datasets demonstrate that our framework out- 655

performs multiple state-of-the-art baselines. 656
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Limitations657

While MIRAGE-VC pioneers the integration of658

graph-path retrieval with RAG in VC predic-659

tion, it exhibits the following limitations:660

• LLM-Driven Supervision Bias. Our path661

selector relies on task-specific information662

gains ∆ computed by a frozen LLM back-663

bone, which inherits that model’s calibra-664

tion errors and prompt sensitivity. Con-665

sequently, ∆ may fluctuate across dif-666

ferent LLM architectures or prompt de-667

signs. Future work should cross–validate668

∆ with multiple backbones, report in-669

ter–LLM agreement, and audit a stratified670

subset with human judgment.671

• Myopic Supervision Objective. The cur-672

rent supervision scheme is local: ∆ mea-673

sures only the one-hop impact of adding a674

single node, and our beam search optimizes675

these immediate gains. This greedy strat-676

egy may overlook globally optimal sub-677

graphs or beneficial interactions among678

multiple nodes. To address this, we679

plan to explore look-ahead scoring mech-680

anisms and sequence-level optimization681

techniques—such as reinforcement learn-682

ing over path sequences—to capture long-683

term dependencies and holistic graph struc-684

tures.685

Ethical Considerations686

Data provenance and consent. We rely687

exclusively on publicly available and licensed688

(PitchBook) company and investor level records,689

using identifiers only for identity resolution. No690

human-subject data are collected, and we do691

not disclose raw documents and proprietary692

records.693

Privacy, licensing, and compliance. All694

inputs come from public or licensed fields, with695

strict temporal ordering to prevent future-event696

leakage. Investor demographics (e.g., educa-697

tion, gender) are used solely in aggregated sum-698

maries. Users must honor the original data699

licenses and must not attempt re-identification.700
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A Appendix888

A.1 More Related Work889

With the rise of LLMs, a variety of LLM-890

based financial and VC decision-support sys-891

tems have been proposed (Liu et al., 2023;892

Zhang et al., 2024; Ko and Lee, 2024). These893

systems typically rely on textual and numerical894

features or on simulation of real-world scenar-895

ios to improve prediction accuracy. For ex-896

ample, SSFF (Wang et al., 2025b) and Fin-897

Con (Yu et al., 2024) systems establish a hier-898

archical manager–analyst collaboration mecha-899

nism, outperforming expert teams across mul-900

tiple tasks; and StockGPT (Mai, 2024) is pre-901

trained on extensive quantitative stock-market902

data to autonomously learn price-movement903

patterns, yielding substantial excess returns904

and demonstrating the promise of generative905

AI in complex financial decision making. How-906

ever, none of these approaches directly inte-907

grate graph-structured knowledge—such as in-908

vestor–startup relationship networks—and thus909

they are unable to fully capture path depen-910

dencies.911

Some KG-RAG approaches (Saleh et al.,912

2024; Linders and Tomczak, 2025) retrieve rel-913

evant triples or subgraphs, linearize them into914

text, and condition an LLM for factoid question915

answering. These frameworks excel at match-916

ing and verifying discrete facts but lack any917

mechanism to filter or rank multi-hop paths by918

their downstream utility. In contrast, our VC919

prediction task requires selecting concise, high-920

value investment chains as explicit evidence921

for node-classification inference, so standard922

KG-RAG methods cannot be directly applied923

without substantial adaptation.924

A.2 Impact of Parameters on925

Performance926

We randomly sampled 1,000 companies from927

the non-test portion of our PitchBook data and,928

for each hyperparameter setting, ran each per-929

spective’s retrieval-and-analysis component five930

times to estimate mean F1 scores and standard931

errors (Figure 4). In the document retrieval932

study (Figure 4 (a)), we varied the number of933

similar-company shots K and lead-investor ré-934

sumé entries N from 0 to 6: performance rose935

sharply above the zero-shot baseline, peaked936

at (K,N) = (4, 5), and then plateaued, moti-937
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Figure 4: (a) Document retrieval: effect of the
number of similar companies K and resume breadth
N on the agents’ F1. (b) Graph retrieval: effect of
search depth dmax and path count P on F1.

vating our choice of K = 4, N = 5. In the 938

graph retrieval grid (Figure 4 (b)), we swept 939

maximum search depths dmax ∈ {1, . . . , 6} and 940

path counts P ∈ {1, . . . , 4}; the highest F1 was 941

observed at (P, dmax) = (2, 4), which we adopt 942

in all main experiments. 943

A.3 Implementation Details 944

A.3.1 Path Selector 945

Binary probability of LLMs We follow the 946

mainstream likelihood-based scoring practice 947

that normalizes the token-level log-likelihoods 948

of verbalized labels (e.g., True/False) to obtain 949

a Bernoulli probability, as adopted and ana- 950

lyzed in recent work on zero-shot classification, 951

calibration, and probability-based prompt se- 952

lection (Zhou et al., 2023; Qian et al., 2025). 953

Given a prompt P , we verbalize labels as the 954

strings “True” (Success) and “False” (Failure). 955

For a string w = (t1, . . . , tm), we use the string 956

log-likelihood 957

logP (w | P ) =
m∑
j=1

logP (tj | P, t<j) . 958

Let 959

LT = logP (“True” | P ), LF = logP (“False” | P ) 960

The success probability is obtained by two-way 961

normalization: 962

p =
eLT

eLT + eLF
= σ

(
LT −LF

)
, σ(x) = 1

1+e−x 963

We only query log-probabilities for the target 964

strings. 965

Training Settings The trade-off weight in 966

Eq. (2), λconf ∈ [0, 1], is selected on the val- 967

idation split by a small grid search; Table 3 968

shows that performance is stable in the range 969

0.1−0.3, and we therefore fix λconf = 0.2 in 970
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all experiments. Hyperparameter is listed in971

Table 6.972

Table 3: Validation NDCG@1 (%) under different
confidence–trade-off weights λconf.

λconf 0 0.10 0.20 0.30 0.40 0.50

NDCG@1 (%) 62.7 63.1 63.4 63.2 62.9 62.5

Evaluation and Results We evaluate the973

Path Selector with two ranking metrics. Hit@1974

measures whether the selector’s top-ranked can-975

didate matches an oracle best-gain candidate in976

the group. It directly reflects the success rate977

of our top-1 expansion policy at inference, thus978

aligning tightly with how the selector is actu-979

ally used; a higher Hit@1 means we more often980

choose the maximal-gain extension. NDCG@1981

normalizes the gain of the selected candidate982

by the maximum attainable gain in the group,983

yielding a score in [0, 1]. Unlike the binary984

Hit@1, NDCG@1 gives partial credit when the985

chosen candidate is near-optimal, making it986

more stable under noisy or close-valued oracle987

gains and better for hyperparameter tuning.988

A random baseline is obtained by drawing an989

i.i.d. score from U(0, 1) for every candidate and990

applying the same evaluation procedure. Com-991

pared with random scoring, the Path Selector992

improves Hit@1 by +0.0879 and NDCG@1 by993

+0.1851, confirming its ability to consistently994

priorities expansions of higher task-specific in-995

formation gain.

Table 4: Selector performance on the held-out test
split.

Method NDCG@1 (%) Hit@1 (%)

Random U(0, 1) 44.92 33.33
Path Selector 63.43 42.12

996

A.4 Gate Network997

Data Preparation Each training instance998

consists of the three agent rationales, encoded999

by a frozen all-MiniLM-L6-v2 sentence encoder1000

into 384-dimensional vectors {hi}3i=1. Static1001

company descriptors (industry, region, fund-1002

ing round) are one-hot-encoded into a 14-1003

dimensional vector c and concatenated with1004

the agent embeddings.1005

Training Settings Query–key projections1006

WQ,WK are applied to each hi to obtain1007

view-level attention scores. The attended view1008

representations, together with c, are fed to a 1009

two-layer MLP that outputs instance-specific 1010

weights w ∈ R3 (
∑

iwi = 1). The weighted 1011

sum of the three views is finally mapped by 1012

a second two-layer MLP to the success prob- 1013

ability. All remaining hyper-parameters are 1014

summarized in Table 6.

Table 5: Performance of the gating network versus
a random-weight baseline on the held-out test set.

Method P (%) F1 (%)

Random 19.98 19.49
Ours 23.15 35.13

1015

Evaluation and Results Following the 1016

main task, the gating network is assessed on 1017

Precision (P) and F1. As a sanity check we 1018

replace the learned weights by a uniform ran- 1019

dom choice (Random); its performance marks 1020

the chance level of selecting the most informa- 1021

tive view. Table 5 shows that the learned gate 1022

substantially outperforms this baseline, con- 1023

firming that the network has indeed captured 1024

non-trivial view–attribute interactions. 1025

Table 6: Hyper-parameters for the Gate Network
(GN) and Path Selector (PS)

Parameter GN PS

Text vector dimension 384 384
Company key dimension 53 —
Batch size 256 256
Training epochs 50 30
Hidden width 256 256
Optimiser AdamW AdamW
Learning rate 5× 10−4 3× 10−4

Temperature τ — 0.5

A.5 Text Embedding Model Analysis 1026

Two pipeline components rely on a frozen 1027

sentence-encoder to obtain text representations: 1028

(i) the graph retriever, where the encoder em- 1029

beds path descriptions, and (ii) the gate net- 1030

work, where it embeds each agent’s generated 1031

answer. Here we analyse whether swapping the 1032

encoder markedly affects intermediate metrics. 1033

Tables 7 and 8 show that across both mod- 1034

ules the performance gap between alternative 1035

encoders is marginal, confirming that our main 1036

results are not sensitive to the specific choice 1037

of text-embedding model. 1038
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Table 7: Impact of different text encoders on the
graph retriever.

Text encoder Dim. NDCG@1 (%) Hit@1 (%)

all-MiniLM-L6-v2 384 63.3 42.2
jina-embeddings-v2-base 768 63.4 42.1
e5-large-v2 1024 63.1 41.9

Table 8: Impact of different text encoders on the
gate network.

Text encoder Dim. P (%) F1 (%)

all-MiniLM-L6-v2 384 23.45 35.13
jina-embeddings-v2-base 768 23.12 35.31
e5-large-v2 1024 23.25 35.25

A.6 Resource Utilization and Latency1039

Our end-to-end pipeline comprises three phases:1040

(i) retrieval via GPT-3.5 API, (ii) oracle scor-1041

ing with Llama-3.1-8B and selector training,1042

and (iii) gating network training and ablation1043

studies. We issued approximately 40 000 GPT-1044

3.5 requests (under 12 000 tokens each), pro-1045

cessing ≈ 480 million tokens (under 48 GPU1046

hour). Locally, we generated 16 857 gain labels1047

with Llama-3.1-8B (5 619 group expansions,1048

all within its 8 000-token window). Training1049

the listwise selector on an NVIDIA RTX 40901050

(24 GB VRAM) for 50 epochs required about1051

5 minutes, and the gating network plus abla-1052

tions completed in under 10 minutes. Including1053

hyperparameter sweeps, total GPU time was1054

10 GPU h. At inference, producing three re-1055

trieval views via GPT-3.5 followed by the adap-1056

tive fusion pass completes in under 3 minutes1057

per company, demonstrating the pipeline’s effi-1058

ciency and suitability for low-latency decision1059

support.1060

A.7 Prompt Templates and Examples1061

This section provides the exact prompt tem-1062

plates used by each module and one illustrative1063

example per template.1064

A.7.1 Company and Investor Basic1065

Info Case1066

1067
### Company Profile ###1068
Company name : ACME Robotics1069
Founded year : 20231070
Headquarters : San Francisco, USA1071
Industry : Service Robotics1072
Employees : 35 (as of 2025)1073
Key prototype : Compact autonomous cleaning1074

robot for boutique hotels1075
Revenue status : Pre-revenue; paid pilots1076

scheduled Q4-20251077

Funding to date : USD 3.5 M (Seed round, Jun 1078
-2024) 1079

Lead investors : FutureFund (Jane Doe), 1080
SeedSpark Ventures 1081

Company overview: ACME Robotics develops AI- 1082
driven service robots that automate 1083
routine cleaning tasks in hospitality and 1084
small retail environments. The platform 1085
combines low-cost modular hardware with on 1086
-device perception and a subscription 1087
software stack, aiming to deliver pay-as- 1088
you-go automation for venues that cannot 1089
afford traditional industrial solutions. 10901091

1092
### Lead-Investor Profile ### 1093
Investor name: Jane Doe Partner @ FutureFund 1094
Tenure : 2016 - present 1095

1096
Previous positions 1097
• Senior Engineer, ABB Robotics (2008 - 2012) 1098

global industrial-robotics leader.{ 1099
COMPANY_PROFILE} (success) 1100

• Investment Associate, TechEdge Capital (2012 1101
- 2016)early-stage deep-tech VC.\{COMPANY 1102

\_PROFILE\} (success) 1103
1104

Focus sectors : Robotics • Edge AI • IoT 1105
Assets under mgmt: USD 1.4 B 1106

1107
Investment record 1108
• RoboVacacquired by Dyson (2021). { 1109

COMPANY_PROFILE} (success) 1110
• MechArmIPO (2022). {COMPANY_PROFILE} ( 1111

success) 1112
• NanoGripacquired by Bosch (2020). { 1113

COMPANY_PROFILE} (success) 1114
• ServoLinkceased operations (2019). { 1115

COMPANY_PROFILE} (failure) 1116
1117

Board seats : MechArm • FlexDroid • SensorX 1118
Awards : Forbes 30 Under 40 in VC (2023) 11191120

A.7.2 Path Analyst Prompt 1121
1122

Role: You are a senior venture-capital analyst 1123
who excels at step-by-step 1124
reasoning over investment paths to judge 1125
whether a seed / angel-stage 1126
start-up is likely to secure Series-A 1127

funding within the next year. 1128
1129

You are given three blocks of information: 1130
1131

(1) High-value investment path retrieved for { 1132
COMPANY_NAME}:{PATH_TEXT} 1133

(2) Company profiles appearing in the path ( 1134
each with outcome labels; True = raised 1135
Series A 1136
within 12 months after seed/angel, False = 1137
did not):{COMPANY_PROFILES} Success/ 1138

Failure:{LABELS} 1139
(3) Investor profiles appearing in the path:{ 1140

INVESTOR_PROFILES} 1141
(4) Target company profile:{ 1142

TARGET_COMPANY_PROFILE} 1143
Task: 1144

• Analyse the evidence and predict whether { 1145
COMPANY_NAME} will 1146
raise a Series-A round within 12 months. 1147
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• Output **exactly** in the format:1148
1149

Prediction: True/False1150
Analysis: <your step-by-step reasoning>1151

1152
• If evidence is insufficient, reason1153

cautiously but still decide.11541155

A.7.3 Company Analyst Prompt1156
1157

Role:1158
You are a senior venture-capital analyst who1159

excels at using information from1160
industry peers (similar companies) to judge1161

whether a seed/angel-stage target1162
will secure Series-A funding within the next1163

year.1164
1165

You are given:1166
1167

(1) Target company profile:{1168
TARGET_COMPANY_PROFILE}1169

1170
(2) Comparable companies (each with outcome1171

labels; True = raised Series A1172
within 12 months after seed/angel, False =1173
did not):{COMPANY_PROFILES} Success/1174

Failure:{LABELS}1175
1176

Task:1177
• Analyse the evidence and predict whether {1178

COMPANY_NAME} will1179
raise a Series-A round within 12 months.1180

• Output **exactly** in the format:1181
1182

Prediction: True/False1183
Analysis: <your step-by-step reasoning>1184

1185
• If evidence is insufficient, reason1186

cautiously but still decide.11871188

A.7.4 Investor Analyst Prompt1189
1190

Role:1191
You are a senior venture-capital analyst who1192

specialises in evaluating a1193
start-ups lead seed/angel investor record to1194

judge whether the target can1195
secure Series-A funding within the next year.1196

1197
1198

You are given:1199
(1) Target company profile:{1200

TARGET_COMPANY_PROFILE}1201
1202

(2) Lead-investor rsum (prior operating roles1203
and portfolio companies,1204
each annotated as success or1205
failuresuccess = the company raised Series1206
A1207

within 12 months of its seed/angel round;1208
failure = it did not):{INVESTOR_PROFILE}1209

1210
Task:1211

• Analyse how the investors past successes1212
and failures relate to the target1213
companys sector, stage, and needs.1214

• Predict whether the target will raise a1215
Series-A round within 12 months.1216

• Output **exactly** in the format: 1217
1218

Prediction: True/False 1219
Analysis: <your step-by-step reasoning> 1220

1221
• If evidence is insufficient, reason 1222

cautiously but still decide. 12231224

A.7.5 Manager Analyst Prompt 1225

1226
Role: 1227

You are a senior venture-capital analyst who 1228
excels at synthesizing other 1229

experts viewpoints to decide whether a seed/ 1230
angel-stage start-up will secure 1231

Series-A funding within the next year. 1232
1233

You are given: 1234
1235

(1) Path-analyst verdict 1236
• Prediction: {PATH_PREDICTION} 1237
• Analysis : {PATH_ANALYSIS} 1238

1239
(2) Similar-company analyst verdict 1240

• Prediction: {SIM_PREDICTION} 1241
• Analysis : {SIM_ANALYSIS} 1242

1243
(3) Lead-investor analyst verdict 1244

• Prediction: {INV_PREDICTION} 1245
• Analysis : {INV_ANALYSIS} 1246

1247
(4) Aggregate-weight advice 1248

The historical importance of the three 1249
perspectives is 1250
{WEIGHTS_VECTOR} 1251

1252
(5) Target company profile 1253

{TARGET_COMPANY_PROFILE} 1254
1255

Task: 1256
• Produce a single, final prediction on 1257

whether the target will raise a 1258
Series-A round within 12 months. 1259

• Output **exactly** in the format: 1260
1261

Prediction: True/False 1262
Analysis: <your step-by-step reasoning> 1263

1264
• If evidence is insufficient, reason 1265

cautiously but still decide. 12661267
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