
Towards Adversarial Purification using Denoising
AutoEncoders

Dvij Kalaria, Aritra Hazra, and Partha Pratim Chakrabarti
Dept. of Computer Science and Engineering

Indian Institute of Technology Kharagpur, INDIA

Abstract

With the rapid advancement and increased use of deep learning models in image
identification, security becomes a major concern to their deployment in safety-
critical systems. The deep learning architectures are often susceptible to adver-
sarial attacks which are often obtained by making subtle perturbations to nor-
mal images, which are mostly imperceptible to humans, but can seriously confuse
the state-of-the-art machine learning models. We propose a framework, named
APuDAE, leveraging Denoising AutoEncoders (DAEs) to purify these samples
by using them in an adaptive way and thus improve the classification accuracy of
the target classifier networks. We also show how using DAEs adaptively instead
directly, improves classification accuracy further and is more robust to the possi-
bility of designing adaptive attacks to fool them. We demonstrate our results over
MNIST, CIFAR-10, ImageNet dataset and show how our framework (APuDAE)
provides comparable and in most cases better performance to the baseline methods
in purifying adversaries.

1 Introduction and Related works
The phenomenal success of deep learning models in image identification and object detection has led
to its wider adoption in diverse domains ranging from safety-critical systems, such as automotive
and avionics (1) to healthcare like medical imaging, robot-assisted surgery, genomics etc. (2), to
robotics and image forensics (3), etc. The performance of these deep learning architectures are often
dictated by the volume of correctly labelled data used during its training phases. Recent works (4) (5)
have shown that small and carefully chosen modifications (often in terms of noise) to the input
data of a neural network classifier can cause the model to give incorrect labels. These adversarial
perturbations are imperceptible to humans but however are able to convince the neural network
in getting completely wrong results that too with very high confidence. Due to this, adversarial
attacks may pose a serious threat to deploying deep learning models in real-world safety-critical
applications. It is, therefore, imperative to devise efficient methods to thwart such attacks.
Adversarial attacks can be classified into whitebox and blackbox attacks. White-box attacks (6)
assume access to the neural network weights and architecture, which are used for classification,
and thereby specifically targeted to fool the neural network. Hence, they are more accurate than
blackbox attacks (6) which do not assume access to the model parameters. Many recent works
have proposed ways to defend these attacks. Methods for adversarial defense can be divided into
4 categories as – (i) Modifying the training dataset to train a robust classifier, popularly known
as adversarial training (7; 8) , (ii) Block gradient calculation via changing the training procedure
(9; 10; 11) , (iii) Detecting adversaries (12; 13; 14; 15; 16) and (iv) purifying adversaries (17; 18).
Detecting adversaries only serves half the purpose, what follows logically is to purify the sample
or revert it back to its pure form. Our main focus is defense mechanisms to purify input data that
may have added adversarial perturbation. This can allow the mechanisms to effectively address any
attacks. Previous works like MagNet (17), Defense-GAN (18) consider training a generative model
to learn the data distribution closer to the training distribution and map an adversarial example
to its corresponding clean example from the data distribution. We follow a similar technique but

ML Safety Workshop, 36th Conference on Neural Information Processing Systems (NeurIPS 2022).

instead of a generative model like VAE, we use a Denoising AutoEncoder (DAE). We train the DAE
specifically to denoise noisy samples instead. Later, during testing, instead of directly passing the
input sample which may contain the adversarial noise and treating the later example as a purified
example, we use a novel way by adaptively decreasing the reconstruction error to derive the purified
sample. This method has two advantages over former method – (i) Directly passing image through
denoising autoencoder often blurs the image as it treats image features as noise as well leading
to decreasing target classifier accuracy. Directly modifying the input image to reduce reconstruction
error doesn’t affect image quality. (ii) The method of purification is non differential so it wouldn’t be
possible to attack the defense mechanism easily unlike the former method. We observe a significant
improvement in results when using DAEs adaptively in comparison to using it directly for MNIST,
CIFAR-10 and IMAGENET.
In summary, the primary contributions made by our work are as follows.
(a) We propose a non-differentiable framework for Adversarial Purification using Denoising Au-

toEncoder (called APuDAE) based on DAE to adaptively purify adversarial attacks which can-
not be easily attacked in conjunction in complete white box setting.

(b) We test our defense against strong grey-box attacks (attacks where the attacker has complete
knowledge of the target classifier model but not the defense model) and attain better than the
state-of-the-art baseline methods

(c) We devise possible adaptive attacks specifically designed to attack our method and show how
our proposed method is robust to that (Refer to appendix).

2 Our Proposed APuDAE Framework
In this section, we present our proposed framework called Adversarial Purification using Denoising
AutoEncoders (APuDAE) which shows how Denoising AutoEncoders (DAE), trained over a dataset
of clean images, are capable of purifying adversaries.

2.1 Denoising AutoEncoders (DAE)

Figure 1: DAE Model Architecture for CIFAR-
10 and ImageNet. c = Number of Channels in the
Input Image (c = 3, N = 15 for CIIFAR-10 and
c = 1, N = 5 for MNIST)

(a) airplane (b) truck (c) ship (d) airplane
Figure 2: Left to right : Input Image, Adversarial
image, Directly purified image, Purified image
by adaptive method. The sub-labels are the in-
ferred classes from the target classifier network

Denoising AutoEncoder (DAE) is a variation of autoencoder in which the input is passed as a noisy
image and the output is expected to be a clean image. The encoder learns to map noisy image to a
latent representation corresponding to a clean image and decoder maps it back to the clean image.
Training is carried out in unsupervised manner with the input image obtained by adding random
gaussian noise with varying magnitudes and the output image is the clean image itself. The gaussian
noise added is obtained with varying values of variance, σ. σ is chosen from a uniform distribution
[0, σmax] so that the model is not biased to remove noise of specific magnitude. Formally, the loss
functions is defined as given in Eqn 1 where the Xnoise is the added noise, Fdae(.) is the trained
DAE which takes and outputs an image, mse is the mean square error loss. Skip connections are
used to directly send the feature maps from an earlier layer to the later corresponding layer of the
decoder to preserve the features. Network architecture for MNIST and imagenet dataset is given in
Figure 1. The network architecture used for ImageNet is relatively more complex and is the same as
proposed in (19), hence the readers are referred to it for more details.

L = mse(Fdae(Xinp), Xim)

where, Xinp = Xim + σXnoise,

and σ ∼ U [0, σmax], xnoise ∼ N (0, 1) (∀xnoise ∈ Xnoise)

(1)

2

2.2 Determining Reconstruction Errors

Let X be the input image and Xrcn is the reconstructed image obtained from the trained DAE. We
define the reconstruction error or the reconstruction distance as Recon(X) = (X − Xrcn)

2. Two
pertinent points to note here are:- 1) For clean test examples, the reconstruction error is bound to
be less since the DAE is trained with unknown noise magnitude, hence DAE should ideally leave
the input image unaffected. 2) For the adversarial examples, as they contain the adversarial noise,
passing the adversarial image leads to removal of some part of the adversarial noise, hence leading
to high reconstruction distance. We use this peculiar difference to our advantage by modifying the
input image itself so that the reconstruction error reduces and leads to a clean image. We do this
instead of directly taking the output image from DAE as the purified image i.e. Xpur := Xrcn. It
has the following advantages over the later method :- 1) More image features are preserved 2) The
purification function is non differentiable, hence it becomes difficult to craft adaptive attacks As an
example, let the clean image be an image of a airplane and its slightly perturbed image fools the
classifier network to believe it is a truck. Hence, the input to the DAE will be the slightly perturbed
airplane image with the predicted class truck. Now, on passing the perturbed image directly through
DAE, adversarial perturbations are removed but some image features are also perceived as noise
and also removed. This leads to target classifier misclassifying the modified image as a ship (see
Figure 2).

2.3 Variations in the adaptive algorithm

We use the following update rule for iteratively purifying the image :-

Xpur,0 = Xadv

Xpur,i+1 = Xpur,i − αiwi

where, wi = βwi−1 + (1− β)
∂L(Xpur,i, purifier(Xpur,i))

∂Xpur,i

for i ∈ {1, 2..., n} and

L(X,Y) =
|dist(X,Y)− µ|

σ
, dist(X,Y) = (X − Y)2

(2)

Based on this, we explore the following variations to the algorithm :-
(a) Fixed no of iterations : Set αi = αconst, n = nconst and β = 0.
(b) Fixed no of iterations with ADAM for update : Set αi = αconst, n = nconst and β = βconst.

This helps to achieve the minima quickly hence improves the classification accuracy by a certain
margin.

(c) Variable learning rate based on Current Reconstruction Error : Set αi = α(1 −
e−(

Xpur,i−µ

σ)2). With this, the update is differentiated for adversaries and clean examples and
hence achieves slightly better adversarial accuracy and less affected clean accuracy.

(d) Set Target Distribution for Reconstruction Error : Change L(X,Y) = max(dist(X,Y)−µ,0)
σ

where µ and σ are the mean and co-variances of the reconstructions errors in the training set.
This helps essentially differentiating between clean and adversarial accuracy, hence clean accu-
racy remains nearly unaffected with this.

(e) Set Target Distribution for Reconstruction Error with Modified Update Rule : Drawback
of the above method is that it tries to increase the reconstruction error (see Figure 3c) of the
samples with less reconstruction error belonging to clean image set. To avoid this, we change
the update rule by just modifying the loss function, L(X,Y) = max(dist(X,Y)−µ,0)

σ which ulti-
mately leads to no change for clean images with reconstruction error less than µ.

(f) Adding random noise before each step : Add Xpur,i := Xpur,i + γrX , rX N (0, IX) before
the update step where γ is the amount of noise to be added.

(g) Adding random transformation before the algorithm : Change the initialization step as
Xpur,0 = t(Xadv, f, θ) where t is the transformation function which takes the resize factor
f and θ as input.

3 Experimental Results
We present the esperimental results on MNIST, CIFAR-10 and ImageNet datasets for different
white-box attacks. Additional results for varying values of hyperparameters like the no of iterations,
n, noise γ added before each step, transformation parameters etc. are also reported in the Appendix.

3

3.1 MNIST Dataset

We present the comparison in results for MNIST dataset (20) with the 2 methods discussed earlier
MagNet (17) and DefenseGAN (18)(see Table ??). Results for adversarial training are generated in
the same way as described in MagNet. All results are with ϵ = 0.1 as used commonly in most works
(18; 21). We use no. of iterations for purification, n = 15 and α = 0.01.

Attack (ϵ=0.1) No Training Adversarial DefenseGAN MagNet APuDAE APuDAE
training (Direct) (n=15,α=0.01)

Clean 0.974 0.822 0.969 0.95 0.973 0.973
FGSM 0.269 0.651 0.949 0.69 0.934 0.964

R-FGSM 0.269 0.651 0.945 0.65 0.921 0.962
PGD 0.1294 0.354 0.939 0.49 0.912 0.951
CW 0. 0.28 0.936 0.45 0.907 0.953

Table 1: Comparison of Results using MNIST Dataset. Values reported are classifier success rate
(in fraction out of 1). APuDAE (Direct): When the image directly obtained from DAE is used.
APuDAE: When back propagation through reconstruction error is used for purification

3.2 CIFAR-10 Dataset

MNIST dataset is a simple dataset with easily identifiable number shapes which can be robustly
learned by a neural network. It is therefore very easy to correct a perturbed image with a simple
back-propagation method with fixed no. of iterations. For CIFAR-10 dataset, due to the inherent
complexity in classifying objects, it is very easy to attack and thus simple defense with fixed no.
of iterations is not enough to give a reasonably good purification result, hence we explore different
variations in algorithm as tabulated in Table ??.

Attack Clean Random FGSM R-FGSM BIM CW
No Defense 0.954 0.940 0.533 0.528 0.002 0
Adversarial 0.871 0.865 0.650 0.640 0.483 0.412

Training
APuDAE 0.790 0.793 0.661 0.655 0.367 0.351
(Direct)

APuDAE 0.879 0.889 0.73 0.73 0.632 0.621
(A, n=12)
APuDAE 0.853 0.875 0.76 0.747 0.694 0.683
(A, n=15)
APuDAE 0.843 0.867 0.774 0.764 0.702 0.695
(A, n=18)

APuDAE(B) 0.872 0.883 0.778 0.772 0.706 0.698
APuDAE(C) 0.892 0.874 0.769 0.762 0.692 0.689
APuDAE(D) 0.904 0.889 0.783 0.767 0.684 0.679
APuDAE(E) 0.907 0.893 0.834 0.817 0.702 0.689
APuDAE(F) 0.908 0.893 0.818 0.811 0.729 0.708
APuDAE(G) 0.858 0.846 0.828 0.814 0.711 0.700

Figure 3: Comparison of Results for Different Variations on
CIFAR-10 dDataset. Direct: Direct usage of DAE, A: Fixed
no. of iterations, B: Fixed no. of iterations with using ADAM
optimizer, C: Variable learning rate based on the current recon-
struction error, D: Set target distribution for reconstruction er-
ror, E: Set target distribution for reconstruction error with mod-
ified update rule, F: Add random noise at each update step, G:
Add random transformation at the beginning

(a) Fixed no. of iterations

(b) Fixed no. of iterations with using
ADAM optimizer

(c) Set target distribution for recon-
struction error

(d) Set target distribution for recon-
struction error with modified update
rule
Figure 4: Reconstruction errors
for different variations

4

3.3 ImageNet Dataset
ImageNet dataset is the high resolution dataset with cropped RGB images of size 256X256. For our
experiments we use pretrained weights on ImageNet train corpus available from (22). For test set
we use the 1000 set of images available for ILSVRC-12 challenge (23) which is commonly used
by previous works (24) for evaluating adversarial attack and defense methods. The classification
accuracy for ImageNet dataset comprising of 1000 classes is defined by the top-1 accuracy which
means a prediction is correct if any of the top 1% of total classes or 10 class predictions in this case
are correct. The value of ϵ = 8

255 and update step, α = 1
255 are chosen as standard values similar to

ones used in previous literature (24)

Attack Clean Random BIM
(
ϵ = 5

255

)
BIM

(
ϵ = 25

255

)
No defense 1.0 0.969 0.361 0.002

Adv. Training 0.912 0.901 0.641 0.454
APuDAE (Direct) 0.946 0.941 0.909 0.899

APuDAE (A,n = 12) 0.941 0.936 0.919 0.911
APuDAE (A,n = 15) 0.939 0.933 0.917 0.914
APuDAE (A,n = 18) 0.934 0.932 0.917 0.913
APuDAE (B,n = 15) 0.938 0.930 0.923 0.920
APuDAE (C,n = 15) 0.926 0.924 0.928 0.929

Table 2: Comparison of Results on Imagenet Dataset. Direct: Direct usage of DAE, A: No vari-
ation, B: With random noise, C: With random transformations. ϵ is the magnitude of adversarial
perturbation and n is the no. of iterations of APuDAE for purification.

References
[1] Q. Rao and J. Frtunikj, “Deep learning for self-driving cars: Chances and challenges,” in Pro-

ceedings of the 1st International Workshop on Software Engineering for AI in Autonomous
Systems, 2018, pp. 35–38.

[2] A. Esteva, A. Robicquet, B. Ramsundar, V. Kuleshov, M. DePristo, K. Chou, C. Cui, G. Cor-
rado, S. Thrun, and J. Dean, “A guide to deep learning in healthcare,” Nature medicine, vol. 25,
no. 1, pp. 24–29, 2019.

[3] P. Yang, D. Baracchi, R. Ni, Y. Zhao, F. Argenti, and A. Piva, “A survey of deep learning-based
source image forensics,” Journal of Imaging, vol. 6, no. 3, p. 9, 2020.

[4] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus, “In-
triguing properties of neural networks,” arXiv preprint arXiv:1312.6199, 2013.

[5] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial examples,”
arXiv preprint arXiv:1412.6572, 2014.

[6] N. Akhtar and A. Mian, “Threat of adversarial attacks on deep learning in computer vision: A
survey,” IEEE Access, vol. 6, pp. 14 410–14 430, 2018.

[7] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” arXiv
preprint arXiv:1512.03385, 2015.

[8] A. Lamb, V. Verma, J. Kannala, and Y. Bengio, “Interpolated adversarial training: Achieving
robust neural networks without sacrificing too much accuracy,” Proceedings of the 12th ACM
Workshop on Artificial Intelligence and Security, 2019.

[9] F. Li, X. Du, and L. Zhang, “Adversarial attacks defense method based on multiple filtering
and image rotation,” Discrete Dynamics in Nature and Society, vol. 2022, pp. 1–11, 04 2022.

[10] R. Tran, D. Patrick, M. Geyer, and A. Fernandez, “Sad: Saliency-based defenses against ad-
versarial examples,” ArXiv, vol. abs/2003.04820, 2020.

[11] E. Raff, J. Sylvester, S. Forsyth, and M. McLean, “Barrage of random transforms for adversar-
ially robust defense,” in 2019 IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2019, pp. 6521–6530.

5

[12] D. Hendrycks and K. Gimpel, “Early methods for detecting adversarial images,” arXiv preprint
arXiv:1608.00530, 2016.

[13] X. Li and F. Li, “Adversarial examples detection in deep networks with convolutional filter
statistics,” in Proceedings of the IEEE International Conference on Computer Vision, 2017,
pp. 5764–5772.

[14] R. Feinman, R. R. Curtin, S. Shintre, and A. B. Gardner, “Detecting adversarial samples from
artifacts,” arXiv preprint arXiv:1703.00410, 2017.

[15] R. Gao, F. Liu, J. Zhang, B. Han, T. Liu, G. Niu, and M. Sugiyama, “Maximum mean discrep-
ancy test is aware of adversarial attacks,” in International Conference on Machine Learning,
2021, pp. 3564–3575.

[16] S. Jha, U. Jang, S. Jha, and B. Jalaian, “Detecting adversarial examples using data manifolds,”
in IEEE Military Communications Conference (MILCOM), 2018, pp. 547–552.

[17] D. Meng and H. Chen, “Magnet: a two-pronged defense against adversarial examples,” 2017.

[18] P. Samangouei, M. Kabkab, and R. Chellappa, “Defense-gan: Protecting classifiers against
adversarial attacks using generative models,” 2018.

[19] S. Laine, T. Karras, J. Lehtinen, and T. Aila, “High-quality self-supervised deep image denois-
ing,” in NeurIPS, 2019.

[20] Y. LeCun, C. Cortes, and C. Burges, “Mnist handwritten digit database,” ATT Labs [Online].
Available: http://yann.lecun.com/exdb/mnist, vol. 2, 2010.

[21] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards deep learning models
resistant to adversarial attacks,” ArXiv, vol. abs/1706.06083, 2018.

[22] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale hierarchi-
cal image database,” in 2009 IEEE Conference on Computer Vision and Pattern Recognition,
2009, pp. 248–255.

[23] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. S. Bernstein, A. C. Berg, and L. Fei-Fei, “Imagenet large scale visual recog-
nition challenge,” International Journal of Computer Vision, vol. 115, pp. 211–252, 2015.

[24] W. Xu, D. Evans, and Y. Qi, “Feature squeezing: Detecting adversarial examples in deep neural
networks,” arXiv preprint arXiv:1704.01155, 2017.

[25] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial machine learning at scale,” arXiv
preprint arXiv:1611.01236, 2017.

[26] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural networks,” in IEEE
symposium on security and privacy (S&P), 2017, pp. 39–57.

[27] Y. Li, W. Jin, H. Xu, and J. Tang, “Deeprobust: A pytorch library for adversarial attacks and
defenses,” 2020.

[28] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “Deepfool: a simple and accurate method
to fool deep neural networks,” 2016.

6

Appendix
A Possible Counter Attacks
Based on the attack method, adaptive attacks can be developed to counter the attack. We study the 2
types of attacks in detail. For a detailed review on how to systematically design an adaptive counter
attack based on the category of defense, readers are referred to (19).
A.1 Counter Attack A
The first adaptive attack possible is designed by approximating the transformation function i.e. the
function of the output image obtained by modifying the input image through the update rule, by the
differentiable function obtained by autoencoder end-to-end network. Intuitively this can be thought
of as the output obtained by backpropagating through the reconstruction error loss between the input
and purified output after passing through autoencoder purifier network. We observe (see Table 3)
that on applying this counter attack, the accuracy for direct purifier output method drops drastically
while ours method gives better robust results against this attack. Mathematically, we can express
the attacked image, Xattacked as follows where Xcln is the original clean image, n is the no. of
iterations, classifier(.) is the target classifier network, J(.) is the cross entropy loss, purifier(.) is
the purifier autoencoder, α is the update rate and πX,ϵ(.) function restricts value within [X−ϵ,X+ϵ].

Xattacked,0 = Xcln

Xattacked,i+1 = πXcln,ϵ[Xattacked,i+

α.sign(
∂J(classifier(Xattacked,i), y)

∂Xattacked,i
)]

for i ∈ {1, 2..., n}

(3)

A.2 Counter Attack B
The second adaptive attack possible here is by modifying the loss function of the BIM attack by
including new weighted term getting less reconstruction error from the purifier This way we attack
both the classifier as well as purifier. The purifier method relies on reconstruction error as a mea-
sure to update the input to get less reconstruction error similar to clean images but if the attack
is made with this consideration to fool the purifier method by giving similar reconstruction error
to clean image while also fooling the classifier, the attack is successful as it bypasses the purifier
method. For this attack, the attacked image seems to be attacked more at the edges as modifying
those do not change the reconstruction error for purifier much. As observed from Table 3, the adap-
tive counter attack is successful to an extent but still performs considerably better than adversarial
training. Mathematically, we can express the attacked image, Xattacked as follows where Xcln is the
original clean image, n is the no. of iterations, classifier(.) is the target classifier network, J(.) is
the cross entropy loss, purifier(.) is the purifier autoencoder, α is the update rate, β is the weighing
factor for the reconstruction error in the combined loss function, and πX,ϵ(.) function restricts value
within [X − ϵ,X + ϵ].

Xattacked,0 = Xcln

Xattacked,i+1 = πXcln,ϵ[Xattacked,i + αsign(

∂

∂Xattacked,i
(J(Xattacked,i, y)+

β(Xattacked,i − purifier(Xattacked,i))
2)]

for i ∈ {1, 2..., n}

(4)

B Adversarial Attack Models and Methods
For a test example X , an attacking method tries to find a perturbation, ∆X such that |∆X|k ≤ ϵatk
where ϵatk is the perturbation threshold and k is the appropriate order, generally selected ∞ so that
the newly formed perturbed image, Xadv = X +∆X . Here, each pixel in the image is represented
by the ⟨R, G, B⟩ tuple, where R, G, B ∈ [0, 1]. In this paper, we consider only white-box attacks, i.e.
the attack methods which have access to the weights of the target classifier model.
B.1 Random Perturbation (RANDOM)
Random perturbations are simply unbiased random values added to each pixel ranging in between
−ϵatk to ϵatk. Formally, the randomly perturbed image is given by,

Xrand = X + U(−ϵatk, ϵatk) (5)

7

Dataset Counter Adversarial APuDAE APuDAE
Attack Training (Direct) (Best)

MNIST A 0.354 0.799 0.891
B 0.354 0.815 0.857

Cifar-10 A 0.483 0.199 0.680
B 0.483 0.275 0.507

ImageNet A 0.254 0.134 0.536
B 0.254 0.312 0.407

Table 3: Comparison of Results for Counter Attacks. For adversarial training, results of plain BIM
attack have been reported for comparison of performance on worst suspected possible attack with
our method.

where, U(a, b) denote a continuous uniform distribution in the range [a, b].

B.2 Fast Gradient Sign Method (FGSM)
Earlier work by (5) introduced the generation of malicious biased perturbations at each pixel of the
input image in the direction of the loss gradient ∆XL(X, y), where L(X, y) is the loss function
with which the target classifier model was trained. Formally, the adversarial examples with ϵatk are
computed as :-

Xadv = X + ϵatk.sign(∆XL(X, y)) (6)

B.3 Projected Gradient Descent (PGD) or BIM
Earlier works by (25) propose a simple variant of the FGSM method by applying it multiple times
with a rather smaller step size than ϵatk. However, as we need the overall perturbation after all the
iterations to be within ϵatk-ball of X , we clip the modified X at each step within the ϵatk ball with
l∞ norm.

Xadv,0 = X, (7a)

Xadv,n+1 = Clipϵatk

X

{
Xadv,n + α.sign(∆XL(Xadv,n, y))

}
(7b)

Given α, we take the no. of iterations, n to be ⌊ 2ϵatk

α + 2⌋. This attacking method has also been
named as Basic Iterative Method (BIM) in some works.

B.4 Carlini-Wagner (CW) Method
(26) proposed a more sophisticated way of generating adversarial examples by solving an optimiza-
tion objective as shown in Equation 8. Value of c is chosen by an efficient binary search. We use the
same parameters as set in (27) to make the attack.

Xadv = Clipϵatk

X

{
min
ϵ

∥ϵ∥2 + c.f(x+ ϵ)
}

(8)

B.5 DeepFool method
DeepFool (28) is an even more sophisticated and efficient way of generating adversaries. It works
by making the perturbation iteratively towards the decision boundary so as to achieve the adversary
with minimum perturbation. We use the default parameters set in (27) to make the attack.

C Varying Number of Iterations for Adaptive Purification.
On varying the number of iterations for the proposed method as discussed in Algorithm ??, we
observe the following trend:

• Classification accuracy for adversaries increases up to a certain point with increasing iter-
ations and then we observe a downward trend while the clean accuracy reduces or nearly
stays constant at the beginning with increased no. of iterations n. This trend an be at-
tributed to the fact that with increased no. of iterations there is more purification resulting
to increased accuracy for adversaries as they are corrected.

• At the same time purification leads to destruction of some image features as well as they are
perceived as noise. Hence, the clean accuracy decreases, and also for adversarial samples,
the loss of image features overshadows the reduction of adversarial noise. However, it is
empirically observed that the peak on adversarial accuracy occurs at around n = 1.5ϵ

α which
can be interpreted as it takes about 1.5 times the correction effort to neutralize an attack of
magnitude ϵ with step α.

8

(a) BIM adversaries (b) Clean samples
Figure 5: Classification accuracies after purification for different no. of iterations. ϵ =
0.1, 0.0314, 0.1 for MNIST, CIFAR-10 and IMAGENET respectively.

D Varying Amount of Adversarial Perturbation (ϵ).
We experiment with larger values of ϵ to make a larger attack to test the robustness of our method
against different values of ϵ. For fairness, we set no. of iterations, n = 1.5ϵ

ϵstep
to test robustness against

different values of ϵ for BIM attack. As seen in Figure 6, we observe a downward trend for increased
magnitude of attack as expected. This is because larger ϵ attack usually implies larger adversarial
perturbation and thus hard to purify.

(a) MNIST (b) CIFAR-10

(c) IMAGENET
Figure 6: Classification accuracies after purification for adversaries with different magnitudes of
attack.

9

E Varying Amount of Random Transformation Parameters at Every Step
(ImageNet).

Further, we experiment with different values of random transformation parameters, rotation θ and
resize factor f . As observed with f = 1 constant, on increasing θ, we first observed an upward trend
as the rotation acts as a defense in the beginning (see Figure 7a) leading to increased accuracy but
later it reduces. Similar trend is observed for different values of f for no rotation (see Figure 7b).

(a) Variable θ, fixed resize factor, f = 1.1 (b) No rotation, variable resize factor, f
Figure 7: Classification accuracies after purification for different transformation parameters.

10

	Introduction and Related works
	Our Proposed APuDAE Framework
	Denoising AutoEncoders (DAE)
	Determining Reconstruction Errors
	Variations in the adaptive algorithm

	Experimental Results
	MNIST Dataset
	CIFAR-10 Dataset
	ImageNet Dataset

	Possible Counter Attacks
	Counter Attack A
	Counter Attack B

	Adversarial Attack Models and Methods
	Random Perturbation (RANDOM)
	Fast Gradient Sign Method (FGSM)
	Projected Gradient Descent (PGD) or BIM
	Carlini-Wagner (CW) Method
	DeepFool method

	Varying Number of Iterations for Adaptive Purification.
	Varying Amount of Adversarial Perturbation ().
	Varying Amount of Random Transformation Parameters at Every Step (ImageNet).

