
Under review as a conference paper at ICLR 2023

REVISITING DOMAIN RANDOMIZATION VIA RELAXED
STATE-ADVERSARIAL POLICY OPTIMIZATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Domain randomization (DR) is widely used in reinforcement learning (RL) to
bridge the gap between simulation and reality through maximizing its average

returns under the perturbation of environmental parameters. Although effective, the
methods have two limitations: (1) Even the most complex simulators cannot capture
all details in reality due to finite domain parameters and simplified physical models.
(2) Previous methods often assume that the distribution of domain parameters is a
specific family of probability functions, such as a normal or a uniform distribution,
which may not be correct. To enable robust RL via DR without the aforementioned
limitations, we rethink DR from the perspective of adversarial state perturbation,
without the need for re-configuring the simulator or relying on prior knowledge
about the environment. We point out that perturbing agents to the worst states
during training is naı̈ve and could make the agents over-conservative. Hence, we
present a Relaxed State-Adversarial Algorithm to tackle the over-conservatism
issue by simultaneously maximizing the average-case and worst-case performance
of policies. We compared our method to the state-of-the-art methods for evaluation.
Experimental results and theoretical proofs verified the effectiveness of our method.

1 INTRODUCTION

Most reinforcement learning (RL) agents are trained in simulated environments due to the difficulties
of collecting data in real environments. However, the domain shift, where the simulated and real
environments are different, could significantly reduce the agents’ performance. To bridge this “reality

gap”, domain randomization (DR) methods perturb environmental parameters (Tobin et al., 2017;
Rajeswaran et al., 2016; Jiang et al., 2021), such as the mass or the friction coefficient, to simulate
the uncertainty in state transition probabilities and expect the agents to maximize the return over the
perturbed environments. Despite its wide applicability, DR suffers from two practical limitations: (i)
DR requires direct access to the underlying parameters of the simulator, and this could be infeasible
if only off-the-shelf simulation platforms are available. (ii) To enable sampling of environmental
parameters, DR requires a prior distribution over the feasible environmental parameters. However,
the design of such a prior typically relies on domain knowledge and could significantly affect the
performance in real environments.

To enable robust RL via DR without the above limitations, we rethink DR from the perspective of
adversarial state perturbation, without the need for re-configuring the simulator or relying on prior
knowledge about the environment. The idea is that perturbing the transition probabilities can be
equivalently achieved by imposing perturbations upon the states after nominal state transitions. To
substantiate the idea of state perturbations, a simple and generic approach from the robust optimization
literature (Ben-Tal & Nemirovski, 1998) is taking a worst-case viewpoint and perturbing the states
to nearby states that have the lowest long-term expected return under the current policy (Kuang
et al., 2021). While being a natural solution, such a worst-case strategy could suffer from severe
over-conservatism. We identify that the over-conservative behavior results from the tight coupling
between the need for temporal difference (TD) learning in robust RL and the worst-case operation
of state perturbation. Specifically: (1) In robust RL, the value functions are learned with the help
of bootstrapping in TD methods since finding nearby worst-case states via Monte-Carlo sampling
is NP-hard (Ho et al., 2018; Chow et al., 2015; Behzadian et al., 2021). (2) Under the worst-case
state perturbations, TD methods would update the value function based on the local minimum within
a neighborhood of the nominal next state and is, therefore, completely unaware of the value of the

1

Under review as a conference paper at ICLR 2023

Figure 1: We illustrate the over-conservative issue of the naive worst-case state-adversarial policy
optimization using a 4⇥ 4 shortest-path grid world environment. The star, cross, and dot represent
the goal, the trap, and the initial state, respectively. The terminal rewards of the trap and the goal are
�10 and 0. We use an arrow to represent the action that has the highest value at each state. Multiple
arrows in a state indicate that the actions have equal Q-values. We also use the color to indicate the
value of the best action at each state. In (a), the agent trained by the naı̈ve worst-case state-adversarial
approach fails to learn how to reach the goal. What’s worse, under TD updates, the worst-case state
perturbation makes the trap state indistinguishable from other states. As a result, the agent ultimately
learns to move toward the trap state after 12 training iterations. In (b), our relaxed state-adversarial
approach avoids the over-conservatism issue by considering both the average-case and worst-case
environments. We refer readers to Appendix A.1 for the step-by-step evolution of the value functions.

nominal next state. As a result, the learner could fail to identify or explore those states with potentially
high returns. To further illustrate this phenomenon, we consider a toy grid world example of finding
the shortest path toward the goal, as shown in Figure 1(a). Although the goal state has a high value,
the TD updates cannot propagate the value to other states since all nominal state transitions toward
the goal state are perturbed away under the worst-case state-adversarial method. What’s even worse,
the agent ultimately learns to move toward the trap state due to the compounding effect of TD updates
and worst-case state-adversarial perturbations. Notably, in addition to the grid world environment,
such trap terminal states also commonly exist in various RL problems, such as the locomotion tasks
in MuJoCo. As a result, there remains one critical unanswered question in robust RL: how to fully

unleash the power of the state-adversarial model in robustifying RL algorithms without suffering

from over-conservatism?

To answer this question, we introduce relaxed state-adversarial perturbations. Specifically: (1) Instead
of taking a pure worst-case perspective, we simultaneously consider both the average-case and
worst-case scenarios during training. By incorporating the average-case scenarios, the TD updates
can successfully propagate the values of those potentially high-return states to other states and
thereby prevent the over-conservative behavior (Figure 1(b)). (2) To substantiate the above idea,
we introduce a relaxed state-adversarial transition kernel, where the average-case environment can
be easily represented by the interpolation of the nominal and the worst-case environments. Under
this new formulation of DR, each interpolation coefficient corresponds to a distribution of state
adversaries. (3) Besides, based on this formulation, we theoretically quantify the performance gap
between the average-case and the worst-case environments; and prove that maximizing the average-
case performance can also benefit the worst-case performance. (4) Accordingly, we present Relaxed
state-adversarial policy optimization, a bi-level framework that optimizes the rewards of the two cases
alternatively and iteratively. One level updates the policy to maximize the average-case performance,
and the other updates the interpolation coefficient of the relaxed state-adversarial transition kernel to
increase the lower bound of the return of the worst-case environment.

2 RELATED WORK

Robust Markov Decision Process (MDP) and Robust RL. Robust MDP aims to maximize rewards
in the worst situations if the testing environment deviates from the training environment (Nilim &
El Ghaoui, 2005; Iyengar, 2005; Wiesemann et al., 2013). Due to the large searching space, the
complexity of robust MDP grows rapidly when the dimensionality increases. Therefore, Tamar et al.
(2014) developed an approximated dynamic programming to scale up the robust MDPs paradigm.
Roy et al. (2017) extended the method to nonlinear estimation and guaranteed the convergence to
a regional minimum. Afterward, the works of (Wang & Zou, 2021; Badrinath & Kalathil, 2021)

2

Under review as a conference paper at ICLR 2023

study the convergence rate when applying function approximations under assumptions. Derman et al.
(2021) showed that the regularized MDPs are a particular instance of robust MDPs with uncertain
rewards. They solved regularized MDPs rather than robust MDPs to reduce computation complexity.
Grand-Clément & Kroer (2020) developed efficient proximal updates to solve the distributionally
robust MDP via gradient descent and improved the convergence rate. However, although several
approximations were presented, such model environments are still too restrictive, and they cannot be
used to solve real-world problems.

Adversary in Observations. Even a small perturbation to observations may significantly degrade
agents’ performance because deep neural networks are vulnerable to inputs constructed by adversaries
(Huang et al., 2017). Therefore, methods were presented to train agents under environments with
adversarial attacks to improve their robustness (Kos & Song, 2017; Pattanaik et al., 2018). To
guarantee a lower-bound performance, the works of (Lütjens et al., 2020; Wang et al., 2019) adopted
the idea of certified defense used in classification problems. When making discrete actions, agents are
certifiably robust to adversaries in observation within the ✏ distance (Lp-norm). Since most real-world
problems are continuous, there were also methods (Weng et al., 2019; Zhang et al., 2020; Oikarinen
et al., 2021; Zhang et al., 2021) presented to improve agents’ robustness for continuous actions.

Domain Randomization. Environments can induce the uncertainty of transition probabilities. To
simulate this circumstance, one can perturb the environmental parameters of a simulator to reasonably
change transition probabilities when training agents (Huang et al., 2021; Tobin et al., 2017; Jiang
et al., 2021; Igl et al., 2019; Cobbe et al., 2019). Specifically, Tobin et al. (2017) randomly sampled
environmental variables and optimized the agents’ average reward. Given that a significant pertur-
bation may fail the training, Cobbe et al. (2019) increased the level of difficulty step by step when
training agents to improve their average rewards. Jiang et al. (2021) further considered the expected
return in the optimal case and introduced monotonic robust policy optimization to maximize the
average-case and worst-case returns simultaneously. Since perturbing transition probabilities through
environmental parameters demands prior knowledge, Kuang et al. (2021) transferred states to the
nearby local minimum based on gradients obtained from the value function to imitate environmental
disturbance. Igl et al. (2019) injected selective noise based on a variational information bottleneck
and value networks to prevent models from overfitting the training environment. The regularization
helps agents resist the uncertainty of state transition probabilities.

Our method perturbs states through the gradients of the value function, as Kuang et al. (2021) did.
However, pushing states toward the nearby local minimum will make agents over-conservative because
they consider only the worst-case scenarios. We present the relaxed state adversarial perturbation and
optimize both the average-case and worst-case environments to overcome this problem.

3 PRELIMINARIES

A robust Markov decision process (robust MDP) is characterized by a tuple (S,A,P, R, µ, �), where
S is the state space, A is action space, P is the uncertainty set that contains all possible transition
kernels, R : S ⇥A ! [�Rmax, Rmax] is the reward function, µ is the initial state distribution,
and � 2 (0, 1) is the discount factor. Let P0 2 P denote the nominal transition kernel, which
characterizes the transition dynamics of the nominal environment without perturbation. We define
the total expected return under a policy ⇡ and a transition kernel P 2 P as

J(⇡|P) := Es0⇠µ,at⇠⇡(·|st),st+1⇠P (·|st,at)

 1X

t=0

�tR(st, at)

�
. (1)

For ease of exposition, we also define the value function under policy ⇡ and transition kernel P
as V ⇡

P (s) := Eat⇠⇡(·|st),st+1⇠P (·|st,at)

hP1
at=0 �

tR(st, at)|s0 = s
i
. To learn a policy in a robust

MDP, the DR approaches are built on two major design principles: (1) Construction of uncertainty

set: DR presumes that one could have access to the environment parameters of the simulator. The
uncertainty set P is constructed by specifying the possible range of one or multiple environment
parameters, typically based on some domain knowledge. (2) Average-case perspective: DR resorts to
maximizing the average performance with respect to some pre-configured distribution D over the
uncertainty set P , i.e., EP⇠D[J(⇡|P)].

3

Under review as a conference paper at ICLR 2023

4 DOMAIN RANDOMIZATION VIA RELAXED STATE-ADVERSARY

4.1 CONNECTING DOMAIN RANDOMIZATION AND STATE PERTURBATION

Conventional DR methods enforce attacks on state transitions by perturbing the environment parame-
ters of a simulator. This goal can be achieved by perturbing the state after each nominal transition
(Kuang et al., 2021): Let (s, a) be some state-action pair, and � : S ! S be a state perturbation
function. In a nominal environment, the probability of the transition to some state s0 under s, a is
P (s0|s, a). Under the state perturbation �, the probability becomes P (�(s0)|s, a). However, this
state adversarial attack is too effective since a value function considers the expected future return,
and a perturbation to an early state may significantly influence the later states. The over-conservatism
problem therefore occurs. We present a relaxed state-adversarial policy optimization to overcome
the problem. We also prove that the relaxed MDP enjoys two main properties under relaxation: (1)
it stands for the average performance of the uncertainty set; (2) it guarantees the improvement the
performance of the worst-case MDP. Further, we prove that a specific average-case MDP corresponds
to a relaxation parameter. Hence, we propose an algorithm for adapting the relaxation parameters
during training.

4.2 STATE-ADVERSARIAL MDPS AND UNCERTAINTY SETS

State-adversarial attacks perturb the current states to neighboring states with the lowest values. This
perturbation process can be captured by a state-adversarial transition kernel, which connects the
nominal MDP and the resulting state-adversarial MDP. For ease of exposition, for each state s 2 S ,
we define N �(s) := {s0|d(s, s0)  �} to be the �-neighborhood of s, where d(s, s0) can be any
distance metric. In this study, we use L1-norm.
Definition 1 (State Perturbation Matrix). Given a policy ⇡ and a perturbation parameter � � 0, the

state perturbation matrix Z⇡
� with respect to ⇡ is defined as follows: for each pair of states i, j 2 S ,

Z⇡
� (i, j) :=

⇢
1, if j = argmins2N�(i) V

⇡(s),

0, otherwise.
(2)

The justifications for choosing the above surrogate perturbation model are two-fold: (1) The model
can be interpreted as constructing adversarial examples for the true states. (2) The perturbation
model is closely related to the perturbation of environment parameters, which serve as the standard
machinery in the canonical DR formulation, as described in (Kuang et al., 2021).
Remark 1. In continuous state space, the argmin in Equation 2 can be computed by adapting the

fast gradient sign method (FGSM) (Goodfellow et al., 2014). Let V be a value function (i.e., network)

with parameter �, s be a state, and ✏ be the strength of perturbation. FGSM finds the perturbed

state �(s) = s� ✏ · sign(rsV (�, s)) that has the minimum value, where ||s� �(s)||1  ✏, and the

gradient at s is computed using back-propagation.

Definition 2 (State-Adversarial MDP). For any policy ⇡, the corresponding state-adversarial MDP

with respect to ⇡ is defined as a tuple (S,A, P⇡
� , R, µ, �), where the state-adversarial transition

kernel P⇡
� is defined as

P⇡
� (·|s, a) := [Z⇡

�]
>P0(·|s, a), 8(s, a) 2 S ⇥A . (3)

Recall that P0 is the nominal transition kernel. We use the notation P⇡
� = [Z⇡

�]
>P0 in the later

paragraphs for simplicity. Note that the state adversarial transition matrix Z⇡
� depends on the strength

of perturbation �. Each perturbation radius � results in a unique state-adversarial MDP P⇡
� .

Remark 2. The state-adversarial MDP defined in Definition 2 involves perturbation of the true states,
which is fundamentally different from the perturbation of observations (Zhang et al., 2020).
Definition 3 (Uncertainty Set). Given a radius ✏ > 0, the uncertainty set induced by state-adversarial

perturbations, denoted by P⇡
✏ , is defined as

P⇡
✏ := {P⇡

� : P⇡
� = [Z⇡

�]
>P0 and �  ✏}. (4)

4

Under review as a conference paper at ICLR 2023

The adversarial attack transits agents toward low-value states. Agents trained using this state
adversarial MDP would prevent themselves from falling into the worst situation (Kuang et al., 2021).
However, a large ✏ will make agents too conservative and fail to reach any goal state because its value
cannot be propagated to neighboring states by the TD updates (Figure 1). Although using a small ✏
can ease the problem, agents would completely omit the risks outside the bounding area. Besides, this
strategy is unachievable in a discrete environment due to the lower-bound value of ✏. For example,
the agent’s movement in the grid world is one hop and cannot be reduced.
Lemma 1 (Monotonicity of Average Value in Perturbation Strength). Under the setting of state

adversarial MDP, the value of the local minimum monotonically decreases as the bounded radius �
increases. Let x be a positive real number. The reward function J satisfies

J(⇡|P⇡
�) � J(⇡|P⇡

�+x), 8⇡. (5)

The proof is in Appendix A.3. Notably, Lemma 1 indicates that among the transition kernels in the
uncertainty set P⇡

✏ , the worst-case occurs when � = ✏.

4.3 RELAXED STATE-ADVERSARIAL MDPS

We present a relaxation framework to address the over-conservatism issue. To begin with, we consider
a relaxation on the state-adversarial transition kernel as follows:

Relaxed state-adversarial transition kernel. Given ✏ > 0 and ↵ 2 [0, 1], the ↵-relaxed state-
adversarial transition kernel is defined as a convex combination of the nominal and the state-
adversarial transition kernels, i.e.,

P⇡,↵
✏ (·|s, a) = ↵P0(·|s, a) + (1� ↵)P⇡

✏ (·|s, a). (6)

Connecting relaxed state-adversarial MDPs with domain randomization. DR methods demand
a prior distribution for computing the average case performance. Let D be a distribution over the
uncertainty set P⇡

✏ . In the following, we show that applying DR with respect to D is equivalently
cast optimizing an objective under a relaxed state-adversarial transition kernel.
Lemma 2 (Relaxation parameter ↵ as a prior distribution D in domain randomization). For any

distribution D over the state-adversarial uncertainty set P⇡
✏ , there must be an ↵ 2 [0, 1] such that

EP⇠D[J(⇡|P)] = J(⇡|P⇡,↵
✏).

The proof is in Appendix A.4. It is worth noting that different values of ↵ represent different prior
assumptions. For example, ↵ = 1 implies that the prior probability of nominal MDP is 1, whereas
↵ = 0 indicates that the prior probability of the worst-case MDP is 1. In other words, we can control
the value of ↵ to represent different distributions D and train the policies under various environments.
To achieve this goal, we quantify the gap between the average performance EP⇠D[J(⇡̃|P)] and the

worst case performance J(⇡̃|P⇡
✏) when updating the current policy ⇡ to a new policy ⇡̃, and then

apply an optimization technique to maximize both of them. One naı̈ve bound is as follows.
Theorem 1 (A naı̈ve connection between the average-case and the worst-case returns). Given a

nominal MDP with state adversaries, when updating the current policy ⇡ to a new policy ⇡̃, the

following bound holds (Jiang et al., 2021):

J(⇡̃|P⇡
✏) � EP⇠D[J(⇡̃|P)]� 2Rmax

�EP⇠D[dTV(P⇡
✏ kP)]

(1� �)2
� 4Rmax

dTV(⇡, ⇡̃)

(1� �)2
, (7)

where Rmax is the maximum reward, dTV (⇡, ⇡̃) indicates the total variation divergence between ⇡
and ⇡̃, and P⇡

✏ is the worst state-adversarial transition kernels.

Theorem 1 indicates that the gap between the average- and the worst- case performance can be
expressed using the MDP shift EP⇠D[dTV(P⇡

✏ kP)] and the policy evolution dTV (⇡, ⇡̃). The proof
is in Appendix A.5. Note that the bound in Theorem 1 is loose because the value on the right
hand side (RHS) of Equation 7 can be tiny. Specifically, the transition kernel probability shift
EP⇠D[dTV(P⇡

✏ kP)] is multiplied by the total maximum return Rmax
1�� , and the additional denominator

1� � makes the value even smaller since � is usually set to 0.99 in RL applications. As a result, the
bound can be meaningless unless the worst-case MDP P⇡

✏ is very close to the average MDP.

5

Under review as a conference paper at ICLR 2023

Since state perturbation only perturbs states to nearby states, we consider the smoothness of the
reward function and transition property to build a tight connection between the average-case and
the worst-case returns. Specifically, Lipschitz continuity in reward function has been widely used
in the theory of RL (Fehr et al., 2018; Asadi et al., 2018; Ling et al., 2016). The smoothness of the
transition kernel also holds in most of the environments (Shen et al., 2020; Lakshmanan et al., 2015).
For example, in grid-world, the next state must be adjacent to the current state; and in MuJoCo,
the poses of consecutive periods are similar, no matter what the state-action pairs are considered.
Formally, we define this smoothness property of transition kernels as:
Definition 4 (�-Smooth Transition Kernel in State). Let P be a transition kernel and � be a positive

constant. P is a �-smooth transition kernel in state if

ks� s0k  �, (8)
for all a and for all s, s0 with P (s0|s, a) > 0.

With the assumption of Lipschitz continuity in reward function and smoothness of transition kernel,
we arrive at the following bound:
Theorem 2 (Connecting Worst-Case and Average-Case Returns). Given a nominal MDP with two

properties: (1) Reward function of corresponding Markov Reward Process (MRP) with respect to

any policy is an Lr-Lipschitz function. (2) Nominal transition kernel P0 has the smooth transition

property �, where ks� s0k2  �, 8a and 8P0(s0|s, a) > 0. Then, after updating the current policy ⇡
to a new policy ⇡̃, the following bound holds:

J(⇡̃|P⇡
✏) � J(⇡̃|P⇡,↵

✏)� 4�(✏+ �)Lr↵

(1� �)3
� 4(�(✏+ �)Lr + (1� �)2Rmax)dTV(⇡, ⇡̃)

(1� �)3
, (9)

where dTV (⇡, ⇡̃) is total variation divergence between ⇡ and ⇡̃, P⇡,↵
✏ is a relaxed state-adversarial

transition kernel, and P⇡
✏ is a worst-case state-adversarial transition kernel.

The proof is provided in Appendix A.6. Notably, Theorem 2 holds for any relaxation parameter
↵ 2 [0, 1]. We now briefly discuss the technical challenges in the proof: (1) Propagation of state

perturbations across time: The main difficulty lies in the fact that the difference of trajectories
under different MDPs would increase in a rather nonlinear and complex manner as time evolves.
(2) Quantifying the difference in rewards among trajectories generated under different transition

kernels: To measure the difference in rewards under different MDPs, it is necessary to consider not
only the probability difference at time t but also the difference in rewards at different states. Despite
the above challenges, our proof uses the finding that the difference of initial probability of state under
two MDPs P⇡

✏ and P⇡,↵
✏ at time step t can be quantified as ↵�t, where 0  �t  1. Then under the

smoothness conditions of the reward function and the transition matrix, we are able to characterize a
tight bound between the average-case and the worst-case performance.

The intuition of Theorem 2 can be expressed using the terms on the RHS of Equation 9. The first
term is the average performance of all MDPs in the uncertainty set. The second term penalizes the
large value of ↵ because it implies that the relaxed MDP is close to the nominal environment. In
other words, we expect the average case performance to be high while pushing the uncertainty set
close to the worst-case MDP. Finally, the third term prevents a significant update in a single step by
reducing the total variation divergence dTV (⇡, ⇡̃).

4.4 ONLINE ADAPTATION OF THE RELAXATION PARAMETER

We leverage Theorem 2 to address both the average-case and the worst-case performance. Specifically,
we present a bi-level approach to maximize the lower-bound of the worst-case performance (i.e., RHS
of Theorem 2) since the unknowns ↵ and ⇡ are correlated. The two tasks are optimized alternatively
and iteratively. Details are as follows:

• Lower-level task for average-case return: On the lower level, we improve the policy by optimizing
the objective J(⇡✓t |P

⇡✓t�1
,↵t

✏) under a fixed relaxation parameter ↵t. This can be done by using
any off-the-shelf RL algorithm (e.g., PPO with a clipped objective).

• Upper-level task for worst-case return: On the upper level, we design a meta objective Jmeta(↵t)
to represent the lower bound of the worst case performance (RHS of Equation 9). Hence, the task
aims to find a relaxation parameter ↵t that can maximize Jmeta(↵t). To enable a stable training, we
iteratively update ↵t by applying the online cross-validation algorithm (Sutton, 1992).

6

Under review as a conference paper at ICLR 2023

Both the lower and upper level tasks aim to increase the lower bound of the worst-case performance
J(⇡✓t |P

⇡✓t�1
✏) (Equation 9). In the lower-level, a constant relaxation parameter ↵t represents

a specific distribution D. It seeks to maximize the average return over all environments in the
uncertainty set following distribution D. In the upper-level, the optimization adjusts ↵ to maximize
this lower bound. On one hand, increasing ↵t improves the average performance J(⇡✓t |P

⇡✓t�1
,↵t

✏)
since the average-case moves toward a nominal environment, yet the price is increasing the MDP
shift (i.e., the second term of RHS in Equation 9). On the other hand, decreasing ↵ changes the
performance and the penalty oppositely. Since ⇡ is weak initially and its performance gradually
improves, the meta objective optimization tends to decrease and then increase ↵ during training.

Algorithm 1 illustrates our implementation. We first update the policy ⇡✓t to maximize the average-
case return J(⇡✓t |P

⇡✓t�1
,↵t

✏) using the proximal policy optimization (PPO). Afterward, we update the
relaxation parameter ↵ to ensure that the worst-case return is higher than a specific bound (Equation
9). Note that samples used in the two steps are different (Lines 3 and 6 of Algorithm 1) because the
meta objective optimization is an online method. In addition, we chose PPO as a base algorithm since
it prevents the model from being updated significantly in a single step. It helps to control the penalty
term dTV (⇡, ⇡̃) in Theorem 2. The implementation details are provided in Appendix A.7.

Algorithm 1: Relaxed State-Adversarial Policy Optimization
Input :MDP (S,A, P0, r, �), Objective function L, step size parameter ⌘, number of iterations

T , P0 is the nominal transition kernel, ✏-Neighborhood
1 Initialize the policy ⇡✓0 for t = 0, . . . , T � 1 do

2 Sample the tuple {si, ai, ri, s0i}
Tupd
i=1, where a0i ⇠ ⇡✓t(·|s0i), and s0i ⇠ P0(·|si, ai)

3 Evaluate J(⇡✓t |P
⇡✓t�1

,↵t

✏)
4 Update the policy to ⇡✓t+1 by applying multi-step SGD to the objective function as PPO

5 Sample the tuple {si, ai, ri, s0i}
T 0

upd
i=1, where a0i ⇠ ⇡✓t+1(·|s0i), and s0i ⇠ P0(·|si, ai)

6 Update the relaxation parameter to ↵t+1 via one SGD update with respect to the
meta-objective

7 end

5 EXPERIMENTAL RESULTS AND EVALUATIONS

We conducted two experiments on Mujoco (Todorov et al., 2012) to evaluate the performance of
our relaxed state adversarial policy optimization (RAPPO). All the baselines and our method were
implemented on the PPO (Schulman et al., 2017), and the default training parameters were used. In
addition, the results were averaged from five different runs/seeds.

Robustness against Environmental Adversaries. We compared our RAPPO with the latest DR
method, MRPO (Jiang et al., 2021), to evaluate its robustness against the uncertainty of environmental
parameters1. Agents trained using the two methods were evaluated in the environments, in which
the size and gravity were drifted in the range of 0.6 - 1.4. To simulate the situation that domain
knowledge is unavailable, during training, MRPO perturbed mass and friction in the range of 0.8 -
1.2, and our RAPPO attacked the states by its value function. Figure 2 shows the subtractions of the
rewards of the two methods. As can be seen, our RAPPO outperformed MRPO since state adversaries
were more general than environmental adversaries. Agents trained by MRPO could perform poorly
when the perturbations in the training and testing environments were different.

Robustness Against States Adversaries. We compared our RAPPO with SCPPO (Kuang et al.,
2021) to evaluate its robustness against state adversaries. Both of the methods perturb states to
improve agents’ robustness. We also included vanilla PPO in the experiment because it is the base
algorithm of RAPPO and SCPPO. To achieve a fair comparison, the parameters used in RAPPO
and SCPPO were the same. Specifically, we set ✏ to 0.015, 0.002, 0.03, 0.001, and 0.005 to the
environments of HalfCheetah-v2, Hopper-v2, Ant-v2, Walker-v2, and Humanoid2d-v2, respectively.
The parameters were chosen according to the variance of actions in the environments.

1We obtained the official implementation of MRPO from http://proceedings.mlr.press/v139/jiang21c.html
and used their default parameter setting.

7

Under review as a conference paper at ICLR 2023

Figure 2: We perturbed the size and gravity of the environments and measured the mean rewards
achieved by the agents trained using a DR method, MRPO, and our RAPPO. The heatmaps show the
subtractions of MRPO’s reward from RAPPO’s reward. The higher value (red) indicates that RAPPO
outperformed MRPO.

Environment Nominal � = 0.005 � = 0.01 � = 0.015 � = 0.02 � = 0.025
PPO 5286 ± 1004 4280 ± 1552 3186 ± 1875 1996 ± 1743 1256 ± 1251 819 ± 1003

HalfCheetah SCPPO 6157 ± 709 5046 ± 1533 3367 ± 2090 1795 ± 1758 875 6± 1259 60 ± 791
RAPPO-C 5830 ± 779 5185 ± 782 4084 ± 1266 2743 ± 1644 1459 ± 1439 406 ± 912
RAPPO 6146 ± 742 5519 ±774 4353 ±1510 3087 ±1568 1878 ±1287 846 ±951

Nominal � = 0.0008 � = 0.0016 � = 0.002 � = 0.0024 � = 0.003
PPO 3330 ± 619 1357 ±787 615 ± 194 494 ± 151 462 ± 141 417 ± 131

Hopper SCPPO 2644 ± 951 1369 ± 620 876 ± 347 773 ± 357 782 ± 437 732 ± 412
RAPPO-C 2497 ± 1041 1626 ± 1064 1122 ± 817 795 ± 426 704 ± 393 521 ± 201
RAPPO 3301 ± 520 2198 ± 859 1457 ± 537 1244 ± 584 1067 ± 605 1014 ± 779

Nominal � = 0.001 � = 0.0015 � = 0.002 � = 0.0025 � = 0.003
PPO 3781 ± 1165 1564 ± 1285 903 ±52 763 ±353 628 ±241 575 ± 222

Walker2d SCPPO 4313 ±979 2647 ±1584 1604 ±1082 985 ±704 772 ±492 666 ± 412
RAPPO-C 4113 ± 899 2394 ± 1471 1881 ± 1398 1520 ± 1387 1249 ± 1282 888 ± 970
RAPPO 4608 ± 962 3998 ± 1487 3298 ± 1478 2160 ± 1408 1470 ± 1013 1173 ± 783

Nominal � = 0.01 � = 0.02 � = 0.03 � = 0.04 � = 0.05
PPO 6075 ± 889 4489 ± 1342 2071 ± 1156 1016 ± 523 703 ± 283 615 ± 248

Ant SCPPO 5915 ± 728 4203 ±1 441 1661 ± 951 831 ± 398 609 ± 320 489 ± 273
RAPPO-C 5954 ± 746 4380 ± 1299 2077 ± 1117 1010 ± 568 668 ± 282 537 ± 225
RAPPO 6022 ± 698 4381 ± 1357 2284 ± 1225 1038 ± 553 733 ± 255 672 ± 219

Nominal � = 0.003 � = 0.004 � = 0.005 � = 0.006 � = 0.007
PPO 5357 ± 1618 3033 ± 1834 2373 ± 1742 1802 ± 1446 1287 ± 1068 939 ± 750

Humanoid SCPPO 5410 ± 1340 3196 ± 1781 2387 ± 1472 1783 ± 1256 1271 ± 838 1060 ± 678
RAPPO-C 5169 ± 1468 3031 ± 1810 1941 ± 1336 1550 ± 1165 1035 ± 551 874 ± 458
RAPPO 5355 ± 1491 3768 ± 1972 3227 ± 1883 2537 ± 1698 1747 ± 1274 1350 ± 1133

Table 1: We compared the performance of agents trained using PPO, SCPPO, our RAPPO-C (i.e.,
constant relaxation parameter ↵) and RAPPO in Mujoco environments under multiple degrees of
state perturbation. Mean and Standard deviations are reported.

Table 1 shows the testing results. We attacked the agents using their respective value functions
under multiple strengths. Specifically, we repeated the experiments from 5 different seeds and
generated 50 trajectories for each seed from different initial states for evaluation. The means and
standard deviations of the rewards were reported. Clearly, the results fulfilled Lemma 1, where
agents’ performance decreased as the strength of attack increased. In addition, our RAPPO was
competitive to PPO and SCPPO in nominal environments, and its performance decreased the slowest
as the strength of attack increased. It deserves noting that the attacks in the last two columns of Table
1 were stronger than that of the worst-case. Our RAPPO performed the best in the environments.

Extending SAPPO Using Relaxed State Adversaries. While our RAPPO successfully improves
the robustness of agents against state adversaries, a classical method, SAPPO (Zhang et al., 2020),
can help agents against the perturbation of state observations. We thus extended SAPPO by adopting
our relaxed state adversarial attacks during training and evaluated its effectiveness. Similarly, we
compared the methods on the trajectories of 5 seeds and 50 initial states. Table 2 shows the results. As
indicated, the extended RA SAPPO outperformed SAPPO in most of the environments, particularly
under strong attacks.

Steady Improvements of the Average and Worst Case Environments. We apply a bi-level

approach to optimize the average and worst-case environments during training. To verify the
feasibility of this approach, we evaluated the agents’ performance under these two cases during
training. To determine the worst-case result, we generated 50 trajectories from different initial states,

8

Under review as a conference paper at ICLR 2023

Environment Nominal � = 0.005 � = 0.01 � = 0.015 � = 0.02 � = 0.025
Halfcheetah SAPPO 4928 ± 370 4765 ± 359 4485 ±394 4036 ± 582 3282 ± 1175 2533 ± 1495

RA SAPPO 5784 ± 1081 5371 ± 1323 4874 ± 1311 4775 ± 933 4106 ± 1273 3152 ± 1750

Nominal � = 0.001 � = 0.0015 � = 0.002 � = 0.0025 � = 0.003
Walker SAPPO 4135 ± 962 2211 ± 1322 940 ± 405 673 ± 318 667 ± 326 614 ± 311

RA SAPPO 4539 ± 1014 3229 ± 1590 1564 ± 1410 921 ± 789 832 ± 806 746 ± 772

Nominal � = 0.003 � = 0.004 � = 0.005 � = 0.006 � = 0.007
Humanoid SAPPO 5736 ± 1194 3690 ± 2068 2926 ± 1956 1944 ± 1438 1409 ± 1098 1156 ± 789

RA SAPPO 5320 ± 1164 3960 ± 2082 3335 ± 2117 2882 ± 2066 2129 ± 1776 1567 ± 1474

Table 2: We extended the SAPPO by adopting the relaxed state adversarial strategy and evaluated
whether the extension (i.e., RA SAPPO) can improve the agents’ robustness against state perturbation.
Mean and Standard deviations are reported.

Figure 3: Our RAPPO can steadily improve the average-case and worst-case rewards during training.
The solid lines and shaded areas indicate the mean and standard deviation of the rewards, respectively.
Note that the variance of the average-case rewards is caused by different adversarial strengths.

perturbed states with the same strength as the training ✏, and then averaged the rewards. In contrast,
the average-case result was determined from 50 initial states and 10 different perturbation strengths,
which were uniformly distributed between 0 and ✏. In total, the rewards of 50 ⇥ 10 trajectories
were averaged. Figure 3 shows that our RAPPO can steadily improve the average-case performance
without sacrificing the worst-case performance. Note that the high variance of the average-case
rewards is reasonable because of different adversarial strengths.

The value of the relaxation parameter ↵. Our meta-objective optimization determines the relaxation
parameter ↵ (Equation 6) to control the strengths of state adversaries during training. While ↵ is
unknown, an intuitive idea is to consider ↵ a hyper-parameter and let users specify the value. However,
we point out that the value of ↵ should vary at different training stages since agents are weak initially
and can perform well after training. To verify that a dynamic ↵ is over a constant ↵ (i.e., RAPPO-C),
we evaluated the performance of agents under state perturbed environments. In the experiments, we
set ↵ = 0.5 for RAPPO-C since it is in the middle of nominal and worst-case environments. The
remaining parameters between the methods were exactly the same. As indicated in Table 1, RAPPO
outperformed RAPPO-C without a doubt. We also refer readers to Appendix A.8 for the dynamics of
↵ during training.

6 CONCLUSIONS

We have presented a relaxed state adversarial policy optimization to improve the robustness of agents
against the uncertainty of environments. Compared to the methods in DR, we perturbed states using
the adversarial attack so as to decouple randomization from simulators. Neither prior knowledge of
selecting environmental parameters nor prior assumption of parameter distribution are needed. In
addition, we introduced a relaxation strategy to tackle the over-conservative problem caused by state
adversarial attacks. Our policy optimization maximizes rewards in the average-case while holding
the lower-bound rewards in the worst-case environments simultaneously. Experiment results and
theoretical proofs demonstrate the effectiveness of our method.

Limitations and Future Work. Our relaxation method is state-independent, in which the value of
↵ is adjusted according to the overall performance of policy. Since the degrees of difficulty vary from
states to states, it will be interesting to investigate the state-dependent relaxation method. In addition,
we currently assume that each dimension of states is equally important, which may not be the case.
We will also explore the weight of each dimension when perturbing states in the future.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Kavosh Asadi, Dipendra Misra, and Michael Littman. Lipschitz continuity in model-based rein-
forcement learning. In International Conference on Machine Learning, pp. 264–273. PMLR,
2018.

Kishan Panaganti Badrinath and Dileep Kalathil. Robust reinforcement learning using least squares
policy iteration with provable performance guarantees. In International Conference on Machine

Learning, pp. 511–520. PMLR, 2021.

Bahram Behzadian, Marek Petrik, and Chin Pang Ho. Fast algorithms for L1-constrained S-
rectangular robust MDPs. Advances in Neural Information Processing Systems, 34:25982–25992,
2021.

Aharon Ben-Tal and Arkadi Nemirovski. Robust convex optimization. Mathematics of operations

research, 23(4):769–805, 1998.

Yinlam Chow, Aviv Tamar, Shie Mannor, and Marco Pavone. Risk-sensitive and robust decision-
making: a cvar optimization approach. Advances in neural information processing systems, 28,
2015.

Karl Cobbe, Oleg Klimov, Chris Hesse, Taehoon Kim, and John Schulman. Quantifying generalization
in reinforcement learning. In International Conference on Machine Learning, pp. 1282–1289.
PMLR, 2019.

Esther Derman, Matthieu Geist, and Shie Mannor. Twice regularized MDPs and the equivalence
between robustness and regularization. Advances in Neural Information Processing Systems, 34,
2021.

Mathieu Fehr, Olivier Buffet, Vincent Thomas, and Jilles Dibangoye. ⇢-POMDPs have Lipschitz-
continuous ✏-optimal value functions. Advances in neural information processing systems, 31,
2018.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572, 2014.

Julien Grand-Clément and Christian Kroer. First-order methods for wasserstein distributionally robust
MDP. arXiv preprint arXiv:2009.06790, 2020.

Chin Pang Ho, Marek Petrik, and Wolfram Wiesemann. Fast bellman updates for robust MDPs. In
International Conference on Machine Learning, pp. 1979–1988. PMLR, 2018.

Jiaxing Huang, Dayan Guan, Aoran Xiao, and Shijian Lu. Fsdr: Frequency space domain randomiza-
tion for domain generalization. In Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, pp. 6891–6902, 2021.

Sandy Huang, Nicolas Papernot, Ian Goodfellow, Yan Duan, and Pieter Abbeel. Adversarial attacks
on neural network policies. arXiv:1702.02284, 2017.

Maximilian Igl, Kamil Ciosek, Yingzhen Li, Sebastian Tschiatschek, Cheng Zhang, Sam Devlin,
and Katja Hofmann. Generalization in reinforcement learning with selective noise injection and
information bottleneck. Advances in neural information processing systems, 32, 2019.

Garud N Iyengar. Robust dynamic programming. Mathematics of Operations Research, 30(2):
257–280, 2005.

Yuankun Jiang, Chenglin Li, Wenrui Dai, Junni Zou, and Hongkai Xiong. Monotonic robust policy
optimization with model discrepancy. In International Conference on Machine Learning, pp.
4951–4960. PMLR, 2021.

Jernej Kos and Dawn Song. Delving into adversarial attacks on deep policies. arXiv preprint

arXiv:1705.06452, 2017.

10

Under review as a conference paper at ICLR 2023

Yufei Kuang, Miao Lu, Jie Wang, Qi Zhou, Bin Li, and Houqiang Li. Learning robust policy against
disturbance in transition dynamics via state-conservative policy optimization. arXiv preprint

arXiv:2112.10513, 2021.

Kailasam Lakshmanan, Ronald Ortner, and Daniil Ryabko. Improved regret bounds for undiscounted
continuous reinforcement learning. In International Conference on Machine Learning, pp. 524–532.
PMLR, 2015.

Chun Kai Ling, Kian Hsiang Low, and Patrick Jaillet. Gaussian process planning with lipschitz
continuous reward functions: Towards unifying bayesian optimization, active learning, and beyond.
In Thirtieth AAAI Conference on Artificial Intelligence, 2016.

Björn Lütjens, Michael Everett, and Jonathan P How. Certified adversarial robustness for deep
reinforcement learning. In Conference on Robot Learning, pp. 1328–1337. PMLR, 2020.

Arnab Nilim and Laurent El Ghaoui. Robust control of markov decision processes with uncertain
transition matrices. Operations Research, 53(5):780–798, 2005.

Tuomas Oikarinen, Wang Zhang, Alexandre Megretski, Luca Daniel, and Tsui-Wei Weng. Robust
deep reinforcement learning through adversarial loss. Advances in Neural Information Processing

Systems, 34, 2021.

Anay Pattanaik, Zhenyi Tang, Shuijing Liu, Gautham Bommannan, and Girish Chowdhary. Robust
deep reinforcement learning with adversarial attacks. In Proceedings of the 17th International

Conference on Autonomous Agents and MultiAgent Systems, pp. 2040–2042, 2018.

Aravind Rajeswaran, Sarvjeet Ghotra, Balaraman Ravindran, and Sergey Levine. Epopt: Learning
robust neural network policies using model ensembles. arXiv preprint arXiv:1610.01283, 2016.

Aurko Roy, Huan Xu, and Sebastian Pokutta. Reinforcement learning under model mismatch.
Advances in neural information processing systems, 30, 2017.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Qianli Shen, Yan Li, Haoming Jiang, Zhaoran Wang, and Tuo Zhao. Deep reinforcement learning
with robust and smooth policy. In International Conference on Machine Learning, pp. 8707–8718.
PMLR, 2020.

Richard S Sutton. Adapting bias by gradient descent: An incremental version of delta-bar-delta. In
AAAI, pp. 171–176. San Jose, CA, 1992.

Aviv Tamar, Shie Mannor, and Huan Xu. Scaling up robust MDPs using function approximation. In
International conference on machine learning, pp. 181–189. PMLR, 2014.

Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel. Domain
randomization for transferring deep neural networks from simulation to the real world. In 2017

IEEE/RSJ international conference on intelligent robots and systems (IROS), pp. 23–30. IEEE,
2017.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ international conference on intelligent robots and systems, pp. 5026–5033.
IEEE, 2012.

Yue Wang and Shaofeng Zou. Online robust reinforcement learning with model uncertainty. Advances

in Neural Information Processing Systems, 34, 2021.

Yuh-Shyang Wang, Tsui-Wei Weng, and Luca Daniel. Verification of neural network control policy
under persistent adversarial perturbation. arXiv preprint arXiv:1908.06353, 2019.

Tsui-Wei Weng, Krishnamurthy Dj Dvijotham, Jonathan Uesato, Kai Xiao, Sven Gowal, Robert
Stanforth, and Pushmeet Kohli. Toward evaluating robustness of deep reinforcement learning with
continuous control. In International Conference on Learning Representations, 2019.

11

Under review as a conference paper at ICLR 2023

Wolfram Wiesemann, Daniel Kuhn, and Berç Rustem. Robust markov decision processes. Mathe-

matics of Operations Research, 38(1):153–183, 2013.

Huan Zhang, Hongge Chen, Chaowei Xiao, Bo Li, Mingyan Liu, Duane Boning, and Cho-Jui
Hsieh. Robust deep reinforcement learning against adversarial perturbations on state observations.
Advances in Neural Information Processing Systems, 33:21024–21037, 2020.

Huan Zhang, Hongge Chen, Duane Boning, and Cho-Jui Hsieh. Robust reinforcement learning
on state observations with learned optimal adversary. In International Conference on Learning

Representations, 2021.

12

	Introduction
	Related Work
	Preliminaries
	Domain Randomization via Relaxed State-Adversary
	Connecting Domain Randomization and State Perturbation
	State-Adversarial MDPs and Uncertainty Sets
	Relaxed State-Adversarial MDPs
	Online Adaptation of the Relaxation Parameter

	Experimental Results and Evaluations
	Conclusions
	Appendix
	Grid World Example
	Bellman Equation of Relaxed State-Adversarial Policy Optimization
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Theorem 1
	Proof of Theorem 2
	Implementation Details
	Dynamics of Relaxation Parameter during Training
	High Variance of the Total Expected Returns

