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ABSTRACT

Vector quantization is a technique in machine learning that discretizes continuous
representations into a set of discrete vectors. It is widely employed in tokeniz-
ing data representations for large language models, diffusion models, and other
generative models. Despite its prevalence, the characteristics and behaviors of
vector quantization in generative models remain largely underexplored. In this
study, we systematically investigate the issue of collapses in vector quantization,
where collapsed representations are observed across discrete codebook tokens and
continuous latent embeddings. By leveraging both synthetic and real datasets, we
identify the severity of each type of collapses and the conditions leading to these
collapses, as well as analyze their underlying causes. Accordingly, we propose
potential solutions aimed at mitigating these collapses. To the best of our knowl-
edge, this is the first comprehensive study examining representation collapsing
problems in vector quantization.

1 INTRODUCTION

Vector Quantization (VQ) technique (Gray, 1984), which discretizes data representations, has be-
come a widely used tool in different aspects of machine learning, including but not limited to to-
kenization, information bottlenecking, and latent representation. VQ efficiently compresses and
represents data by dividing the continuous data space into a limited number of regions and using
representative points within these regions to approximate the original data, which converts the orig-
inal continuous representation into a discrete form. This method not only enhances computational
efficiency but also increases model robustness by reducing sensitivity to minor variations in data.

VQ offers a broad spectrum of applications across various domains, especially by tokenizing con-
tinuous representation into discrete space. In the field of computer vision, VQ-based tokenization
supports high-quality image generation by compressing images into low-dimensional discrete tokens
(Van Den Oord et al., 2017; Chang et al., 2023; Esser et al., 2021; Ramesh et al., 2021). Moreover,
in audio processing, VQ tokenization enhances the naturalness and expressiveness of synthesized
sounds (Chung et al., 2020; Dhariwal et al., 2020). Another significant advantage of VQ-based to-
kenization is its support for multimodal learning, which simplifies the learning and integration of
features across different data sources by mapping them into the same discrete space. This capability
not only strengthens the model’s ability to handle complex data but also enhances its flexibility and
efficiency in multi-domain applications (Ramesh et al., 2021).

Despite the prevalence and potentials of VQ across various fields in machine learning, challenges
involving quantization errors and insufficient representational capacity have been observed that limit
its further development and application. For instance, when applying VQ to image generation tasks,
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Figure 1: Representation collapse types in vector quantization. On the left, Tokens Collapse is
illustrated, where a subset of tokens (shown in red) collapses, leaving fewer codes for other peaks
and losing diversity compared to normal embeddings (in grey). On the right, Embeddings Collapse
is shown, where a large portion of the embedding space (in green) collapses into a limited set of
representations losing out on important information present in other modes. Both phenomena lead
to a degradation in the quality of learned representations.

these challenges may cause the generated results to be overly uniform, lacking the necessary diver-
sity and precision, which impacts the practicality and scalability of VQ technique.

In this study, we identify representation collapsing issues associated with VQ, that can potentially
lead to decreased output diversity, uneven quality, loss of certain modes compared to the original
data, and the generation of distorted modes. These collapsing issues can be categorized into two
levels: a) Tokens Collapse: A disproportionate number of tokens are allocated to only a few em-
beddings, leaving other embeddings with few codes. As shown in Fig. 1 (left), a large number of
tokens are concentrated at the central peak of embeddings distribution, rather than being proportion-
ally and evenly distributed across the peaks according to the embedding distribution. This results
in a lack of sufficient tokens to represent certain data modes, leading to poor representation and a
loss of diversity. b) Embeddings Collapse: We observe that insufficient encoder parameters can
also lead to inadequate representation during VQ process. It results in the outputs of input data from
different categories clustering together after being processed by the encoder, hindering the learning
of discrete representations during the VQ process, eventually leading to embeddings collapse. As
shown in Fig. 1 (right), the distribution of collapsed embeddings from an encoder with insufficient
parameters, compared to the distribution of normal embeddings from an adequately parameterized
encoder, has fewer modes (peak numbers). This poses a challenge to VQ in learning distinctive and
meaningful discrete representations.

To address these issues, we conducted detailed experiments to analyze the causes of each type of
collapse and proposed corresponding solutions. First, for tokens collapse, we found that the com-
monly used initialization of the tokens, which is based on the output of an untrained encoder, can
lead to this issue. The untrained encoder does not yet understand the semantics of the data, resulting
in embeddings lacking distinction and clustering together. Fig. 2 shows the squeezed embeddings
from the untrained encoder’s initialization. This clustered initial distribution is deviated from the
ideal, dispersed distribution, which makes it difficult to effectively train the tokens and eventually
leads to tokens collapse. To counter this, we propose a simple yet highly effective strategy: pretrain
without VQ, then fine-tune with VQ. This approach allows the tokens to be initialized based on
the semantics of the data as understood by the pretrained encoder, thereby reducing resistance in
VQ training. Our solution exhibits a trend of performance improvement as the number of tokens
increases, surpassing the baseline by leveraging the benefits of increasing codebook size. Further-
more, for embeddings collapse, since we found that insufficient encoder parameters could result in
weakening the encoder’s perceptual abilities, it is noteworthy that increasing the encoder’s parameter
count can mitigate this issue in practical applications of vector quantization.

In summary, our work aims to systematically investigate the causes of the aforementioned two levels
of collapses and to propose appropriate solutions accordingly. The contributions are three-fold:
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Figure 2: Distribution of untrained and trained encoder’s output. (a) Untrained encoder’s output
has fewer peaks than 10 peaks of input and clusters around a relatively small range. (b) Trained
encoder’s output displays 10 peaks which is the same as the input.

• Our research systematically identifies two types of collapsed representation in vector quantiza-
tion: tokens collapse and embeddings collapse.

• We conducted extensive experiments to thoroughly analyze the causes of the two collapses, elu-
cidating how these factors contribute to collapses and ultimately hinder VQ performance.

• Based on our analyses, we proposed potential solutions to address each type of collapse, shedding
light on further improvements and applications of VQ.

2 PRELIMINARIES

2.1 VECTOR QUANTIZATION

We define the VQ-VAE as following: an encoder Eθ, a decoder Dθ, and a set of tokens T =
{t1, t2, . . . , tS}. The token set T constitutes the codebook, which is utilized to store the discretized
representations. The encoder is responsible for mapping the raw data X = {x1, x2, . . . , xN} to
a set of continuous representations Z = Eθ(X), where Z = {z1, z2, . . . , zN}. And the decoder
reconstructs the data X ′ = Dθ(Ẑ) based on the set of discretized representations Ẑ, where Ẑ =
{ẑ1, ẑ2, . . . , ẑN}. The process of tokenizing a continuous representation zj to discrete representation
ẑj is as following:

ẑj = arg min
tk∈T

∥zj − tk∥, (1)

where tk is a token in token set T and k is the index of tk in the codebook. This quantization
process is achieved by finding the nearest token tk in T . In addition, to differentiate from “codebook
collapsing”, which denotes the problem of low utilization rates of codes within the codebook, we
employ another widely used term “token” instead of “code” to represent the vectors of discrete
representations in the codebook.

2.2 EXPERIMENT SETTINGS

We conduct experiments on synthetic and real-world data to show the two types of collapses and
further investigate the reasons as well as validate the effectiveness of our proposed solutions. Our
synthetic dataset comprises ten classes, each containing an equal number of samples. The uniform
class distribution aims to highlight disproportionate tokens distribution, making the collapse phe-
nomenon more observable. For experiments on synthetic dataset, we generate data with different
dimensions to investigate the collapses under different complexity of data. In addition, we adopt
t-SNE decomposition to visualize synthetic data exceeding three dimensions. Furthermore, we use
CIFAR-10 dataset for experiments on real-world data. The codebook usage and model performance
are evaluated by perplexity and MSE respectively.

Throughout the experiment, we adopt the K-means based update method for codebook (Van
Den Oord et al., 2017), which updates the tokens by finding the cluster centers of the encoder
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Figure 3: Tokens collapse and results of our pretraining solution on synthetic data. The com-
parison between results with and without our pretraining solution demonstrates that the untrained
encoder is able to result in tokens collapse and our pretraining solution is effective.

outputs. Moreover, we also use K-means initialization method proposed by SoundStream (Zeghi-
dour et al., 2021). It applies K-means to get centroids of encoder output, which are used to initialize
codebook. Although this method achieved some success, we find that initializing with an untrained
encoder could lead to tokens collapse.

3 COLLAPSING PROBLEMS AND SOLUTIONS

3.1 TOKENS COLLAPSE

Tokens collapse manifests as a disproportionate concentration of the tokens distribution around a
subset of the encoder output embeddings. This collapse results in a poor representation since the
ideal scenario would involve a fitting distribution of tokens and embeddings that aligns more closely.
As demonstrated in Fig. 3 (a), (c), and (e), embeddings assigned only a few tokens exhibit severely
insufficient representations, which leads to the corresponding reconstructed distribution being nar-
rower, compared to the reconstruction of more equitable tokens distribution (Fig. 3 (b), (d), and (f)),
indicating the loss of diversity.

What causes tokens to collapse? We observe that during the initialization of codebook, tokens often
cluster within a very small range, leading to early tokens collapse. As shown in Fig. 2, compared to
trained encoder (Fig. 2 (b)), the distribution of untrained encoder’s outputs cluster between −0.10 to
0.20 (Fig. 2 (a)) and has only 5 obvious peaks while the input dataset contains 10. This phenomenon
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Figure 4: (a) As the total number of tokens increases, the MSE and perplexity for pretrained VQ-
VAE and original VQ-VAE models reveal distinct behaviors. From 212, the original VQ-VAE start
to suffer from severe token collapse due to dense tokens, causing MSE and perplexity to stagnate.
Conversely, the pretrained VQ-VAE addresses this issue, resulting in continually decreasing MSE
and increasing perplexity. (b) The hidden size of encoder significantly influences the performance
of VQ-VAE. Insufficient parameters prominently results in an embedding collapse problem.

is primarily due to using outputs from an untrained encoder for initialization: an untrained encoder
fails to understand the input data, resulting in most data being encoded into similar embeddings.

Building on these observations, we hypothesize that if tokens are initialized based on encoder that
has learned semantic distinctions and its output embeddings are dispersed, it would enhance the
semantic distinction among tokens and thus control tokens collapse. Consequently, we propose a
straightforward yet effective method to mitigate tokens collapse: pretrain without VQ, then fine-tune
with VQ. It first trains an autoencoder, and then trains the VQ-VAE initialized with the weight of the
autoencoder trained at the first stage. Pretraining the encoder allows it to discern differences in input
data, resulting in more distinctly spaced embeddings, providing a robust foundation for initializing
the tokens, as demonstrated in Fig. 2 (b).

3.1.1 EXPERIMENTS ON SYNTHETIC DATASET

To validate our hypothesis regarding the causes of tokens collapse and the effectiveness of our pro-
posed solution, we conducted ablation studies with and without pertaining under different input data
and token dimensions. In Fig. 3, settings (a), (c), and (e) represent commonly used methods with-
out pertaining, compared to the settings (b), (d), and (f) which adopt our pretraining solution. In
addition, results under different input and token dimensions are included.

The experiment results under 2-dim synthetic dataset is shown in Fig. 3, (a) and (b). Comparisons
between (a) and (b) demonstrates that, with our pretraining solution, the distribution of tokens is
more uniform and the reconstruction distribution covers closer to the original data, indicating the
effectiveness of our solution for tokens collapse.

Even at higher input data dimensions and increased token dimensions, we observed that tokens
collapse problem persists, and our solution maintains high effectiveness. As shown in Fig. 3, in
the comparison between (c) and (d) for 3-dimensional input data, and between (e) and (f) for 8-
dimensional input data, the issue of tokens collapse can be observed, as well as the problem where
the reconstructed data fails to adequately cover the original input data. It also shows that these issues
were effectively mitigated when adopting our solution.
3.1.2 EXPERIMENTS ON REAL-WORLD DATASET

To validate that our solution can address tokens collapse under real data conditions, we conducted
corresponding experiments on CIFAR-10 dataset. Additionally, we hypothesize that given a fixed di-
mensionality of the representation space, an increase in the number of tokens tends to facilitate their
clustering, thereby making tokens collapse more pronounced. Under these conditions, it is likely
that the benefits of our solution become more evident. Therefore, we evaluated the performance of
our solution compared to the absence of it across varying token quantities.
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Figure 5: Embeddings collapse problem on synthetic data. Compared to the encoder with high
capacity (hidden size 32), encoder with low capacity (hidden size 4) exhibits embeddings collapse.

As shown in Fig. 4 (a) (left), it is observable that at lower token numbers, our solution exhibits
a slight performance disadvantage compared to the absence of it. However, as the token number
increases, our method maintains a trend of performance improvement, whereas the original VQ-
VAE encounters bottlenecks at 4096 tokens, struggling to achieve further enhancements. Eventually,
with the increase in token number, the performance of our method significantly surpasses that of the
original approach with lower MSE and higher codebook perplexity.

One possible reason our method underperforms the original approach at low token numbers is the
gap between the discrete representations learned during pretraining and the continuous representa-
tions during finetuning, which poses challenges to the VQ learning process. However, this negative
impact is outweighed by the benefits of our solution as the codebook size increases. Overall, our ap-
proach not only addresses tokens collapse but also unleashes the potential of VQ, further leveraging
the benefits of a large codebook. Additionally, exploring how to mitigate the performance gap when
the token number is low remains a worthy avenue for further investigation.

3.2 EMBEDDINGS COLLAPSE

As discussed in the introduction, insufficient parameters of the encoder could lead to embeddings
collapse during the VQ process. This observation suggests the importance of appropriately sizing
models and offers insights and rationale for balancing model complexity with computational effi-
ciency to optimize comprehensive performance and prevent collapses in VQ applications.

We conducted an in-depth investigation and validation of this issue on both synthetic dataset and the
real-world dataset. We adjusted the encoder’s capacity by reducing the parameters of the standard
VQ-VAE’s encoder (without using our pretraining solution). The overall results demonstrate that
insufficient encoder capacity is able to result in the embeddings collapse problem.

Experiment results on synthetic data, as shown in Fig. 5 (b), show that with an encoder hidden
size of 32, the distribution of embeddings exhibits clear differentiation, which aids in the learning
of discrete representations (tokens). Consequently, the reconstruction results do not contain any
outputs that fall outside the distribution of the original data. However, when the encoder’s capacity
is insufficient (hidden size=4), as shown in Fig. 5 (a), the output embeddings from the encoder tend
to have most of their peaks merged together, and parts of the tokens distribution lie outside the
embeddings distribution. This leads to the embeddings collapse issue that reconstruction contains
erroneous results which fall outside the original input data distribution.

We further investigate embeddings collapse problem on real-world dataset, CIFAR-10. We adjust
encoder’s capacity by changing the hidden layer size of the encoder. As shown in Fig. 4 (b), it can
be observed that decreasing the size of the encoder undermines the reconstruction performance with
increased MSE, indicating that insufficient capacity of the encoder can lead to embedding collapse
on real-world data.

Therefore, for specific applications of VQ, a guiding suggestion is to ensure the model has sufficient
capacity, such as by adding an additional network layer before quantization.

6



Published as a conference paper at NeurIPS 2024 Workshop

4 RELATED WORKS

Vector Quantization is foundational in data compression and signal processing per Shannon’s rate-
distortion theory (Gersho & Gray, 2012) (Cover, 1999), traditionally relied on methods like K-means
clustering (Macqueen, 1967) but faced high complexity with high-dimensional data (Le Tan et al.,
2018). To mitigate this challenge, DeepVQ (Le Tan et al., 2018) improved efficiency by mapping
data to lower-dimensional latent spaces before quantization. Moreover, (Van Den Oord et al., 2017)
proposed VQ-VAE which integrates VQ with variational autoencoders, using a straight-through esti-
mator (Bengio et al., 2013) to handle discrete variables. To refine VQ methods for improved perfor-
mance, variants such as Residual Quantization Lee et al. (2022), Product Quantization (Chen et al.,
2020), and Soft Convex Quantization (Gautam et al., 2023) further enhanced representation capac-
ity and efficiency. Recent advances incorporate attention mechanisms and transformer architectures
(Vaswani, 2017) (Yu et al., 2021) to dynamically select codebooks and capture global data depen-
dencies. Recent works also explore per-channel codebooks (Hsu et al., 2024) and neural network
variants of residual quantization (Huijben et al., 2024) to predict specialized codebooks, enhancing
the model’s expressive power.

VQ has been extensively applied across various domains. In natural language processing, VQ fa-
cilitates sequence modeling (Kaiser et al., 2018) enhancing tasks such as language modeling and
machine translation. In computer vision, VQ has significantly advanced image generation and com-
pression techniques (Esser et al., 2021). Similarly, in audio processing, VQ techniques have captured
complex temporal dependencies (Dhariwal et al., 2020). Furthermore, in multimodal applications,
VQ supports the integration of different data types through shared discrete representations (Ramesh
et al., 2021).

Despite these advancements, VQ methods encounter challenges that restrict their broader applica-
tion, including but not limited to codebook collapse, training instability, and computational over-
head. Extensive research has been conducted on solving the codebook collapse problem, where
only a subset of tokens are utilized leading to inefficient representation usage and reduced diver-
sity in outputs, by reducing token dimension (Yu et al., 2021), orthogonal regularization loss (Shin
et al., 2023), multi-headed VQ (Mama et al., 2021), finite scalar quantization (Mentzer et al., 2023),
and Lookup Free Quantization (Yu et al., 2023). Recent methods like (Goswami et al., 2024) and
(Baykal et al., 2024) also strive to enhance tokens utilization efficiency. However, beyond the widely
recognized issue of codebook collapse, our work identifies, investigates, and proposes potential so-
lutions for collapses of tokens and reconstruction, which pose serious challenges to VQ learning and
merit attention.

5 METHODS

5.1 VECTOR QUANTIZATION

We employ VQ-VAE to conduct vector quantization to investigate the collapsing issues. For code-
book initialization, we adopt the widely used K-means initialization strategy (Zeghidour et al.,
2021). It uses the encoder output Z = {z1, z2, . . . , zN} and perform K-means algorithm to ini-
tialize the tokens T = {t1, t2, . . . , tS}, where N is the number of encoder output and S is the
number of tokens. The initialization aims to minimize the total distance from each vector zj to its
nearest token tk. The optimizing function is shown in equation 2,

min

N∑
j=1

S∑
k=1

rjk∥zj − tk∥2, (2)

where rjk = 1 if zj is assigned to cluster center tk, otherwise rjk = 0 .

Moreover, the widely adopted VQ-VAE optimization objective comprises reconstruction loss
Lrecon = ∥X − X̂∥2, codebook loss Lcommit = 1

N

∑N
j=1 ∥sg(zj) − tjk∥2, and commitment loss

Lcommit =
1
N

∑N
j=1 ∥zj − sg(tjk)∥2, where sg(·) denotes the stop-gradient operation and tjk means

the token selected by zj . Additionally, we adopt the statistical approach (Van Den Oord et al., 2017)
to update the codebook instead of the codebook loss term. Specifically, each encoder output zj
is assigned to subsets Zk = {z1k, z2k, z3k, . . .} based on nearest neighbor queries within the set
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T = {t1, t2, . . . , tS}, where Zk comprises embeddings closest to tk. Each tk serves as the cluster
center for Zk, which receives updates accordingly. However, due to the necessity of training models
using minibatches, exponential moving averages (EMA) are utilized to accommodate batch updates.
Under EMA framework, the sum and size of Zk as mk and lk. The statistical update process is
formalized by the following equation 3 to 5:

M
(o)
k = γM

(o−1)
k + (1− γ)m

(o)
k , (3)

L(o) = γL
(o−1)
k + (1− γ)l

(o)
k , (4)

t
(o)
k =

M (o)

L(o)
, (5)

where o is the index of iteration and M as well as L are respectively recordings of m and l. The γ
is the decay rate to control the speed of update.

5.2 IMPLEMENTATION DETAILS

Datasets Our synthetic dataset includes 10 clusters, each with 1,000 data points sampled from a
Gaussian distribution and standardized using Standard Scaler. We construct different synthetic data
with different dimension (2, 3, 4, and 8). We use CIFAR-10, which consists of 60,000 32x32 color
images divided into 10 classes, to investigate our proposed collapses and validate corresponding
solutions on real-world data.

VQ-VAE For our synthetic dataset, our VQ-VAE comprises an MLP-based encoder/decoder with
three linear layers and uses the ReLU activation function. Training is facilitated by the AdamW
optimizer, with a learning rate of 0.001. Additional specifications include a codebook size of 128, a
hidden dimension of 32, a batch size of 256, a beta of 0.25, and a decay rate (γ for EMA) of 0.9. For
CIFAR-10, our VQ-VAE adopts downsampling using a CNN with a downsample channel of 128,
and the model includes two residual blocks with a hidden channel size of 64. The codebook size is
set at 512 with a token dimension of 64. The learning rate is 3e-4, using the Adam optimizer with
amsgrad set to true. The beta is 0.25 and the decay rate is 0.99.

Tokens Collapse Our solution for tokens collapse comprises pretraining an autoencoder, then fine-
tuning a VQ-VAE initialized with the pretrained autoencoder’s weight. On the synthetic dataset,
the autoencoder is trained for 100 epochs. The fine-tuned VQ-VAE and the original VQ-VAE are
trained for 100 and 200 epochs respectively. We also explore various data dimensions (2, 3, and 8)
with corresponding token sizes of 1, 1, and 4. For experiments on CIFAR-10, the codebook size is
varied from 16 to 65,536, with embedding and token adopting the size of 32. And we pretrain AE
for 150 epochs and fine-tune the VQ-VAE for 150 epochs.

Embeddings Collapse The hidden size of the decoder is maintained while the encoder’s hidden
size is reduced to 8. These experiments are repeated three times with different seeds over 200
epochs. For the real dataset, the channel size of downsampling part is gradually reduced from 64 to
2 across 300 epochs.

6 CONCLUSION

In this work, we provide an in-depth examination of representation collapsing problems in vector
quantization, identifying two levels of collapses, including tokens and embeddings collapses, and
investigate their detrimental impacts on VQ. Through detailed analysis with both synthetic and real-
world data, we pinpoint the causes of these collapses and introduce potential solutions, which shed
light on further improvements and applications of VQ. While our work systematically explores these
collapses and offers potential solutions, growth opportunities abound. For example, the transition
from continuous to discrete representations in our solution, when pretraining without VQ followed
by fine-tuning with VQ, introduces a representation gap that needs addressing. In the future, we plan
to further explore the impact and solutions for these collapses in generative models, such as LLMs
and diffusion models.
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Lijun Yu, Yong Cheng, Kihyuk Sohn, José Lezama, Han Zhang, Huiwen Chang, Alexander G
Hauptmann, Ming-Hsuan Yang, Yuan Hao, Irfan Essa, et al. Magvit: Masked generative video
transformer. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, 2023.

Neil Zeghidour, Alejandro Luebs, Ahmed Omran, Jan Skoglund, and Marco Tagliasacchi. Sound-
stream: An end-to-end neural audio codec. IEEE/ACM Transactions on Audio, Speech, and
Language Processing, 2021.

10


	Introduction
	Preliminaries
	Vector Quantization
	Experiment Settings

	Collapsing Problems and Solutions
	Tokens Collapse
	Experiments on Synthetic Dataset
	Experiments on Real-world Dataset

	Embeddings Collapse

	Related Works
	Methods
	Vector Quantization
	Implementation Details

	Conclusion

