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Abstract

Effective generalization in robotic manipulation requires representations that cap-
ture invariant patterns of interaction across environments and tasks. We present
a self-supervised framework for learning hierarchical manipulation concepts that
encode these invariant patterns through cross-modal sensory correlations and multi-
level temporal abstractions without requiring human annotation. Our approach
combines a cross-modal correlation network that identifies persistent patterns
across sensory modalities with a multi-horizon predictor that organizes representa-
tions hierarchically across temporal scales. Manipulation concepts learned through
this dual structure enable policies to focus on transferable relational patterns while
maintaining awareness of both immediate actions and longer-term goals. Empirical
evaluation across simulated benchmarks and real-world deployments demonstrates
significant performance improvements with our concept-enhanced policies. Analy-
sis reveals that the learned concepts resemble human-interpretable manipulation
primitives despite receiving no semantic supervision. This work advances both the
understanding of representation learning for manipulation and provides a practical
approach to enhancing robotic performance in complex scenarios. Code is available
at: https://github.com/zrllrz/HiMaCon.

1 Introduction

Robot manipulation in diverse, unstructured environments remains a fundamental challenge. Despite
advances in policy learning and architectures [4, 10, 19, 24], current approaches often fail when
encountering unexpected variations or novel scenarios. As illustrated in Fig. 1, a policy trained to
place cups into containers may succeed in familiar settings but fail when encountering unexpected
barriers—revealing a critical generalization gap limiting real-world deployment.

We propose that addressing this challenge requires learning transferable manipulation concepts—
hierarchical abstractions capturing fundamental manipulation patterns. These concepts connect
low-level actions to high-level goals, enabling robust generalization. For example, the concept of
“placing an object inside a container” encompasses invariant relational patterns that persist whether
the container has barriers or not, allowing adaptation while maintaining core manipulation strategy.

To acquire these manipulation concepts, we propose a self-supervised framework that learns hierar-
chical latent representations without requiring labor-intensive human annotations [13, 28, 40]. Our
approach operates through two complementary mechanisms: 1) Cross-modal correlation learning
captures invariant patterns across different sensory modalities (vision, proprioception), enabling
generalization across visual variations while preserving functional relationships. When placing ob-
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Figure 1: Manipulation concepts enhance generalization. Top: Training data with cups and
containers without barriers. Middle: Without manipulation concepts, policies fail when encountering
barriers. Bottom: With our concept enhancement, policies adapt accordingly.

jects in containers, these correlations encode the relationship between visual perception of container
boundaries and proprioceptive feedback during placement, regardless of container appearance. 2)
Multi-horizon sub-goal organization structures concepts hierarchically across temporal scales, from
immediate actions (e.g., “align gripper with object”) to extended sequences (e.g., “transport object
to container”). This hierarchical representation enables policies to simultaneously reason about
immediate actions and longer-term goals, maintaining task coherence even when specific execution
paths require adaptation.

Our experiments across both simulated benchmark tasks and real-world robot deployments demon-
strate that policies enhanced with these manipulation concepts consistently outperform conventional
approaches, particularly in challenging scenarios requiring adaptation to novel objects, unexpected
obstacles, and environmental variations (Fig. 1). The learned concepts form interpretable clusters
that resemble meaningful manipulation primitives, providing insights into how robots perceive and
reason about manipulation tasks.

In summary, our key contributions include: (1) a self-supervised framework that extracts structured
hierarchical manipulation concepts from unlabeled multi-modal demonstrations, capturing both
cross-modal correlations and multi-level temporal abstractions without human annotation; (2) an
effective policy enhancement approach that integrates these concepts through joint prediction, main-
taining compatibility with diverse policy architectures; and (3) comprehensive empirical evidence
demonstrating significant performance improvements across diverse settings, with analyses revealing
how learned concepts enable more robust generalization to novel environments.

2 Related Work

Representation Learning in Robotics Self-supervised representation learning has emerged as
a powerful approach for extracting meaningful skills [29, 32, 48] from robotic data, avoiding the
need for manual annotation in methods such as [13, 28, 37, 40]. Initial efforts explored single-
modality approaches for vision-based [7, 11, 51, 65, 68] and proprioception-based [26, 39, 45, 52]
representation learning. Recent work integrates multiple modalities, combining vision with language
[22, 36, 42, 50, 64], proprioception with vision [47, 62, 66], even richer [6, 53, 69].

These approaches typically focus on cross-modal alignment but often overlook the structured temporal
patterns inherent in manipulation tasks. Parallel developments in temporal representation learning
have addressed this challenge through various approaches: time-contrastive learning [27, 34, 35, 42,
65], temporal masked auto-encoding [47], and explicit modeling of state transitions across different
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Figure 2: The proposed self-supervised manipulation concept discovery and policy enhancement.
Stage 1: The concept encoder (£) processes multi-modal robot demonstrations to extract concept
latents. These latents are refined through two objectives: (1) the Cross-Modal Correlation Network (C)
employs a mask-and-predict strategy to capture persistent patterns across sensing modalities (Sec. 3.2);
(2) the Multi-Horizon Future Predictor () enables concept latents to organize hierarchically into
multi-horizon sub-goals based on coherence thresholds (¢) (Sec. 3.3). Stage 2: The learned concepts
are integrated into policy learning through a backbone network (7;,) with concept (7,) and action
(m,) prediction heads, regularizing action generation with structured manipulation knowledge (Eq. 9).

timescales [25, 44, 54, 55]. Our work advances the field by simultaneously addressing both multi-
modal integration and hierarchical temporal structures, creating representations that naturally align
with manipulation sub-goals at varying time horizons while leveraging cross-modal correlational
patterns that persist across different objects and contexts.

Concept-Guided Robotic Policies Concept-guided approaches enhance robotic policy performance
by leveraging intermediate representations that bridge perception and action. These methods generally
fall into two categories. First, two-module frameworks [3, 8, 29, 62, 68, 73] employ a dual-model
architecture where one component extracts high-level task concepts while another generates the
corresponding actions. While effective, these approaches often require specialized architectural
designs that limit their applicability across different policy classes.

Second, in contrast, joint prediction approaches [18, 20, 56, 58, 67] integrate concept guidance
by training policies to simultaneously predict both concepts and actions. This creates an implicit
information pathway where concept understanding regularizes action generation. Our work adopts
this more flexible approach, enabling seamless integration with diverse policy architectures while
maintaining the interpretability benefits of explicit concept representations.

3 Method

We aim to encode robotic manipulation demonstrations into latent representations that capture task-
induced patterns in multi-modal sensory-motor data. These representations should naturally cluster
according to functional sub-goals, providing insights into manipulation objectives and enhancing
policy learning. We term these clusters manipulation concepts—each representing action sequences
targeting specific sub-goals—and call the learning process manipulation concept discovery.

Our self-supervised approach works without explicit sub-goal annotations, addressing the challenge of
capturing meaningful manipulation patterns without labels. We design objective functions enforcing
latent representations that reflect both temporal structure and cross-modal correlations. Our approach
ensures: (1) integration of modality-specific features while encoding cross-modal correlations that
persist across objects and contexts; (2) hierarchical organization of sub-processes representing sub-
goals across temporal horizons and enabling action prediction guided by immediate and long-term



objectives. We validate these concepts through policy performance improvements and multiple
analysis methods that demonstrate correspondence with meaningful manipulation primitives.

3.1 Problem Setup & Manipulation Concept Encoder

Given a dataset D = {7;}¥., of N manipulation trajectories, each 7; = {(o,a!)}/., contains
observations of and actions a! at time ¢. For M modalities, o! = {0% * of’t, cey ofw’t}, where o]
the observation of the modality m. We denote oS"" = {0™" | m € S} as observations of modalities
inS C [M]=1{1,2,---, M}. We treat observations of both the same sensory modes (e.g., multiple
views) and different modes as distinct modalities, as they are functionally different modalities in
terms of complementary information.

is

The Manipulation Concept Discovery process assigns latent representation 2! € RZ to each timestep
t of the trajectory 7;, where z! can be viewed as a noisy sampling of the underlying manipulation
concept active at t. Since these representations cluster based on sub-goals, we refer to z! as ma-
nipulation concept latents or simply manipulation concepts. We use continuous representations
for differentiability and to avoid constraints of codebook-based discrete representations (e.g., finite
capacity). To learn z!, we introduce a manipulation concept encoder € parameterized by ©¢, which

maps observation sequence o; = {o%}7", from trajectory 7; to concept sequence z; = {2} ,:
Z; < £ (Oi; 65) (1)
We implement £ using a transformer to encode temporal dependencies (details in Sec. A.1). Next, we

elaborate on the training strategies optimizing cross-modal and multi-horizon temporal correlation
metrics (Sec. 3.2 and 3.3).

3.2 Capturing Multi-Modal Correlations

To enhance the utility of multi-modal information, we propose that manipulation concepts should
capture cross-modal correlations rather than simply aggregating features from different modalities
(e.g., concatenating multi-modal signals [9, 71]). Physiological evidence suggests that concept
formation often occurs when correlations across sensory modalities are high [1, 15, 38, 57, 63]. These
correlations remain consistent across scenarios involving the same concept, facilitating generaliza-
tion. For instance, in container opening tasks, the correlated patterns between visual lid rotation,
characteristic force feedback, and audio cues persist across different container types, enabling the
transfer of the “opening” concept despite variations in object appearances.

To learn manipulation concepts that capture cross-modal correlations, we propose maximizing
mutual information—a metric capable of modeling diverse correlations—between observations from
different modalities, conditioned on the associated manipulation concept. Specifically, we maximize
the conditional mutual information over bipartitions of modality observations:

mzax Z I (OS : O[]VI]\S | Z) y (2)
SG[M],57#0
where O are observations from a subset of modalities, O[5\ s are observations from remaining
modalities, and Z is the manipulation concept. We implement Eq. 2 using a computationally efficient
self-supervised mask-and-predict approach that stochastically samples bipartitions during training.
This ensures scalability despite exponentially increasing bipartition numbers while integrating cross-
modal correlation learning with multi-modal information compression.

Specifically, a Cross-Modal Correlation Network C (CMCN) with parameters O, reconstructs full-
modality observations from partial observations guided by manipulation concepts. During training,

we mask observations from a random subset S of modalities and reconstruct all observations o} using
[M]\S,¢

the unmasked subset o; and concept z!:

Lom (1) = Eg||c (o, 20, ) — of | 3
where S ~ U (2M\ {0}) is a uniformly sampled non-empty subset of modality indices. By
predicting full observations from partial inputs, we maximize the conditional mutual information
in Eq. 2, forcing manipulation concepts z! to capture cross-modal correlations. Additionally, when
all modalities are masked, reconstruction solely from z! ensures these representations compress and
preserve essential multi-modal information (please see Sec. A.1 for more details).




3.3 Representing Multi-Horizon Sub-Goals

To complete tasks with hierarchical structures, manipulation concepts must encode multi-horizon
sub-goal information. Physiological evidence shows human actions are hierarchically organized
[17, 41], with coarse-grained goals defining overall tasks and fine-grained goals informing immediate
actions. These multi-horizon sub-goals link ultimate goals with low-level actions, enabling smooth
transitions while enhancing robustness.

We aim to make manipulation concepts organized to encode sub-processes across multiple temporal
horizons without explicit annotations. Since concepts cluster by sub-goals, hierarchical sub-goals
can emerge from these clusters at varying temporal scales. We propose that the temporal extent
of a sub-process is determined by concept latent coherence within clusters, yielding a natural
spectrum from short-horizon to long-horizon sub-goals. Specifically, given manipulation concept
latents z; = {z!}7%, from trajectory 7;, we quantify their similarities using spherical distance:

dist(z,u) = L arccos ( =, % ). Concepts belong to the same sub-process if their distance falls
’ 7T llzll2 Nlull2

below a coherence threshold e € [0, 1]. More explicitly, sub-processes are derived as:
h (Zi; 6) = {[gkvgk-‘rl) | k= 1,2, 7K(Zi; 6)}7

where g1 =1, g1 = max{g|g € (g0, Ti + JNNT AVEE € 9k, 9), dist(z], 2! ) < e} @
g

where K (z;;€) is the number of clusters determined by ¢, and increasing ¢ yields sub-processes

spanning from short-horizon to long-horizon. Please see Alg. 1 for more details.

Furthermore, we propose learning objectives to ensure multi-horizon sub-processes from Eq. 4 align
with meaningful sub-goal completion processes. Specifically, the manipulation concept guiding each
sub-process should be informative about the state achieved upon sub-task completion [5, 33, 72]. For
all coherence thresholds €, current observation O and its associated concept Z should be informative
of the terminal observation O8°21(¢)characterized by minimizing the following conditional entropy:

: goal(e)
Ve, min H(O |0, z) , (5)

To implement Eq. 5, we train a Multi-Horizon Future Predictor 7 (MHFP) to hallucinate terminal
observations of different sub-processes. For time step ¢ in trajectory 7;, the terminal observation is
determined by the ending time step of the interval containing ¢:

g(t;zi,€) = min{T5, gr41}, where t € (g, gr+1) € h(zi;€), (6)

During training, the network F, parameterized by O ¢, predicts this terminal observation based on
current observation oﬁ, manipulation concept zf, and coherence threshold e:

. (N

where € ~ U([0, 1]) is sampled uniformly per iteration to improve efficiency by avoiding training
over all € values. This training process iteratively improves both latents and sub-process derivation:
we compute manipulation concepts using the encoder (Eq. 1), determine sub-process boundaries,
then update all networks, including F and the concept encoder. This improves future observation
prediction and concept latents, which in turn refines sub-process derivation. By minimizing Eq. 7,
2! is ensured to encode multi-horizon sub-goal information, indicating hierarchical transitions to
terminal states under various € while adjusting sub-processes by shaping concept latents for terminal
state predictability. More details can be found in Sec. A.1.

F (o, 2},60)) — Olg(t;zi’e)

19 1)

L (t,7) = Ec

Final Objective for Manipulation Concept Discovery. We jointly optimize the multi-modal correla-
tion objective (Eq. 3) and multi-horizon sub-goal prediction objective (Eq. 7) to ensure manipulation
concepts generated by the encoder £ (Eq. 1) satisfy both key properties:

‘Cz (t7 Ti) = )\mmﬁmm (t7 Ti) + )\mhﬁmh (t7 Ti) 5 (8)
where A\ym, Amn > 0 balance the two loss terms.
3.4 Enhancing Imitation Learning with Manipulation Concepts

After learning manipulation concepts through our self-supervised framework, we address how these
concepts enhance policy learning. Unlike previous approaches that learn task-specific policies



directly from demonstrations [12, 28], we propose to leverage the learned manipulation concepts as
an informative representation that bridges low-level actions and high-level goals.

Specifically, with manipulation concepts z; generated by encoder £, we augment imitation learning
by training policies to predict both ground-truth actions and corresponding concepts [21, 67, 70].
This approach uses concept prediction as a regularization that guides the policy to encode conceptual
understanding alongside action planning:

hi=mp (0l 0::0%), 2 =m. (h};0%), af =m, (h};0%),

K2
Lr(t,7i,l;) = ||d7z5 - a’;H + )‘mcnéf - th||

C))

The policy consists of: (1) A backbone 7, processing task descriptions ¢; and observations o} to
produce a shared representation h’; (2) A concept predictor 7, mapping h! to predicted concepts
2% and (3) An action decoder 7, mapping h! to predicted actions a!. This joint objective enforces
the policy to leverage concept information encoded within h! while predicting actions. Even though
concepts are learned task-agnostically for generalization, the policy receives task descriptions in a
multi-task setting, serving as a mechanism to learn the reuse of concepts. The learning objective
balances action and concept prediction using A, > 0. More details are provided in Sec. A.2.

4 Experiments

We evaluate our manipulation concept discovery approach through experiments addressing four key
questions: (1) Do learned concepts enhance policy performance on tasks used for concept discovery,
validating our strategies for encoding cross-modal correlations (Sec. 3.2) and multi-horizon sub-goals
(Sec. 3.3)? (2) Can concepts learned from one task set transfer effectively to different tasks sharing
underlying manipulation patterns? (3) Does our concept discovery mechanism generalize to novel
tasks with decreased overlap in manipulation patterns? (4) What interpretable properties emerge
in the learned concepts that explain their effectiveness for robotic manipulation? Through these
investigations, we demonstrate both the immediate benefits of our approach for imitation learning
and its broader applicability for transfer learning and generalization in manipulation tasks.

4.1 Experimental Setup

Dataset and Environment Sec. 4.2 and 4.3 conduct experiments using the LIBERO benchmark
[30], a comprehensive platform for robotic learning built on Robosuite [75]. We utilize three distinct
task sets:

* LIBERO-90: A diverse collection of 90 manipulation tasks serving as our primary training domain
for concept discovery and initial policy learning.

* LIBERO-LONG: 10 novel long-horizon tasks, each composed of two LIBERO-90 tasks in
sequence, designed to evaluate transfer to more complex task structures.

* LIBERO-GOAL: 10 tasks in an entirely novel environment unseen during concept discovery, used
to evaluate the generalization of learned concepts to unfamiliar contexts.

Each task includes a natural language description and 50 expert demonstrations. For multi-modal
observations, we use: Agentview vision: 128x128 RGB third-person camera capturing the entire
environment; Eye-in-hand vision: 128x128 RGB gripper-mounted camera; Proprioceptive state: 9D
vector encoding gripper position, rotation, and physical states.

Manipulation Concept Discovery Methods We compare our approach with several state-of-the-art
concept discovery baselines (implementation details in Sec. A.3):

* InfoCon [31]: A VQ-VAE type of method for single-hierarchy concept discovery.

* XSKkill [65]: Contrastive learning for manipulation skill extraction from demonstration videos.

* DecisionNCE [27]: Learns reward-relevant representations from demonstrations with language
annotations, evaluated in two variants: using task instructions (DecisionNCE-task) and using
elementary action labels (DecisionNCE-motion).

* RPT [47]: Temporally and modality-masked autoencoder for multi-modal sequence modeling.

All: A simplified variant of our approach that predicts all modalities from concepts without

modeling cross-modal correlations.



Table 1: Evaluation of manipulation concept discovery methods across different task settings.
Success rates (%) of ACT and Diffusion Policy (DP) models when enhanced with manipulation
concepts from various discovery methods. All concept encoders were trained only on LIBERO-90,
and evaluated on: original tasks (L90-90), novel long-horizon compositions (L90-L), and entirely
new environments (L90-G). Values in parentheses show standard deviations across 4 seeds. Bold and
underlined values indicate best and second-best results.

190-90 InfoCon XSkill RPT  All Next CLIP DINOv2z DecisionNCE 0 0 Ours
task motion

66.5 734  68.8 64.1 680 638 719 69.0 66.8 46.6  74.8

ACT  08) (08 (08 (20) (04 (05 (03) ©1) (08 (19 (0.8)

bp 782 817 843 815 826 807 794 757 827 151 896

06 (06) (1) (05 (©1) (09 (0.1 (08 (06 (06 (0.6)

L90-L InfoCon XSkill RPT  All Next CLIP DINOv2 DecisionNCE b Ours
task motion

acp 555 S50 590 555 550 510 550 530 493 540 63.0

09 (1.0) (10) (09 (1.0) (1L0) (1.0) (1.0) (09 (0.9 (1.0)

bp 750 730 613 793 830 670 630 587 527 341 890

1.0) (1.0) (09 (09 (1.0) (1L0) (L0) (09 (09 (L1) (1.0)

L90-G InfoCon XSkill RPT  All Next CLIP DINOv2 DecisionNCE b ' Ours
task motion

aep 670 770 750 90 710 770 713 700 750 570 8L

1.0) (1.0 (10 (10) (1.0) (1.0) (09 (09 (05 (1.0) (1.0)

bp 927 930 915 910 913 920 910 920 930 907 957

09 (1.0 (@©9 1.0 (©9 (©9 (©O7H (0.8 (1.0) 0.9 (0.7

» Next: Predicts adjacent time-step observations, a common approach adopted in [7, 68].
CLIP [46]: Language-aligned visual features from a pretrained foundation model.
DINOV2 [43]: Self-supervised visual representations without temporal modeling.
Plain: Standard imitation learning without manipulation concepts.

Policies for Concept-Enhanced Imitation Learning To evaluate the effectiveness of our discov-
ered manipulation concepts, we integrate them into two established imitation learning frameworks
using the joint prediction approach described in Sec. 3.4:

* ACT [71]: A transformer-based conditional variational autoencoder that predicts action chunks.
* Diffusion Policy (DP) [9]: A 1D convolutional UNet that generates actions through denoising.

For both policy architectures, we add the concept prediction head (7, in Eq. 9) to predict manipulation
concepts from the shared concept-aware representations. Implementation details appear in Sec. A.2.
All experiments are reported with results aggregated across 4 random seeds.

4.2 Evaluating Policy Performance with Learned Manipulation Concepts

* Performance on Original Training Tasks We first evaluate our concept discovery method on
the same tasks used for concept training. As shown in the L90-90 results (Tab. 1), our approach
consistently outperforms all baselines with both policy architectures. The performance gap between
our method and Next/InfoCon demonstrates the importance of multi-hierarchical sub-goal modeling,
while improvements over All highlight the value of explicitly capturing cross-modal correlations.
Our method also surpasses DecisionNCE variants despite not requiring language supervision,
validating the effectiveness of our self-supervised objectives.

* Transfer to Long-Horizon Tasks To evaluate concept transferability to more complex composi-
tions, we apply concept encoders trained on LIBERO-90 directly to LIBERO-LONG demonstrations
featuring novel long-horizon tasks. The L90-L results show our method maintains its performance
advantage in this challenging transfer setting. This demonstrates that our approach learns manipu-
lation concepts that effectively decompose hierarchical tasks, enabling policies to better handle
novel complex task compositions requiring sequential execution of multiple sub-goals.



Table 2: Impact of modality combinations on concept discovery performance. Success rates
(%) of ACT and DP policies using manipulation concepts discovered with different input modality
combinations. All models were trained and evaluated on LIBERO-90, with specific modalities
excluded (marked with “~). A: agentview vision, H: eye-in-hand vision, P: proprioceptive state.

Ours -HP A-P AH- --P -H- A--
ACT 74.8+0.8 70.5¢1.8 71.3x0.3 70.1x1.2 67.5+x0.8 68.7£0.6 69.4+0.4
DP  89.6£0.6 85.8+0.2 85.6x0.3 84.3x0.5 84.8+0.1 83.7+0.1 85.3+0.5

* Generalization to Novel Environments We further test generalization by applying concept
encoders trained on LIBERO-90 directly to LIBERO-GOAL demonstrations featuring unseen
environments and tasks. The L90-G results show our method continues to outperform all baselines
in this challenging scenario. This indicates our approach discovers fundamental manipulation
primitives that transfer effectively across environmental variations.

* Impact of Multi-Modal Observations Our ablation study (Tab. 2) shows that performance
consistently improves as more modalities are incorporated. The most significant drops occur when
removing proprioceptive information, highlighting its importance for grounding visual observations
with physical interaction states and confirming the value of our cross-modal correlation approach.

4.3 Analyzing Manipulation Concept Properties

Enhanced Cross-Modal Correlation To verify our Cross- Taple 3: Conditional mutual in-
Modal Correlation Network’s effectiveness (Sec. 3.2), we  formation between modality pairs.
measure mutual information between modalities conditioned  Values conditioned on concept latents
on concept latents (Sec. A.4). Tab. 3 shows that our approach  from our method versus the All base-
achieves higher conditional mutual information than the All {ipe that does not model cross-modal
baseline. This confirms that our mask-and-predict strategy correlations. A: agentview, H: eye-in-
enables the concept encoder to capture persistent cross-modal  hand vision, P: proprioception.
patterns that generalize across different objects and contexts, Ours Al

providing a robust representational basis for policies.

Alignment with Semantic Sub-Goals We evaluate I{on:oa|z) 3.7999 2.0080
whether our concepts align with human-understandable se- [ (op: 04 |2z) 4.8319 3.1312
mantics by grouping latents from different demonstrations T(op:on|z) 48255 3.1322

based on human-identified sub-goals and computing similar-
ities between these groupings:

CHC 10
< |0|\0| 2, Z <| |z]||2> (0

where C;, C; represent human-identified sub-goal categories, and z;, z; are latents within each
category (details in Sec. C.2). As shown in Fig. 4, similarity matrices consistently show the highest
values along the diagonal, demonstrating that our approach discovers concepts that exhibit clustering
patterns corresponding to meaningful manipulation primitives.

Multi-Level Hierarchical Structure Varying the coherence threshold ¢ in Eq. 4 reveals the
hierarchical organization of our learned concepts. Fig. 3 (and Sec. C.5) shows larger € values identify
coarse-grained phases, while smaller values capture fine-grained actions. This emergent hierarchy
enables policies to simultaneously reason about immediate actions and longer-term goals without
explicit hierarchical supervision, contributing to improved performance on complex sequential tasks
that require coordinated execution across multiple temporal scales.

4.4 Real-World Validation

Real-World Generalization Study To study generalization capabilities, we deploy concept-
enhanced policies on a Mobile ALOHA robot [16] in ‘“cleaning cup” tasks (Fig. 5).
Training data includes only simple container arrangements with consistent color pairings.
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Figure 3: Multi-granular task decomposition through concept latent clustering. Visualization of
sub-processes derived by clustering manipulation concept latents at different coherence thresholds (e)
for the task “open the top drawer and put the bowl in it.” Higher € values (top rows) produce coarser
decompositions, while lower values (bottom rows) yield finer-grained segmentation. The emergent
sub-processes naturally align with semantic task components, for example, the third segment in row 2
corresponds to “put bowl in drawer,” while the second segment in row 4 corresponds to “pull drawer
open.” This demonstrates our method’s ability to discover hierarchical, human-interpretable task
structures without explicit supervision.

We test on six increasingly challenging varia-
tions: (1) Novel Placements: Cups and con-
tainers in unseen arrangements; (2) Color Com- open the fop drawer #2 ﬁo'os —
position: Altered cup-container color pairings; arasp the bow #3 IR

(3) Novel Objects: Entirely unseen containers, — put the bowl in the drawer #4 SESUL ww

cups, and plates; (4) Obstacles: Objects be-  reach the bottom drawer #5 [Eh
tween the robot and the cups obstructing vision;
(5) Barriers: Internal dividers within containers
impeding placement; (6) Grasping Together:
Two adjacent cups requiring simultaneous grasp.

reach the top drawer #1 (Ui 0.01 0.02

close the bottom drawer #6
close the top drawer #7

put the bow! on the cabinet #8 0.08 0.08

As shown in Tab. 4, policies enhanced with our
manipulation concepts consistently outperform
baselines across all scenarios, with advantages
in challenging conditions. We suggest that the
following two mechanisms behind learned ma-
nipulation concepts improve generalization:

Figure 4: Semantic alignment of learned con-
cepts. Cosine similarity between concept latents
grouped by human-defined sub-goals. Diagonal
patterns demonstrate that our approach discov-
ers concepts that exhibit clustering patterns cor-
responding to meaningful manipulation primitives.
1. Relational focus: Concept-enhanced policies

prioritize transferable relational patterns (e.g., “object inside container”) over surface features. Our
cross-modal correlation learning (Sec. 3.2) enables this capability by identifying patterns that remain
invariant across modalities. This relational emphasis explains the stronger performance on scenarios
that alter visual appearance while preserving task structure. For instance, while Novel Placement
tests spatial variation alone, the other protocols introduce substantial visual perturbations (different
colors, objects, or occlusions) that shift the appearance distribution. The consistent performance
gains across these visually diverse scenarios (Tab. 4) suggest that the learned concepts successfully
capture the underlying relational invariant —placing cups into containers —rather than memorizing
superficial visual patterns.

2. Hierarchical awareness: Concept-enhanced policies exhibit more systematic failure recovery
than baselines, suggesting better tracking of sub-goal completion. Baseline failures frequently exhibit
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Figure 5: Real-world generalization evaluation with Mobile ALOHA robot. Left: Mobile ALOHA
robot setup for cup cleaning tasks. Center: Training conditions with simple, consistent cup-container
color pairings. Right: Six test variations with increasing complexity: novel placements, altered color
combinations, unfamiliar objects, external obstacles, internal barriers, and simultaneous grasping of
multiple cups. These variations test the policy’s ability to generalize beyond training conditions by
systematically introducing new challenges.

premature task abandonment: the robot moves toward containers without having grasped objects, or
hovers near placement locations without executing placement. In contrast, when concept-enhanced
policies fail initial grasp attempts, they consistently retry grasping (typically 2-3 attempts) before
proceeding, demonstrating recognition of incomplete sub-goals. Although these recoveries ultimately
fail due to time limits or object displacement, they reveal structured task progression rather than blind
action execution.

These mechanisms may enable manipula- Table 4: Real-world generalization success rates (%)

tion concepts to promote policy generaliza-
tion by encoding fundamental spatial and
functional relationships that remain consis-
tent across environmental variations. De-

for ACT policies with and without manipulation con-
cepts (MC). Test conditions: Placements (novel layouts),
Color (new pairings), Objects (unseen items), Obstacles
(external barriers), Barrier (internal dividers), and Multi-

tails are provided in Sec. C.6. grasp (tWO cups Simultaneously)'

Multi-Horizon Goal Prediction Visual-

& . X
ization To visualize the temporal infor- \é? Qo\o 3 S & §
mation encoded in our manipulation con- < © © ?
cepts, we examine outputs from our Multi-  w/o MC 533 46.7 400 200 0.0 0.0
Horizon Goal Predictor (MHGP, 7 in  w/MC 733 60.0 533 333 200 133

Eq. 7) using the BridgeDataV2 dataset [60].
Fig. 7 (Sec. C.7) shows predicted goal states when conditioned on the current observation, manipula-
tion concept, and various coherence thresholds (¢).

The predictions capture essential task structures — such as anticipated arm trajectories and object
interactions — rather than attempting pixel-perfect reconstructions. This abstraction of scene-specific
details in favor of functional relationships is crucial for cross-environment generalization. Importantly,
as € increases, the predictions correspond to states progressively further into the future, with smaller
values showing immediate next steps and larger values revealing final goal states. This demonstrates
that our learned concepts encode meaningful temporal structures at multiple time horizons, enabling
policies to simultaneously reason about immediate actions and longer-term objectives. Details are
provided in Sec. C.7.

5 Discussion

We demonstrate that self-supervised discovery of hierarchical manipulation concepts significantly
enhances robot policy performance across original tasks, novel compositions, and entirely new
environments. Three key strengths emerge: (1) our representations naturally resemble semantically
meaningful manipulation primitives without requiring explicit labels, as evidenced by diagonal
clustering in similarity matrices; (2) the concepts bridge low-level actions and high-level goals
through hierarchical organization, enabling reasoning at multiple temporal scales; and (3) concept-
enhanced policies focus on transferable relational patterns rather than superficial features, explaining
their robust generalization to scenarios with substantial distribution shifts. These findings highlight
the potential of learning manipulation concepts from unlabeled multi-modal demonstrations for
creating more adaptable and interpretable robotic systems. Limitations are discussed in Sec. D.
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A Implementation details

A.1 Manipulation concept discovery (Ours)

This section details the neural network architectures and training procedures employed in our
manipulation concepts discovery framework (Sec. 3) as implemented on the LIBERO benchmark.

Manipulation Concept Encoder (Sec. 3.1) The manipulation concepts encoder £ (Eq. 1) first
encodes the multi-modal observations at each time step of the input demonstration into an encoded
vector. It then utilizes a self-attention transformer to process the sequence of encoded vectors into
a sequence of manipulation concepts. For the observation encoding process, our experiments on
LIBERO incorporate two vision observations: agent-view vision and eye-in-hand vision. The
original images are tensors of shape 128 x 128 x 3. To enhance processing efficiency, we preprocess
the images for each time step using the VAE encoder from stable diffusion [49], compressing each
image into a tensor of shape 16 x 16 x 4, which is then flattened into a 1024-dimensional vector. In
addition to the two vision observations, we include a 9-dimensional robot state at each time step of
each demonstration as the proprioceptive state observation. For these three observations at each time
step, we employ three distinct 2-layer MLPs to process each observation into a feature vector of the
hidden size (256) used by the subsequent transformer. The encoded features from these observations
are then summed to form a 256-dimensional representation that encapsulates the sensing information
from the three modalities.

hav = MLPav(Iav-compress) hev = MLPeV(IeV-compress) hprop = MLPprop(Sprop)

h = hay + hey + hprop (1D
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Here, Iy compress represents the 1024-dimensional compressed agent-view vision, and Iey-compress
represents the 1024-dimensional compressed eye-in-hand vision. s, denotes the 9-dimensional
proprioceptive state observation. The output of the hidden layers from the three MLPs is 1024
dimensions. The h in Eq. 11 represents the encoded observation feature at each time step of a given
demonstration 7;: (h},h2,---  hl"). The next module in & is a 12-layer self-attention (MHA in
Eq. 12) transformer, enabling each time step to aggregate information from every other time step
in the input sequence. In our implementation, we do not input the entire demonstration; instead,
the transformer processes a fixed input sequence length of Tionexy = 60. A learnable temporal
embedding, represented as a tensor of shape 60 x 256, is added to the input sequence to enhance
temporal representation. The hidden feature dimension at each time step is 256, and each self-
attention layer consists of 8 heads. Moreover, since spherical distance is utilized in Sec. 3.3, the
output manipulation concepts are normalized to have a unit length with respect to the 2-norm:

(257 Z;»H_l, . 7Z;f"!‘Tcontext—1) + Norms, ([MHA} ‘12 (h’f7 h:""l’ R ,h§+Tc°“‘ex‘_1)> (12)
The output manipulation concept sequence in Eq. 1 represents the predicted manipulation concepts at
time-steps t,t+1, - - -, (t+ Teontext — 1) of the demonstration 7;. During training, demonstrations with
lengths shorter than T¢onex¢ are padded to Tionex; by repeating the observations from the last time-step
at the end of each demonstration. During inference, when £ is used to label the demonstrations in the
original dataset, the manipulation concepts at each time step are designed to incorporate information
from as many future time steps as possible. This approach aims to better capture motion pattern
dynamics, aligning with prior works that generate the dynamics at the current time step based on
information derived from the dynamics spanning the current to future time steps [68]. Specifically:

* For each time-step t < T; — Tiontext> the corresponding manipulation concepts are derived when the
input to Eq. 12 starts from this time-step and spans a length of T¢opext: (h‘;, hﬁ“, ceey hf+T°"“‘e“_1 .

* For each time step ¢ > T; — Tcontext, the corresponding manipulation concepts are derived when the
input to Eq. 12 begins at time step th7 ~Teomext1 4nq spans a length of T gpext, €nsuring that the final

time step corresponds to the end of the demonstration: <hiTi7T°°“‘e“+1, hiTi*Tm“‘“‘”7 S hZT)

o If the original demonstration length is smaller than Tonexc, the manipulation concepts correspond
to the input appended with repeated observations as described earlier.

However, we do not firmly believe this is the optimal approach for labeling manipulation concepts.
Further exploration of inference-time strategy design is left for future work, as it is not a core focus
of the manipulation concept discovery methodology presented.

Learning Multi-Modal Features and Correlations (Sec. 3.2) The Cross-Modal Correlation
Network C (Eq. 3) shares a similar structure with £ (Eq. 1). First, it includes four 2-layer MLP
encoders, analogous to the three encoders in Eq. 11, with an additional encoder for processing
the manipulation concepts. Each of these four MLPs outputs a hidden feature of dimension 1024,
which is then reduced to a 256-dimensional encoded feature. These encoded features are summed
to represent the combined information from the three observations and the manipulation concepts.
Second, it incorporates a 4-layer self-attention transformer to process the sequence of features (with
the same fixed length T¢onexe = 60) produced by the four MLPs. Following this, three 3-layer MLP
decoders map the transformer’s output to the reconstructed observations at each time step. Unlike
in Eq. 12, the transformer’s output does not require normalization. Each decoder MLP has hidden
layers with a dimension of 1024. As described in Eq. 3, for the three observations—agent-view
camera vision, eye-in-hand camera vision, and proprioceptive state observation—we randomly
mask these modalities, ensuring that at least one modality is masked during each iteration. The
23 — 1 = 7 possible masking scenarios follow a uniform distribution, with each scenario appearing
with a probability of % For the sampled masks, all observations of the corresponding masked
modalities in the input sequence are replaced with zero tensors. The loss is applied separately to the
reconstruction of the three different observations. Specifically, L2 loss is applied to the two vision
observations, while L1 loss is applied to the proprioceptive state observations. The loss weight Ay
in Eq. 8 is set to 1.0.

Learning Multi-Hierarchical Sub-goals (Sec. 3.3) The Multi-Horizon Future Predictor F (Eq. 7)
shares a similar structure with C (Eq. 3). The key differences are:
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» F does not require a masking strategy.

* The transformer in F is a 4-layer causal self-attention transformer. Causal attention is used because,
in Eq. 7, the prediction is made from each current time step to certain future time steps. Therefore,
for each time-step input in F, access to information from subsequent time steps is restricted.

* To incorporate the granularity parameter € € [0, 1], we discretize the continuous range into 1000
uniform bins {0.000, 0.001, ...,0.999} and learn a corresponding VQ-VAE codebook [59] with
1000 entries, each represented as a 256-dimensional embedding vector. In each transformer
block, the feed-forward layer receives the concatenation of the attention output and the embedding
corresponding to the sampled e value.

* The output predictions correspond to the observations at the time steps determined by the rules
described in Sec. 3.3 (Egs. 4 and 6). Still, the loss is applied separately to the reconstruction of the
three types of observations. Specifically, L2 loss is used for the two vision observations, while L1
loss is applied to the proprioceptive state observations. The loss weight A, in Eq. 8 is set to 1.0.

Training Details We train the manipulation concept discovery process for 200,000 iterations with
a batch size of 512. Each item in the batch is a segment of demonstration with a fixed length of
Teontext = 60. The training process uses the AdamW optimizer with a weight decay of 0.001 and
momentum parameters 51 = 0.9 and 82 = 0.95. The base learning rate is set to 0.001. Initially, the
model is trained with a 100-iteration warmup phase, during which the learning rate increases linearly
from 0.0001 to 0.001. After the warmup, the model is trained for the remaining iterations using a
cosine decay schedule, gradually reducing the learning rate back to 0.0001. This training setup is
compatible with GPUs such as the GeForce RTX 3090 or 4090. However, we leverage the A800
GPU for improved efficiency, completing the training process in 1.5 days.

A.2 Enhancing Imitation Learning
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Figure 6: Upper: Enhanced ACT (decoder part); lower: Enhanced Diffusion Policy
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This section introduces the neural network architectures and training details used in the Enhancing
Imitation Learning process (Sec. 3.4). It focuses on modifying the original neural network policy
to enable the prediction of manipulation concepts, thereby enhancing performance. Moreover, the
implementation of the base policy follow [39].

ACT The pipeline (we focus on the CVAE decoder as it is the only modified component) is shown
in the upper part of Fig. 6. Following [39], the transformer encoder in ACT’s CVAE decoder is
modified to incorporate task embeddings provided by CLIP. The transformer decoder in ACT’s CVAE
decoder is adapted to predict manipulation concepts. Specifically, the output of the L-th layer in
the transformer decoder is processed by an additional decoding head, which is nearly identical to
the one used for outputting action chunks, with the only modification being the output dimension.
This decoding head outputs manipulation concept chunks corresponding to the same time steps as
the action chunks, with its parameters adjusted to match the dimensionality of the manipulation
concepts at each time step (256). Other training and testing settings follow [39]. Moreover, the
transformer decoder in ACT’s CVAE decoder, as implemented by [39], consists of 7 layers. During
our experiments, we tested various combinations of L-th layers to determine the optimal layer for
processing by the manipulation concept decoding head. Our results indicate that L = 2 provides
slightly better performance than other configurations. We present the ablation study on L and the
weight A in Eq. 9 for ACT on LIBERO-90 tasks, as shown in Tab. 5 . However, we believe
this raises an interesting and challenging direction for future work: systematically investigating the
rationale and insights behind the selection of L, even beyond the context of our setting.

Table 5: Ablation study on the intermediate layer outputs (L) used as inputs to the manipulation
concept decoder and the loss weight A in Eq. 9 for Enhancing Imitation Learning in ACT, evaluated
on LIBERO-90 tasks.

ACT Ape =10 Ape=01 Apc=0.01 Apc=0.001
L=2 1748+0.8 70.6x0.8 69.0+0.1 68.7+0.5
L=3 70.0+£04 69.9+0.2 68.8+1.0 68.7+0.6
L=4 72605 69.9+0.3 69.6+0.2 67.3+0.5

Diffusion Policy The pipeline is illustrated in the lower part of Fig. 6. Following [39], the
convolution-based Diffusion Policy is modified to concatenate the noise level (k and corresponding
€;,) embedding, observation, and task embedding as the conditional input to the diffusion model
network, using the FILM strategy. We further introduce an additional manipulation concept decoding
up-sampling module, nearly identical to the one used for outputting action chunks, with the only
modification being the output dimension, to decode intermediate outputs from the corresponding up-
sampling layer of the diffusion model. This decoding head can be configured to process intermediate
outputs to predict manipulation concept chunks corresponding to the time steps of the predicted
(noise of) action chunk outputs. The figure illustrates the cases for L = 0 and L = 1. During
our experiments, we tested various combinations of L-th layers to identify the optimal layer for
processing by the manipulation concept decoding head. Our results suggest that L = 1 achieves
better performance than other configurations. We present the ablation study on L and the weight
Ame 1n Eq. 9 for Diffusion Policy on LIBERO-90 tasks, as shown in Tab. 6. Similar to ACT, we
believe this topic needs further systematic study to uncover deeper insights. Other training and testing
settings follow [39].

Table 6: Ablation study on the intermediate layer outputs (L) used as inputs to the manipulation
concept decoder and the loss weight A in Eq. 9 for Enhancing Imitation Learning in Diffusion
Policy, evaluated on LIBERO-90 tasks.

DP  Anc=10 Apc=01 Ape=0.01 Ay =0.001
L=0 835+0.8 78.9+04 78.7£0.3 75.6+0.6
L=1 180.0£04  89.6+0.6 82.0+0.2 79.9+0.1

'We provide sample rollouts (supplementary/rollout_summary) and .gif logs of test-time ACT and DP
performance (supplementary/rollout_video_samples_gif) in the supplementary materials.
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Our future work includes a deeper study of modification strategies for various policies to adapt to the
Enhancing Imitation Learning framework, following the methodology outlined in Sec. 3.4.

A.3 Manipulation concept discovery (Baselines)

* InfoCon. Based on the design of InfoCon [31], All the size of hidden features output by trans-
formers and concept features is 256. The state encoder (also process video clips consisting of
concatenated, compressed vision observations and proprioceptive states, as outlined in Sec. A.1)
uses a 12-layer transformer. The state reconstructor uses a 4-layer transformer. The goal-based
policy uses a 4-layer transformer. The predictor for the generative goal uses a 4-layer transformer.
For hyper-network used for discriminative goals, we use 2 hidden layers in the goal function. The
number of concepts is fixed, the maximum number of 30 manipulation concepts for all the tasks.
We employ the AdamW optimizer, coupled with a warm-up cosine annealing scheduler same as
Sec. A.1. The weight decay is always 1.0 x 10~3. We use a batch size of 512 during training. We
train our model for 200,000 iterations with a base learning rate of 1.0 x 1072 on a single A800
GPU within 1.5 days.

* XSKkill. Following the design of XSkill [65], we implement its skill discovery framework on
LIBERO-90, focusing exclusively on the “robot” embodiment and the Skill Discovery component
from the XSkill pipeline. To ensure comparable model capacity and support multi-modality,
our implementation employs a 12-layer Transformer as the temporal skill encoder. This encoder
processes video clips consisting of concatenated, compressed vision observations and proprioceptive
states, as outlined in Sec. A.1, along with a trainable token to predict skill representations, which
are subsequently used for skill prototype prediction. To augment the concatenated video clips
containing multi-modality information, Gaussian noise with ¢ = 1.0 x 1072 is applied. This
unified augmentation approach accommodates the nature of proprioceptive states, as standard
image augmentation techniques are not directly suitable for robotic proprioception. The training
process employs a batch size of 512 and a learning rate of 1.0 x 10~2 for 200,000 iterations on a
single A800 GPU within 1.5 days.

* DecisionNCE We fine-tune the DecisionNCE-T model (https://github.com/2toinf/
DecisionNCE) on our dataset, as it outperforms DecisionNCE-P in our analysis of the exper-
imental results in [27]. We use two types of language annotations: (1) the original task descriptions
(Decision-task), and (2) detailed subtask labels derived by decomposing each task into meaningful
subprocesses (Decision-motion). To construct the latter, we manually segment each demonstration
based on changes in the robot’s proprioceptive state (e.g., movement direction, gripper open/close
status). Segments corresponding to the same task are then assigned unified subtask labels across
demonstrations, with remaining inconsistencies resolved through manual adjustment.

* RPT. We modify the original RPT design [47] to adapt it for our task of discovering manipulation
concept latents in the LIBERO-90 setting. We employ a 16-layer self-attention transformer to
process inputs consisting of 60 consecutive, interleaved agent-view and eye-in-hand vision frames.
Vision inputs are compressed using a stable diffusion VAE encoder, similar to the method in
Sec. A.1. The total sequence length processed by the transformer is 60 x 3 = 180. Each modality
is mapped to a 256-dimensional embedding vector using an MLP, as defined in Eq. 11. The
transformer’s output is then decoded to reconstruct the original inputs using a 3-layer MLP with
1024-dimensional hidden layers. We follow the masking strategy outlined in [47] to perform
temporal MAE training for the transformer. To label manipulation concept latents using the trained
transformer, we extract the intermediate output of the 12th layer when the input consists of the full
observation without masking. Notice that we select the output at the proprioceptive state input
positions of the transformer to represent the manipulation concept latent at each time-step. The
labeling process follows the procedure introduced in Sec. A.1. For training, we use a batch size
of 512 and a learning rate of 1.0 x 1073, running for 200,000 iterations on a single A800 GPU,
which completes within 3 days.

* All. This is an ablation version of our manipulation concept discovery method, focusing on the
design for capturing multi-modal correlations (Sec. 3.2). Specifically, this baseline replaces the
loss in Eq. 3 with a loss that does not use partial masking but instead always masks all modalities:

L (t,7i) = HC (Q) Zf§@c) —of

Tab. 3, we think this method may not be good at learning correlation between different modalities.
Other settings follow Sec. A.1.

. Based on our reasoning and the experiment results show in
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* Next. This is an ablation version of our manipulation concept discovery method, focusing on the
design for representing multi-horizon subgoals (Sec. 3.3). Specifically, this baseline replaces the
loss in Eq. 7 with a loss that always predicts the next adjacent time-step observation: Lpex (£, 7;) =
H]—' (o}, zt;04) — ol ™! H We observe that this setting is commonly used in recent works [7, 68],
which learn representations based on adjacent time-step observations or observations separated
by a fixed time horizon. We suggest that learning based on a fixed time horizon is conceptually
similar to adjacent time-step settings, as the fixed time horizon can be interpreted as a unified time
step. Our method differs by considering the temporal correlation across multiple variable horizons,
which is also addressed by baseline methods like RPT. Other settings follow Sec. A.1.

» CLIP. To ensure compatibility with other baselines, which have an output dimension of 256,
we select the ViT-B/32 CLIP model from the original source (https://github.com/openai/
CLIP). This model outputs a 512-dimensional feature vector, the closest to 256 among the accessible
CLIP models from this codebase when given an image.

* DINOv2. To match the output dimension of 256 used by other baselines, we select the
dinov2-small DINOv2 model from the source at https://huggingface.co/facebook/
dinov2-small. This model produces a 384-dimensional feature vector when given an image.

Note that DecisionNCE, CLIP, and DINOv2 baselines use only vision (and language) information for
concept discovery. We preserve their original modality structure rather than adapting them to include
proprioceptive states, as this would deviate from their pretraining foundations.

A.4 Mutual information estimation

The estimation of mutual information is based on MINE [2], which uses batchwise samples drawn
from a joint distribution and employs a neural network to estimate the mutual information. To
extend this approach for estimating conditional mutual information (CMI), we reformulate CMI by
decomposing it into mutual information terms, as shown below:

I(X:Y|2)=I(X:Y)+1(XY :2)-I(X:Z) -1 : Z), (13)

where XY denotes the random variable sampled from the joint distribution of X and Y and is
represented as the concatenation of their encoded vectors. The neural network in MINE has two
layers, with the hidden layer size set to 1.5 times of the dimensions of the two random variables.

B Pseudocode

Here we provide pseudocode for (i) Deriving subprocess from manipulation concept latents (Alg. 1).
(i1) Manipulation concept disocovery training process of our method (Alg. 2).

C More Study on Learned Manipulation Concepts

C.1 Additional Experiments on Enhanced Imitation Learning

Sampling Strategies In this part, we focus on methodology for deriving hierarchical structures from
learned representations (Sec. 3.3). While we adopt a threshold-based hierarchy derivation method
(Eq. 4) as a proof of concept, we acknowledge that alternative derivation methodologies warrant
further investigation (see Sec. D). For the threshold-based approach, we employ uniform sampling
of the threshold € during training. This choice ensures full coverage of all possible hierarchical
structures, as we do not know a priori which threshold values might be suboptimal. To validate this
design choice, we conduct an ablation study comparing different sampling strategies for € in Eq. 7:

As shown in Tab. 7, uniform sampling currently achieves the best performance across both policy
architectures. We hypothesize that while task-specific sampling strategies might excel on particular
subsets, uniform sampling provides robust performance across diverse tasks due to its comprehensive
coverage of the threshold space. Future work could explore adaptive sampling strategies tailored to
specific task distributions.
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Table 7: Sampling Strategies Ablation. We compare different sampling strategies for € in Eq. 7.
Manipulation concepts are learned from LIBERO-90 and applied to policy learning on LIBERO-90.
We report success rates (%).

Sampling Strategy Description ACT DP
Uniform (Ours) e~Uu(0,1) 74.8+0.8  89.6+0.6
Sparse e~ {0.1,0.2,---,1.0} 67.6£0.5 81.1+0.8
Biased e~U(3,2) 65.6+0.7 78.7+0.4

Learning Methodology Contribution We conduct an ablation study to isolate the contributions of
our two core learning methodologies: Capturing Multi-Modal Correlations (Sec. 3.2) and Represent-
ing Multi-Horizon Sub-Goals (Sec. 3.3). Tab. 8 compares three configurations: (1) Cross-modal only:
learning with only cross-modal alignment objectives in Eq. 3, (2) Multi-horizon only: learning with
multi-horizon sub-goal prediction in Eq. 7 but without cross-modal alignment, and (3) Full method:
combining both cross-modal alignment and multi-horizon prediction.

Table 8: Methodology Contribution Ablation. We evaluate the contribution of each learning
component by training manipulation concepts on LIBERO-90 and applying them to policy learning
on LIBERO-90. We report success rates (%).

Method ACT DP
Cross-modal only  69.1+£0.6  82.8+1.0
Multi-horizon only ~ 71.6£0.4  80.5%0.5
Ours (Full method) 74.8+0.8 89.6+0.6

The results in Tab. 8 reveal that both components make substantial and complementary contributions
to performance. We attribute this synergy to the distinct roles of each component: cross-modal
alignment grounds the understanding of correlations across different modalities, while multi-horizon
prediction captures hierarchical temporal structure. Together, they enable the learning of manipulation
concepts that are both correlationally coherent and temporally structured, leading to more robust
policy learning.

Data Constraint Experiments We evaluate whether manipulation concepts can help mitigate
the challenges of imitation learning under limited data. Specifically, we vary the amount of data
available for training both the manipulation concept encoder (Eq. 1) and the enhanced imitation
learning framework (Sec. 3.4) to assess their impact on policy success rates. We conduct experiments
on LIBERO-90 tasks using the diffusion policy. As shown in Tab. 9, incorporating manipulation
concepts consistently improves policy performance compared to settings without them, even under
restricted data conditions. This demonstrates that learning and leveraging manipulation concepts can
make imitation learning more data-efficient and effective.

Table 9: Performance under data constraints. Success rates of diffusion policies with and without
manipulation concept enhancement, evaluated on LIBERO-90 (L90-90). In each setting, the number
of demonstrations per task available for training both the manipulation concept encoder and the policy
is limited as indicated.

50 demos/task 25 demos/task 10 demos/task
Ours 89.6 £ 0.6 77.6 0.5 612+1.1
Plain 75.1 £0.6 70.1 £0.3 59.1+0.9

Distance Metric We conduct an ablation study comparing spherical distance and cosine distance

17%’5(') for dist(+, -) in Eq. 4. Tab. 10 reports the performance when concepts are learned and applied
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to LIBERO-90 tasks. Further investigation into distance-threshold-based subprocess derivation
methods represents a promising direction for future work.

Table 10: Ablation study on distance metrics for concept learning on LIBERO-90. Spherical distance
consistently outperforms cosine distance across both baseline methods.

Cosine Distance Spherical Distance (Ours)
ACT 67.8+0.5 74.8+0.8
DP 82.0+0.4 89.6+0.6

Sub-process Derivation We conduct an ablation study comparing two approaches for constraining
manipulation concept latents within each sub-process in Eq. 4. Our proposed method enforces
proximity among all concept latents throughout the sub-process (“Sequential Constraint”), while
the baseline only constrains the distance between the initial and final concept latents (“Endpoint
Constraint”). We evaluate both approaches on LIBERO-90, where concept discovery and policy
enhancement are performed. Tab. 11 reports the task success rates when integrating the learned
manipulation concepts with different policy architectures.

Table 11: Ablation study on sub-process derivation constraints. We compare enforcing proximity
among all manipulation concept latents within each sub-process (Sequential Constraint) versus
constraining only the initial and final latents (Endpoint Constraint). Results show average success
rates (%) with standard errors across LIBERO-90 tasks.

Sequential Constraint Endpoint Constraint
ACT 74.8+0.8 68.4+0.8
Dp 89.6+0.6 79.8+0.5

Future Prediction Strategy Apart from the different sub-goal determination strategies we com-
pared (Next and InfoCon in Sec. 4.1), we evaluate two additional future prediction strategies.

* Next-n. Unlike our sub-process derivation strategy (Eq. 4), this baseline encodes future observations
at varying time horizons by randomly sampling a future timestep. Specifically: Lpexen (¢, 7;) =
Epoufi2, 17—t} H}"(Oﬁ, 2l n;0p) — o™

* Next-random. This strategy builds upon Next-n but differs in how future targets are selected. We
first randomly segment training demonstrations into sub-processes for concept discovery. Then,
for a state at time-step ¢, the prediction target is randomly selected from among the end-states of
subsequent sub-processes. For example, if a demonstration is segmented into 5 sub-processes and
time-step ¢ is in the 2nd sub-process, the model will randomly predict one of the end-states from

the 2nd, 3rd, 4th, or 5th sub-processes during concept discovery learning.

We evaluated diffusion policies enhanced by these strategies, with results presented in Tab. 12. The
data demonstrates that our manipulation concepts yield better policy enhancement compared to the
alternative strategies. This highlights the importance of carefully designing which future observations
to predict and validates the effectiveness of our self-supervised sub-goal derivation and learning
method. Specifically, the performance decrease observed with Next-n and Next-random, despite
their consideration of multi-horizon futures, likely stems from the fact that not all future states
effectively represent sub-goal completion. Intermediate movement states may be reached through
multiple alternative trajectories that ultimately achieve the same sub-goal, thus providing limited
information about the underlying task structure.

Usage of Manipulation Concept Encoder We investigate two strategies for leveraging the ma-
nipulation concept encoder from Eq. 1 in downstream policy learning. The encoder serves as an
intermediate module that extracts manipulation concept representations from demonstrations. We
compare the following approaches: (1) Direct Conditioning: The trained encoder directly processes
current observations to generate manipulation concepts, which are then concatenated with observa-
tions as additional input features to the policy network. (2) Joint Prediction (Ours): The policy
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Table 12: Comparison of Additional Future Prediction Strategies. Success rates of diffusion
policies enhanced with manipulation concepts discovered using our method versus two alternative
future prediction strategies on the LIBERO-90 benchmark.

L90-90 Ours Next-n  Next-random
DP 89.6+0.6 83.0+0.3 82.8+04

network is trained to jointly predict both future actions and future manipulation concepts from current
observations, as described in Sec. 3.4. Tab. 13 presents the comparative results across two policy
architectures.

Table 13: Comparison of Manipulation Concept Usage Strategies.

Policy Direct Conditioning Joint Prediction (Ours)
ACT 71.1£0.4 74.8+0.8
DP 79.3+0.9 89.620.6

The performance gap stems from a temporal alignment mismatch between concept representations
and action predictions. In Direct Conditioning, the encoder extracts concepts from current or
past observations, creating a temporal lag: the policy receives historical concept information when
planning future actions. In contrast, Joint Prediction enforces temporal coherence by training the
policy to predict future manipulation concepts alongside future actions, ensuring that the predicted
concepts align temporally with the planned action sequence.

This temporal alignment is critical in multi-phase manipulation tasks. For example, consider a
pick-and-place scenario: immediately after grasping an object, the current observation encodes
grasping-related dynamics. However, to execute the subsequent placement action, the policy requires
placement-relevant information. Joint Prediction learns to anticipate these future task-phase concepts,
providing the policy with forward-looking contextual information. Direct Conditioning, by contrast,
conditions the policy on backward-looking grasping concepts that offer limited guidance for placement
planning.

While our results demonstrate the advantages of temporal alignment through joint prediction, we
acknowledge that direct conditioning on historical concepts may benefit tasks requiring explicit
long-horizon memory or reactive behaviors based on past states [14]. Future work will explore hybrid
architectures that combine both strategies.

C.2  Alignment with Semantic Sub-Goals

We evaluate whether the manipulation concept latents learned by our method resemble human-
interpretable semantics. Specifically, we assess whether latents assigned to time steps of demonstra-
tions (Sec. 3.1) exhibit higher pairwise similarity when those steps belong to sub-processes pursuing
the same human-defined sub-goal.

To analyze the learned representations, we first group manipulation concept latents according to
human-annotated sub-goals. For instance, in the task “open the top drawer”, latents from time steps
where the robot reaches for the top drawer handle are categorized as “reach the top drawer”. Latents
from other demonstrations and tasks involving identical processes (reaching the top drawer) are
placed in the same category. We then quantify the similarity between two categories by calculating
the average cosine similarity between their respective latents, as defined in Eq. 10.

Fig. 9 shows results from analyzing demonstrations from three tasks:

* Task #1: Open the top drawer of the cabinet and put the bowl in it;
* Task #2: Close the bottom drawer of the cabinet and open the top drawer;
* Task #3: Close the top drawer of the cabinet and put the black bowl on top.

We selected these tasks because they clearly demonstrate overlapping subgoals across different tasks
(e.g., Task #1 and Task #2 both include “opening the top drawer’). This enables testing whether the
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latents capture similar subgoal semantics across different tasks—an essential capability for cross-task
learning efficiency (Sec. 1). Manipulation concept latents are grouped based on human-defined
sub-goals, with similarities between category pairs visualized as heatmaps. Three heatmaps are
presented, each using a different granularity of sub-goal annotation:

1. Top-1st heatmap: Omits task-specific distinctions, merging similar manipulation processes across
tasks into the same category

2. Top-2nd heatmap: Further merges similar manipulation processes, disregarding distinctions like
“top drawer” versus “bottom drawer”

3. Top-3rd heatmap: Consolidates manipulation processes further, treating actions like bowl
transitions as the same concept regardless of context

In each heatmap, the entry at position (¢, j) represents the average similarity (x10.0) between
categories ¢ and j. For readability, only the top three similarity values in each row are displayed.

We emphasize that testing semantic capture at different “description granularity levels” is important
because semantics naturally exist at multiple levels of abstraction, from highly specific details to
broadly generalizable patterns. Finer-grained descriptions provide more precise details but limited
generalization, while coarser-grained descriptions capture more general features applicable across
diverse scenarios. For example, the general instruction “close the drawer” applies broadly to subpro-
cesses in both Task #2 and Task #3, whereas the more specific “close the top drawer” incorporates
spatial features that make it applicable in Task #3 but not in Task #2. Through this multi-granularity
analysis, we evaluate whether our manipulation concept latents successfully capture both fine-grained
semantics needed for specific scenarios and coarse-grained semantics that enable transfer across more
scenarios.

What we observe is that the highest similarity values consistently appear along the diagonal in each
heatmap in Fig. 9, so concept latents from the same category show higher similarity compared with
different categories. This indicates that the learned latent clusters resemble clusters derived from
human-interpretable sub-goal classifications, suggesting that our model captures meaningful semantic
structure in the manipulation processes. Moreover, the patterns observed across the three heatmaps
with different description granularities reveal that the latents encode semantics at multiple levels of
abstraction. They capture both generalizable semantics applicable across tasks and scenes, while
simultaneously preserving fine-grained scene-specific details.

Furthermore, Fig. 10(b) provides a t-SNE visualization of manipulation concept latents from all 90
tasks in LIBERO-90. For each task, latents (z!) were extracted at every time step of demonstrations.
In the plot, latents are color-coded by their originating tasks. We observe that clusters often contain
latents from diverse tasks, as indicated by the mixed colors in each cluster. This further supports our
finding that the learned latents generalize across tasks and capture shared semantic structures.’

C.3 Motion Study

We evaluate whether the learned manipulation concept latents capture the robot’s motion. Using
Eq. 10, we calculate the average similarity (x100.0) between movements based on manipulation
concept latents corresponding to specific gripper actions. Specifically, we collect latents for the
following movements from task demonstrations in LIBERO-90:

1. Forward-backward motion: Latents for time-steps where the robot moves forward, backward, or
remains still along the forward-backward axis.

2. Left-right motion: Latents for time-steps where the robot moves left, right, or remains still along
the left-right axis.

3. Up-down motion: Latents for time-steps where the robot moves up, down, or remains still along
the up-down axis.

4. Gripper state: Latents for time-steps where the gripper opens or closes.

’It should be noted that t-SNE performs extreme dimensionality reduction, so these clusters may not
perfectly reflect similarity in the high-dimensional space. This visualization should therefore be considered as
supplementary evidence.
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Movements with velocities below 20% of the maximum observed velocity are classified as “still”.
Using these collected latents, we generate heatmaps (similar to Fig. 9) to visualize the average cosine
similarity across different movement directions and gripper states (Fig. 10(a)).

The heatmaps reveal that the highest cosine similarity values often appear along the diagonal. This
demonstrates that latents corresponding to the same motion patterns exhibit greater similarity to
each other than to those from different motion patterns, indicating that the latents effectively capture
different movement directions and gripper states. However, we observe that forward-backward motion
is captured with lower accuracy compared to other dimensions. We hypothesize that incorporating
additional 3D-informative modalities, such as depth maps, beyond the current proprioceptive states
could improve the representation of motion along the forward-backward axis. We leave the exploration
of such modality incorporation to future work.

C.4 Diversity & Discrimination Study

We analyze the diversity and discriminability of learned manipulation concepts by comparing concept
latents from our method (Sec. 3) and the baselines in Manipulation Concept Discovery Baselines
(Sec. 4.1). Specifically, we cluster latents from these methods and examine the number of clusters
under varying granularities. The number of clusters reflects concept diversity: more clusters indicate
a wider variety of concepts. Clustering granularity determines whether clusters are fine-grained
(fine granularity) or general (coarse granularity). Additionally, small granularity perturbations test
discriminability, as less discriminative latents lead to significant clustering changes under small
granularity variations. For each method, We collect manipulation concept latents from 90 LIBERO-
90 tasks (one demonstration per task) and use DBSCAN to cluster them while varying the density
parameter Eps, which controls clustering granularity. Fig. 11 shows the cluster counts across different
Eps values. From Fig. 11, our manipulation concept discovery method (Ours) demonstrates two key
advantages: 1) At higher granularities (Eps > 0.2), Ours maintains a higher number of clusters.
2) The decline in cluster count is relatively smooth and gradual, showing stability under small
Eps changes. These results highlight the superior diversity and discriminability of our manipulation
concept discovery method.

C.5 Multi-Level Hierarchical Structure

In Fig. 3, we present a visualization example of the Multi-Level Hierarchical Structure described
in Sec. 4.3. Additional visualization results are available in the supplementary materials under the
directory supplementary/vis_multi_h.

C.6 Real Robot Experiments Details

Training Data. As shown in Fig. 5, the training data for the “cleaning cup” task consists of
demonstrations using mobile ALOHA [16] to place the cup from the table into the container. Each
demonstration features a scene containing exactly one cup and one container. There are two pairings
of color combinations: blue cups with green containers and yellow cups with pink containers. For
each pairing, we collect 27 demonstrations with varied spatial arrangements.

Evaluation Setting. For evaluation, we test our model on six scenarios that introduce variations
absent from the training data:

* Novel Placements. Objects maintain the same color pairings as in training but appear in previously
unseen spatial arrangements.

* Color Composition. We rearrange color pairings (blue cups with pink containers and yellow cups
with green containers) to test generalization across color combinations.

* Novel Objects. We introduce unseen objects, such as bamboo-woven containers, pink cups not
present in training, or cups initially placed on plates rather than directly on the table.

* Obstacles. We position obstacles in front of cups to challenge visual perception.

» Barriers. We place a plate inside the container, requiring the robot to lift the cup high enough to
clear this barrier when depositing it.

* Grasping Together. We position two cups adjacent to one another, requiring the robot to grasp
both simultaneously at their contact point and deposit them together in the container.
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Figure 7: Multi-horizon goal prediction with learned manipulation concepts. Visualization of
future states predicted by our Multi-Horizon Goal Predictor (MHGP, Eq. 7) when conditioned on
the current observation, a manipulation concept latent (z), and varying coherence thresholds (¢).
From left to right, as e increases from O to 1, predictions extend progressively further into the future,
demonstrating how our manipulation concepts encode temporal abstraction at multiple horizons.
Note that predictions capture essential functional relationships (robot-object interactions) rather than
pixel-perfect reconstructions, facilitating generalization across environments.

Manipulation Concept Discovery. The model architecture and hyperparameter configuration for
manipulation concept discovery follow the methodology described in Sec. A.1. Since the dataset
is relatively small, we adapt smaller transformers: a 4-layer concept encoder (€, Eq. 1), a 4-layer
Cross-Modal Correlation Network (C, Eq. 3), and a 4-layer Multi-Horizon Future Predictor (F,
Eq. 7). For data collected using mobile ALOHA [16], we incorporate the following modalities: three
640 x 480 resolution cameras (left-gripper, right-gripper, and upper-gripper) and 42-dimensional
proprioception states (comprising 14-dimensional joint torque, position, and velocity measurements).
All image data undergoes preprocessing as detailed in Sec. A.1.

Enhancing Imitation Learning. Please refer to ACT section in Sec. A.2.

C.7 Multi-Horizon Goal Prediction Visualization

We provide visualization results of the Multi-Horizon Goal Prediction Visualization (Sec. 4.4) in
Fig. 7 and supplementary materials under the directory supplementary/prediction. Below are
the details of the experiments:

Dataset. For our experiments, we utilized the BridgeDataV?2 dataset [60]. Since multi-view data is
not universally available across all demonstrations, we selected two specific modalities: the robot’s
proprioceptive states (7DoF) and the third-person camera view. The camera images were preprocessed
to 128 x 128 resolution following the procedure outlined in Sec. A.2.

Manipulation Concept Discovery. We implemented the model architecture and hyperparameter
configuration as detailed in Sec. A.1, adapting it specifically to operate with the two modalities
described in the Dataset section above.

C.8 Preliminary VLA Integration

We present a preliminary exploration of integrating manipulation concepts with vision-language-
action models (VLAs). We build upon OpenVLA-OFT [23], which fine-tunes OpenVLA using
pretrained parameters and a novel action adapter for downstream tasks. The action adapter processes
hidden layer features from the original pretrained VLA model. Following this architecture, we
introduce an additional “concept adapter” that implements the method described in Sec. 3.4, enabling
the integration of manipulation concepts into the VLA.

To evaluate the data efficiency gains from manipulation concepts, we fine-tune the enhanced VLA
on 50% of the training data used for LIBERO-10 tasks in the original OpenVLA-OFT study [23].
We compare fine-tuning performance with and without manipulation concept integration. Fig. 8
presents the results, where the x-axis indicates training epochs and the y-axis shows success rates for
checkpoints at each epoch. The solid lines labeled “best” represent the highest success rate achieved
up to that epoch.
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The results demonstrate that manipulation concepts improve data utilization. With only half the
training data, the concept-enhanced approach consistently achieves higher success rates throughout
training. Notably, the original OpenVLA-OFT achieved 94.5% success with the full dataset [23],
while our concept-enhanced model with half the data reaches comparable performance levels,
indicating substantially improved data efficiency.
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Figure 8: Data efficiency comparison on LIBERO-10 tasks with 50% training data. Solid lines
show best performance up to each epoch for models with and without manipulation concepts.

We hypothesize that this improvement stems from HiMaCon’s ability to capture manipulation dynam-
ics at multiple abstraction levels. The learned concepts provide explicit intermediate representations
that bridge high-level task instructions and low-level control actions, thereby reducing the learning
burden on VLAS by supplying structured manipulation knowledge rather than requiring learning of
complex sensorimotor patterns from scratch. Further investigation of this integration will be pursued
in future work.

D Limitations & Future works

Further Exploration of multi-modality. We propose enhancing robotic data collection with richer
modalities and studying how these modalities can derive more effective manipulation concepts. While
current robotics research primarily focuses on visual information, human manipulation relies on
multiple sensory inputs, particularly tactile feedback to complement vision. This is especially crucial
for robotic systems with limited tactile capabilities. Future work should investigate which modalities
contribute most significantly to performance improvements and how to fully leverage their potential.

Further Exploration of multi-horizon sub-goal. Our work proposes methods to derive sub-
processes for achieving sub-goals across multiple horizons, though several improvements remain
possible. Current methods inadequately capture relationships between different values of € in Eq. 4,
failing to reflect the natural tree structure of hierarchical sub-goals. Future research could explicitly
derive tree structures [61, 74] where long-horizon sub-goals serve as parent nodes to short-horizon
child nodes. Additionally, our cosine similarity approach for determining sub-goal correspondence
could be refined with more sophisticated metrics.

Scaling up. Computational constraints have limited our exploration of how our method scales with
larger datasets. We plan to leverage pretrained multi-modal foundation models, adopting structures
inspired by [7] and extending pretraining beyond robotics data as in [68]. We also aim to further
investigate whether our manipulation concepts can enhance advanced policies like Vision-Language-
Action models [4, 19, 23, 24].
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Algorithm 1 Derive Subprocess h(z;; €)

Input: manipulation concept vectors z; = {2!}7* |, coherence parameter € € [0, 1].
Initialize: End =[], g, = 1
while g, < T; do
ge =9gp+1
while ¢rue do
if Ju € [gp, ge), s.t. dist(z}, 2/°) > e or g > T; then
break
end if
ge =ge +1
end while
End.append ([gv, ge))
9b = Je
end while
Return End

Algorithm 2 Manipulation Concept Discovery Training (one demonstration per batch)

Input: demonstrations 7; € D, where 7; = {(O%’t, of’t,. Lot ah)
Initialize: Manipulation concept assignment encoder &(+; @g)

Initialize: Modality Correlation Learner C(+; ©.), Subgoal Learner F(-; ©)
while true do

for 7, in D d0

(21'17' o ) & (( h 1? "707]1\/[’1)7 (03,2, "'707]:\/[’2)7' o 7(0%’T 3ty fLIT )’@5)
while True do
Randomly generate a tuple (my, ma, ..., mpr), where m; € {0, 1}
1f21 1 m; < M then
break
end if
end while
(éil’t, e ,6?“) L« C (( 0;" - ml,of’t “Ma, ..., olM’t “Mmar, zf)tTél; @c)
Zt 1 Z ém’t - O;‘n’tH
€~ U([ ]
End =h(z}, -,z ";€) {Alg. 1}

fort =1toT; do
g; = min ({ge | [96, 9c) € End,g. >t} U {TZ})

end for
- 71\4 R M, i
O (00
— t
df Zf 1Zrn lH A mgf”
end for
end while

29



reach the top drawer #1 (LU 0.01 0.02
open the top drawer #2
grasp the bowl #3 0.08
put the bowl in the drawer #4 0.07 0.07
reach the bottom drawer #5 {(UH0k8
close the bottom drawer #6
close the top drawer #7

put the bowl on the cabinet #8 0.08 0.08

reach the drawer #1 LU0 FE0R0P

open the drawer #2 ﬂ 0.08

grasp the bowl #3 0.08
put the bowl in the drawer #4 0.07 0.07
close the drawer #5 0.05

put the bowl on the cabinet #6 0.08 0.08

reach the drawer #1 0.03 -001 -003

pull / push the drawer #2 006 005

grasp the bowl #3

transition the bowl #4

1 2 3 4

Figure 9: Average cosine similarity between pairs of sub-goal categories (defined by human semantics)
computed using manipulation concept latents learned by our method (Sec.3). In each heatmap, the
value at the i-th row and j-th column represents the average cosine similarity between latent vectors
from the i-th and j-th categories. Three levels of labeling are provided across the heatmaps; please
refer to Sec. C.2 for details.
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Figure 11: DBSCAN Clustering Analysis of Manipulation Concept Latents’ Diversity and
Discrimination. Clustering is performed on manipulation concept latents generated by our method
and the baseline methods described in Manipulation Concept Discovery Baselines (Sec. 4.1), across
90 tasks from the LIBERO-90 dataset. The figure shows the (log) number of clusters obtained using
DBSCAN for clustering density € € [0, 1], with no points classified as noise.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

* You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.

* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract gives a summary of our contribution on self-supervised learning
of manipulation concepts.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: We discuss limitations including improvements to hierarchy derivation, further
work on scaling up, and modality balance.

Guidelines:
* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
 The authors are encouraged to create a separate "Limitations" section in their paper.

 The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]

Justification: We mainly make use of established theoretical frameworks (such as mutual
information) for clarification and modeling of our method.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We provide details in the appendix and supplementary materials.

Guidelines:
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The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: We will open source all code and newly-created datasets upon acceptance.

Guidelines:

The answer NA means that paper does not include experiments requiring code.

Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Details are specified in the Experiments section and in the appendix and
supplementary materials.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
Justification: For the policy success rates we currently include standard deviation.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Please refer to the details provided in the appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.
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9.

10.

11.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Current experiments and topics do not conflict with the Code of Ethics.
Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Currently, the experiments are carried out in simulations and on robots in
laboratories.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Currently, we have not encountered any safeguard issues.

Guidelines:
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14.

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We have checked the sources we used.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We will release all new assets we created (code/models/datasets) upon accep-
tance.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
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15.

16.

Justification: We currently do not have crowdsourcing experiments.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: We currently do not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA] .
Justification: The core method development in this research does not involve LLMs.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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