
Going Deeper into Locally Differentially Private Graph Neural Networks

Longzhu He 1 Chaozhuo Li 1 Peng Tang 2 Sen Su 1

Abstract
Graph Neural Networks (GNNs) have demon-
strated superior performance in a variety of graph
mining and learning tasks. However, when node
representations involve sensitive personal infor-
mation or variables related to individuals, learn-
ing from graph data can raise significant privacy
concerns. Although recent studies have explored
local differential privacy (LDP) to address these
concerns, they often introduce significant distor-
tions to graph data, severely degrading private
learning utility (e.g., node classification accuracy).
In this paper, we present UPGNET, an LDP-based
privacy-preserving graph learning framework that
enhances utility while protecting user data privacy.
Specifically, we propose a three-stage pipeline
that generalizes the LDP protocols for node fea-
tures, targeting privacy-sensitive scenarios. Our
analysis identifies two key factors that affect the
utility of privacy-preserving graph learning: fea-
ture dimension and neighborhood size. Based on
the above analysis, UPGNET enhances utility by
introducing two core layers: High-Order Aggre-
gator (HOA) layer and the Node Feature Regular-
ization (NFR) layer. Extensive experiments on
real-world datasets indicate that UPGNET signifi-
cantly outperforms existing methods in terms of
both privacy protection and learning utility.

1. Introduction
In recent years, Graph Neural Networks (GNNs) have shown
superior performance in various domains, including social
sciences (Hamilton et al., 2017), graph mining (Li et al.,
2019), and bioinformatics (Fout et al., 2017). GNNs have
also achieved state-of-the-art performance on a range of
downstream graph learning tasks, such as node classifica-
tion (Kipf & Welling, 2017), link prediction (Zhang & Chen,

1Beijing University of Posts and Telecommunication, Beijing,
China 2Shandong University, Qingdao, China. Correspondence to:
Sen Su <susen@bupt.edu.cn>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

LDPUser 1 1x1x

(a) Prior Works

Private Graph Learning
Low UtilityGNN

Private Graph Learning
High UtilityGNNLDPUser 1 1x1x

(b) Ours (: NFR layer + HOA layer)

Client-Side Server-Side

Figure 1. Comparison of (a) prior works and (b) ours in the lo-
cally private graph learning scenario. The scenario comprises a
cloud server and multiple users situated across different clients.
Users’ sensitive node features x are perturbed to x′ using LDP
before uploading to the cloud server for graph learning. Our ap-
proach achieves higher utility by integrating than prior works.

2018), and community detection (Chen et al., 2019). In
real-world scenarios, graphs frequently contain significant
amounts of sensitive personal information, such as user pro-
files on social networks. However, recent studies (Wang &
Wang, 2022; Shen et al., 2022; Zhang et al., 2022; Meng
et al., 2023) have proposed various privacy attack methods
targeting GNN models, which pose serious security and pri-
vacy challenges during their training. Therefore, designing
an efficient privacy-preserving GNN framework to protect
users’ private information is of paramount importance.

To collect and analyze private data from decentralized data
owners, local differential privacy (LDP) (Kasiviswanathan
et al., 2011) has been increasingly accepted as the de facto
standard for data privacy in the research community (Er-
lingsson et al., 2014; Ding et al., 2017; Wang et al., 2019a;b).
In the LDP protocol, multiple users must interact with an un-
trustworthy server that may exploit their private data. Each
user perturbs their data locally, typically through noise injec-
tion (Dwork et al., 2006), to ensure privacy. The perturbed
data is then transmitted to the server, which conducts data
analysis and learning based on this information. Locally
private graph learning have recently gained significant atten-
tion from researchers (Sajadmanesh & Gatica-Perez, 2021;
Lin et al., 2022; Jin & Chen, 2022; Pei et al., 2023). Fig. 1
illustrates this scenario, where a cloud server interacts with
decentralized users. Each user perturbs their sensitive node
features x to x′ under LDP before submitting them to the
server for private graph learning (e.g., node classification).

1

Going Deeper into Locally Differentially Private Graph Neural Networks

However, in locally private graph learning, existing LDP
protocols for perturbing node features cause significant per-
formance degradation in GNNs (Sajadmanesh & Gatica-
Perez, 2021; Lin et al., 2022). Specifically, LDP regulates
noise injection through the privacy budget ϵ, where a smaller
ϵ introduces more noise. In practice, ϵ is highly limited and
node features are typically multidimensional with multiple
attributes. As a result, each attribute receives only a minimal
fraction of the budget, leading to substantial information
loss. While server-side aggregation mitigates noise to some
extent, it also introduces excessive estimation errors, further
reducing utility (e.g., node classification accuracy). Thus,
the key challenge is how to maximize the utility of privacy-
preserving graph learning while ensuring user privacy.

Contributions. To address this challenge, we present a three-
stage pipeline that generalizes the current LDP protocols
for perturbing node features. Our analysis of the pipeline
reveals two key factors that influence the estimation error in
feature aggregation: feature dimension and neighborhood
size. We conclude that reducing the effective feature dimen-
sion and expanding the effective neighborhood size help
minimize the estimation error and thus enhance the utility.

Based on these findings, we propose UPGNET, a utility-
enhanced framework for locally privacy-preserving graph
learning that minimizes estimation error and maximizes
utility from two key perspectives (Comparison with prior
works is presented in Fig. 1). First, to reduce the effective
feature dimensions, we introduce a Node Feature Regular-
ization (NFR) layer based on L1-regularization (Bühlmann
& Van De Geer, 2011), a classical optimization technique
that promotes sparsity in solutions. We conduct a theoretical
analysis using proximal gradient descent (Nitanda, 2014;
Li & Lin, 2015) to derive a one-off, non-iterative solution.
This enables the NFR to obtain sparse embeddings through
feature selection, thereby reducing effective feature dimen-
sions during aggregation. Second, to expand the effective
neighborhood size, we propose a multi-hop aggregation
method, the High-Order Aggregator (HOA) layer. Although
our theoretical analysis indicates that increasing neighbor-
hood size improves utility, real-world graphs often feature
small neighborhoods. A straightforward solution, such as
aggregating multi-layer node features (Abu-El-Haija et al.,
2019; Gasteiger et al., 2019; Chen et al., 2020), suffers
from over-smoothing (Rusch et al., 2023). As the number
of layers increases, node embeddings tend to converge, di-
minishing the effectiveness of higher-order neighbors in
correcting errors. To address this, our HOA layer leverages
personalized aggregation and Dirichlet energy (Zhou et al.,
2021; Rusch et al., 2023) analysis, effectively mitigating
oversmoothing and reducing noise bias injection. UPGNET
comprises two architectures: H-N (HOA followed by NFR)
and N-H (NFR followed by HOA), both of which can be
independently integrated with any GNN architecture. We

evaluate overall performance of UPGNET and the contribu-
tions of each component under different parameters through
theoretical analysis and extensive experiments.

Our contributions are summarized as follows. ① We pro-
pose a three-stage pipeline to systematically generalize the
LDP protocols for perturbing node features. By analyzing
the pipeline, we identify two key factors influencing the es-
timation error of feature aggregation. ② Based on the above
analysis, we propose NFR and HOA layers to reduce the
estimation error and integrate them with LDP protocols, in-
troducing UPGNET, a utility-enhanced privacy-preserving
graph learning framework. ③ Extensive experiments on
real datasets demonstrate that UPGNET excels in achieving
privacy preservation and superior graph learning utility.

2. Preliminaries
This section first defines the problem (Sec. 2.1), then pro-
vides the essential background on LDP (Sec. 2.2) and GNN
(Sec. 2.3), and finally describes the threat model (Sec. 2.4).

2.1. Problem Definition

Consider a graph G = (V, E), where V = {v1, v2, . . . , v|V|}
represents the set of nodes and E is the set of edges. Each
decentralized user v ∈ V locally possesses a d-dimensional
feature vector xv ∈ Rd, and the feature matrix is defined
as X ∈ R|V|×d. Following previous work (Sajadmanesh &
Gatica-Perez, 2021; Lin et al., 2022; Pei et al., 2023), we
assume that the server has access to V and E , but X remains
private and inaccessible to the server.1 Consequently, we
face the challenge of performing graph learning on G while
protecting the privacy of node features. Consistent with pre-
vious work (Sajadmanesh & Gatica-Perez, 2021; Lin et al.,
2022), this paper focuses on the node classification task in
graph learning. Specifically, the node set V = Vl ∪ Vu is
the union of the set of labeled nodes Vl and unlabeled ones
Vu. The label yv for each node v is derived from a set of
possible labels, denoted Y = {y1, y2, . . . , yc}. The objec-
tive of node classification (Kipf & Welling, 2017) is to learn
a function f : V → Y that assigns labels to unlabeled nodes
based on the graph structure and available node features.

2.2. Local Differential Privacy

LDP (Kasiviswanathan et al., 2011; Yang et al., 2024; He
et al., 2025) has been extensively studied and widely de-
ployed in decentralized data collection and analysis scenar-
ios. In particular, major companies such as Apple (Thakurta
et al., 2017), Google (Erlingsson et al., 2014), and Mi-
crosoft (Ding et al., 2017) have adopted LDP. In an LDP

1This paper concentrates on protecting node features and can be
effortlessly combined with algorithms aimed at protecting neighbor
lists (Zhu et al., 2023; Lin et al., 2022; Hidano & Murakami, 2024).

2

Going Deeper into Locally Differentially Private Graph Neural Networks

setting, there exists a server and multiple users, each possess-
ing sensitive data. Users are not required to transmit their
private data to an untrustworthy server. Instead, each user
initially perturbs their data using a perturbation mechanism
M and then transmits the perturbed data to the server. Fol-
lowing the collection of perturbed data from each user, the
server performs data analysis and learning based on these
data, ensuring that user privacy remains uncompromised.
The formal definition of ϵ-LDP is provided below.

Definition 1 (ϵ-LDP). A local perturbation mechanism M
satisfies ϵ-local differential privacy (ϵ-LDP), where ϵ > 0,
if and only if for any user’s private data x and x′, we have:

∀y∈Range(M): Pr[M(x)= y]≤eϵ·Pr[M(x′)= y], (1)

where Range(M) denotes the set of all possible outputs of
the perturbation mechanism M. In essence, LDP guarantees
that the data aggregator on the server side can’t reconstruct
the data source, regardless of any prior knowledge. The
parameter ϵ, called the privacy budget, plays a pivotal role
in balancing privacy and utility. A smaller (resp. larger) ϵ
provides stronger (resp. weaker) privacy preservation but
also results in lower (resp. higher) utility. LDP has several
important properties, such as immunity to post-processing
and sequential composition (Dwork, 2008).

2.3. Graph Nerual Networks
In recent years, GNNs have gained popularity for graph
mining and learning. The primary goal of GNNs is to learn
embeddings for each node in a graph by combining initial
node features with the graph’s topology. These learned node
embeddings can then be applied to various downstream tasks
such as node classification (Kipf & Welling, 2017; Sun et al.,
2024a;b). A typical K-layer GNN consists of K graph
convolutional layers. Each layer aggregates information
from neighboring nodes and updates the node’s embedding.
Following K aggregation iterations, the embedding of a
node captures information from its neighbors within K
hops. The formal definition of the k-th layer is as follows:

hk
N (v) = AGGREGATEk({hk−1

u , ∀u ∈ N (v)}), (2)

hk
v = UPDATEk(h

k
N (v)), (3)

where N (v) represents the set of neighbors of node v (which
could include v itself). For any node u ∈ N (v), hk−1

u

denotes the embedding of node u at layer k − 1. The ag-
gregation functions at layer k, such as mean, sum, and
max, are denoted as AGGREGATEk(·) functions. hk

N (v)

represents the output of the aggregation function on N (v).
UPDATEk(·) denotes a learnable non-linear function at layer
k, such as a neural network. Initially, h0

v = xv, indicating
that the initial embedding of node v is its feature vector xv .

2.4. Threat Model

As shown in Fig. 1, different users upload graph data to a
third-party untrustworthy server. On the one hand, under
a semi-honest adversary setup, although the server follows
our LDP protocol honestly, it may attempt to individually
learn the private information of the data owner. On the other
hand, an attacker (Wang & Wang, 2022; Shen et al., 2022;
Zhang et al., 2022; Meng et al., 2023) can target the GNN
model to extract private information from the victim node,
leading to disclosure of the user’s privacy.

3. Methodology
In this section, we begin with a theoretical analysis of prior
work on locally differentially private graph neural networks
(LDPGNN) in Sec. 3.1, identifying the key factors limit-
ing their utility. Following this, we introduce UPGNET, a
utility-enhanced private graph learning model, in Sec. 3.2.

3.1. Theoretical Analysis of LDPGNN

A series of studies (Sajadmanesh & Gatica-Perez, 2021; Du
et al., 2021; Lin et al., 2022; Jin & Chen, 2022; Qi et al.,
2024; Pei et al., 2023) have been conducted on private graph
learning based on LDP. However, no effort has been made
to establish a unified framework for revisiting existing work
to further enhance the utility of private graph learning. In
this subsection, our objective is to identify the key factors
influencing the aggregation estimation error by constructing
and analyzing a unified node feature LDP pipeline.

3.1.1. NODE FEATURE LDP PIPELINE

Currently, two state-of-the-art LDP mechanisms are applied
to node features: the piecewise mechanism (PM) (Wang
et al., 2019a; Pei et al., 2023) and the multi-bit mechanism
(MBM) (Du et al., 2021; Sajadmanesh & Gatica-Perez, 2021;
Lin et al., 2022; Jin & Chen, 2022) (for more details on PM
and MBM see App. A). We propose a unified node-feature
LDP pipeline that generalizes these two approaches. Assum-
ing that the node-feature LDP mechanism is denoted as M
and the total privacy budget employed is ϵ, the node-feature
LDP mechanism can be outlined in three steps:

Perturbation. In total, there are |V| users, and each user v
possesses a d-dimensional node feature xv containing their
sensitive information. Users employ an LDP mechanism
M to protect their privacy. Initially, the mechanism M
randomly selects m dimensions from d dimensions without
replacement, with m being a configurable parameter con-
trolling the number of perturbed dimensions. Subsequently,
each sampled dimension undergoes random perturbation
with a privacy budget denoted as ϵ/m, while the remaining
d −m dimensions are set to 0. Ultimately, xv undergoes
the M mechanism to yield x′

v , denoted as x′
v = M(xv).

3

Going Deeper into Locally Differentially Private Graph Neural Networks

Calibration. Following perturbation, x′
v remains biased,

i.e., E [x′
v] ̸= xv . Let σ = E [x′

v]−xv , representing the ex-
pected bias shift. The server calibrates the perturbed values
with σ. Note that σ=0 indicates an unbiased estimate.

Aggregation. After receiving the feature vectors x′
v for all

users v ∈ V , the server aggregates these vectors as follows:

ĥN (v) = AGGREGATE ({x′
u, ∀u ∈ N (v)}) , (4)

where ĥN (v) represents the estimated embedding for any
given node v after undergoing the AGGREGATE(·). This es-
timate is derived by aggregating the perturbed node feature
vectors x′

u from all nodes u adjacent to the target node v.
Theorem 2. Assuming σ=0, the aggregator function de-
fined by Eq. (4) is an unbiased estimate, i.e., for any v,

E[ĥN (v)] = hN (v). (5)

As demonstrated in Thm. 2, the aggregation process is an
unbiased estimate when σ = 0 and the AGGREGATE func-
tion is linear, meaning the output is a weighted summation
of the inputs. For the proof, please refer to App. B.1.

3.1.2. KEY FACTOR ANALYSIS

In Sec. 3.1.1, we establish an LDP analytical pipeline for
the node features, consisting of three stages: perturbation,
calibration, and aggregation. In the context of privacy-
preserving graph learning, the aggregation stage signifi-
cantly impacts the overall utility of graph learning. High-
quality aggregation helps mitigate the injected noise to a
greater extent. Therefore, our objective is to explore the
key factors that directly influence the estimation error in the
aggregation stage. The estimation error is defined as the dis-
crepancy between ĥN (v), obtained by aggregating the per-
turbed node features x′, and hN (v), obtained by aggregating
the original node features x. This discrepancy is represented
as ξi= |(ĥN (v))i−(hN (v))i|, i∈{1, . . . , d}. Based on Bern-
stein’s inequality (Giroux et al., 1979), Thm. 3 provides an
analysis of the various factors influencing the discrepancy.
Theorem 3. Given the aggregator for the first layer and
δ>0, with probability at least 1−δ, for any node v, we have:

max ξi = O(
√

d log(d/δ)/(ϵ
√

|N (v)|)), i ∈ {1, . . . , d}. (6)

According to Thm. 3, after eliminating the known privacy
budget parameter ϵ and the analysis parameter δ, two key
factors that impact the estimation error are the feature di-
mension d and the neighborhood size |N (v)|. From Eq. (6),
we infer that a smaller effective d is more conducive to re-
ducing the estimation error, while a larger effective |N (v)|
is also advantageous to minimizing the estimation error.
Therefore, in Sec. 3.2, our objective is enhance the utility
of privacy-preserving graph learning by influencing d and
|N (v)|. Please see App. B.2 for the proof of Thm. 3.

3.2. UPGNET: Utility-Enhanced Private GNNs

In this section, we propose a utility-enhanced private graph
learning framework called UPGNET. Designed for various
node feature LDP protocols, UPGNET incorporates plug-
and-play NFR and HOA layers that significantly boost utility.
Fig. 2 (a) provides an overview of UPGNET, and Fig. 2 (b)
illustrates the two architectures of UPGNET.

3.2.1. OVERVIEW

This subsection introduces the foundational design princi-
ples of UPGNET. According to Thm. 3, the key factors
influencing the estimation error during the aggregation pro-
cess are the feature dimension and the neighborhood size.
Naturally, our objective is to minimize the estimation error
during aggregation by targeting these two crucial factors,
thereby enhancing the practicality of private graph learning.
To this end, we design from the following two perspectives:

Expanding the Effective Neighborhood Size. In order to
extend the effective neighborhood size, direct multi-layer
aggregation is a potential approach. However, our analysis
reveals that this method is significantly limited by over-
smoothing (Rusch et al., 2023), which adversely affected
the denoising performance. To address this, we propose a
Higher-Order Aggregator (HOA) layer, leveraging personal-
ized aggregation and Dirichlet energy analysis to effectively
mitigate over-smoothing and reduce noise injection.

Reducing the Effective Feature Dimensions. In order to
minimize estimation error by reducing the effective feature
dimensions, we focus on the aggregation stage2. Based on
L1-regularization and proximal gradient descent (PGD) (Ni-
tanda, 2014; Li & Lin, 2015; Duan et al., 2022), we intro-
duce the Node Feature Regularizer (NFR) layer.

Through theoretical analysis and experimental validation,
UPGNET, in both the H-N (see Sec. 3.2.2) and the N-H
architecture (see Sec. 3.2.3), effectively integrates the HOA
layer and the NFR layer to reduce estimation error and en-
hance learning utility across various LDP mechanisms.

3.2.2. UPGNET IN H-N ARCHITECTURE

In this part, we introduce the H-N architecture of UPGNET,
where the perturbed node features x′ are successively en-
hanced by the HOA layer followed by the NFR layer.

Higher-Order Aggregator. According to Thm. 3, as the
size of N (v) (i.e., |N (v)|) increases, the estimation error
decreases at a rate proportional to the square root of the
node degree. This indicates that larger |N (v)| results in

2The reason for targeting the aggregation stage, rather than
the perturbation or calibration stages, is that designing from the
aggregation stage provides a certain level of generality and inde-
pendence from different LDP mechanisms.

4

Going Deeper into Locally Differentially Private Graph Neural Networks

Client-Side

User n

LDP

User 1 GNN

Server-Side

HOA
layer

NFR
layer

NFR
layer

HOA
layer

N-H architecture

HOA
layer

NFR
layer

H-N architecture

?
class 1 class 2

(a) (b)

1x1x

Figure 2. (a) Overview of our proposed UPGNET. On the client side, local node features x are perturbed using LDP to obtain x′. On the
server side, x′ undergoes processing through an Node Feature Regularization (NFR) layer and an High-Order Aggregator (HOA) layer to
enhance utility before being input into the GNN for graph learning, enabling downstream tasks such as node classification. (b) UPGNET

features two distinct architectures: H-N (HOA layer followed by NFR layer) and N-H (NFR layer followed by HOA layer).

smaller estimation errors. However, in practical scenarios,
|N (v)| is usually quite small. One approach to address this
issue is to expand N (v) by directly aggregating multiple
layers of node features across K hops (Abu-El-Haija et al.,
2019; Gasteiger et al., 2019; Chen et al., 2020; Sajadmanesh
& Gatica-Perez, 2021; Lin et al., 2022) (defined as the SKA
method). However, the SKA scheme encounters the over-
smoothing (Rusch et al., 2023), where increasing the value
of K causes node embeddings to converge, reducing the
effectiveness of information aggregation from higher-order
neighbors and skewing the calibration of aggregation er-
rors. To better understand the over-smoothing issue, we
examine the Dirichlet energy (Rusch et al., 2023) of the esti-
mated node embeddings on the graph, a primary measure of
over-smoothing in deep GNNs. Specifically, the estimated
embedding ĥ is modeled as a combination of the original
embedding h and the noise signal η, i.e., ĥ = h+ η. The
Dirichlet energy Υ(·) of ĥ is then defined as:

Υ(ĥ) =
1

|V|
∑
i∈V

∑
j∈N (vi)

(
∥∥∥hk

i −hk
j

∥∥∥2

2
+
∥∥∥ηk

i −ηk
j

∥∥∥2

2︸ ︷︷ ︸
noise signal

), (7)

where k ∈ {1, 2, · · · ,K} represents the step parameter.
Eq. (7) highlights two key observations: ① Over-smoothing
exists. As k increases, the difference between the embedding
hi and its neighbor embedding hj diminishes. After several
rounds of propagation, all node features converge, causing
a sharp decline in the first term of Υ(ĥ), resulting in the
typical oversmoothing phenomenon. ② Noise exacerbates
over-smoothing. Under the LDP, when ϵ approaches 0, the
noise term ∥ηi − ηj∥22 dominates the Dirichlet energy. This
accelerates the homogenization of node features, leading to
faster energy decay and thus intensifying the oversmoothing
effect. Therefore, mitigating the over-smoothing problem to
extend more effective neighborhood sizes is crucial.

To address the aforementioned issues, we propose a utility-
enhanced graph convolution layer called the High-Order
Aggregator (HOA), as shown in Alg. 1. Compared to SKA,
it has two advantages in reducing estimation error for noisy
data: ① mitigating over-smoothing and ② reducing noise

Algorithm 1 High-Order Aggregator (HOA) Layer
Input: G = (V, E), input vector xv, ∀v ∈ V , step param-
eter K ≥ 0, linear aggregator function AGGREGATE(·)
for v ∈ V do

h0
N (v) = 0, x0

N (v) = xv

for k = 1 to K do
xk
N (v) = AGGREGATE

(
{xk−1

N (u), ∀u ∈ N (v)\{v}}
)

hk
N (v) = hk−1

N (u) + xk
N (v)

end for
hv = 1

KhK
N (v)

end for
Return: Aggregated embedding vector hv, ∀v ∈ V

bias injection. First, as shown in Thm. 4, the energy ratio
ΦK between HOA(·) and SKA(·) approaches 0 as K → ∞.
This indicates that HOA is less influenced by information
from infinite-hop receptive fields, allowing it to mitigate
over-smoothing and expand into larger neighborhoods while
still aggregating data from smaller ones. Second, HOA em-
ploys personalized weightings during neighbor information
aggregation, assigning the highest weight to the nearest
neighbor. The insight behind our approach is that informa-
tion from the closest neighbor is more effective in calibrat-
ing noise for that specific node, justifying its higher weight,
while more distant neighbors receive lower weights. This
design further alleviates noise bias injection. See App. B.3
for the proof of Thm. 4 and more details.

Theorem 4. Let Υk
HOA and Υk

SKA represent the Dirichlet
energies of HOA(·) and SKA(·) at layer k, respectively. The
energy ratio of HOA(·) to SKA(·) across K layers satisfies:

ΦK = limK→∞

(∑K
k=1Υ

k
HOA/

∑K
k=1Υ

k
SKA

)
= 0. (8)

As in (Sajadmanesh & Gatica-Perez, 2021), we also employ
the GCN aggregator function (Kipf & Welling, 2017) and
perform the aggregations without including the self-loop,
which will facilitate the reduction of the total noise.

Node Feature Regularization. Regularization is a clas-

5

Going Deeper into Locally Differentially Private Graph Neural Networks

sical method for optimizing minimization tasks (Hoyer,
2004; Bühlmann & Van De Geer, 2011; Negahban et al.,
2017; Duan et al., 2022). Among various regularization
techniques, L1-regularization tends to produce sparse so-
lutions. In other words, parameters obtained through L1-
regularization are more likely to have fewer non-zero com-
ponents. This property facilitates the implementation of
embedded feature selection, aligning with our objective of
reducing the effective feature dimension. Next, we formal-
ize the L1-regularization problem within UPGNET under
the H-N architecture. We employ the mean aggregation
function and define the embedding of node v after the server
aggregates the perturbed feature vectors as follows:

ĥv=AGGREGATE
(
{x′

u,∀u ∈ N (v)}
)
=

1

|N (v)|
∑

u∈N (v)

x′
u, (9)

where x′
u represents the noisy node features of node u. We

define the loss function L1(w) as follows:

L1(w) =
1

2 |N (v)|
·
∑

u∈N (v) ∥x′
u −w∥22 . (10)

Based on this, we add the L1-regularization terms ∥w∥1 to
L1(w) to obtain the enhanced node embedding h̃v for any
node v as h̃v = argminw∈Rd L1(w) + µ1 ∥w∥1. Thm. 5
derives the above L1-regularization problem by employing
the proximal gradient descent (PGD) (Nitanda, 2014; Li &
Lin, 2015; Duan et al., 2022) method.

Theorem 5. For any node v ∈ V and any feature dimen-
sion i ∈ {1, . . . , d}, (h̃v)i in the following equation can
efficiently achieve feature selection for (ĥv)i:

(h̃v)i = sign
(
(ĥv)i

)
·max

(
|(ĥv)i| − µ1, 0

)
, (11)

where sign(·) denotes the sign function, which takes 1 if
(ĥv)i > 0, 0 if (ĥv)i = 0, and -1 if (ĥv)i < 0. The op-
timal value for µ1 is τ1B/d̄K , where τ1 ∈ (0, 1), with B
as the boundary of the perturbed node features, d̄ as the
approximate average degree of the graph, and K as the
step parameter of the HOA layer. By Thm. 5, we conclude
that Eq. (11) can efficiently achieve feature selection for
ĥv, thereby contributing to enhancing the utility of private
graph learning. See App. B.4 for the proof.

3.2.3. UPGNET IN N-H ARCHITECTURE

Under the N-H architecture of UPGNET, the HOA is con-
sistent with Alg. 1. The NFR specifically aims to enhance
utility through efficient feature selection of the perturbed
node features x′ directly using L1-regularization. The ob-
jective function L2 of HOA is formalized as follows:

L2(x) =
1

2
∥x′ − x∥22 + µ2 ∥x∥1 . (12)

Table 1. Statistics of graph datasets.

Dataset Classes Nodes Edges Features Deg.

Cora 7 2,708 5,278 1,433 3.90
Citeseer 6 3,327 4,552 3,703 2.74
LastFM 18 7,624 27,806 7,842 7.29
Facebook 4 22,470 170,912 4,714 15.21

Deg. in the table denotes the average node degree.

Theorem 6. For any node v and any i ∈ {1, . . . , d}, (x̃v)i
in Eq. (13) can efficiently achieve feature selection:

(x̃v)i = sign ((x′
v)i) ·max (|(x′

v)i| − µ2, 0) , (13)

where the optimal value for µ1 is τ2B, where τ2 ∈ (0, 1),
with B as the boundary of the perturbed node features. Ac-
cording to Thm. 6, we conclude that Eq. (13) can efficiently
achieve feature selection for x′

v, thus enhancing the utility
of graph learning. See Sec. C and App. B.5 for more details.

3.2.4. PRIVACY AND COMPLEXITY ANALYSIS

Privacy Analysis. The PM and MBM satisfy ϵ-LDP for each
node. The entire training process remains LDP compliant
due to the robustness of DP against the post-processing the-
orem (Dwork et al., 2014). Moreover, any subsequent pre-
diction is bounded by the post-processing theorem (Dwork
et al., 2014), since the LDP protocol is applied only once to
the private data. This ensures that LDP holds for all nodes
throughout the process. For more details, see App. D.

Complexity Analysis. The computational complexity of
UPGNET mainly arises from its two key components: the
HOA and the NFR. Through analysis, the overall complexity
of UPGNET is O(K · |E| · d + |V| · d), scaling linearly
with graph size and feature dimensionality. This ensures
that UPGNET remains both practical and scalable for large-
scale graphs with high-dimensional data. See App. E for
more detailed analysis and comparisons with baselines.

4. Experiments
In this section, we conduct a series of experiments to vali-
date the performance of UPGNET and its core components.
More experimental results can be found in App. F.

4.1. Experimental Setting

Datasets. We conduct experiments on four representative
graph datasets: Cora (Yang et al., 2016), Citeseer (Yang
et al., 2016), LastFM (Rozemberczki & Sarkar, 2020), and
Facebook (Rozemberczki et al., 2021). These datasets are
commonly used in graph machine learning (Wu et al., 2020;
Zhang et al., 2020). Table 1 provides the statistics for these
datasets, with specific descriptions as follows:

• Cora and CiteSeer. They are well-known citation net-
works, where each node represents a scientific paper, and

6

Going Deeper into Locally Differentially Private Graph Neural Networks

0.01 0.1 1.0 2.0 3.0
Privacy Budget ()

62

67

72

77

82

A
cc

ur
ac

y
(%

)

BASE
Solitude
LPGNN
UPGNet

0.01 0.1 1.0 2.0 3.0
Privacy Budget ()

50

55

60

65

70

A
cc

ur
ac

y
(%

)

BASE
Solitude
LPGNN
UPGNet

0.01 0.1 1.0 2.0 3.0
Privacy Budget ()

60

70

80

A
cc

ur
ac

y
(%

)

BASE
Solitude
LPGNN
UPGNet

0.01 0.1 1.0 2.0 3.0
Privacy Budget ()

75

80

85

90

A
cc

ur
ac

y
(%

)

BASE
Solitude
LPGNN
UPGNet

(a) Cora (GCN) (b) CiteSeer (GCN) (c) LastFM (GCN) (d) Facebook (GCN)

0.01 0.1 1.0 2.0 3.0
Privacy Budget ()

55

65

75

A
cc

ur
ac

y
(%

)

BASE
Solitude
LPGNN
UPGNet

0.01 0.1 1.0 2.0 3.0
Privacy Budget ()

40

45

50

55

60

65

70

A
cc

ur
ac

y
(%

)

BASE
Solitude
LPGNN
UPGNet

0.01 0.1 1.0 2.0 3.0
Privacy Budget ()

60

70

80

A
cc

ur
ac

y
(%

)

BASE
Solitude
LPGNN
UPGNet

0.01 0.1 1.0 2.0 3.0
Privacy Budget ()

75

80

85

90

A
cc

ur
ac

y
(%

)

BASE
Solitude
LPGNN
UPGNet

(e) Cora (GraphSAGE) (f) CiteSeer (GraphSAGE) (g) LastFM (GraphSAGE) (h) Facebook (GraphSAGE)

0.01 0.1 1.0 2.0 3.0
Privacy Budget ()

32

42

52

62

72

82

A
cc

ur
ac

y
(%

)

BASE
Solitude
LPGNN
UPGNet

0.01 0.1 1.0 2.0 3.0
Privacy Budget ()

32
37
42
47
52
57
62
67

A
cc

ur
ac

y
(%

)

BASE
Solitude
LPGNN
UPGNet

0.01 0.1 1.0 2.0 3.0
Privacy Budget ()

28

38

48

58

68

78

88

A
cc

ur
ac

y
(%

)

BASE
Solitude
LPGNN
UPGNet

0.01 0.1 1.0 2.0 3.0
Privacy Budget ()

35

50

65

80

A
cc

ur
ac

y
(%

)

BASE
Solitude
LPGNN
UPGNet

(i) Cora (GAT) (j) CiteSeer (GAT) (k) LastFM (GAT) (l) Facebook (GAT)

Figure 3. Performance of UPGNET and other baselines. X-axis represents ϵ and y-axis represents test accuracy (%).

the edges denote citation links. Each node contains a
bag-of-words feature vector and a label for each category.

• Facebook. This social network consists of nodes as official
Facebook pages, with edges representing mutual liking
relationships. Each node has a feature extracted from the
site description and a label indicating the category.

• LastFM. Nodes in this dataset represent users of the music
streaming service LastFM and links represent friendships
between them. The classification task is to predict the
users’ home country given the artists liked them.

Baselines. To comprehensively assess the performance of
UPGNET, we compare it with the following baselines: The
NonPriv sets ϵ = ∞ and inputs clean (non-perturbed) node
features directly into the GNN for graph learning. In con-
trast, BASE utilizes the GNN for graph learning directly
after using node feature LDP protocols to perturb feature
vectors, without incorporating additional utility enhance-
ment strategies. LPGNN (Sajadmanesh & Gatica-Perez,

2021) and Solitude (Lin et al., 2022) apply different strate-
gies to achieve locally differentially private graph learning.
In addition, we consider the multi-bit mechanism (MBM) (Sa-
jadmanesh & Gatica-Perez, 2021) and the piecewise mecha-
nism (PM) (Wang et al., 2019a) independently.

Parameter Settings. All datasets are randomly divided
into 50/25/25% for training, validation, and test sets, re-
spectively. To evaluate the performance of UPGNET, we
use three representative GNN architectures, graph convo-
lutional networks (GCN) (Kipf & Welling, 2017), Graph-
SAGE (Hamilton et al., 2017), and graph attention networks
(GAT) (Velickovic et al., 2018) as backbone models. By
default, the dataset used is Cora, the LDP protocol applied is
the MBM, the GNN model is the GCN, and UPGNET adopts
the N-H architecture. For more details, see App. F.1 and F.2.

Evaluation Metrics. Consistent with prior work (Sajad-
manesh & Gatica-Perez, 2021; Lin et al., 2022), we conduct
experiments on the node classification task, using classifi-
cation accuracy as the primary metric to evaluate the per-

7

Going Deeper into Locally Differentially Private Graph Neural Networks

0.01 0.1 1.0 2.0 3.075

80

85

A
cc

ur
ac

y(
%

)

GCN
GraphSAGE
GAT

0.01 0.1 1.0 2.0 3.070

75

80

A
cc

ur
ac

y
(%

)

N-H H-N

(a) (b)

Figure 4. (a) Comparison of the performance of UPGNET under
different GNN models. (b) Comparison of the performance of
UPGNET in H-N vs. N-H architectures.

formance of UPGNET. All models undergo 500 training
iterations and the best model is chosen for testing based on
validation loss. Accuracy is measured over 10 consecutive
runs, and we report the average along with 95% confidence
intervals calculated by bootstrapping over 1000 samples.

4.2. Evaluating the Performance of UPGNET

In this experiment, we vary ϵ in {0.01, 0.1, 1.0, 2.0, 3.0} to
thoroughly validate the performance under different noise
scales. The experimental results across four datasets and
various GNN backbone models are presented in Fig. 3. It
shows that, in all cases, UPGNET consistently achieves
higher accuracy than BASE, LPGNN and Solitude, and in
some instances, it even approaches the accuracy of NonPriv.
For example, in the case of Fig. 3 (f), UPGNET increases
accuracy by about 5% over LPGNN and Solitude when ϵ =
3.0. Moreover, for Facebook (Fig. 3 (d), (h)), the accuracy of
UPGNET is closely aligned with that of NonPriv. All these
observations underscore the superior utility of UPGNET.

4.3. Comparison of Different GNN Models

Fig. 4(a) intuitively compares the accuracy of UPGNET
under different privacy budgets ϵ and across various GNN
models. The results reveal that the GAT slightly worse than
GCN and GraphSAGE. Specifically, under high privacy set-
tings (e.g., when ϵ = 0.01), the accuracy gap between GAT
and the other two models becomes more pronounced. The
GAT model introduces an attention mechanism that learns at-
tention coefficients to weight the neighbors in neighborhood
aggregation. Consequently, this makes GAT more sensitive
to feature perturbations, resulting in a greater degradation of
utility in high-noise settings. On the other hand, the utility
of GAT remains comparable when ϵ ≥ 0.1.

4.4. Ablation Study on the Performance of NFR

In this experiment, we investigate the utility enhancement of
Node Feature Regularizer (NFR) layer for two node feature
LDP mechanisms: piecewise mechanism (PM) and multi-bit
mechanism (MBM). Table 2 shows the accuracy comparison

0.01 0.1 1.0 2.0 3.00

2

4

6

8

10

A
cc

ur
ac

y
 (%

) Cora
CiteSeer
LastFM
Facebook

0.01 0.1 1.0 2.0 3.00

2

4

6

8

10

A
cc

ur
ac

y
 (%

) Cora
CiteSeer
LastFM
Facebook

(a) MBM⋆ (b) PM⋆

Figure 5. Comparison of the utility enhancement of MBM⋆ and PM⋆

under different ϵ ∈ {0.01, 0.1, 1.0, 2.0, 3.0}. X-axis represents
privacy budget ϵ and y-axis represents test accuracy enhancement.

Table 2. Applying NFR layer to node feature LDP mechanisms PM
and MBM to achieve utility enhancement. MBM⋆ and PM⋆ represent
the integration of the NFR layer with MBM and PM, respectively.

Dataset Mech. ϵ = 0.01 ϵ = 0.1 ϵ = 1.0 Overall

Cora

MBM 64.5 77.9 78.9 -
MBM⋆ 71.3 ↑ 6.8 80.6 ↑ 2.7 81.5 ↑ 2.6 ↑ 4.0
PM 65.3 78.5 79.4 -
PM⋆ 72.0 ↑ 6.7 80.5 ↑ 2.0 81.2 ↑ 1.8 ↑ 3.5

CiteSeer

MBM 52.5 61.7 65.4 -
MBM⋆ 57.2 ↑ 4.7 65.0 ↑ 3.3 67.8 ↑ 2.4 ↑ 3.5
PM 53.1 62.8 66.1 -
PM⋆ 57.4 ↑ 4.3 64.7 ↑ 1.9 67.4 ↑ 1.3 ↑ 2.5

LastFM

MBM 61.4 75.8 79.5 -
MBM⋆ 67.1 ↑ 5.7 79.4 ↑ 3.6 81.7 ↑ 2.2 ↑ 3.8
PM 66.1 77.1 80.1 -
PM⋆ 68.7 ↑ 2.6 79.5 ↑ 2.4 81.9 ↑ 1.8 ↑ 2.3

Facebook

MBM 78.6 86.6 87.3 -
MBM⋆ 84.9 ↑ 6.3 90.9 ↑ 4.3 91.4 ↑ 4.1 ↑ 4.9
PM 78.4 88.4 88.5 -
PM⋆ 85.1 ↑ 6.7 90.8 ↑ 3.7 91.8 ↑ 3.3 ↑ 4.6

↑ indicates the increase in utility after incorporating the NFR.

between MBM and MBM⋆ (MBM + NFR layer) as well as PM
and PM⋆ (PM + NFR layer) across different datasets and ϵ.
The results in Table 2 clearly demonstrate that applying the
NFR layer improves graph learning accuracy in all cases.
Moreover, Table 2 and Fig. 5 indicates that NFR layer is
more effective in improving graph learning accuracy when
the privacy budget is small compared to when the privacy
budget is large. For instance, in the case of the Cora dataset
with MBM perturbing the node features, when ϵ = 0.01,
MBM⋆ improves accuracy by approximately 7% over MBM.
When ϵ = 1.0, MBM⋆ enhances accuracy by 2.6% over MBM.
This is attributed to the fact that when ϵ is small, more noise
is injected into the node features, so our NFR layer calibrates
the noise and improves the accuracy more significantly.

4.5. Ablation Study on the Performance of HOA

In this experiment, we investigate two aspects: first, whether
Higher-Order Aggregator (HOA) layer can mitigate the over-
smoothing in multilayer aggregation; and second, whether
the HOA can effectively enhance the performance of private
graph learning. To achieve these objectives, we compare

8

Going Deeper into Locally Differentially Private Graph Neural Networks

0 2 4 8 16 32 64
K

40

60

80

A
cc

ur
ac

y
(%

)

HOA
SKA

0 2 4 8 16 32 64
K

45

50

55

60

65

A
cc

ur
ac

y
(%

)

HOA
SKA

0 2 4 8 16 32 64
K

40

60

80

A
cc

ur
ac

y
(%

)

HOA
SKA

0 2 4 8 16 32 64
K

50

60

70

80

90

A
cc

ur
ac

y
(%

)

HOA
SKA

(a) Cora (b) Citeseer (c) LastFM (d) Facebook

Figure 6. Effect of HOA vs. SKA on graph learning performance across various steps K ∈ {0, 2, 4, 8, 16, 32, 64}.

HOA with SKA and set K = {0, 2, 4, 8, 16, 32, 64} for both
HOA and SKA, consider the privacy budget ϵ = 0.01. Fig. 6
shows the performance of HOA compared to SKA on accu-
racy for different values of K. As illustrated in Fig. 6, for
all datasets, the accuracy trend under SKA initially rises
with increasing K, but after a certain point, it sharply de-
clines, while the accuracy under HOA continues to improve
steadily. For example, in the LastFM dataset (Fig. 6 (c)),
SKA’s accuracy peaks at K = 4 but then drops rapidly,
falling below 40% accuracy at K = 64. This sharp decline
is due to the oversmoothing effect in SKA, where larger K
values cause node embeddings to become overly similar,
diminishing graph learning performance. In contrast, the
HOA algorithm shows a steady increase in accuracy as K
grows, indicating that the proposed HOA layer successfully
mitigates oversmoothing and effectively aggregates useful
information from expanded neighborhoods. Furthermore,
for K ∈ {2, 4, 8, 16, 32, 64}, HOA consistently outperforms
SKA, demonstrating that the HOA can significantly enhance
the learning utility. See App. F.3 and F.5 for more details.

4.6. Comparison of Different Architectures

We evaluate the effect of both the N-H and H-N architectures
on utility by varying ϵ ∈ {0.01, 0.1, 1.0, 2.0, 3.0} and con-
ducting comparisons using the GCN. As shown in Fig. 4(b),
for the Cora, the N-H architecture outperforms the H-N
slightly in terms of accuracy. Notably, with smaller ϵ, the
N-H architecture excels in feature dimension optimization,
which allows it to better handle the information loss from
noise injection. However, as ϵ increases, the performance
gap between the N-H and H-N architectures narrows, indi-
cating that the early application of the NFR layer in the N-H
architecture is more effective in expanding the neighborhood
range and enhancing utility when the noise is higher.

5. Related work
Recently, a series of works related to locally differentially
private GNNs have been proposed. Sajadmanesh & Gatica-
Perez (2021) propose a privacy-preserving graph learning
framework called LPGNN, which assumes that node fea-
tures are private and the server has access to the graph topol-

ogy, aligning with the scenario of this paper. In LPGNN,
each user perturbs their features using the multi-bit mech-
anism (MBM). However, this paper demonstrates that MBM
introduces excessive noise to the feature vector, thereby
reducing the utility of the final private graph learning pro-
cess. Similarly, Du et al. (2021), Lin et al. (2022) and Jin
& Chen (2022) utilize the MBM to perturb node features or
employ the SKA (Sajadmanesh & Gatica-Perez, 2021; Lin
et al., 2022) to calibrate noisy features. Besides MBM, the
PM (Wang et al., 2019a; Pei et al., 2023) has also been ex-
plored for privacy-preserving graph learning. Yet, it faces
similar utility challenges. In contrast to these approaches,
our paper introduces a utility-enhanced locally private graph
learning framework applicable to various node feature per-
turbation mechanisms, including MBM and PM, to further
enhance the utility of private graph learning.

In addition to node feature perturbation, other efforts have
addressed link privacy under LDP. Lin et al. (2022) adopted
a naive randomized response mechanism (Qin et al., 2017)
to protect adjacency lists. Hidano & Murakami (2024) pro-
pose a link LDP mechanism called DPRR, which injects
noise into adjacency lists and node degrees respectively and
calibrates the noisy links by a degree-sampling method. Zhu
et al. (2023) propose a Bayesian estimation-based link LDP
mechanism called BLINK. Similar to DPRR, BLINK injects
noise into adjacency lists and node degrees, and then esti-
mates the ground truth graph using the adjacency lists as
prior and the node degrees as evidence. This work, in con-
trast, focuses on protecting node features, and is orthogonal
to these approaches. It can be seamlessly integrated with
existing methods designed to protect neighbor lists.

6. Conclusion
In this paper, we initially establish a pipeline to generalize
the LDP protocols for perturbing node features. Through our
analysis, we identify two key factors that affect the estima-
tion error. Building on these insights, we propose UPGNET,
which incorporates NFR and HOA layers. The generalization
and effectiveness of UPGNET and its components are vali-
dated through theoretical analysis and extensive experiments
in various datasets and parameter settings.

9

Going Deeper into Locally Differentially Private Graph Neural Networks

Acknowledgements
This work is supported in part by the National Natural Sci-
ence Foundation of China (62072052), in part by the Na-
tional Natural Science Foundation of China (62372051).

Impact Statement
This paper presents work aiming to advance the field of
privacy-preserving graph learning. It focuses on enhancing
the utility of private graph learning while preserving the
privacy of graph data using local differential privacy. Our
approach introduces a more efficient framework for privacy-
preserving graph learning, enhancing the overall utility of
learning tasks while ensuring that user data remains pro-
tected from potential privacy breaches. There are many
potential societal consequences of our work, none which we
feel must be specifically highlighted here. We believe this
work will contribute to the development of more efficient
and scalable privacy-preserving graph learning frameworks.

References
Abu-El-Haija, S., Perozzi, B., Kapoor, A., Alipourfard, N.,

Lerman, K., Harutyunyan, H., Ver Steeg, G., and Gal-
styan, A. Mixhop: Higher-order graph convolutional
architectures via sparsified neighborhood mixing. In In-
ternational Conference on Machine Learning (ICML), pp.
21–29. PMLR, 2019.

Baldi, P. and Sadowski, P. J. Understanding dropout.
Advances in Neural Information Processing Systems
(NeurIPS), 26:1–9, 2013.

Bühlmann, P. and Van De Geer, S. Statistics for high-
dimensional data: methods, theory and applications.
Springer Science & Business Media, 2011.

Chen, M., Wei, Z., Huang, Z., Ding, B., and Li, Y. Sim-
ple and deep graph convolutional networks. In Inter-
national Conference on Machine Learning (ICML), pp.
1725–1735. PMLR, 2020.

Chen, Z., Bruna, J., and Li, L. Supervised community
detection with line graph neural networks. In 7th Interna-
tional Conference on Learning Representations (ICLR),
pp. 1–23, 2019.

Ding, B., Kulkarni, J., and Yekhanin, S. Collecting telemetry
data privately. Advances in Neural Information Process-
ing Systems (NeurIPS), 30, 2017.

Du, W., Ma, X., Dong, W., Zhang, D., Zhang, C., and Sun,
Q. Calibrating privacy budgets for locally private graph
neural networks. In 2021 International Conference on
Networking and Network Applications (NaNA), pp. 23–29.
IEEE, 2021.

Duan, J., Ye, Q., and Hu, H. Utility analysis and enhance-
ment of ldp mechanisms in high-dimensional space. In
2022 IEEE 38th International Conference on Data Engi-
neering (ICDE), pp. 407–419. IEEE, 2022.

Dwork, C. Differential privacy: A survey of results. In
International Conference on Theory and Applications of
Models of Computation, pp. 1–19. Springer, 2008.

Dwork, C., McSherry, F., Nissim, K., and Smith, A. Cal-
ibrating noise to sensitivity in private data analysis. In
Theory of Cryptography: Third Theory of Cryptography
Conference, pp. 265–284. Springer, 2006.

Dwork, C., Roth, A., et al. The algorithmic foundations of
differential privacy. Foundations and Trends® in Theo-
retical Computer Science, 9(3–4):211–407, 2014.

Erlingsson, Ú., Pihur, V., and Korolova, A. Rappor:
Randomized aggregatable privacy-preserving ordinal re-
sponse. In Proceedings of the 2014 ACM SIGSAC Confer-
ence on Computer and Communications Security (CCS),
pp. 1054–1067, 2014.

Fout, A., Byrd, J., Shariat, B., and Ben-Hur, A. Pro-
tein interface prediction using graph convolutional net-
works. Advances in Neural Information Processing Sys-
tems (NeurIPS), 30, 2017.

Gasteiger, J., Weißenberger, S., and Günnemann, S. Dif-
fusion improves graph learning. Advances in Neural
Information Processing Systems (NeurIPS), 32, 2019.

Giroux, A., Rahman, Q., and Schmeisser, G. On bernstein’s
inequality. Canadian Journal of Mathematics, 31(2):
347–353, 1979.

Hamilton, W., Ying, Z., and Leskovec, J. Inductive repre-
sentation learning on large graphs. Advances in Neural
Information Processing Systems (NeurIPS), 30, 2017.

He, L., Tang, P., Zhang, Y., Zhou, P., and Su, S. Mitigating
privacy risks in retrieval-augmented generation via locally
private entity perturbation. Information Processing &
Management, 62(4):104150, 2025.

Hidano, S. and Murakami, T. Degree-preserving random-
ized response for graph neural networks under local dif-
ferential privacy. Transactions on Data Privacy, 17(2):
89–121, 2024.

Hoyer, P. O. Non-negative matrix factorization with sparse-
ness constraints. Journal of Machine Learning Research,
5(9), 2004.

Huang, X., Li, J., and Hu, X. Label informed attributed
network embedding. In Proceedings of the Tenth ACM In-
ternational Conference on Web Search and Data Mining
(WSDM), pp. 731–739, 2017.

10

Going Deeper into Locally Differentially Private Graph Neural Networks

Jin, H. and Chen, X. Gromov-wasserstein discrepancy with
local differential privacy for distributed structural graphs.
In Proceedings of the Thirty-First International Joint
Conference on Artificial Intelligence (IJCAI), pp. 2115–
2121, 2022.

Kasiviswanathan, S. P., Lee, H. K., Nissim, K., Raskhod-
nikova, S., and Smith, A. What can we learn privately?
SIAM Journal on Computing, 40(3):793–826, 2011.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Kipf, T. N. and Welling, M. Semi-supervised classification
with graph convolutional networks. In 5th International
Conference on Learning Representations (ICLR), 2017.

Klambauer, G., Unterthiner, T., Mayr, A., and Hochreiter, S.
Self-normalizing neural networks. Advances in Neural
Information Processing Systems (NeurIPS), 30, 2017.

Lee, J., Kang, S., Yu, Y., Jo, Y.-Y., Kim, S.-W., and Park,
Y. Optimization of gpu-based sparse matrix multipli-
cation for large sparse networks. In 2020 IEEE 36th
International Conference on Data Engineering (ICDE),
pp. 925–936. IEEE, 2020.

Li, H. and Lin, Z. Accelerated proximal gradient meth-
ods for nonconvex programming. Advances in Neural
Information Processing Systems (NeurIPS), 28, 2015.

Li, Y., Gu, C., Dullien, T., Vinyals, O., and Kohli, P. Graph
matching networks for learning the similarity of graph
structured objects. In International Conference on Ma-
chine Learning (ICLR), pp. 3835–3845. PMLR, 2019.

Lin, W., Li, B., and Wang, C. Towards private learning on
decentralized graphs with local differential privacy. IEEE
Transactions on Information Forensics and Security, 17:
2936–2946, 2022.

Liu, C., Ma, X., Zhan, Y., Ding, L., Tao, D., Du, B., Hu, W.,
and Mandic, D. P. Comprehensive graph gradual prun-
ing for sparse training in graph neural networks. IEEE
Transactions on Neural Networks and Learning Systems,
2023.

Liu, X., Ding, J., Jin, W., Xu, H., Ma, Y., Liu, Z., and Tang, J.
Graph neural networks with adaptive residual. Advances
in Neural Information Processing Systems (NeurIPS), 34:
9720–9733, 2021.

Meier, L., Van De Geer, S., and Bühlmann, P. The group
lasso for logistic regression. Journal of the Royal Sta-
tistical Society Series B: Statistical Methodology, 70(1):
53–71, 2008.

Meng, L., Bai, Y., Chen, Y., Hu, Y., Xu, W., and Weng, H.
Devil in disguise: Breaching graph neural networks pri-
vacy through infiltration. In Proceedings of the 2023 ACM
SIGSAC Conference on Computer and Communications
Security (CCS), pp. 1153–1167, 2023.

Negahban, S. N., Ravikumar, P., Wainwright, M. J., and Yu,
B. A unified framework for high-dimensional analysis of
m-estimators with decomposable regularizers. Statistical
Science, 27, 2017.

Nitanda, A. Stochastic proximal gradient descent with ac-
celeration techniques. Advances in Neural Information
Processing Systems (NeurIPS), 27, 2014.

Pei, X., Deng, X., Tian, S., Liu, J., and Xue, K. Privacy-
enhanced graph neural network for decentralized local
graphs. IEEE Transactions on Information Forensics and
Security, 2023.

Qi, Y., Lin, X., Liu, Z., Li, G., Wang, J., and Li, J. Link-
guard: Link locally privacy-preserving graph neural net-
works with integrated denoising and private learning. In
Companion Proceedings of the ACM on Web Conference
2024 (WWW), pp. 593–596, 2024.

Qin, Z., Yu, T., Yang, Y., Khalil, I., Xiao, X., and Ren,
K. Generating synthetic decentralized social graphs with
local differential privacy. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications
Security (CCS), pp. 425–438, 2017.

Rozemberczki, B. and Sarkar, R. Characteristic functions
on graphs: Birds of a feather, from statistical descriptors
to parametric models. In Proceedings of the 29th ACM
International Conference on Information & Knowledge
Management (CIKM), pp. 1325–1334, 2020.

Rozemberczki, B., Allen, C., and Sarkar, R. Multi-scale at-
tributed node embedding. Journal of Complex Networks,
9(2):cnab014, 2021.

Rusch, T. K., Bronstein, M. M., and Mishra, S. A survey on
oversmoothing in graph neural networks. SAM Research
Report, 2023, 2023.

Sajadmanesh, S. and Gatica-Perez, D. Locally private
graph neural networks. In Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications
Security (CCS), pp. 2130–2145, 2021.

Shen, Y., He, X., Han, Y., and Zhang, Y. Model stealing
attacks against inductive graph neural networks. In 2022
IEEE Symposium on Security and Privacy (S&P), pp.
1175–1192. IEEE, 2022.

Sun, L., Huang, Z., Wan, Q., Peng, H., and Yu, P. S.
Spiking graph neural network on riemannian manifolds.

11

Going Deeper into Locally Differentially Private Graph Neural Networks

In Advances in Neural Information Processing Systems
(NeurIPS), pp. 1–12, 2024a.

Sun, L., Huang, Z., Wang, Z., Wang, F., Peng, H., and
Yu, P. S. Motif-aware riemannian graph neural network
with generative-contrastive learning. In Proceedings of
the AAAI Conference on Artificial Intelligence (AAAI),
volume 38, pp. 9044–9052, 2024b.

Thakurta, A. G., Vyrros, A. H., Vaishampayan, U. S.,
Kapoor, G., Freudiger, J., Sridhar, V. R., and Davidson,
D. Learning new words, us patent 9,594,741. 2017.

Velickovic, P., Cucurull, G., Casanova, A., Romero, A.,
Liò, P., and Bengio, Y. Graph attention networks. In 6th
International Conference on Learning Representations
(ICLR), 2018.

Wang, N., Xiao, X., Yang, Y., Zhao, J., Hui, S. C., Shin,
H., Shin, J., and Yu, G. Collecting and analyzing multi-
dimensional data with local differential privacy. In 2019
IEEE 35th International Conference on Data Engineering
(ICDE), pp. 638–649. IEEE, 2019a.

Wang, T., Ding, B., Zhou, J., Hong, C., Huang, Z., Li,
N., and Jha, S. Answering multi-dimensional analytical
queries under local differential privacy. In Proceedings
of the 2019 International Conference on Management of
Data (SIGMOD), pp. 159–176, 2019b.

Wang, X. and Wang, W. H. Group property inference at-
tacks against graph neural networks. In Proceedings of
the 2022 ACM SIGSAC Conference on Computer and
Communications Security (CCS), pp. 2871–2884, 2022.

Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., and Yu, P. S.
A comprehensive survey on graph neural networks. IEEE
Transactions on Neural Networks and Learning Systems,
32(1):4–24, 2020.

Yang, M., Guo, T., Zhu, T., Tjuawinata, I., Zhao, J., and
Lam, K.-Y. Local differential privacy and its applica-
tions: A comprehensive survey. Computer Standards &
Interfaces, 89:103827, 2024.

Yang, Z., Cohen, W., and Salakhudinov, R. Revisiting
semi-supervised learning with graph embeddings. In
International Conference on Machine Learning (ICLR),
pp. 40–48. PMLR, 2016.

Yu, S., Mazaheri, A., and Jannesari, A. Topology-aware net-
work pruning using multi-stage graph embedding and re-
inforcement learning. In International Conference on Ma-
chine Learning (ICLR), pp. 25656–25667. PMLR, 2022.

Zhang, M. and Chen, Y. Link prediction based on graph neu-
ral networks. Advances in Neural Information Processing
Systems (NeurIPS), 31, 2018.

Zhang, Z., Cui, P., and Zhu, W. Deep learning on graphs:
A survey. IEEE Transactions on Knowledge and Data
Engineering, 34(1):249–270, 2020.

Zhang, Z., Chen, M., Backes, M., Shen, Y., and Zhang,
Y. Inference attacks against graph neural networks. In
31st USENIX Security Symposium (USENIX Security), pp.
4543–4560, 2022.

Zhou, K., Huang, X., Zha, D., Chen, R., Li, L., Choi, S.-H.,
and Hu, X. Dirichlet energy constrained learning for deep
graph neural networks. Advances in Neural Information
Processing Systems (NeurIPS), 34:21834–21846, 2021.

Zhu, X., Tan, V. Y., and Xiao, X. Blink: Link local dif-
ferential privacy in graph neural networks via bayesian
estimation. In Proceedings of the 2023 ACM SIGSAC
Conference on Computer and Communications Security
(CCS), pp. 2651–2664, 2023.

12

Going Deeper into Locally Differentially Private Graph Neural Networks

A. Node Feature LDP Mechanisms

A.1. Piecewise Mechanism

The one-dimensional piecewise mechanism (PM) (Wang et al., 2019a) takes x ∈ [−1, 1] as input3 and outputs the perturbed
value x′ ∈ [−Q,Q], where Q = eϵ/2+1

eϵ/2−1
. The perturbed value is sampled from the following distribution:

Pr[x′ = c|x] =

{
p, if c ∈ [l(x), r(x)]
p
eϵ , if c ∈ [−Q, l(x)) ∪ (r(x), Q]

, (14)

where p = eϵ−eϵ/2

2eϵ/2+2
, l(x) = Q+1

2 · x − Q−1
2 , and r(x) = l(x) + Q − 1. In its high-dimensional form, the piecewise

mechanism initially uniformly samples m dimensions from the d dimensions without replacement. Subsequently, it perturbs
the data in each of the selected dimensions using the ϵ/m-LDP. According to the sequential composition property (Dwork,
2008) of the LDP mechanism, it adheres to ϵ-LDP. After receiving all the perturbed data, the server performs de-biasing on
the reporting data x∗ using the following equation: x′ = d

m · x∗. The variance of x′ is as follows:

V ar[x′] =
d(eϵ/2m + 3)

3m(eϵ/2m − 1)2
+

[
d · eϵ/2m

m(eϵ/2m − 1)
− 1

]
· x2. (15)

The range of x′ is as follows:

x′ ∈
[
− d

m
· e

ϵ/2 + 1

eϵ/2 − 1
,
d

m
· e

ϵ/2 + 1

eϵ/2 − 1

]
. (16)

A.2. Multi-bit Mechanism

The multi-bit mechanism (MBM) (Sajadmanesh & Gatica-Perez, 2021) is an extension of the 1-bit mechanism (Ding et al.,
2017). In its one-dimensional form, for any original data x ∈ [−1, 1], the distribution followed by the perturbed value
x′ ∈ {−1, 1} is as follows:

Pr[x′ = c|x] =

{
1

eϵ+1 + x+1
2 · eϵ−1

eϵ+1 , if c = 1
eϵ

eϵ+1 − x+1
2 · eϵ−1

eϵ+1 , if c = −1
. (17)

In its high-dimensional form, similar to the piecewise mechanism, each sampled dimension carries out ϵ/m-LDP perturbation.
After receiving all the perturbed data, the server transforms the reporting data x∗ to its unbiased estimate x′ = d

m · e
ϵ/m+1

eϵ/m−1
·x∗.

The variance of x′ is as follows:

V ar[x′] =
d

m
·
(
eϵ/m + 1

eϵ/m − 1

)2

− x2. (18)

The range of x′ is as follows:

x′ ∈
{
− d

m
· e

ϵ/m + 1

eϵ/m − 1
, 0,

d

m
· e

ϵ/m + 1

eϵ/m − 1

}
. (19)

B. Theoretical Proof
B.1. Proof for Theorem 2

Proof. According to Eq. (4), we have: E
[
ĥN (v)

]
= E [AGGREGATE ({x′

u, ∀u ∈ N (v)})].

Since AGGREGATE(·) is linear, we have:

E
[
ĥN (v)

]
= AGGREGATE ({E [x′

u] ,∀u ∈ N (v)}) .

Considering σ = 0, we have E[x′
u] = xu and hence have:

E
[
ĥN (v)

]
= AGGREGATE ({xu, ∀u ∈ N (v)}) = hN (v).

3Without loss of generality, this paper assumes that each dimension of the input data is normalized to the range [−1, 1].

13

Going Deeper into Locally Differentially Private Graph Neural Networks

B.2. Proof for Theorem 3

Proof. For any node u ∈ V and dimension i ∈ {1, 2, . . . , d}, following the perturbation and calibration stages, we determine
that x′

u,i ∈ [−B,B], where B is a finite boundary. We define X = x′
u,i−xu,i. Given xu,i ∈ [−1, 1], we have: |X| ≤ B+1,

and through the calibration stage, if σ = 0, we know that E [X] = E
[
x′
u,i

]
− xu,i = 0.

Assuming the mean aggregator is employed, for any node v ∈ V and any dimension i ∈ {1, 2, . . . , d}, we have:

(hN (v))i =
1

|N (v)|
∑

u∈N (v)

xu,i, (ĥN (v))i =
1

|N (v)|
∑

u∈N (v)

x′
u,i. (20)

Thus, based on the Bernstein inequality, we have:

Pr
[∣∣∣(ĥN (v))i − (hN (v))i

∣∣∣ ≥ λ
]
= Pr

∣∣∣∣∣∣
∑

u∈N (v)

(x′
u,i − xu,i)

∣∣∣∣∣∣ ≥ λ |N (v)|

 (21)

≤ 2 · exp

{
− λ2 |N (v)|

2
|N (v)|

∑
u∈N (v) V ar[X] + 2

3λ(B + 1)

}
= 2 · exp

{
− λ2 |N (v)|
2V ar[x′

u,i] +
2
3λ(B + 1)

}
. (22)

Considering Eq. (15) and Eq. (18), we have:

V ar[x′
u,i] = O(

md

ϵ2
). (23)

Considering Eq. (16) and Eq. (19), we have:

B = O(
d

ϵ
). (24)

Substituting the Eq. (23) and Eq. (24) into Eq. (22), we obtain:

Pr
[∣∣∣(ĥN (v))i − (hN (v))i

∣∣∣ ≥ λ
]
≤ 2 · exp

{
− λ2 |N (v)|
O(md

ϵ2) + λO(dϵ)

}
. (25)

By applying the union bound, we have:

Pr

[
max

i∈{1,...,d}

∣∣∣(ĥN (v))i − (hN (v))i

∣∣∣ ≥ λ

]
=

d⋃
i=1

Pr
[∣∣∣(ĥN (v))i − (hN (v))i

∣∣∣ ≥ λ
]

(26)

≤
d∑

i=1

Pr
[∣∣∣(ĥN (v))i − (hN (v))i

∣∣∣ ≥ λ
]
= 2d · exp

{
− λ2|N (v)|
O(md

ϵ2) + λO(dϵ)

}
. (27)

To ensure that maxi∈{1,...,d}

∣∣∣(ĥN (v))i − (hN (v))i

∣∣∣ < λ holds with at least 1 − δ probability, it is sufficient to set

δ = 2d · exp
{
− λ2|N (v)|

O(md
ϵ2

)+λO(d
ϵ)

}
. Solving the above for λ, we get: λ = O(

√
d log(d/δ)/(ϵ

√
|N (v)|)).

B.3. Proof for Theorem 4

Proof. Considering that

Υ(ĥ) =
1

|V|
∑
i∈V

∑
j∈N (vi)

∥∥∥ĥk
i − ĥk

j

∥∥∥2
2
=

1

|V|
∑
i∈V

∑
j∈N (vi)

∥∥hk
i − hk

j

∥∥2
2
+
∥∥ηki − ηkj

∥∥2
2︸ ︷︷ ︸

noise signal

 (28)

and

ΦK = lim
K→∞

∑K
k=1 Ek

HOA∑K
k=1 Ek

SKA

= lim
K→∞

∑K
k=1

(
1
|V|

∑
i∈V

∑
j∈N (vi)

|ĥk
1i − ĥk

1j |22
)

∑K
k=1

(
1
|V|

∑
i∈V

∑
j∈N (vi)

|ĥk
2i − ĥk

2j |22
) , (29)

14

Going Deeper into Locally Differentially Private Graph Neural Networks

although both HOA and SKA introduce the noise term ηk in each iteration, the key difference lies in how they handle the
propagation and amplification of noise. As explained in the main paper, HOA employs a personalized aggregation strategy,
allowing it to better control the noise amplification effect in subsequent layers. Specifically, by assigning smaller aggregation
weights to the neighbors in more distant levels, HOA can mitigate the cumulative impact of noise. Consequently, as K (the
number of aggregation steps) approaches infinity, the effect of noise diminishes more effectively in HOA, leading to the
condition ΦK = 0.

B.4. Proof for Theorem 5

Proof. For the L1-regularization problem addressed in this paper, we employ the proximal gradient descent (PGD) (Nitanda,
2014; Li & Lin, 2015; Duan et al., 2022) method for its solution. First, we obtain the derivative of L1(w):

∇L1(w) =
1

|N (v)|
∑

u∈N (v)

(w − x′
u) = w − 1

|N (v)|
∑

u∈N (v)

x′
u = w − ĥv. (30)

Then, the derivative of ∇L1(w) is d∇L1(w)
dw = 1. According to Cauchy mean value theorem, we have:

∥∇L1(w)−∇L1(wk)∥22 ≤ ∥w −wk∥22 , (31)

where wk represents the result of the k-th iteration.
We can approximate L1(w) around wk using second-order Taylor expansion, given by:

L1(w) ≃ L1(wk) + ⟨∇L1(wk),w −wk⟩+
1

2
∥w −wk∥2

=
1

2
∥w − (wk −∇L1(wk))∥22 + const,

where const is a constant independent of w and ⟨·, ·⟩ denotes the inner product. The minimum of the above equation is
obtained at wk+1 as follows:

wk+1 = wk −∇L1(wk). (32)

We then introduce the L1-regularization term in the iteration:

wk+1 = argmin
w

1

2
∥w − (wk −∇L1(wk))∥22 + µ1 ∥w∥1 . (33)

Let wi denote the i-th dimension of w. Since each dimension is independent, we have:

(wk+1)i = argmin
wi

1

2
∥wi − ((wk)i −∇L((wk)i))∥22 + µ1 ∥(w)i∥1 . (34)

Let zi = (wk)i − ∇L1((wk)i) = (wk)i −
(
(wk)i − (ĥv)i

)
= (ĥv)i. Computing (wk+1)i depends on whether wi is

positive, negative or 0. Below, we compute it in the following cases:

• If wi > 0, by setting the gradient wi − zi + µ1 of Eq. (34) equal to zero, we obtain (wk+1)i = zi − µ1 > 0, hence
zi > µ1.

• If wi < 0, similarly, we obtain (wk+1)i = zi + µ1 < 0, hence zi < −µ1.

• If wi = 0, we obtain (wk+1)i = 0, in which case |zi| ≤ µ1.

Consequently, we have:
(wk+1)i = sign(zi) ·max (|zi| − µ1, 0) , (35)

where sign denotes the sign function, which takes 1 if (ĥv)i > 0, 0 if (ĥv)i = 0, and -1 if (ĥv)i < 0. Applying
(wk+1)i = (h̃v)i and zi = (ĥv)i.

(h̃v)i = sign
(
(ĥv)i

)
·max

(
|(ĥv)i| − µ1, 0

)
, (36)

15

Going Deeper into Locally Differentially Private Graph Neural Networks

The optimal value for µ1 is τ1B/d̄K , where τ1 ∈ (0, 1), with B as the boundary of the perturbed node features, d̄ as the
approximate average degree of the graph, and K as the step parameter of the HOA layer. Here, d̄K approximates the number
of neighbors, as a larger number of neighbors tends to smooth out the feature values, allowing for a relatively smaller
regularization parameter µ1. This formulation reflects how the regularization strength can adjust according to the feature
magnitude and the neighborhood structure.

B.5. Proof for Theorem 6

Proof. Under the N-H architecture, the NFR layer aims to enhance utility through efficient feature selection of the perturbed
node features x′ using L1-regularization. The objective function L2 is defined as follows:

L2(x) =
1

2
∥x′ − x∥22 + µ2 ∥x∥1 . (37)

Our goal is to minimize the above loss function. The proof procedure is similar to that of Theorem 5 and is not repeated.

C. More Details of N-H Architecture
In this section, We provide more details on the N-H architecture of UPGNET, where the perturbed node features x′ are
sequentially enhanced by first passing through the NFR layer followed by the HOA layer.

Node Feature Regularization. Under the N-H architecture, the NFR layer specifically aims to enhance utility through
efficient feature selection of the perturbed node features x′ directly using L1-regularization. The objective function L2 is
formalized as follows:

L2(x) =
1

2
∥x′ − x∥22 + µ2 ∥x∥1 . (38)

Our goal is to minimize the above loss function. Thm. 7 derives this regularization problem. According to Thm. 7, we
conclude that Eq. (39) can efficiently achieve feature selection for x′

v , thereby enhancing the utility of private graph learning.

Theorem 7. For any node v and any i ∈ {1, . . . , d}, (x̃v)i in the following equation can efficiently achieve feature selection:

(x̃v)i = sign ((x′
v)i) ·max (|(x′

v)i| − µ2, 0) , (39)

where the optimal value for µ1 is τ2B, where τ2 ∈ (0, 1), with B as the boundary of the perturbed node features.

Higher-Order Aggregator. After utility enhancement through the NFR layer, additional utility enhancement is achieved by
executing Alg. 1 on the enhanced feature vector x̃v through the HOA layer.

D. Privacy Analysis
The piecewise mechanism (PM) (Wang et al., 2019a; Pei et al., 2023) and multi-bit mechanism (MBM) (Du et al., 2021;
Sajadmanesh & Gatica-Perez, 2021; Lin et al., 2022; Jin & Chen, 2022) satisfy ϵ-local differential privacy for each node. The
entire training process remains LDP-compliant due to the robustness of differential privacy against post-processing (Dwork
et al., 2014) (Thm. 8). Moreover, any subsequent prediction is bounded by the post-processing theorem (Dwork et al., 2014),
since the LDP is applied only once to the private data. This ensures that LDP holds for all nodes throughout the process.

Definition 8 (Post-processing). If an algorithm A(·) satisfies ϵ-local differential privacy, then any further processing of its
output by another algorithm B(·) (i.e., process B(A(·))) also maintains ϵ-local differential privacy.

E. Complexity Analysis
The computational complexity of UPGNET mainly arises from its two key components: the HOA layer and the NFR layer.
The HOA layer performs K steps of high-order neighborhood aggregation, where each step aggregating feature vectors
from neighboring nodes. This process has a time complexity of O(|E| · d), where |E| is the number of edges and d is
the feature dimension, resulting in a total complexity of O(K · |E| · d). The NFR layer applies lightweight element-wise
transformations to each node’s feature vector, contributing a complexity of O(|V| · d), where |V| is the number of nodes.
Combining these, the overall computational complexity of UPGNET is O(K · |E| · d+ |V| · d), scaling linearly with graph
size and feature dimensionality. This ensures that UPGNET remains both practical and scalable for large-scale graphs with

16

Going Deeper into Locally Differentially Private Graph Neural Networks

high-dimensional data. Furthermore, compared to other methods (Solitude (Lin et al., 2022) and LPGNN (Sajadmanesh &
Gatica-Perez, 2021)), the computational complexity of UPGNET introduces only an additional factor |V| · d. This factor is
linear with respect to the number of nodes and the feature dimension, making it highly efficient in practice. Moreover, graph
pruning (Yu et al., 2022; Liu et al., 2023) or parallelization techniques, such as GPU-based sparse matrix operations (Lee
et al., 2020), can be applied to further reduce computational overhead.

F. Additional Details of Experiments
F.1. More Parameter Design

To evaluate the performance of UPGNET, we use three state-of-the-art GNN architectures, graph convolutional networks
(GCN) (Kipf & Welling, 2017) GraphSAGE (Hamilton et al., 2017) and graph attention networks (GAT) (Velickovic et al.,
2018), as the backbone models. All GNN models have two graph convolutional layers, each with a hidden dimension of size
16 and a SeLU activation function (Klambauer et al., 2017) followed by dropout. The GAT model has four attention heads.
To obtain the best hyperparameters, we use grid search for selection: both learning rate and weight decay are chosen from
{10−4, 10−3, 10−2, 10−1}, and dropout is chosen from {10−4, 10−3, 10−2, 10−1}. The HOA’s step parameter is denoted
by K. Based on the selected best hyperparameters, the best K within {0, 2, 4, 8, 16, 32, 64} for all ϵ ∈ {0.01, 0.1, 1, 2, 3}.
The parameters τ1, τ2 of the NFR layer belong to {0.1, 0.3, 0.5, 0.7, 0.9}. We use the Adam optimizer (Kingma & Ba, 2014)
for all models. Without specification, we report the average results based on the best of each parameter.

F.2. More Descriptions about the GNN Model

• GCN (Kipf & Welling, 2017) applies spectral graph convolution by propagating node features using the Laplacian matrix.
The core update rule is: H(l+1) = σ(D̃−1/2ÃD̃−1/2H(l)W (l)), where Ã = A+I is the adjacency matrix with self-loops,
D̃ is its degree matrix, W (l) is the trainable weight matrix, and σ is a activation function.

• GraphSAGE (Hamilton et al., 2017) samples a fixed number of neighbors and aggregates their features, making it
scalable for large graphs. The general update rule is: h

(l+1)
v = σ(W (l) · AGGREGATE({h(l)

u , ∀u ∈ N (v)})), where
AGGREGATE(·) represents the aggregation operation.

• GAT (Hamilton et al., 2017) employs self-attention to dynamically assign importance to neighbors. The update rule is:
h
(l+1)
v = σ

(∑
u∈N (v) αvuW

(l)h
(l)
u

)
, where the attention coefficient αvu is computed as:

αvu =
exp(LeakyReLU(aT [W (l)h

(l)
v ∥W (l)h

(l)
u]))∑

k∈N (v) exp(LeakyReLU(aT [W (l)h
(l)
v ∥W (l)h

(l)
k]))

. (40)

Here, α is a learnable vector, and ∥ denotes concatenation.

F.3. Impact of Average Node Degree of Dataset on HOA

As shown in Table 1, the social network datasets, Facebook (Rozemberczki et al., 2021) and LastFM (Rozemberczki &
Sarkar, 2020), exhibit a higher average node degree (Deg.) compared to citation networks (Cora (Yang et al., 2016) and
CiteSeer (Yang et al., 2016)). For Facebook and LastFM, as illustrated in Fig. 6, the accuracy leveled off after K = 1, despite
further increases in K. This suggests that for social networks with higher average node degrees, the initial aggregation step
provides a sufficient representation of node information. In contrast, for lower-degree citation networks Cora and CiteSeer,
the accuracy continues to improve until K = 64 after K = 1. This indicates that in low-degree datasets, HOA requires more
steps to aggregate enough neighboring nodes for better accuracy.

F.4. Scalability on Heterophilic Graphs

When applied to heterophilic graphs (e.g., Flickr (Huang et al., 2017) and Reddit (Hamilton et al., 2017); see Table 3 for
detailed statistics), UPGNET continues to demonstrate superior utility compared to other baselines, as shown in Fig. 7. The
HOA layer, by preserving Dirichlet energy and enabling personalized aggregation, effectively calibrates noise in heterophilic
graphs, as evidenced by the experiments in Fig. 8.

F.5. Ablation Study on HOA layer

17

Going Deeper into Locally Differentially Private Graph Neural Networks

Table 3. Statistics of heterophilic graph datasets.

DATASET #CLASSES #NODES #EDGES #FEATURES

FLICKR 7 89,250 899,756 500
REDDIT 41 232,965 114,615,892 602

0.01 0.1 1.0 2.0 3.0
Privacy Budget ()

34

39

44

A
cc

ur
ac

y
(%

)

BASE
Solitude
LPGNN
UPGNet

0.01 0.1 1.0 2.0 3.0
Privacy Budget ()

80

85

A
cc

ur
ac

y
(%

)

BASE
Solitude
LPGNN
UPGNet

(a) Flickr (b) Reddit

Figure 7. Performance comparison of UPGNET and other
baselines on Flickr and Reddit. X-axis represents ϵ and y-
axis represents test accuracy (%). UPGNET exhibits superior
performance compared to other baselines.

0 2 4 8 16 32 64
K

40

42

44

46

48

50

A
cc

ur
ac

y
(%

)

HOA
SKA

0 2 4 8 16 32 64
K

80

82

84

86

88

A
cc

ur
ac

y
(%

)

HOA
SKA

(a) Flickr (b) Reddit

Figure 8. Effect of HOA vs. SKA on graph learning perfor-
mance across various steps K ∈ {2, 4, 8, 16, 32, 64}. HOA
demonstrates its superior denoising capability on heterophilic
datasets (Flickr and Reddit).

2 4 8 16 32 64
K

0

20

40

60

80

100

A
cc

ur
ac

y
(%

)

HOA RC

Figure 9. Comparison of HOA
and Residual Connection (RC)
(Dataset: Cora, ϵ = 0.01). HOA
demonstrates significantly better
classification accuracy in private
graph learning compared to RC.

Fig. 9 presents an additional experiment demonstrating its superiority in private graph
learning compared to residual connections (RC) (Liu et al., 2021). RC primarily ad-
dresses vanishing gradients but remains ineffective in suppressing LDP noise. In contrast,
HOA mitigates oversmoothing by preserving Dirichlet energy, thereby effectively cali-
brating noise.

F.6. NFR vs. other Regularization Approaches

As stated in Thm. 3, a key aspect of noise calibration in LDPGNN lies in reducing the
effective feature dimensions. NFR employs L1 regularization, which directly facilitates
feature selection and enhances fine-grained noise calibration. In contrast, Dropout (Baldi
& Sadowski, 2013) and Group Lasso (Meier et al., 2008) fail to achieve precise feature
selection tailored for noise calibration. Dropout introduces randomness by stochastically
deactivating neurons, leading to instability in feature selection, while Group Lasso en-
forces sparsity at a predefined group level, requiring carefully designed group definitions
that may not align with optimal noise calibration. These limitations reduce their effec-
tiveness in mitigating noise impact. Empirical results (Table 4) further validate that NFR
outperforms Dropout and Group Lasso in preserving learning utility.

Table 4. Comparison of our NFR (without HOA) with dropout and group Lasso (ϵ = 0.01, GCN). The values in the table represent
accuracy (%). NFR demonstrates significantly better learning utility compared to other sparsity-inducing techniques.

BASELINE CORA CITESEER LASTFM FACEBOOK

DROPOUT 63.4 52.7 61.3 77.6
GROUP LASSO 57.6 50.5 57.1 78.9

OURS 71.3 57.2 67.1 84.9

18

