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ABSTRACT

Convolutional neural networks have shown promising results in single-frame in-
frared small target detection (SIRST) through supervised learning. Nevertheless,
this approach requires a substantial number of accurate manual annotations on a
per-pixel basis, incurring significant labor costs. To mitigate this, we pioneer the
integration of semi-supervised learning into SIRST by exploiting the consistency
of paired training samples obtained from data augmentation. Unlike prevalent data
augmentation techniques that often rely on standard image processing pipelines
designed for visible light natural images, we introduce a novel Thermodynamics-
inspired data augmentation technique tailored for infrared images. It enhances
infrared images by simulating energy distribution using the thermodynamic radi-
ation pattern of infrared imaging and employing unlabeled images as references.
Additionally, to replicate spatial distortions caused by variations in angle and dis-
tance during infrared imaging, we design a non-uniform mapping in positional
space. This introduces non-uniform offsets in chromaticity and position, induc-
ing desired changes in chromaticity and target configuration. This approach sub-
stantially diversifies the training samples, enabling the network to extract more
robust features. We also devise an adaptive exponentially weighted loss function
to address the challenge of training collapse due to imbalanced and inaccurately
labeled samples. Integrating them together, we present SemiAugIR, which deliv-
ers promising results on two widely used benchmarks, e.g., with only 1/8 of the
labeled samples, it achieves over 94% performance of the state-of-the-art fully
supervised learning method. The source code will be released.

1 INTRODUCTION

Single-frame infrared small target (SIRST) detection is a crucial component of infrared (IR) search
and tracking, finding diverse applications such as maritime search and rescue, as well as agricul-
tural yield prediction Deng et al. (2016); Teutsch & Krüger (2010). SIRST detection solely lever-
ages spatial information from a single image, offering advantages in terms of easy deployment and
real-time performance, making it highly attractive for identifying fast-moving, isolated IR small
targets. While conventional SIRST methods Bai & Zhou (2010); Zhang & Peng (2019) include
filtering-based, local contrast-based, and low-rank-based approaches, they often entail complex fea-
ture design and parameter tuning, yielding suboptimal detection results. In recent years, data-driven
deep learning methods Ren et al. (2015); Redmon & Farhadi (2018) have been applied to SIRST
detection, achieving notable progress Zhang et al. (2022a;c); Li et al. (2023). However, these meth-
ods typically enhance detection performance through fully supervised learning, relying heavily on
dataset quality and quantity. This dependence is particularly problematic for small IR targets, which
constitute a minuscule fraction of the image and are susceptible to labeling errors. The scarcity of
IR datasets and inconsistent labeling quality pose significant challenges to advancing SIRST detec-
tion research and model generalization. Consequently, the primary challenge in this field revolves
around expanding scarce IR data and mitigating the reliance on precise dataset labeling.

Semi-supervised learning Berthelot et al. (2020); Li et al. (2019); Liu et al. (2020), particularly meth-
ods employing consistency regularization, is widely employed in computer vision. These methods
rely on exploiting the consistency of augmented training samples. The key challenge among them
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is designing augmentation techniques that effectively extract features with robust generalization ca-
pabilities. However, it’s important to note that existing data augmentation techniques Wang et al.
(2023); Yang et al. (2023); Ghosh & Thiery (2020) are often not tailored for IR data. IR imaging
possesses unique characteristics that make it less responsive to traditional augmentation methods,
such as adding noise or other perturbations. Hence, we intend to explore semi-supervised learning
for SIRST detection and customize augmentation algorithms specifically for IR imaging, taking into
account its distinctive characteristics.
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Figure 1: Schematic illustrating energy distribu-
tion changes (∆Q) in a thermodynamic system
approaching a steady state. It involves changes
in both macroscopic (a) and microscopic (b) en-
ergy states. The arrows in (b) indicate the direc-
tion of microelemental energy transfers.

We begin with an in-depth exploration of the
unique characteristics of IR imaging, specifically
thermal radiation properties. Ideally, the uni-
form and constant thermal radiation from the
surface of an object makes the target captured
by an IR image consistent with the position of
the real target, with a uniform brightness that is
clearly distinguishable from the background, re-
sulting in significant contrast. From a thermo-
dynamic perspective, the current imaging area
can be viewed as a local thermodynamic system
in thermal equilibrium, exhibiting stable inter-
nal energy changes. However, in reality, various
factors like non-uniform target radiation, mo-
tion blur, shooting angle interference, and back-
ground thermal noise cause spatial distortion in
the acquired IR image, altering both chromatic-
ity and position compared to the actual scene.
This spatial distortion disrupts the thermody-
namic equilibrium in the system. Consequently,
we can establish an intuitive mapping, associat-
ing each pixel in an IR image with its pixel value (chromaticity) to each microelement in a thermody-
namic system, considering its contained energy. This aids in comprehending how spatial distortions
in IR images manifest within the thermodynamic system.

Based on this mapping, we introduce SemiAugIR, a novel semi-supervised learning method for de-
tecting infrared small targets. A key innovation is our thermodynamic-inspired data augmentation
approach, customized for IR imaging. We leverage the thermal distribution contrast between turbu-
lent and equilibrium states, denoted as ∆Q (Figure 1). As the thermodynamic system approaches
equilibrium, heat exchange becomes directionless, and ∆Q diminishes. This allows us to create
non-uniform chromaticity augmentation by aligning the temperature field function with the energy
distribution changes in the IR image’s microelements. To account for factors like shooting angle
and motion blur affecting IR target positions, we also devise a non-uniform smoothing enhance-
ment preserving target positions with added geometric perturbation. Furthermore, considering the
severe imbalance between pixels of IR small targets and backgrounds and the variation in label qual-
ity in semi-supervised learning, we introduce a non-uniform adaptive weighted loss function. This
dynamically balances simple and challenging samples based on training performance, prioritizing
optimization for difficult samples, and thus addressing sample imbalance. It also prevents overfitting
and handles noisy labels effectively. In summary, the main contributions of this paper are four-fold.

1) We present SemiAugIR, a pioneering semi-supervised approach for SIRST that significantly re-
duces labeling costs and improves model robustness.

2) We design an effective augmentation method tailored to addressing the challenges in SIRST,
integrating thermodynamic simulations for infrared imaging. It enhances feature representation and
discrimination in SemiAugIR by exploiting the consistency of augmented data.

3) We devise a novel loss function to tackle the severe target-background class imbalance issue in
semi-supervised learning. It helps enhance training across networks of various sizes and datasets
with varying proportions of labeled samples, leading to better performance.
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4) Experimental results on widely-used challenging benchmarks demonstrate that our SemiAugIR
delivers promising results, e.g., achieving a 94% pixel-level intersection over union (IoU) perfor-
mance, with only 1/8 of labeled samples.

2 RELATED WORK

SIRST Detection. Over the past time, researchers propose a series of methods, including traditional
methods (filtering-based methods Bai & Zhou (2010); Deshpande et al. (1999), local comparison-
based methods Chen et al. (2013); Han et al. (2020); Hou & Zhang (2007); Han et al. (2014), low-
rank-based methods Dai & Wu (2017); Gao et al. (2013); Zhang & Peng (2019); Zhang et al. (2018))
and more recent deep learning-based methods. While traditional methods require elaborate mathe-
matical modeling and tuning of hyperparameters, deep learning-based methods Zhang et al. (2022b;
2023) learn complex nonlinear mappings in a data-driven manner that can be generalized to IR
datasets of arbitrary characteristics with very promising performance. Wang et al. pioneer utilizing
GANs Goodfellow et al. (2020) to trade off the detection rate against the false alarm rate and develop
MDvsFA Wang et al. (2019). Then Dai et al. design an ACMNet Dai et al. (2021a) to facilitate the
interaction of high-level and low-level information. Zhang et al. propose an ISNet Zhang et al.
(2022c) to leverage image edge information using second-order Taylor finite-difference equations.
Additionally, they innovate with RKFormer Zhang et al. (2022a), incorporating a transformer-based
approach and optimizing the self-attention module to enhance the network’s efficacy in full-feature
detection. Li et al. present a DNANet Li et al. (2023) to facilitate the multi-scale fusion of IR
small target features. The above approaches enhance IR target detection by network design, rely-
ing on full supervision where performance heavily relies on dataset quality and quantity. However,
the collective amount of currently available single-frame IR data is severely limited, significantly
constraining existing methods due to insufficient data for learning. Moreover, varying data labeling
quality notably affects the already diminutive small IR targets. This challenge has severely impeded
advancements in SIRST detection research. To overcome this bottleneck, we pioneer the application
of semi-supervised learning in the domain of SIRST detection, striving to lessen dependence on
labeled data and augment the existing IR dataset effectively.

Semi-Supervised Semantic Segmentation. The core solution to the semi-supervised problem lies
in how to design a training strategy to utilize a large number of unlabeled samples to align labeled
and unlabeled features to make the network more generalized. Recent semi-supervised methods typ-
ically fall into two categories: entropy minimization and consistency regularization. Entropy min-
imization encourages the network to output predictions with higher confidence, and the dominant
approach in this regard is self-training, where training is supervised by the pseudo-labels predicted
by the network. Although the accuracy of the pseudo-labels can be filtered by thresholding, they can
still fall into confirmation bias. This is repeated until the network outputs low entropy predictions
for unlabeled samples. Yang et al. develop ST++ Yang et al. (2022),showcasing that a straightfor-
ward iterative self-training approach yields good performance. Another class of methods relies on
the smoothing and clustering assumptions, positing that the network generates similar predictions
for identical samples with varying perturbations. Among them, Chen et al. propose a cross pseudo
supervision strategy Chen et al. (2021) to use two independent networks to supervise each other.
FixMatch Sohn et al. (2020) injects both strongly and weakly enhanced images and uses the weakly
enhanced predictions to supervise the strongly enhanced ones. FlexMatch Zhang et al. (2021) and
FreeMatch Wang et al. (2023) propose a course-learning method for models for different training
states as well as different classes of training difficulty without introducing additional parameters.
Recently, Unimatch Yang et al. (2023) demonstrates the importance of increasing the image-level
perturbation space and the fact that results of consistent regularization depend on the design of sen-
sible strong augmentations. This insight forms the theoretical basis for applying image-level data
augmentation to address spatial distortion challenges in IR imaging for our SIRST detection task.

3 METHODOLOGY

3.1 NON-UNIFORM CHROMATICITY AUGMENTATION

To replicate the chromaticity change due to spatial distortion in IR images, we design a non-uniform
chromaticity enhancement method based on an intuitive mapping between IR images and thermo-
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Figure 2: Overview of the proposed SemiAugIR, involving a backbone detection network, a split-
head branch, and a semi-supervised branch. Both labeled and unlabeled samples undergo feature
extraction via the shared backbone detection network. The split-head and semi-supervised branches
process labeled and unlabeled samples to generate predictions, respectively. An AEW loss function
constrains predictions from labeled samples.

dynamic systems. Our assumption is that in a thermodynamic system, the difference between the
energy distribution states of the disordered and equilibrium states is denoted as ∆Q. Due to the
continuity of energy transfer in a thermodynamic system, the energy difference ∆Q is also con-
tinuous. After undergoing internal thermal interactions and boundary energy exchanges, the ther-
modynamic system tends to equilibrium and ∆Q decreases to zero. Our goal is to replicate the
energy distribution of ∆Q during this process. Thus, we utilize the principle of energy continuity
and non-uniformity by using a smooth two-dimensional non-uniform stochastic distribution map of
chromaticity. This map simulates a random configuration of the previous energy distribution.

The procedure for generating non-uniform chromaticity augmentation is outlined herein. We aim
to decompose this two-dimensional problem into two one-dimensional problems to simplify the
generation of a smooth energy distribution. In the horizontal dimension, our aim is to generate
five random points to conform to the cubic function f(x), which serves as an energy distribution
function representing the energy state of the pixel at position x. These five points can be regarded as
a random sample on the horizontal axis. We consider the vertical thermal distribution to be highly
correlated, thus assuming its smooth variation in the vertical direction. In image processing, smooth
variation generally signifies that the intensity change between adjacent pixels within an image is
not excessively abrupt. When we consider each pixel as a microscopic system with its energy state
represented by a gray-scale value, smooth variation implies a continuous alteration in the energy
state (gray-scale value) of neighboring pixels without sudden fluctuations.

To achieve this seamless transition, we can draw inspiration from the concept of a temperature field
in thermodynamics. In the realm of thermodynamics, a temperature field characterizes temperature
distribution at spatial points. In this context, we interpret the temperature field as a function de-
scribing the “temperature” of each point (or pixel) in an image, which significantly influences the
energy state of a pixel. Within this model, we assume that variations in temperature in the vertical
direction determine alterations in the energy state (i.e., the gray-scale value). In essence, if alter-
ations in the vertical direction’s temperature field value exhibit smoothness, corresponding changes
in the energy state (gray-scale value) will also manifest as smooth. To implement this concept, we
devise a temperature field function T (y), where y signifies position along the vertical axis. This
function needs to satisfy two fundamental conditions: firstly, its value remains bounded across the
entire image range. Secondly, its derivative (i.e., the rate of temperature change) remains bounded
across the entire image range. This approach empowers us to manage alterations in the energy state
along the vertical direction by adjusting function parameters to meet our specific requirements.
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With these considerations, we transition the previously generated five random points horizontally
into a new set of five random points in the vertical direction, smoothly transitioning them to their
next positions by establishing five random endpoints. In our configuration, we employ a uniform
step size for ease of implementation. When the initial random five points move to the five random
endpoints, a random map featuring a smooth energy distribution is generated. It is important to note
that our energy distribution maps exhibit both horizontal and vertical smooth and randomized char-
acteristics. During the process of augmenting chromaticity in unlabeled samples, these samples can
be smoothed to randomly enhance or diminish the contrast between the target and the background,
simulating variations in heat.

3.2 NON-UNIFORM POSITION AUGMENTATION

The positions of both targets and backgrounds are prone to distortion due to inherent randomness
stemming from IR imaging angles, imaging distances, and atmospheric radiative disturbances. This
motivates our exploration of spatial mapping to generate spatial variations in randomness. It is worth
noting that non-uniform chromaticity and positional augmentation work synergistically. Random
smooth variations in chromaticity broadening the sample space of the chromaticity dimension while
encouraging the network to take position information into account. Concurrently, position diversity
broadens the sample space of the position dimension while encouraging the network to consider
contrast information of the target and background. In practice, we represent the position (x, y) of
each pixel by remapping. Consider this: g(x, y) is the target image, f(x, y) is the source image, and
h(x, y) is the function of the mapping method acting on (x, y):

g(x, y) = f(h(x, y)). (1)

Note that the effect of the deformation enhancement depends entirely on the design of the h(x, y)
function. As with non-uniform chromaticity augmentation, we reduce this two-dimensional map-
ping problem to two one-dimensional problems to prevent excessive deformation. To have multiple
stochastic effects of smooth stretching and shrinking at the same time in the same dimension, we
simulate this variation using a sine function. The amplitude of the sine function is based on 60 and
randomly floats up and down by 15-pixel values. The formula for h(x, y) is presented as:

h(x, y) = a ∗ sin(2 ∗ π ∗ t/T ), (2)

where time T is randomly generated within the interval we set. We generate the target mapping by
randomly taking consecutive intervals (a, b) of the same size as the original image while discretizing
the intervals.

3.3 ADAPTIVE EXPONENTIALLY WEIGHTED LOSS FUNCTION

Semi-supervised tasks often have a scarcity of labeled samples, leading to training instability. Fur-
thermore, in the SIRST detection task, the target typically occupies a small portion of the image,
causing a notable imbalance between positive and negative samples. This scenario, coupled with
limited labeled data and associated noise, poses a significant challenge in training deep neural net-
works. Thus, we design a pioneering loss function tailored for the SIRST detection task within a
semi-supervised framework. Our approach consists of designing a bounded weighted loss function
that focuses on optimizing difficult samples. In addition, for binary classification in dense prediction
tasks, we set optimization bounds for positive and negative samples, whereby samples beyond these
bounds in prediction probability are not further optimized. Specifically, assuming the predicted
output for a certain position is pi, we establish weighted definitions for positive samples as:

loss(pi) =

{
e1−pi lnx pi<η
0 other.

(3)

We perform adaptive selection of positive and negative samples by thresholding, and the total clas-
sification loss function is:

LAEW =

N∑
i=1

loss(pi)/

N∑
i=1

[pi<η], (4)

where the role of [·] is to filter predicted values satisfyin pi<η. Our loss function incorporates a hy-
perparameter η, determined based on two primary considerations. Firstly, the majority of the back-
ground regions predicted by the network lie in high-confidence intervals, with only a few difficult
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samples. We can adaptively select positive and negative samples based on the network’s prediction
performance to prevent excessive optimization of simpler ones and better approximate confidence
bounds. Secondly, manual labeling exhibits noise, particularly in boundary regions, posing diffi-
culty in distinguishing positive from negative samples. Instead of over-optimizing high-confidence
regions, we allow the network flexibility in fitting prediction boundaries to mitigate noise influence.

3.4 SEMI-SUPERVISED LEARNING THROUGH CHROMATICITY-POSITION CONSISTENCY

Let Dl and Du denote labeled and unlabeled data, respectively, with the entire dataset represented
by D = Dl ∪Du. Labeled data pairs are denoted as (xi

l, y
i
l) ∈ Dl, and unlabeled data is denoted as

xu ∈ Du. For labeled data, we utilize our designed LAEW loss function for consistency supervision.
The treatment for unlabeled samples is inspired by Yang et al. (2023). We define the consistency
loss for soft labels as:

Lcon = D(Pi, Pj), (5)
where D(·) measures the similarity of two predictions. We leverage L1 loss function to measure the
difference and optimize it. We perform two non-uniform chromaticity (NUC) augmentation opera-
tions and one non-uniform position (NUP) augmentation operation on input X ∈ Du, respectively.

pNUP = M(ANUP (xu)), pNUC
i = M(ANUC(ANUC(xu))), (6)

where A(·) and M(·) represent the augmentation operation and segmentation module. pNUC
1 and

pNUC
2 denote two distinct NUC-augmented views, while pNUP signifies a NUP-augmented view.

Considering that NUC augmentation produces great changes to the original target, which may lead to
fundamental property differences between the augmented target and the original target, while NUP
augmentation has a relatively small impact on the original target, which only produces slight changes
in shape and the fundamental properties of the augmented target remain unchanged. Therefore, we
plan to determine optimization weights by comparing predicted results’ consistency between NUC
and NUP augmented views, mitigating optimization divergence:

Lun =
1

2
Con(pNUP , pNUC

1 , pNUC
2 ) ∗D(PNUC

1 , pNUC
2 )

+
1

2
Con(pNUP , pNUC

2 , pNUC
1 ) ∗D(pNUC

1 , PNUC
2 ),

(7)

where P is the scalar with the gradient removed. Con(pNUP , pNUC
1 , pNUC

2 ) can be described as:

Con(pNUP , pNUC
1 , pNUC

2 ) = D(pNUP , pNUC
1 )/(D(pNUP , pNUC

1 ) +D(pNUP , pNUC
2 )). (8)

Con(pNUP , pNUC
2 , pNUC

1 ) mirrors the above formula. We refrain from assuming the absolute truth
of a specific augmentation prediction, mitigating confirmation bias to some extent. The NUP-
augmented prediction guides network optimization direction but isn’t absolute. It helps calculate
weights for NUC-augmented predictions, acting as a compromise to the rough assumption that
‘NUP-augmented predictions are true.’ Both NUC and NUP augmented predictions are mutually
weighted, showing stable similarity after iterative optimization. The total loss Lall can be expressed:

Lall = Lcon + λLun, (9)

λ is a hyper-parameter set to 0.5. The consistency supervision loss Lcon is described as:

Lcon = LAEW (M(ANUP (xl)), yl). (10)

4 EXPERIMENT

4.1 EXPERIMENTAL SETTINGS.

Dataset and evaluation metrics We conduct extensive experiments on our SemiAugIR on the pub-
licly available NUDT-SIRST Li et al. (2023) and NUAA-SIRST Dai et al. (2021b). NUAA-SIRST
has 427 IR images with backgrounds such as clouds, cities, and oceans. NUDT-SIRST contains the
largest number of background categories, including clouds, cities, oceans, fields, and bright lights.
For all datasets, we employ only twenty percent for testing and eighty percent for training.
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Table 1: Comparison with SOTA methods in IoU(%), nIoU(%), Pd(%), Fa(10
−6) on NUDT-

SIRST and NUAA-SIRST. ‘Full’, ‘Semi’ represent fully-supervised learning and semi-supervised
learning, respectively. 1/4, 1/8, 1/16, 1/32 are the ratio of labeled samples in the datasets. For
NUDT-SIRST is ‘1/8, 1/16, 1/32’, and for NUAA-SIRST is ‘1/4, 1/8, 1/16’.

Methods Description
NUDT-SIRST NUAA-SIRST Average

IoU Pd Fa IoU Pd Fa IoU Pd Fa

Top-Hat Filtering 20.72 78.41 166.70 7.14 79.84 1012.00 13.93 79.13 589.35
TLLCM Local Contrast 7.06 62.01 46.12 11.03 79.47 7.27 9.05 70.74 26.30
MSPCM Local Contrast 5.86 55.87 115.96 12.38 83.27 17.77 9.12 69.57 66.87

IPI Low Rank 17.76 74.49 41.23 25.67 85.55 11.47 21.72 80.02 26.35
PSTNN Low Rank 14.85 66.13 44.17 22.40 77.95 29.11 18.63 72.04 36.64

MDvsFA CNN Full 45.38 86.03 200.71 61.77 92.40 64.90 53.58 89.22 132.81
ALCNet CNN Full 61.78 91.32 36.36 67.91 92.78 37.04 64.85 92.05 36.70

ISNet CNN Full 71.27 96.93 96.84 72.04 94.68 42.46 71.66 95.81 69.65

Res34-Unet

CNN Full 90.28 97.99 5.89 77.18 96.28 9.23 83.73 97.14 7.56
CNN Full 1/32&1/16 46.35 85.16 160.25 48.45 90.16 60.27 47.40 87.66 110.26
CNN Full 1/16&1/8 57.04 87.17 79.24 53.58 92.12 30.14 55.31 89.65 54.69
CNN Full 1/8&1/4 76.15 92.19 47.12 58.94 93.19 23.19 67.55 92.69 35.16

ST++ 1/32&1/16 49.88 89.31 110.28 52.19 92.38 33.12 51.04 90.85 71.70
ST++ 1/16&1/8 64.91 92.17 93.29 58.62 92.81 21.12 61.77 92.49 57.21
ST++ 1/8&1/4 80.72 93.12 17.19 62.14 93.01 17.19 71.43 93.07 17.19

CPS 1/32 50.18 88.86 126.28 52.49 91.79 29.17 51.34 90.33 77.73
CPS 1/16 61.93 90.79 94.12 57.38 93.10 24.76 59.67 91.95 59.44

CPS 1/8&1/4 76.53 91.48 57.12 61.94 93.76 18.92 69.24 92.62 38.02

CPS Semi 1/32&1/16 54.88 86.93 191.68 55.19 92.10 27.19 55.04 89.52 109.44
CPS Semi 1/16&1/8 64.94 93.47 104.34 58.93 93.01 23.10 61.94 93.24 63.72
CPS Semi 1/8&1/4 78.53 95.14 54.82 62.72 93.12 18.29 70.63 94.13 36.56

CNN Semi 1/32&1/16 77.61 92.05 21.04 61.58 92.98 21.94 69.60 92.52 21.49
CNN Semi 1/16&1/8 82.14 93.47 9.29 62.48 93.86 13.01 72.31 93.67 11.15
CNN Semi 1/8&1/4 85.07 95.45 11.60 66.40 94.58 7.24 75.74 95.02 9.42

ACMNet

CNN Full 75.19 96.36 18.18 64.92 90.87 12.76 61.17 91.31 26.25
CNN Full 1/32&1/16 58.42 89.20 48.83 44.19 87.69 90.12 51.31 88.45 69.48
CNN Full 1/16&1/8 64.94 92.90 30.40 50.28 89.17 62.18 57.61 91.04 46.29
CNN Full 1/8&1/4 68.80 94.89 32.24 57.79 91.28 47.16 63.30 93.09 39.70

CNN Semi 1/32&1/16 61.04 91.76 63.57 48.19 88.13 76.12 54.62 89.95 69.85
CNN Semi 1/16&1/8 69.19 92.32 23.67 55.28 90.24 60.29 62.24 91.28 41.98
CNN Semi 1/8&1/4 73.21 95.74 23.38 60.29 92.15 27.19 66.75 93.95 25.29

DNANet

CNN Full 91.89 98.24 1.79 79.86 97.96 15.50 82.14 97.64 12.25
CNN Full 1/32&1/16 69.39 90.36 65.27 52.14 89.77 75.28 60.77 90.07 70.28
CNN Full 1/16&1/8 76.29 94.98 22.10 67.07 93.91 29.18 71.68 94.45 25.64
CNN Full 1/8&1/4 84.30 95.88 17.89 70.06 94.28 18.21 77.18 95.08 18.05

CNN Semi 1/32&1/16 76.58 91.19 53.15 56.79 89.17 70.12 66.69 90.18 61.64
CNN Semi 1/16&1/8 84.59 95.71 20.90 69.89 93.10 20.12 77.24 94.41 20.51
CNN Semi 1/8&1/4 90.12 96.02 6.85 73.12 95.12 10.28 81.62 95.57 8.57

Evaluation metrics. We utilize the pixel-level evaluation metrics intersection over union (IOU ),
probabily of detection (Pd), and false alarm rate (Fa) to measure the performance of IR detection.
These three metrics are chosen because they are more sensitive to the prediction of small targets,
and a few pixel-level errors may have a relatively large magnitude performance on the IOU.

Implementation details. To facilitate the training, we uniformly resize all the images to 256×256.
Utilizing the efficient AEW loss function, we achieve SOTA performance with low complexity,
employing only the Unet network with a pre-trained Resnet34 backbone. For training efficiency,
we apply this network as our segmentation model. Each batch contains 4 labeled and 2 unlabeled
images. The initial learning rate is set to 0.0001, employing an adamw optimizer. Parameters remain
consistent for different datasets. We utilie non-uniform luminance enhancement as As. The original
images are horizontally and vertically inverted with a probability of 0.2, while non-uniform position
enhancement is performed with a probability of 0.6 to form As. Unlabeled samples are exclusively
used in the semi-supervised branch, while labeled samples are fed into the detection branch.
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Table 2: Ablation study of NUC and NUP augmentations in IoU(%), nIoU(%), Pd(%), Fa(10
−6)

on NUDT-SIRST.

Augmentation 1/32 1/16 1/8 1 Average

NUCAug NUPAug IoU Pd Fa IoU Pd Fa IoU Pd Fa IoU Pd Fa IoU Pd Fa

- - 72.28 93.47 45.03 76.68 94.31 35.30 79.61 96.02 30.29 87.51 96.88 10.93 79.02 95.17 30.39
+ - 74.37 93.89 32.10 79.79 93.89 20.67 83.25 95.75 19.87 89.78 97.36 6.69 81.80 95.22 19.83
- + 73.83 94.03 30.52 78.60 93.47 18.02 83.00 95.45 20.27 89.37 97.18 6.35 81.20 95.03 18.79
+ + 77.61 94.05 21.94 82.14 95.47 9.27 85.07 96.45 11.60 90.28 97.99 5.89 83.78 95.99 12.18

Table 3: Ablation study of the proposed loss functions in IoU(%), nIoU(%), Pd(%), Fa(10
−6) on

NUDT-SIRST.

Method Loss
1/32 1/16 1/8 1 Average

IoU Pd Fa IoU Pd Fa IoU Pd Fa IoU Pd Fa IoU Pd Fa

ACMNet
IoULoss 54.29 86.36 46.29 63.12 91.76 44.57 65.24 93.67 38.21 \ \ \ 60.88 90.6 43.02

AEWLoss 58.42 89.20 48.83 64.94 92.90 30.40 68.8 94.89 32.24 75.19 96.36 18.18 66.84 93.34 32.41
Ours 61.04 91.76 63.57 69.19 92.32 23.67 73.21 95.74 23.38 \ \ \ 67.81 93.27 36.87

DNANet
IoULoss 63.57 89.09 88.23 73.19 94.81 23.89 76.15 95.03 20.56 \ \ \ 70.97 92.98 44.23

AEWLoss 69.39 90.36 65.27 76.29 94.98 22.10 84.3 95.88 17.89 91.89 98.24 1.79 80.46 94.87 35.09
Ours 76.58 91.19 53.15 84.59 95.71 20.9 90.12 96.02 6.85 \ \ \ 83.76 94.31 26.97

4.2 QUANTITATIVE RESULTS

We conduct comparative experiments on both NUDT-SIRST Li et al. (2023) and NUAA-SIRST Dai
et al. (2021b) datasets. We compare with the SOTA semi-supervised frameworks: CPS Chen et al.
(2021) and ST++ Yang et al. (2022) by performing a side-by-side comparison on the baseline net-
work ResNet34-UNet Ronneberger et al. (2015). In addition, we apply our SemiAugIR method to
the SOTA CNN-based IRSTD detection methods: ACMNet Dai et al. (2021a) and DNANet Li et al.
(2023). And we add six fully supervised CNN-based methods (ResNet34-UNet, MDvsFA Wang
et al. (2019), ALCNet Dai et al. (2021b), ACMNet Dai et al. (2021a), DNANet Li et al. (2023), IS-
Net Zhang et al. (2022c)), and five traditional methods (TopHat Bai & Zhou (2010), TLLSM Chen
et al. (2013), MSPCM Moradi et al. (2018), IPI Gao et al. (2013), PSTNN Zhang & Peng (2019)).

The quantitative results are shown in Table 1. We first validate the superiority of our proposed Semi-
AugIR method on the SIRST detection task on the baseline network ResNet34-UNet. Even on the
dataset containing only 1/32 labeled samples, the network outperforms all the traditional methods,
which indicates that our proposed semi-supervised strategy still has a far better performance than
the traditional algorithms while using only a very small amount of labeling resources. Compared
with the current mainstream semi-supervised frameworks CPS and ST++, our proposed method has
the best performance on datasets containing different percentages of labeled samples. In addition,
when our plug-and-play SemiAugIR is integrated into the CPS framework, its performance on the
baseline network is greatly improved compare to CPS only, with 2% improvement in IoU and 2.3%
reduction in Fa at 1/8 scale on NUDT-SIRST.

We also apply SemiAugIR to two representative fully-supervised SIRST detection algorithms,
ACMNet and DNANet, and both of them can produce large detection performance gains. ACM-
Net, a lightweight UNet-based detection algorithm, is highly sensitive to data quantity and labeling
quality. When labeled samples are reduced or label noise is significant, ACMNet’s training becomes
unstable and may crash. Therefore, ACMNet serves as a valuable benchmark for assessing the ro-
bustness and training stability of our proposed method. The experimental results show that with
SemiAugIR for training, ACMNet outperforms the results of fully supervised training on datasets
with different proportions of labeled samples than the same proportion of data. While DNANet
is currently considered the state-of-the-art (SOTA) algorithm with its densely connected network
design, which enhances robustness against various disturbances, it’s important to note that the avail-
able infrared (IR) data is limited in quantity. Large-scale network training on such a small dataset
can lead to overfitting. Our method reliably expands the existing dataset, and the network perfor-
mance can be comparable to that of the same proportion of data when trained with SemiAugIR on
NUDT-SIRST dataset containing 1/8 of the labeled samples training, the network performance can
be comparable to fully supervised learning results and can achieve fully supervised 98% IoU values.
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4.3 ABLATION STUDIES

Impact of non-uniform data augmentation: To verify the effectiveness of our proposed non-
uniform chromaticity and positions augmentation methods, we conduct a series of ablation exper-
iments by applying them to the baseline network and present the experimental results as shown in
Table 2. It is clearly observed from the table that both of our proposed plug-and-play non-uniform
data augmentation methods exhibit significant improvements with respect to the baseline method.
These improvements include an increase in IoU values by 2.09% and 1.55%, respectively, along with
a decrease in Fa values by 12.93e−6 and 14.53e−6, respectively. The most significant performance
improvements are realized when both augmentation methods are employed concurrently. When we
apply both data augmentation methods to a dataset with 1/8 labeled samples for training, in terms of
IoU, our method exhibits comparable performance to fully supervised methods, reaching 94%.

Impact of the proposed loss functions: To verify the effectiveness of the proposed AEW loss
function and progressively enhanced consistent semi-supervised loss function, we summarize the
specific experimental results as shown in Table 3. We clearly observe that on the dataset containing
1/32 and 1/16 labeled samples, the simultaneous adoption of these two loss functions proposed by
us achieves comparable or even better performance as compared to the case of AEWLoss only, as
compared to the dataset containing 1/16 and 1/8 labeled samples. Moreover, even when the network
is trained using only AEWLoss, our network performance is significantly better than that of the
currently dominant IoULoss and BCELoss methods. In addition, our loss function design does
not over-optimize high-confidence results, and thus is able to adaptively deal with extreme sample
imbalances, allowing the network to produce satisfactory detection results even when dealing with
difficult samples. In addition, our method is tolerant to the number of samples, which helps to
reduce the possibility of network overfitting, and is also robust to noise, thus providing a greater
advantage in reducing the false alarm rate relative to other methods. These results demonstrate
the effectiveness and robustness of our proposed method in dealing with the semi-supervised target
detection task, which provides strong support for improving the detection performance.

4.4 VISUALIZATION RESULTS

We design two sets of visualization results for comparison. First, we substantiate the effectiveness
of our semi-supervised strategy on the baseline network, ResNet34-UNet, as depicted in Figure 3.
We can observe that the performance of the fully-supervised method decreases dramatically as the
proportion of datasets containing labeled samples decreases, while our proposed SemiAugIR sig-
nificantly outperforms the SOTA semi-supervised method, CPS, on datasets with all proportions of
labeled samples. In addition, the integration of our method on the CPS framework can significantly
improve its performance.

Next, we demonstrate that our proposed method is plug-and-play, applicable to any type of network,
and significantly improves the performance, the visualization of which is shown in Figure 4. We
validate the excellence of our proposed SemiAugIR on different networks with different sizes, dif-
ferent training stability, and containing the best current fully supervised algorithms. Our method
demonstrates outstanding performance across diverse networks, showcasing its broad applicability
and suggesting a novel research direction in IRSTD detection.

5 CONCLUSION

In this paper, we present for the first time a method for SIRST detection using semi-supervised learn-
ing. In our SemiAugIR, we design plug-and-play non-uniform chromaticity augmentation and posi-
tional augmentations, drawing inspiration from thermodynamic energy transfer principles inherent
to IR imaging. These two data augmentation methods designed specifically for IR data can replicate
the effect of spatial distortion on imaging, expand the scarce IR data, and improve the generalization
ability of the network effectively. In addition, our loss function for semi-supervised learning ef-
fectively solves the target-background imbalance problem and eliminates the effect of variable data
labeling quality on network training. Extensive experiments show that our plug-and-play IR data
enhancement method can be applied to different networks, and all of them can effectively improve
the robustness of each network. This research introduces innovative methodologies and perspectives
to the expansive field of SIRST detection, offering promising application prospects.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Xiangzhi Bai and Fugen Zhou. Analysis of new top-hat transformation and the application for
infrared dim small target detection. Pattern Recognition, 43(6):2145–2156, 2010.

David Berthelot, Nicholas Carlini, Ekin Dogus Cubuk, Alexey Kurakin, Kihyuk Sohn, Han Zhang,
and Colin Raffel. Remixmatch: Semi-supervised learning with distribution matching and aug-
mentation anchoring. In International Conference on Learning Representations, 2020.

CL Philip Chen, Hong Li, Yantao Wei, Tian Xia, and Yuan Yan Tang. A local contrast method for
small infrared target detection. IEEE Transactions on Geoscience and Remote Sensing, 52(1):
574–581, 2013.

Xiaokang Chen, Yuhui Yuan, Gang Zeng, and Jingdong Wang. Semi-supervised semantic segmen-
tation with cross pseudo supervision. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 2613–2622, 2021.

Yimian Dai and Yiquan Wu. Reweighted infrared patch-tensor model with both nonlocal and local
priors for single-frame small target detection. IEEE journal of selected topics in Applied Earth
Observations and Remote Sensing, 10(8):3752–3767, 2017.

Yimian Dai, Yiquan Wu, Fei Zhou, and Kobus Barnard. Asymmetric contextual modulation for in-
frared small target detection. In Proceedings of the IEEE/CVF Winter Conference on Applications
of Computer Vision, pp. 950–959, 2021a.

Yimian Dai, Yiquan Wu, Fei Zhou, and Kobus Barnard. Attentional local contrast networks for
infrared small target detection. IEEE Transactions on Geoscience and Remote Sensing, 59(11):
9813–9824, 2021b.

He Deng, Xianping Sun, Maili Liu, Chaohui Ye, and Xin Zhou. Small infrared target detection based
on weighted local difference measure. IEEE Transactions on Geoscience and Remote Sensing,
54(7):4204–4214, 2016.

Suyog D Deshpande, Meng Hwa Er, Ronda Venkateswarlu, and Philip Chan. Max-mean and max-
median filters for detection of small targets. In Signal and Data Processing of Small Targets 1999,
volume 3809, pp. 74–83. SPIE, 1999.

Chenqiang Gao, Deyu Meng, Yi Yang, Yongtao Wang, Xiaofang Zhou, and Alexander G Haupt-
mann. Infrared patch-image model for small target detection in a single image. IEEE Transactions
on Image Processing, 22(12):4996–5009, 2013.

Atin Ghosh and Alexandre H Thiery. On data-augmentation and consistency-based semi-supervised
learning. In International Conference on Learning Representations, 2020.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial networks. Communications of the
ACM, 63(11):139–144, 2020.

Jinhui Han, Yong Ma, Bo Zhou, Fan Fan, Kun Liang, and Yu Fang. A robust infrared small target
detection algorithm based on human visual system. IEEE Geoscience and Remote Sensing Letters,
11(12):2168–2172, 2014.

Jinhui Han, Saed Moradi, Iman Faramarzi, Honghui Zhang, Qian Zhao, Xiaojian Zhang, and Nan
Li. Infrared small target detection based on the weighted strengthened local contrast measure.
IEEE Geoscience and Remote Sensing Letters, 18(9):1670–1674, 2020.

Xiaodi Hou and Liqing Zhang. Saliency detection: A spectral residual approach. In 2007 IEEE
Conference on Computer Vision and Pattern Pecognition, pp. 1–8. IEEE, 2007.

Boyang Li, Chao Xiao, Longguang Wang, Yingqian Wang, Zaiping Lin, Miao Li, Wei An, and Yulan
Guo. Dense nested attention network for infrared small target detection. IEEE Transactions on
Image Processing, 32:1745–1758, 2023.

10



Under review as a conference paper at ICLR 2024

Junnan Li, Richard Socher, and Steven CH Hoi. Dividemix: Learning with noisy labels as semi-
supervised learning. In International Conference on Learning Representations, 2019.

Yen-Cheng Liu, Chih-Yao Ma, Zijian He, Chia-Wen Kuo, Kan Chen, Peizhao Zhang, Bichen Wu,
Zsolt Kira, and Peter Vajda. Unbiased teacher for semi-supervised object detection. In Interna-
tional Conference on Learning Representations, 2020.

Saed Moradi, Payman Moallem, and Mohamad Farzan Sabahi. A false-alarm aware methodology to
develop robust and efficient multi-scale infrared small target detection algorithm. Infrared Physics
& Technology, 89:387–397, 2018.

Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. arXiv preprint
arXiv:1804.02767, 2018.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object
detection with region proposal networks. Advances in neural information processing systems, 28,
2015.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomed-
ical image segmentation. In Medical Image Computing and Computer-Assisted Intervention–
MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceed-
ings, Part III 18, pp. 234–241. Springer, 2015.

Kihyuk Sohn, David Berthelot, Nicholas Carlini, Zizhao Zhang, Han Zhang, Colin A Raffel,
Ekin Dogus Cubuk, Alexey Kurakin, and Chun-Liang Li. Fixmatch: Simplifying semi-supervised
learning with consistency and confidence. Advances in neural information processing systems,
33:596–608, 2020.
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A APPENDIX

Image Full-sup CPS CPS-SemiAug SemiAug GTProportion
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Figure 3: Visualization results of different semi-supervised learning methods over baseline network
ResNet34-UNet.

Image Full-sup Res34-Unet ACM+SemiAug DNA+SemiAug GT

Figure 4: Visualization result of the proposed SemiAugIR over different SOTA methods.
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