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Abstract

In this paper, we propose a new acquisition function based on local search for active
super-level set estimation. Conventional acquisition functions for level set estimation prob-
lems are considered to struggle with problems where the threshold is high, and many points
in the upper-level set have function values close to the threshold. The proposed method
addresses this issue by effectively switching between two acquisition functions: one rapidly
finds local level set and the other performs global exploration. The effectiveness of the
proposed method is evaluated through experiments with synthetic and real-world datasets.
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1. Introduction

In the field of materials science, it is often common to assess the quality of manufactured
materials based on whether the measured physical properties exceed a certain threshold. For
example, in the manufacturing process of multicrystalline silicon ingots for solar cells, only
the region where a physical property called “carrier lifetime”, measured by microwave photo-
conductivity decay, exceeds a certain threshold is used in the actual product (Hozumi et al.
(2023)). Here, we represent experiments like the one mentioned above as an unknown
black-box function f , where the input is the experimental conditions and the output is the
physical property value. Then this problem can be seen as the task of identifying a set of
candidate conditions for which the value of f exceeds a certain threshold. Such a problem
is referred to as a level set estimation problem, and an approach called active level set
estimation (Willett and Nowak (2007); Gotovos (2013); Zanette et al. (2019); Inatsu et al.
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(2020)) has been proposed as a method to perform accurate level set estimation with as few
experiments as possible.

In active level set estimation, some acquisition functions such as Straddle (Bryan et al.
(2005); Gotovos (2013)) and RMILE (Zanette et al. (2019)) are primarily used. Straddle is
an acquisition function that specifies the next condition based on the magnitude of predic-
tion uncertainty and the proximity to a threshold for function values. On the other hand,
RMILE is an acquisition function that specifies the next condition based on the expected
improvement in the super-level set. However, these acquisition functions tend to exhibit
unstable behavior in problems where the threshold is close to the maximum value of the
black-box function and the upper-level set is significantly smaller than the lower-level set.

In this paper, to address the above problem, we propose Localized MILE acquisition
function, which is a modification of the MILE acquisition function. Localized MILE is a so-
called “local” acquisition function that excels in discovering subsets of the upper-level set.
In our proposed method, we efficiently estimate the super-level set by combining Localized
MILE, which performs local search, with Uncertainty Sampling, which performs global
exploration. We demonstrate the effectiveness of the proposed method through experiments
using synthetic data and real-world data.

2. Active Level Set Estimation

Let us formulate the active level set estimation problem. The target function is f : X → R.
For a given threshold h ∈ R, the level set of f is defined by {x ∈ X |f(x) > h}. More
concretely, we say the super level set of f . The observation at x ∈ X is given by y = f(x)+ϵ,
where ϵ is a Gaussian noise with mean 0 and variance σ2

ϵ . The problem is to find the level
set using the observation (xi, yi), i = 1, . . . , n. In practice, the function f is unknown, and
the observation is costly. Such a function is called the black-box function. We want to
suppress the observation cost as low as possible while keeping the estimation accuracy of
the level set of the black-box function. When we select the observation points x1, . . . ,xn

in an active way, the problems called the active level set estimation.

2.1 Gaussian Process Model as a Prior of Black-Box Function

The Gaussian Process (GP) model is a versatile method of dealing with black-box functions.
For the function f , the prior distribution GP(µ0, k0) is assumed. This means that for any
points x′

1, . . . ,x
′
m ∈ X , the prior distribution of (f(x′

1), . . . , f(x
′
m)) is given by the multino-

mial normal distribution with the mean vector (µ0(x
′
1), . . . , µ0(x

′
m)) and covariance matrix

(k0(x
′
i,x

′
j))i,j=1,...,m. See (Rasmussen and Williams, 2006) for details of GP modeling.

We assume that the black-box function f as a realization from GP(µ0, k0). Given
the observation (xi, yi), i = 1, . . . , n with yi = f(xi) + ϵi, the posterior distribution of
(f(x′

1), . . . , f(x
′
m)) is the Gaussian distribution with mean (µn(x

′
1), . . . , µn(x

′
m)) and the

variance-covariance matrix (kn(x
′
i,x

′
j))i,j=1,...,m, where µn(x) = µ0(x) + k0(x,x1:n)(Kn +

σ2
ϵ I)

−1(y1:n − µ0(x1:n)) and kn(x,x
′) = k0(x,x

′) − k0(x,x1:n)(Kn + σ2
ϵ I)

−1k0(x1:n,x
′)

for y1:n = (y1, . . . , yn)
T ,µ0(x1:n) = (µ0(x1), . . . , µ0(xn))

T ,k0(x,x1:n) = k0(x1:n,x)
T =

(k0(x,x1), . . . , k0(x,xn)), and Kn = (k0(xi,xj))i,j=1,...,n. An estimator of the level set
is given by {x ∈ X | µn(x) − β

√
kn(x,x) > h} with an appropriate β > 0. In the
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next subsection, we introduce some existing acquisition functions for the active level set
estimation with GP modeling.

2.2 Acquisition Function for Active Level Set Estimation

Let us briefly introduce Maximum Improvement in Level-Set Estimation (MILE) acquisition
function tailored for active super-level set estimation. Suppose that input points are selected
from a predefined finite subset Ω of X . Remember that the posterior mean is µn(x) and
the posterior standard deviation is σGP(x) =

√
kn(x,x). When an additional observation

(x+, y+) is obtained, the posterior standard deviation is updated to σGP+ , which does not
depend on y+.

Let us define IGP as the subset in Ω currently classified in the level set of the black-box
function and let |IGP| be the cardinality of IGP. Suppose that IGP is updated to IGP+

when the outcome y+ is observed at an additional input point x+. The MILE acquisition
function (Zanette et al., 2019) is then defined as αMILE(x

+) = Ey+|x+ [|IGP+ |]− |IGP|. The
input point that maximizes the MILE attains the maximum expected improvement of the
level set. Under the GP model, the above conditional expectation has a simple analytic
expression, further investigated in the next section. To study theoretical properties of the
MILE, Zanette et al. (2019) introduced the robust variant of MILE (RMILE) as the MILE
with uncertainty sampling based on σGP. See Section 4 of (Zanette et al., 2019) for details.

3. Proposed Method: Localized MILE

In the MILE, the conditional expectation of the size of the updated level set Ey+|x+ [|IGP+ |]
is used for the input selection. The MILE computes the contribution of all points x ∈ Ω
to the conditional expectation using the posterior correlation between x and the candidate
point x+. The conditional expectation is computed by

Ey+|x+ [|IGP+ |] =
∑
x∈Ω

∫ ∞

yLGP(x,x
+)

p(y+|x+)dy+, (1)

where yLGP(x,x
+) =

σ2
GP(x

+)+σ2
ϵ

kn(x,x+)
{h+ βσGP+(x)− µn(x)} + µn(x

+); See Appendix A in

(Zanette et al., 2019).
Though the GP model enables us to compute the conditional expectation Ey+|x+ [|IGP+ |],

the contribution from the point x far from x+ is thought to be hard to evaluate. For this
reason, we propose a localized variant of the MILE as

αloc-MILE(x
+) =

∑
x∈Ω

kn(x,x+)>δ

∫ ∞

yLGP(x,x
+)

p(y+|x+)dy+ − |IGP| (2)

=
∑
x∈Ω

kn(x,x+)>δ

Φ

(√
σ2
GP(x

+) + σ2
ϵ

kn(x,x+)
{µGP(x)− βσGP+(x)− h}

)
.

The second expression in the above is obtained by following the computation by Zanette et al.
(2019). Note that the original MILE (1) takes the sum over all points in Ω. On the other
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hand, in the localized MILE, only the input points x satisfying kn(x,x
+) > δ contribute

to the acquisition function. In such a case, the observation y+ at x+ will provide reliable
information about whether x belongs to the level set or not. The point x+ with a small
kn(x,x

+) tends to be far from x. For such a point, y+ may not be informative to determine
whether f(x) ≥ h. In numerical experiments, we examined the localized MILE with δ = 0
and δ = −0.005.

Let us think of an interpretation for the localized MILE. The data distribution is
assumed to be p(y+,x+,x) = p(y+|x+,x)p(x+)p(x) = p(y+|x+)p(x+)p(x), where the
marginal probability p(x) and p(x+) are the uniform distribution on Ω. Let us define the
event, R = {(y+,x+,x) | y+ ∈ [ yLGP(x,x

+),∞)}. Then, a simple calculation yields that
the integral in (2) equals the conditional expectation |Ω|P (y+ ∈ R, kn(x,x

+) > δ | x+),
while the conditional expectation in MILE equals |Ω|P (y+ ∈ R | x+). The input point x+

selected by optimizing αloc-MILE is expected to take not only the expected improvement but
also the reliability of the estimated improvement into account.

The naive localization of the MILE tends to seek only a local region in Ω. That is, a kind
of mode collapse can occur. To enhance the global search, we introduce the uncertainty
sampling to the localized MILE as follows. Let us define IGP− as the estimated level set at
one step before the currently obtained IGP. Then, the acquisition function of the localized
MILE with historical dependency is defined by

αhist
loc-MILE(x

+) =

{
αloc-MILE(x

+), |IGP| > |IGP− |,
σGP(x

+), o.w.

By introducing the historical dependency, the exploration effect is boosted.

4. Numerical Experiments

In this section, we will conduct a comparative evaluation between the proposed method and
existing methods through experiments using both synthetic and real-world data.

4.1 Experimental Setup

Synthetic Data: We consider the following one-dimensional function as a true black-box
function， f(x) = 5 + 1.5 sin (5x)− 2.2 cos (2.3(x− 1)) + exp (x)

20 , 0 ≤ x ≤ 8．We used each
grid point obtained by dividing the interval [0, 8] into 200 equal parts as a candidate set of
inputs. Furthermore, we conducted the analysis under experimental settings consisting of
combinations of high threshold value (h = 8.0) and low threshold value (h = 5.0), as well as
large observation error variance (σ2

ϵ = 0.5) and small observation error variance (σ2
ϵ = 0.1).

Real World Data: In this study, we use quality data of silicon (Si) crystals used in
solar photovoltaic modules (Miyagawa et al., 2021a,b). This data consists of 24 pairs of
(x, y), where x is a 7-dimensional vector representing process temperature, process time,
H2 pressure, H2 flow rate, RF power, electrode distance, and ALD cycle count, and y
is a 1-dimensional continuous quantity called carrier lifetime. We specifically focused on
process temperature and H2 pressure and at first fitted a Gaussian process model using
the data of 24 points to predict the carrier lifetime values from these two features. We
treated the predictive mean function of this GP model as a pseudo ground truth function
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Table 1: F-values and their standard deviations of each method after conducting 100 observations.
The alphabets following the dataset names correspond to the settings in the figures.

data \ method
loc-MILE w/hist.dep.

(δ = 0)
loc-MILE w/hist.dep.

(δ = −0.005)
RMILE Random

synthetic (a) 0.710 ± 0.031 0.705 ± 0.021 0.721 ± 0.024 0.701 ± 0.024
synthetic (b) 0.659 ± 0.066 0.723 ± 0.077 0.710 ± 0.039 0.645 ± 0.066
synthetic (d) 0.974 ± 0.012 0.969 ± 0.004 0.970 ± 0.003 0.965 ± 0.005
synthetic (e) 0.945 ± 0.009 0.943 ± 0.008 0.943 ± 0.013 0.938 ± 0.0
real-world (a) 0.902 ± 0.001 0.903 ± 0.002 0.905 ± 0.001 -
real-world (b) 0.872 ± 0.008 0.865 ± 0.006 0.869 ± 0.006 -

and conducted experiments by generating pseudo data from it. Specifically, we took inputs
corresponding to process temperature on 21 equally spaced grids within the range of 50-300
[◦C] and inputs corresponding to pressure on 19 equally spaced grids within the range of
100-1000 [Pa]. By arranging these inputs into 2-dimensional vectors, we generated a total
of 399 2-dimensional input candidate points. Furthermore, we used the neural network’s
output for these candidate points as the pseudo y-values. The thresholds were determined
using the 50-percentile and 80-percentile relative to the maximum obtained y-values.

4.2 Results

We compared our proposed method, localized MILE with historical dependency (loc-MILE
w/hist.dep. (δ = 0,−0.005)), with RMILE and random search (Random). We conducted
10 trials for each configuration and summarized the results.

Figure 1 shows the evolution of F-values for four methods across different settings of
synthetic data. A notable point is that in problems with a high threshold and a large
observation error variance (as shown in plots (b) and (c)), the proposed method exhibits
significantly better performance. Furthermore, given that the F-value rises quickly with
a small number of observations, it is considered that the loc-MILE effectively captures
local level sets. It also can be observed that in other settings as well, the proposed method
exhibits performance equal to or better than existing methods. Figure 2 shows the evolution
of F-values for three methods (other than Random) across different settings of real-world
data. For this data as well, the localized MILE shows performance comparable to the
RMILE, but the results indicate that there is not much difference between the methods.
This is likely because, as shown in Figure 2(c), the generated pseudo-data formed relatively
simple level sets. The F-values for level set estimation obtained after 100 observations are
shown in Table 1. Overall, the results suggest that the proposed method can estimate the
level set more efficiently compared to existing methods.

5. Concluding Remarks

In this paper, we proposed the Localized MILE acquisition function for active level set
estimation. The proposed method excels in discovering local level sets quickly, based on the
idea of local search. Furthermore, combining with uncertainty sampling, which performs
global exploration, the proposed method can efficiently perform level set estimation without
getting trapped in “local solutions”. As a future work, we will conduct more comprehensive
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Figure 1: Results of synthetic data. The red, yellow, cyan and blue lines represent the F-values of
loc-MILE w/hist.dep.(δ = 0), loc-MILE w/hist.dep.(δ = −0, 005), RMILE and Random.
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Figure 2: Results of real-world data. The red, yellow, cyan lines in (a) and (b) represent the F-
values of loc-MILE w/hist.dep.(δ = 0), loc-MILE w/hist.dep.(δ = −0, 005), RMILE. (c)
shows the true level sets of pseudo real-world data with 80-percentile as threshold.

experiments to provide a detailed evaluation of the proposed method. Additionally, we will
explore theoretical properties such as convergence.
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