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Abstract

Longitudinal multimodal data, including electronic health records (EHR) and
sequential chest X-rays (CXRs), is critical for modeling disease progression, yet re-
mains underutilized due to two key challenges: (1) redundancy in consecutive CXR
sequences, where static anatomical regions dominate over clinically-meaningful
dynamics, and (2) temporal misalignment between sparse, irregular imaging and
continuous EHR data. We introduce DiPro, a novel framework that addresses
these challenges through region-aware disentanglement and multi-timescale align-
ment. First, we disentangle static (anatomy) and dynamic (pathology progression)
features in sequential CXRs, prioritizing disease-relevant changes. Second, we
hierarchically align these static and dynamic CXR features with asynchronous
EHR data via local (pairwise interval-level) and global (full-sequence) synchro-
nization to model coherent progression pathways. Extensive experiments on the
MIMIC dataset demonstrate that DiPro could effectively extract temporal clinical
dynamics and achieve state-of-the-art performance on both disease progression
identification and general ICU prediction tasks.

1 Introduction

Accurately modeling disease progression, i.e., the temporal evolution of a disease, is critical for
personalized clinical care decision-making [1–3]. By capturing progression dynamics, predictive
models can enable early identification of deterioration, improve precise risk stratification, and inform
individualized treatment planning [2, 4–6]. In ICU settings, for instance, tracking sepsis progression
through multimodal data (e.g., vitals, labs, and organ functions) is essential for identifying early
deterioration and initiating lifesaving treatments [7, 8].

Modern healthcare increasingly relies on longitudinal clinical data to track disease progression.
Sequential chest X-rays (CXRs) capture valuable visual evidence of anatomical and pathological
changes over time, while electronic health records (EHRs) provide continuous physiological metrics
and treatment responses [9, 10]. The complementary nature of these modalities offers a unique
opportunity: a fusion of imaging and clinical time-series data could enable a more holistic modeling
of disease trajectories [11, 12]. Despite a growing number of studies that explored disease progres-
sion modeling and multimodal fusion using longitudinal clinical data, two key challenges remain
insufficiently addressed:

Redundancy in clinical image sequences. Static anatomical features (e.g., chronic cardiac en-
largement or stable skeletal deformities) dominate sequential CXR scans, often obscuring subtle
but clinically important pathological changes (e.g., new infiltrates or evolving edema). Without
explicit disentanglement, the signals of disease progression become diluted, reducing the utility
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of sequential imaging analysis. Recent CXR-based progression models (e.g., [13, 14]) primarily
focus on extracting symptom-related features and anatomical-disease co-occurrences, treating all
imaging features uniformly. However, distinguishing long-term anatomical baselines from evolving
pathological changes is the key to improving the precision of disease progression modeling, yet is
largely overlooked [15, 16].

Temporal misalignments across modalities. While EHRs provide continuous, high-frequency
measurements (e.g., hourly vitals or lab tests), CXRs offer only sparse, irregular snapshots, creating
an intrinsic misalignment in timescales. This discrepancy in temporal granularity complicates the
alignment of cross-modal trends and may obscure short-term clinical deteriorations between imaging
intervals. Existing multimodal fusion approaches prioritized the latest CXR for simplicity [17, 18],
neglecting the temporal CXR context, while longitudinal fusion methods [19, 20] rely on rigid
imputation or fixed time embeddings, lacking adaptive mechanisms to synchronize fine-grained cross-
modal patterns. Thus, strategically integrating these progression dynamics to model cross-modal
clinical trajectories remains underexplored.

To address the aforementioned challenges, we propose Disease Progression-Aware Clinical Pre-
diction, DiPro2, a novel framework that disentangles time-variant and time-invariant information
from longitudinal CXRs and integrates these representations with EHR data across multiple temporal
granularities. Specifically, our framework contains three modules: (1) Spatiotemporal Disentangle-
ment: We disentangle dynamic pathological changes from static anatomical structures in different
spatial regions across consecutive CXRs. This separation helps reduce redundancy and prevents
interference between features with different clinical semantics, allowing the model to focus on
meaningful progression signals for more effective temporal representation learning. (2) Progression-
Aware Enhancement: To improve the model’s sensitivity to progression direction, we reverse the
order of CXR pairs and train the model to produce reversed dynamic features while keeping static
features consistent. This strategy further separates the two types of features and emphasizes their
distinct clinical semantics. (3) Multimodal Fusion via Multiscale Alignment: To fully synergize
the multimodal features, we introduce a multi-grained fusion module that achieves alignment in
multiple scales: the local fusion aligns consecutive CXR pairs with EHR data, while the global fusion
aligns the semantics of the entire CXR and EHR sequences. This bridges fine-grained EHR-CXR
interactions with global disease progression patterns.

Our contributions are summarized as follows:

• We present a framework to disentangle dynamic and static information from longitudinal CXRs,
with dedicated architectural constraints to capture representations in line with disease progressions.

• We propose a multiscale multimodal fusion approach that facilitates multi-grained interactions
between temporally misaligned CXR dynamics and EHR time-series data.

• Extensive experiments demonstrate that DiPro achieves state-of-the-art performance on both
disease progression modeling and ICU-related prediction tasks. Quantitative evaluation shows that
the model aligns well with existing clinical knowledge.

2 The DiPro Approach

To address the challenges of redundancy in longitudinal CXRs and temporal misalignment with
EHR data, we propose DiPro, to systematically disentangle static and dynamic features from
CXRs and align multimodal data across hierarchical timescales. The approach is motivated by
two key observations: (1) disease progression in CXR sequences unfolds via region-localized
pathological changes [21, 22], and (2) EHR and imaging data exhibit complementary dynamics
at different temporal granularities. DiPro integrates three cohesive modules: (1) Spatiotemporal
Disentanglement (STD) to isolate pathology-sensitive features from sequential CXRs, (2) Progression-
Aware Enhancement (PAE) to enforce temporal consistency in learned dynamics, and (3) Multiscale
Multimodal Fusion (MMF) to bridge local EHR-CXR interactions with global progression trends.
Figure 1 illustrate the DiPro framework. We next detail each module.

2The code is available at https://github.com/Chenliu-svg/DiPro.
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Figure 1: Overview of the DiPro framework. The model comprises three main modules: (1)
Spatiotemporal Disentanglement (STD) separates dynamic pathological features (Dr

i ) from static
anatomical structures (Sr

i ) in region-level chest X-rays across time; (2) Progression-Aware Enhance-
ment (PAE) strengthens the model’s understanding of progression direction by reversing CXR pair
order and enforcing the reversed dynamic features D̃r

i to predict the reversed progression, while
maintaining consistency in static features; (3) Multiscale Multimodal Fusion (MMF) integrates CXR
features with temporally misaligned EHR data via local (interval-level) and global (sequence-level)
fusion, enabling accurate predictions across multiple clinical tasks, including disease progression
identification, length-of-stay classification, and in-hospital mortality prediction.

2.1 Notations and Preliminaries

For each patient, let XCXR = {XCXR
ti }Ti=1 denote a set of T CXR images during an ICU stay,

where each XCXR
ti ∈ RH×W×C is the CXR image taken at time ti. Each CXR image contains

R anatomical regions {Rr
ti}

R
r=1. Each consecutive image pair (XCXR

ti ,XCXR
ti+1

) is associated with a
label set YCXR

i = {yr,ki }R,K
r,k=1 where yr,ki ∈ {−1, 0, 1} indicates whether the progression status of

disease k in the r-th region has worsened, remained stable (no change), or improved. The whole
EHR time serie recorded with M timestamps is XEHR = [xt0 ,xt1 , . . . ,xtM ] with xt ∈ RN being
the N -dim variables recorded at time t. We use XEHR to denote all available EHR time series.
Patient’s demographic attributes are denoted as XDEM ∈ RP where P is the number of attributes.
Our objective is to learn a mapping fθ : (XCXR,XEHR,XDEM) → y, that maps the integrated CXR,
EHR time series, and demographic information to the final clinical outcome prediction y.

2.2 Spatiotemporal Disentanglement (STD)

We propose a novel method to disentangle region-based time-variant (dynamic) and time-invariant
(static) information from consecutive CXR image pairs. The disentanglement is motivated by their
distinct clinical roles: dynamic features reflect disease progression, while static features capture
patient-specific anatomical structures. Inspired by prior works demonstrating the effectiveness of
feature disentanglement in representation learning [23, 24], our method targets more efficient and
structured latent representations.

Feature extraction. For each anatomical region Rr
ti , we first use a shared pretrained ResNet-

50 [25] to decode it and obtain the region feature Fr
ti ∈ Rd. Then we concatenate the two consecutive

feature vectors and then pass them through two separate projection heads, fs and fd for static and
dynamic information extraction, respectively,:

Sr
i = fs([F

r
ti ||F

r
ti+1

]), Dr
i = fd([F

r
ti ||F

r
ti+1

]), (1)

where || denotes channel-wise concatenation. Here, Sr
i and Dr

i represent the static and dynamic
features, respectively, for region r at time step pair (ti, ti+1).

Orthogonal disentanglement loss. To encourage effective disentanglement between static and
dynamic representations, we apply an orthogonal constraint [26]. Specifically, we minimize the
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squared cosine similarity between static and dynamic features within each region and time pair:

Lorth =
1

(T − 1)R

T−1∑
i=1

R∑
r=1

(sim (Sr
i ,D

r
i ))

2
, (2)

where sim(·, ·) denotes the cosine similarity. This term ensures that the dynamic and static features
are as unrelated as possible in the latent space, thereby promoting better disentanglement between
time-invariant and time-varying patterns.

Temporal consistency for static features. Anatomical structures are expected to remain stable
over time in sequential CXR images [27, 28]. To enforce temporal consistency of static features, we
introduce a mean squared error (MSE) loss that encourages static features from consecutive time
pairs to remain close:

Ltemp =
1

N

R∑
r=1

T−2∑
i=1

∥∥Sr
i − Sr

i+1

∥∥2
2
, (3)

where N = (T − 2)×R is the number of consecutive static feature pairs considered. This constraint
ensures that the learned static features remain stable and coherent over time.

2.3 Progression-Aware Enhancement (PAE)

Intuitively, reversing the order of a CXR pair should invert the progression direction while preserving
static anatomical information. Hence, dynamic features should reflect this reversal, providing a more
robust and interpretable representation of temporal change. To make dynamic features more sensitive
to the direction of disease progression, we introduce a progression-aware enhancement.

By reversing the input order of the region feature pair (Fr
ti ,F

r
ti+1

), we obtain the dynamic and static
features as:

D̃r
i = fd([F

r
ti+1

||Fr
ti ]), S̃

r
i = fs([F

r
ti+1

||Fr
ti ]). (4)

We then feed both the original and reversed dynamic features into K disease-specific progression
classification heads {fk}Kk=1, where each head fk corresponds to a disease and predicts its progression
status yr,ki for the given region r. Let ŷr,ki be the predicted label from the original direction, and
ỹr,ki be the prediction from the reversed input, i.e., ŷr,ki = fk(D

r
i ), ỹ

r,k
i = fk(D̃

r
i ). We expect that

reversing the input order should generate a contrary prediction. Thus, we convert the label into −yr,ki
to indicate a reversed progression direction as the ground truth label.

Training objective. For dynamic features, we supervise predictions using cross-entropy (CE)
loss for both original and reversed progression prediction; For static features, we leverage MSE to
encourage their consistency over the reversal.

LPAE =

R∑
r=1

K∑
k=1

[
CE(ŷr,ki , yr,ki ) + CE(ỹr,ki ,−yr,ki )

]
+ λstatic

R∑
r=1

∥∥∥Sr
i − S̃r

i

∥∥∥2
2
, (5)

where λstatic is a hyperparameter. This objective encourages the model to encode progression-
aware dynamic information and time-invariant anatomical information, improving the reliability of
progression modeling across time.

2.4 Multiscale Multimodal Fusion (MMF)

To effectively integrate temporally disaligned patient data, we propose a multiscale fusion framework
that combines visual and temporal features from longitudinal chest X-rays (CXRs) and electronic
health records (EHRs). EHR signals are composed of dynamic time-series measurements and static
demographics, while CXRs encode both time-varying imaging biomarkers and static anatomical
traits. Our fusion proceeds in three stages: (1) local CXR-EHR fusion within each interval, (2) global
hierarchical fusion, and (3) static feature integration and prediction.
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Local CXR-EHR fusion within temporal intervals. We first encode the whole EHR time
series XEHR using a global Transformer encoder ϕ [29] to get the global representation of
EHR: Eglobal = ϕ(XEHR). Given a time interval [ti, ti+1] from a consecutive image pair
(XCXR

ti ,XCXR
ti+1

), to obtain EHR representations focused on the interval, we first define the
time embedding for each EHR timestamp tj relative to the CXR time interval as: Ttj =
fTE ([tj − ti, ti+1 − tj , σ((tj − ti)(ti+1 − tj))]) , where σ(·) is the sigmoid function to approx-
imate the indicator of whether tj ∈ [ti, ti+1]. These time embeddings are then stacked as
Ti = [TEt0 , . . . ,TEtM ]. we then apply cross-attention [29] between the time embeddings and
global EHR features with learnable parameters WQ,WK and WV using a center-focused attention
mask:

Elocal
i = softmax

(
QK⊤
√
d

+ AttnMask
)
·V, Q = WQTi, K = WKEglobal, V = WV E

global.

(6)
The attention mask is defined as:

AttnMaskij =

{
−
∣∣∣tj − ti+ti+1

2

∣∣∣ , if tj ∈ [ti, ti+1],

−∞, otherwise.
(7)

We then fuse dynamic CXR features Dlocal
i = {Dr

i }Rr=1 and local EHR representations Elocal
i via

a cross-attention layer. The keys and values are constructed by concatenating modality-specific
projections of both inputs.

Dfuse
i = LayerNorm(CrossAttn(Dlocal

i , [Elocal
i ||Dlocal

i ]). (8)

Global hierarchical fusion We collect all locally fused features Dglobal = {Dfuse
i }T−1

i=1 across CXR
intervals. We refine the global EHR representation by attending over Dglobal:

Hglobal = LayerNorm(CrossAttn(Eglobal,Dglobal)). (9)
We include an additional self-attention layer [29] to further enhance global interactions between the
two modalities. The resulting enriched sequence then serves as the query in the final cross-attention
mechanism with the static features for prediction.

Final static fusion and prediction. We first embed demographic information XDEM via an MLP,
then concatenate it with static CXR features Sglobal = {Si}Ti=1:

Hstatic = [Sglobal ||MLP(XDEM)]. (10)

A fusion module Φ, composed of a cross-attention layer followed by prediction heads, integrates
dynamic and static features to generate predictions:

ŷ = Φ([Dglobal ||Hglobal],Hstatic). (11)

The final training loss combines cross-entropy with all auxiliary objectives:
L = λpred · CE(ŷ,y) + λorthLorth + λtempLtemp + λPAELPAE, (12)

where λpred, λorth, λtemp, and λPAE are hyperparameters. Details of the model architecture, hyperpa-
rameters, and training procedure are provided in Appendix A.2.1.

3 Experiments

3.1 Experiment Setting

Datasets. We evaluated DiPro on the large-scale, public dataset, MIMIC [30], which contains
de-identified health data of intensive care unit (ICU) admissions. Our study leveraged three derived
datasets from the MIMIC ecosystem: (1) MIMIC-IV [30] provides electronic health records (EHR)
including demographic information and time-series physiological measurements per ICU stay; (2)
MIMIC-CXR [31] contains sequential chest radiographs during ICU hospitalizations; and (3) Chest
ImaGenome [32] augments imaging with fine-grained annotations: bounding boxes for anatomical
regions and localized change labels (improved, worsened, or no change) between consecutive CXRs.
To facilitate longitudinal analysis, we selected ICU stays with ≥ 2 CXRs to track disease progression.
From MIMIC-IV, we extracted EHR data consisting of 7 demographic variables and 38 physiological
time-series variables, including vital signs and laboratory results.
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Clinical tasks and evaluation metrics. We evaluate the performance of DiPro on two types of
clinical tasks to demonstrate the advantages of our multimodal framework:

(1)Disease progression identification. Given two consecutive CXRs, the task is to predict the disease
progression status (improved, worsened, or no change) for seven common thoracic conditions:
atelectasis, enlarged cardiac silhouette, consolidation, pulmonary edema, lung opacity, pleural
effusion, and pneumonia. Following Karwande et al. [14], we derive the progression label of each
disease for a CXR pair from the progression labels of annotated regions in the Chest ImaGenome
dataset. Notably, our work is the first to integrate EHR data for this task. Specifically, we extract
the EHR data recorded within the time interval of two CXRs and integrate them for a richer context
for progression. We report macro-precision, macro-recall, macro-F1 score, AUPRC and AUROC
following prior works [13, 14, 33].

(2)General ICU prediction. We consider two clinically vital tasks: In-hospital mortality prediction
and ICU length of stay prediction. Both tasks focus on forecasting patient outcomes leveraging
multimodal data: EHR time series and sequential CXRs collected during the first 48 hours after ICU
admission. The In-hospital mortality prediction task is a binary classification problem: it predicts
patient mortality prior to hospital discharge. We evaluate performance using AUROC and AUPRC,
following [19, 17]. Length of stay prediction task aims to estimate patient ICU stay duration. We
frame this as a multi-class classification problem by discretizing stay duration into four intervals: [2,
3), [3, 4), [4, 6), and ≥ 6 days. The counting starts from 2 days as we are using ICU stays longer than
48 hours. Following [11, 34, 35], model performance is evaluated using Cohen’s kappa and accuracy.

All experiments are conducted with three random seeds, with results reported as the mean ± standard
deviation across independent runs. Details on cohort selection, label prevalence, data statistics and
data processing procedures for each task are provided in Appendix A.1.

Baselines. We compare DiPro with the following three types of baselines:

(1) Sequential CXR disease progression specialists (unimodal): CheXRelNet [14] combines local
and global visual features with anatomical dependencies to model longitudinal disease changes.
CheXRelFormer [33] adopts hierarchical Siamese Transformer to capture multi-level feature discrep-
ancies across CXR images. SDPL [13] learns symptom-aware embeddings to extract and compare
condition-specific features from two radiographs.

(2) Longitudinal multimodal specialists: UTDE [19] models asynchronous longitudinal data via a
gated attention-based imputation framework. UMSE [20] uses triplet-structured set embeddings and
a modality-aware attention mechanism to handle missing data and fuse multiple modalities.

(3) Clinical multimodal fusion specialists: MedFuse [17] introduces an LSTM-based module for
both uni-modal and multimodal input. DrFuse [18] disentangles modality-shared and modality-
specific features, and utilizes disease-wise attention for effective fusion. Both models are designed to
take the last available CXR for modality input, we extend them to the setting of multiple CXRs with
minimal architectural modification. Details of all the baseline models are provided in Appendix A.2.2.

3.2 Prediction Performance

DiPro excels in modeling disease progression in sequential CXRs. Table 1 reports the mean
performance across seven disease progression identification tasks (per-disease results in Table 11).
Compared to CXR-based progression models using only unimodal sequential CXRs, DiPro achieves
relative improvements of 15.3% in F1 and 12.2% in AUPRC over the state-of-the-art SDPL [13]. This
suggests that explicitly disentangling disease dynamics from static anatomical structures across CXR
pairs reduces redundancy and enables more effective progression modeling. Compared to CheXRel-
Net [14], which models region-disease co-occurrence via graphs, DiPro enhances the disentangled
regional progression dynamics using a tailored PAE module, offering a more targeted mechanism
to capture disease-region progression. A broader baseline comparison with large vision–language
models is presented in Table 17.

DiPro excels in longitudinal multimodal fusion. As shown in the Multimodal Methods block
of Table 1, adding EHR to unimodal DiPro improves performance (relative increase of 2.9% in F1
and 2.1% in AUPRC). This confirms DiPro’s ability to effectively leverage complementary EHR
features for disease progression prediction. Furthermore, DiPro outperforms all baselines, whether
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Table 1: Performance Comparison on Disease Progression Identification Tasks. This table reports
the macro-average performance (± standard deviation) of various unimodal and multimodal methods
across seven disease progression identification tasks. DiPro achieves the best results in both unimodal
and multimodal settings, indicating its effectiveness in modeling disease progression from sequential
CXRs and its strength in longitudinal multimodal fusion. Detailed results are provided in Table 10.
Per-disease results are provided in Table 11. (Numbers in bold indicate the best performance in each
column, and those underlined represent the best-performing baseline.)

Method Precision Recall F1 AUPRC AUROC

Unimodal Methods (CXR)
CheXRelNet [14] 0.395±0.015 0.392±0.010 0.389±0.010 0.394±0.010 0.574±0.011
CheXRelFormer [33] 0.389±0.044 0.379±0.033 0.354±0.032 0.372±0.023 0.551±0.041
SDPL [13] 0.408±0.006 0.406±0.020 0.393±0.010 0.417±0.032 0.609±0.031
DiPro (ours) 0.475±0.004 0.452±0.011 0.453±0.009 0.468±0.013 0.651±0.016

Multimodal Methods
UTDE [19] 0.481±0.017 0.462±0.002 0.449±0.005 0.472±0.014 0.659±0.011
UMSE [20] 0.353±0.011 0.361±0.009 0.352±0.013 0.364±0.006 0.544±0.004
MedFuse [17] 0.423±0.049 0.413±0.045 0.409±0.042 0.422±0.040 0.530±0.030
DrFuse [18] 0.442±0.009 0.461±0.007 0.429±0.010 0.438±0.003 0.628±0.002
DiPro (ours) 0.484±0.008 0.471±0.024 0.466±0.018 0.478±0.018 0.664±0.013

Table 2: Performance Comparison on General ICU Prediction Tasks. This table presents the
average performance (± standard deviation) on two general ICU prediction tasks: mortality (AUPRC,
AUROC) and length of stay (Kappa, ACC). Results are reported for both “Last” and “Long.” CXR
settings. The “Long.” setting incorporates both longitudinal CXR and EHR data, whereas the
“Last” setting uses only the most recent CXR together with EHR data. DiPro demonstrates superior
performance across both settings, highlighting its effectiveness in longitudinal multimodal fusion.
Note that in the “no-CXR” setting (second-to-last row), DiPro effectively reduces to a Transformer-
based [29] EHR encoder. More results are provided in Table 12.

CXR Used Mortality Length of Stay

Method Last Long. AUPRC AUROC Kappa ACC

UTDE [19] ✓ 0.717±0.019 0.887±0.004 0.160±0.016 0.381±0.013
✓ 0.710±0.019 0.887±0.012 0.195±0.031 0.400±0.021

UMSE [20] ✓ 0.722±0.039 0.896±0.012 0.217±0.013 0.419±0.010
✓ 0.712±0.028 0.891±0.011 0.204±0.019 0.410±0.013

MedFuse [17] ✓ 0.686±0.018 0.869±0.011 0.213±0.012 0.413±0.004
✓ 0.716±0.018 0.881±0.005 0.210±0.039 0.412±0.027

DrFuse [18] ✓ 0.709±0.012 0.865±0.014 0.114±0.048 0.338±0.041
✓ 0.684±0.008 0.854±0.017 0.142±0.014 0.360±0.011

DiPro (Ours) 0.712±0.009 0.885±0.003 0.226±0.019 0.427±0.014
✓ 0.742±0.003 0.897±0.002 0.248±0.008 0.440±0.007

using the last available CXR or longitudinal CXR in multimodal settings, or using unimodal EHR,
across all tasks, including disease progression identification (Table 1) and general ICU prediction
(Table 2). Specifically, it achieves relative gains of 3.8% in F1 score (disease progression), 2.8% in
AUPRC (mortality prediction), and 3.0% in accuracy (length of stay) compared to the respective best-
performing baselines. Notably, DiPro consistently outperforms longitudinal multimodal specialists
like UTDE [19] and UMSE [20]. These results highlight the superiority of DiPro’s multiscale
fusion strategy in addressing temporal misalignment compared to unimodal imputation or unified
time-embedding methods.

DiPro alleviates redundancy and misalignment in sequential CXRs. Table 2 presents a com-
parison of multimodal models that integrate EHR data with either the most recent CXR (Last) or
longitudinal CXRs (Long.). For UMSE [20], using longitudinal CXRs do not consistently improve
general ICU prediction performance compared to using only the latest image, suggesting that unified
time embeddings and bottleneck attention inadequately address temporal redundancy in sequential
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Figure 2: Averaged attention weights of CXR regions in different downstream tasks. The radial axis in
(a) is log-scaled to enhance distribution visibility. Mean attention weights across CXR regions reveal
DiPro’s clinical alignment: (a) overlapping distributions for pneumonia, lung opacity, and pleural
effusion reflect shared pathologies, while (b) ICU tasks show divergent patterns: higher weights
for right-sided regions in mortality (linked to higher risk) versus diffuse attention in length-of-stay
(reflecting multifactorial ICU conditions).

imaging data. Similarly, DrFuse [18] experiences a slight performance drop in mortality prediction
when naively concatenating sequential CXR features, highlighting the limitations of direct aggrega-
tion without temporal alignment. Alternatively, DiPro explicitly disentangles disease progression
dynamics from time-invariant CXR features, reducing redundancy. It aligns multimodal trajectories
by fusing progression-aware features with EHR data at both interval and sequence levels, enabling
more efficient use of longitudinal data. This approach yields superior performance across tasks.

DiPro echoes with clinical knowledge. To analyze the anatomical basis of DiPro’s decision-
making, we visualize the normalized attention weight of CXR regions of each disease in the disease
progression task. As shown in Figure 2a, DiPro demonstrates high attention scores on the cardiac
silhouette when identifying cardiomegaly, which aligns with the radiographic diagnostic criteria
where cardiothoracic ratio (CTR) > 0.5 on posteroanterior chest radiographs indicates cardiac
enlargement [36, 37]. Similarly, the model highlights hilar structures for pulmonary edema detection,
corroborating the pathophysiological mechanism that pulmonary venous congestion in left ventricular
failure manifests as perihilar vascular redistribution and interstitial edema [38]. Notably, the radar plot
reveals overlapping attention weight distributions for pneumonia, lung opacity, and pleural effusion,
suggesting shared radiographic features due to common pathways [39–41]. This suggests that DiPro
captures clinically meaningful correlations in radiographic patterns.

In Figure 2b, we further analyze DiPro’s normalized regional attention weights for two ICU pre-
diction tasks. For in-hospital mortality prediction, DiPro assigns notably high attention to the right
costophrenic angle, a region clinically associated with pleural effusions and lower lobe pathologies,
both of which are common in critically ill patients and have been linked to increased mortality
risk [42, 43]. Furthermore, the model consistently prioritizes right-sided anatomical structures over
left ones (e.g., right lung: 0.13 vs. left: 0.06; right hilar region: 0.10 vs. left: 0.03). This pattern
aligns with the predominance of right-sided pulmonary complications (e.g., aspiration pneumonia
and pleural effusion), linked to increased risk of mortality [44–46]. For length-of-stay prediction,
however, the model exhibits a more distributed attention pattern across multiple thoracic regions,
including bilateral lungs, hilar structures, and mediastinum. This scattered pattern suggests that
predicting the length-of-stay requires a broader view of radiographic features, which is consistent
with the understanding that hospital stay duration aggregates diverse and multifactorial conditions,
such as pulmonary congestion, atelectasis, and cardiomegaly [47, 48].

3.3 Ablation Study

To better each component’s contribution in DiPro, we ablate key modules (results in Table 3). The
variant “A1” replaces MMF with a simple fusion strategy that concatenates CXR and EHR features,
followed by a multi-head self-attention layer. The variant “A2” removes the PAE module. The
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Table 3: Results of the ablation study. This table presents the results of ablating major modules
to assess their contribution to overall performance. Variants “A1”–“A4” correspond to variants of
DiPro with progressively removed modules, while “DiPro-” denotes the variant using automated
bounding boxes generated by the RGRG model [49] instead of Chest ImaGenome annotations.

Components Disease Progression Mortality Length of stay

ID STD PAE MMF F1 AUPRC ACC

DiPro ✓ ✓ ✓ 0.466±0.018 0.742±0.003 0.440±0.007
DiPro- ✓ ✓ ✓ 0.457±0.010 0.736±0.021 0.430±0.006
A1 ✓ ✓ ✗ 0.460±0.014 0.724±0.015 0.416±0.027
A2 ✓ ✗ ✓ 0.433±0.017 0.730±0.029 0.432±0.018
A3 ✓ ✗ ✗ 0.439±0.007 0.694±0.016 0.404±0.014
A4 ✗ ✗ ✗ 0.362±0.016 0.721±0.036 0.425±0.031

variant “A3” removes both MMF and PAE, leaving only a basic aggregation using self-attention.
The “A4” variant removes the STD module and disables MMF and PAE, reducing DiPro to a plain
encode-concatenate-attention baseline.

As shown in Table 3, removing any component of DiPro results in performance drop, underscoring
the necessity of each module. Notably, contributions vary across tasks. Different components
contribute variably across tasks. For disease progression identification, the STD module is critical,
yielding relatively F1 improvements (“A3” vs. “A4”) by 21.3% through disentangling progression
dynamics from static anatomical features. The PAE module further enhances performance (7.6%
relative F1 gain, DiPro vs. “A2”), highlighting the benefit of progression-aware feature enhancement.
However, the MMF module contributes less to the same task, possibly due to the constraint of using
only EHRs linked to CXR pairs, restricting the multiscale fusion capability. Conversely, for general
ICU prediction, MMF notably improves performance, highlighting the value of a well-designed fusion
strategy for handling longitudinal multimodal data.Interestingly, incorporating the STD module into
a simple encode-concatenate-attention baseline results in performance degradation (“A3” vs. “A4”),
suggesting that disentanglement alone, without dedicated dynamic/static modeling and multiscale
fusion, is insufficient for complex prediction tasks. More metrics can be found in Tables 13 and 14.

Robustness with Automated Bounding Boxes To assess DiPro’s robustness to automated region
annotations, we conducted an ablation study replacing Chest ImaGenome bounding boxes with
those generated by the automated region detection model from RGRG [49],denoted as “DiPro-”
in Table 3. While using automated bounding boxes results in a slight performance drop compared
to curated annotations, DiPro consistently outperforms all baselines across disease progression
(0.449±0.005 in F1), mortality (0.722±0.039 in AUPRC), and length-of-stay (0.427±0.014 in ACC)
tasks. This demonstrates that DiPro remains effective even in the absence of manually curated labels,
supporting its applicability to datasets lacking fine-grained anatomical annotations. While more
accurate anatomical annotations can improve prediction performance, DiPro still achieves strong
and generalizable results even with fully automated region proposals.

The ablation study on loss penalties is presented in Table 15, the final selected penalty weights for
each prediction task are summarized in Table 16, and the robustness analysis under missing EHR
data is reported in Tables 18 and 19.

4 Related Work

Modeling disease progression in sequential CXRs. Recent years have seen growing interest in
leveraging longitudinal CXRs for clinical prediction, as they are routinely used to monitor disease
progression and naturally provide sequential imaging data [13, 14, 33, 50–54]. Most methods focus on
capturing temporal differences using deep learning architectures. For instance, Karwande et al. [14]
used a graph attention network to model region-level temporal changes, while Eshraghi Dehaghani
et al. [54] adopted a Transformer-based detection model for localized progression signals. Wang
et al. [50] introduced time-aware causal attention, and Mbakwe et al. [33] proposed a hierarchical
Transformer for multi-scale comparison. Other approaches enhance clinical relevance via auxiliary
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tasks, such as symptom prediction [13] or spatiotemporal contrastive learning with radiology reports
[55]. Despite these efforts, effectively addressing redundancy in sequential CXR modeling remains a
fundamental challenge.

Leveraging multimodal data for clinical prediction. Multimodal data offers rich temporal and
semantic information for clinical prediction tasks [53, 56–61]. Several methods combine the latest
CXR with EHR data to improve performance using sophisticated fusion strategies [17, 18, 62, 63].
More recent efforts target the challenges of heterogeneous, misaligned longitudinal data. For example,
Li et al. [58] applied ICA to extract latent EHR signals and aligned them with CT scans using time-
aware Transformers. Susman et al. [57] proposed ensemble models to integrate multimodal sequences
and highlight salient features for dementia prediction. Others address temporal irregularity directly:
Lee et al. [20] introduced unified time embeddings and modality-aware attention, while Zhang et al.
[19] imputed sparse clinical notes with temporal attention and fused them with multivariate time
series. Yet, the core challenge of capturing disease progression across misaligned modalities remains
underexplored [53, 63, 64], limiting our ability to fully leverage cross-modal synergy in clinical
contexts.

5 Impacts and Limitations

DiPro advances multimodal disease progression modeling through its efficient integration of regional
progression-aware feature disentanglement and multi-timescale alignment. The approach demon-
strates significant potential for generalization to asynchronous clinical workflows, such as Alzheimer’s
disease monitoring using longitudinal MRI/PET scans with cognitive test records, or heart failure pro-
gression tracking using periodic echocardiograms with continuous vital signs. However, the current
implementation relies on anatomical annotations (bounding boxes) to localize progression-specific
features. While effective, this requirement may limit scalability in practice. Future work could reduce
dependency on manual labels by adopting emerging segmentation tools, such as medical SAMs or
weakly supervised localization methods [65], which can better align the framework with real-world
clinical workflows. Meanwhile, Our study excludes visits with only a single CXR. This selection may
introduce sampling bias and reduce the overall cohort size. However, it is necessary for modeling
disease progression between consecutive CXRs, as the longitudinal task inherently requires at least
two images per patient. Developing methods that can handle single-CXR visits remains an important
direction for future work.

6 Conclusion

In this paper, we propose DiPro, a novel framework that tackles critical challenges in fusing lon-
gitudinal multimodal data for clinical tasks: redundancy in sequential CXRs and temporal mis-
alignment across modalities. By explicitly disentangling disease progression dynamics from static
anatomical features via dedicated constraints, DiPro extracts clinical meaningful and discriminative
dynamic/static patterns. To further enhance temporal alignment, we propose a multiscale multimodal
fusion strategy that bridges CXR-derived progression features with EHR time-series data through
interval-wise and full-sequence-level interactions. Extensive experiments demonstrate that DiPro
achieves state-of-the-art performance on both disease progression identification and general ICU
prediction tasks, while providing interpretability consistent with clinical understanding.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly describe the two core chal-
lenges—temporal redundancy in CXRs and multimodal misalignment—and correspond
directly to the proposed solutions: disentanglement of dynamic/static features and hierarchi-
cal multimodal fusion. These claims are substantiated through method design and validated
by comprehensive experiments.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper discusses the limitations in Section 5. We will address these
limitations in future work.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

16



Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer:[NA]
Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide the implementation settings used to obtain the main experimental
results in the appendix and supplementary materials. Detailed results and analyses can be
found in Section 3.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The source code is submitted as supplementary material alongside the paper
and will be made publicly available upon acceptance. All datasets used in this study are
open-source and publicly accessible.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Details of training and testing, including data splits, preprocessing steps, and
hyperparameter search space, are provided in Appendix A.2.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The results are reported by taking the average of three runs of model training
along with the standard deviations.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The paper provides detailed information on the compute resources used,
including GPU types, memory, and architecture for all experiments in the Appendix A to
ensure reproducibility.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research strictly follows the NeurIPS Code of Ethics by ensuring data
privacy, avoiding harm to participants, adhering to institutional protocols, and considering
potential societal impacts such as fairness, bias, and security throughout the study.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The paper discusses both the potential impacts of the proposed work in
Section 5.
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Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our work does not involve the release of high-risk models or scraped datasets
that could pose misuse risks, and therefore no additional safeguards were required.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We use publicly available datasets such as MIMIC, which is cited properly
along with its license terms (PhysioNet Credentialed Health Data License). Additionally,
all external codebases and models referenced are appropriately credited with their original
citations and licenses mentioned where applicable.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
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• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing experiments or direct research with
human subjects. All experiments are conducted on publicly available, de-identified dataset,
so participant instructions or compensation details are not relevant.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
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Justification: The study uses publicly available, de-identified data (e.g., MIMIC), which
does not involve direct interaction with human participants.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLM is only used for editing and formatting purpose of this paper.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Experiment Details

A.1 Details of Data Preprocessing

EHR Data Preprocessing We adapted the EHR data processing pipeline from [17], modifying
the sampling frequency from 2-hour to 1-hour intervals. We incorporate vital signs, laboratory
measurements, and clinical scores, resulting in a total of 38 clinical time-series variables, includ-
ing alanine aminotransferase, albumin, alkaline phosphate, anion gap, asparate aminotransferase,
bicarbonate, bilirubin, blood urea nitrogen, chloride, creatinine, diastolic blood pressure, fraction
inspired oxygen, Glasgow coma scale (eye opening, motor response, and verbal response), glucose,
heart rate, height, hematocrit, hemoglobin, magnesium, mean blood pressure, oxygen saturation,
partial pressure of carbon dioxide, partial thromboplastin time, platelets, positive end-expiratory
pressure, potassium, prothrombin time, respiratory rate, sodium, systolic blood pressure, temperature,
troponin-T, urine output, daily weight, white blood cell count, and pH. Following [17], we applied
identical discretization and standardization procedures. Demographic data including age, height,
admission weight, gender, race, language, and marital status were also incorporated.

CXR Preprocessing CXR studies were temporally aligned with corresponding ICU stays to
construct longitudinal imaging sequences. We retained only AP view images, matched them to ICU
stays based on study timestamps, and excluded outlier admissions using length-of-stay filtering. Each
matched CXR was restricted to those with available bounding-box annotations in Chest ImaGenome.
Meanwhile, in this study, we do not perform explicit longitudinal registration of CXR images.
To mitigate potential positional misalignment over time, we follow the preprocessing strategy of
CheXRelNet [14]: we apply cropping based on anatomical bounding boxes from Chest ImaGenome
dataset. This preprocessing allows us to focus on capturing the semantic-level disease progression
within consistent anatomical structure, rather than relying on pixel-level alignment. As a result, our
model is designed to be more robust to positional variability across different time points.

Data Splitting and Statistics Our analysis focused on ICU stays containing at least two CXRs. The
dataset was partitioned into training (70%), validation (10%), and test sets (20%) at the subject level to
prevent data leakage. Table 4 summarizes the sample counts for each task, while Table 5 and Table 6
detail the label distributions for disease progression identification and general ICU prediction tasks,
respectively. The distribution of CXR examinations per patient is presented in Table 7.

Table 4: Data statistics in training, validation, and testing sets for each task.
Task Training Validation Test

Disease Progression Identification 3982 560 1137
General ICU Prediction 1889 285 546

Table 5: Label distribution for the Disease Progression Identification task.

Category Atelectasis
Enlarged
Cardiac

Silhouette
Consolidation Pulmonary

Edema
Lung

Opacity
Pleural

Effusion Pneumonia

Improved 328 (15.3%) 83 (4.6%) 124 (14.2%) 572 (31.9%) 784 (19.2%) 317 (13.1%) 98 (12.7%)
Worsened 674 (31.4%) 141 (7.8%) 285 (32.7%) 597 (33.3%) 1273 (31.2%) 702 (28.9%) 387 (50.1%)
No Change 1143 (53.3%) 1575 (87.5%) 463 (53.1%) 624 (34.8%) 2025 (49.6%) 1407 (58.0%) 287 (37.2%)

Total 2145 1799 872 1793 4082 2426 772

Table 6: Label distribution for the General ICU Prediction Tasks.
Mortality Length of Stay

0 1 [2, 3) [3, 4) [4, 6) > 6

Count 2255 465 793 641 687 599
(%) (82.9%) (17.1%) (29.2%) (23.6%) (25.3%) (22.0%)
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Table 7: Data statistics of Numbers of CXR in training, validation, and testing sets for the General
ICU Prediction Task.

Split 2 3 4 5

Training 1367 465 56 1
Validation 199 76 10 0
Test 409 120 16 1

Total 1975 661 82 2

A.2 Implementation Details

A.2.1 Details of Architectures and Training Procedures of DiPro

The training and validation processes are executed on a server equipped with a RTX 3090-24GB
GPU card and a 14 vCPU Intel(R) Xeon(R) Gold 6330 CPU. The method is implemented using
PyTorch 1.9.1 and PyTorch-Lightning 1.4.2 with CUDA 11.1 environment. AdamW optimizer and
CosineAnnealingLR learning rate schedular are used for training.

Model Architecture and Hyperparameters. DiPro consists of four major components: (1) a CXR
processing module, which employs a shared ResNet backbone to extract regional visual features,
followed by a multi-layer perceptron (MLP) for feature adjustment and two parallel MLP-based
projection heads that encode static and dynamic representations; (2) an EHR processing module,
which includes a one-layer multivariate transformer encoder for global temporal modeling, a local
multi-head attention layer for capturing short-term dependencies, a time-embedding MLP for relative
temporal encoding, and a separate MLP for demographic features; (3) a multimodal fusion module,
which integrates CXR and EHR representations through local and global attention layers, followed
by a lightweight transformer block and a group-based static feature fusion mechanism; and (4) a
prediction head, implemented as a task-specific MLP for downstream classification or regression.
The detailed hyperparameter settings and implementation specifics are provided in the released code
repository.

Training Configuration The model was trained with base batch sizes of 8 (for disease progression
identification) and 4 (for general ICU prediction), using 4-step gradient accumulation to achieve
an effective batch size of 32 or 16. Training proceeded for a maximum of 100 epochs with early
stopping triggered after 10 epochs without validation improvement. Task-specific selection metrics
were employed: macro-F1 for disease identification, accuracy for length-of-stay classification, and
AUPRC for mortality prediction. The hyperparameter search spaces for each task are documented
in Table 8.

Table 8: Hyperparameter search space used for model tuning.

Hyperparameter Search Grid

Learning rate 8× 10−6, 5× 10−6, 1× 10−5, 5× 10−5

Dropout rate 0.1, 0.2, 0.3
Hidden dimension 64, 128, 256
λtemp 0.01, 0.001, 0.1, 1.0
λpred 2, 6, 10
λPAE 0.01, 0.1, 2,
λorth 0.001, 0.01, 0.1, 10

A.2.2 Implementation of Baselines

Since none of the baselines can handle both disease identification and general ICU prediction tasks
within a unified framework like ours, we introduce minimal modifications to adapt existing approaches.
For sequential CXR disease progression specialists (e.g., CheXRelNet [14], CheXRelFormer [33],
and SDPL [13]), we concatenate EHR time series and demographic data, then integrate the same
EHR encoder and attention fusion layer as our model for fair comparison. For multimodal fusion
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baselines, we adapt UTDE [19], originally designed for longitudinal clinical notes and EHR, by
replacing its text encoder with our image encoder to process longitudinal CXRs. Similarly, we modify
MedFuse [17] by concatenating CXR representations at the sequence level before fusion, and extend
DrFuse [18] by first disentangling CXR-EHR pairs and then concatenating the CXR features for
fusion.

Hyperparameter Search. We conducted a unified hyperparameter search for all baseline models
using the following grid: learning rates {1× 10−5, 4× 10−7, 1× 10−6, 1× 10−7}, dropout rates
{0.1, 0.2, 0.3}, and hidden dimensions {64, 128, 256, 320}. All other hyperparameters were kept
consistent with those specified in the original implementations provided by the official source code of
each baseline.

Computational Efficiency and Inference Cost Comparison We summarize the comparison of
computational efficiency and inference cost between DiPro and baseline models in Table 9, evaluated
under the multimodal input setting (sequential CXR + EHR) for the disease progression identification
task. Compared to the CheXRelNet baseline, which is also an anatomical region-based model, DiPro
reduces FLOPs by 9.8% and latency by 22.0%, while achieving a relative gain of 16.5% in F1 for
disease progression.

Table 9: Computational efficiency and inference cost comparison between DiPro and baseline models.
(F1 scores are extracted from Table 10.)

Model Params
(M)

FLOPs
(G)

MACs
(G)

Latency
Mean (ms)

Throughput
(samples/s)

F1
Score

DiPro (Ours) 31.06 82.75 41.37 23.05 43.38 0.466±0.018
CheXRelNet [14] 49.15 90.90 45.45 27.34 36.58 0.382±0.016
CheXRelFormer [33] 49.13 19.95 9.98 14.86 67.28 0.352±0.021
SDPL [13] 34.24 9.45 4.73 13.35 74.90 0.393±0.010
UTDE [19] 6.69 1.61 0.80 5.24 190.90 0.449±0.005
UMSE [20] 23.99 8.27 4.14 9.65 103.62 0.352±0.013
MedFuse [17] 27.21 8.28 4.14 9.78 102.23 0.409±0.042
DrFuse [18] 56.40 16.45 8.23 19.93 50.18 0.429±0.010

B Additional Results

Zero-Weight Ablation Study for Loss Penalties We conducted ablation experiments in which
each loss component, λorth (orthogonal disentanglement loss), λtemp (temporal consistency loss
for static features), and λPAE (Progression-Aware Enhancement loss), was individually disabled by
setting its corresponding weight to zero. The results are summarized in Table 15. Key observations
include:

• Orthogonal disentanglement loss (λorth): Removal caused notable decreases in disease
progression and length-of-stay predictions, emphasizing the benefit of disentangling dynamic
pathology from static anatomy.

• Progression-Aware Enhancement loss (λPAE): Disabling this loss reduced disease pro-
gression prediction performance, indicating its role in enhancing sensitivity to progression
direction.

• Temporal consistency loss (λtemp): Its removal led to significant performance drops across
ICU tasks, highlighting the importance of maintaining longitudinal consistency of static
anatomical information.

• These results demonstrate that all three loss components contribute meaningfully and in
distinct ways to the model’s overall performance across different tasks. We report the final
selected penalty weights for each prediction task in Table 16, which reflect the relative
contribution of different regularization terms to overall model performance.
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Table 10: Detailed Performance Comparison on Disease Progression Identification Tasks.
Sequential CXR disease progression specialists (e.g., CheXRelNet [14], CheXRelFormer [33], and
SDPL [13]), originally designed for unimodal sequential CXR inputs, are extended to multimodal
integration by incorporating a transformer-based EHR encoder and applying cross-attention fusion.
Methods that can naturally process uni-CXR inputs (e.g., UMSE [20] and MedFuse [17]) are
included for comparison under the unimodal CXR setting. Numbers in bold indicate the best overall
performance, while underlined values denote the top-performing baseline.

Method Precision Recall F1 AUPRC AUROC ACC

Unimodal Methods (CXR)
CheXRelNet [14] 0.395±0.015 0.392±0.010 0.389±0.010 0.394±0.010 0.574±0.011 0.508±0.013
CheXRelFormer [33] 0.389±0.044 0.379±0.033 0.354±0.032 0.372±0.023 0.551±0.041 0.446±0.057
SDPL [13] 0.408±0.006 0.406±0.020 0.393±0.010 0.417±0.032 0.609±0.031 0.538±0.024
UMSE [20] 0.337±0.004 0.337±0.008 0.329±0.008 0.347±0.004 0.513±0.006 0.476±0.004
MedFuse [17] 0.439±0.006 0.440±0.009 0.433±0.010 0.453±0.011 0.643±0.006 0.543±0.024
DiPro (ours) 0.475±0.004 0.452±0.011 0.453±0.009 0.468±0.013 0.651±0.016 0.567±0.007

Unimodal Methods (EHR)
Transformer [29] 0.412±0.041 0.358±0.010 0.327±0.013 0.384±0.011 0.569±0.008 0.509±0.009

Multimodal Methods
CheXRelNet [14] 0.391±0.020 0.387±0.019 0.382±0.016 0.390±0.019 0.572±0.028 0.504±0.024
CheXRelFormer [33] 0.359±0.019 0.362±0.026 0.352±0.021 0.371±0.016 0.544±0.022 0.474±0.009
SDPL [13] 0.409±0.009 0.398±0.006 0.393±0.003 0.401±0.008 0.582±0.008 0.529±0.014
UTDE [19] 0.481±0.017 0.462±0.002 0.449±0.005 0.472±0.014 0.659±0.011 0.527±0.016
UMSE [20] 0.353±0.011 0.361±0.009 0.352±0.013 0.364±0.006 0.544±0.004 0.484±0.011
MedFuse [17] 0.423±0.049 0.413±0.045 0.409±0.042 0.422±0.040 0.609±0.05 0 0.530±0.030
DrFuse [18] 0.442±0.009 0.461±0.007 0.429±0.010 0.438±0.003 0.628±0.002 0.475±0.021
DiPro (ours) 0.484±0.008 0.471±0.024 0.466±0.018 0.478±0.018 0.664±0.013 0.565±0.013

Table 11: Performance Comparison on Disease Progression Identification Tasks across Different
Diseases. This table reports the F1 performance of various unimodal and multimodal methods across
seven disease progression identification tasks.

Method Atelectasis
Enlarged
Cardiac

Silhouette
Consolidation Pulmonary

Edema
Lung

Opacity
Pleural

Effusion Pneumonia

Unimodal Methods (CXR)
CheXRelNet [14] 0.425 0.340 0.381 0.408 0.398 0.366 0.407
CheXRelFormer [33] 0.359 0.318 0.319 0.390 0.354 0.380 0.357
SDPL [13] 0.396 0.362 0.350 0.439 0.431 0.443 0.331
DiPro (Ours) 0.436 0.338 0.388 0.527 0.523 0.509 0.452

Multimodal Methods
UTDE [19] 0.445 0.338 0.402 0.470 0.503 0.478 0.510
UMSE [20] 0.352 0.313 0.343 0.346 0.384 0.354 0.368
MedFuse [17] 0.422 0.340 0.392 0.455 0.447 0.433 0.363
DrFuse [18] 0.434 0.310 0.354 0.499 0.464 0.447 0.498
DiPro (Ours) 0.453 0.362 0.399 0.530 0.509 0.500 0.510

Broader Baseline Comparison with Large Vision-Language Models. To provide a comprehen-
sive evaluation, we include recent large-scale vision-language models (VLMs) capable of processing
multi-image inputs (e.g., Gemma3 [66], QWen2.5VL [67], and Med-Flamingo [68]) as baselines for
disease progression identification. We input consecutive CXR pairs and use a few-shot prompting
approach (following [68]) to have the VLMs predict progression status for thoracic conditions (results
in Table 17). DiPro achieves notably higher accuracy with lower computational cost, highlight-
ing the advantages of our design: spatialtemporal disentanglement (STD) and progression-aware
enhancement (PAE) for clinical prediction.

Robustness to Missing EHR Data We conducted additional experiments on the general ICU
tasks, where EHR data were randomly dropped during training at rates of 25%, 50%, and 75%
(following [69]), while testing was performed on the complete dataset. Notably, although model
performance naturally decreases as the EHR missing rate increases, DiPro consistently outperforms
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Table 12: Detailed Performance Comparison on General ICU Prediction Tasks. The “Input
Modalities” section specifies the data sources used for each method. “Last” and “Long.” indicate CXR-
only input settings, where “Last” denotes the use of the last available CXR and “Long.” represents the
use of longitudinal CXRs. The inclusion of EHR data is indicated by the “EHR” column. “Sequential
CXR Disease Progression Specialists” are extended to multimodal integration by incorporating a
transformer-based EHR encoder and applying cross-attention fusion. For “Clinical Multimodal
Fusion Specialists”, which were originally designed for single-CXR inputs, we modify MedFuse [17]
by concatenating CXR representations at the sequence level before fusion, and extend DrFuse [18]
by first disentangling CXR–EHR pairs before concatenating CXR features for multimodal fusion.

Input Modalities Mortality Length of Stay

Method Last Long. EHR AUPRC AUROC Kappa ACC F1 AUPRC

Unimodal Methods (EHR)
Transformer [29] ✓ 0.712±0.009 0.885±0.003 0.226±0.019 0.427±0.014 0.360±0.024 0.386±0.014

Sequential CXR Disease Progression Specialists

ChexRelNet [14] ✓ 0.291±0.050 0.624±0.036 0.039±0.020 0.291±0.014 0.238±0.010 0.275±0.004
✓ ✓ 0.697±0.040 0.876±0.015 0.166±0.034 0.380±0.028 0.355±0.009 0.358±0.015

ChexRelFormer [33] ✓ 0.218±0.011 0.522±0.019 0.005±0.032 0.267±0.043 0.212±0.019 0.255±0.017
✓ ✓ 0.522±0.041 0.766±0.021 0.103±0.014 0.333±0.005 0.306±0.005 0.335±0.007

SDPL [13] ✓ 0.261±0.006 0.608±0.035 0.011±0.007 0.267±0.010 0.154±0.022 0.261±0.005
✓ ✓ 0.717±0.024 0.878±0.019 0.231±0.009 0.430±0.009 0.385±0.011 0.404±0.012

Longitudinal Multimodal Specialists
UTDE [19] ✓ ✓ 0.717±0.019 0.887±0.004 0.160±0.016 0.381±0.013 0.324±0.005 0.361±0.012

✓ ✓ 0.710±0.019 0.887±0.012 0.195±0.031 0.400±0.021 0.346±0.039 0.365±0.028

UMSE [20] ✓ ✓ 0.722±0.039 0.896±0.012 0.217±0.013 0.419±0.010 0.350±0.026 0.356±0.018
✓ ✓ 0.712±0.028 0.891±0.011 0.204±0.019 0.410±0.013 0.342±0.021 0.357±0.018

Clinical Multimodal Fusion Specialists

MedFuse [17] ✓ ✓ 0.686±0.018 0.869±0.011 0.213±0.012 0.413±0.004 0.362±0.025 0.412±0.010
✓ ✓ 0.716±0.018 0.881±0.005 0.210±0.039 0.412±0.027 0.350±0.006 0.410±0.019

DrFuse [18] ✓ ✓ 0.709±0.012 0.865±0.014 0.114±0.048 0.338±0.041 0.325±0.035 0.316±0.024
✓ ✓ 0.684±0.008 0.854±0.017 0.142±0.014 0.360±0.011 0.348±0.006 0.329±0.004

DiPro (Ours) ✓ 0.319±0.018 0.637±0.015 0.029±0.017 0.284±0.010 0.227±0.014 0.278±0.004
✓ ✓ 0.742±0.003 0.897±0.002 0.248±0.008 0.440±0.007 0.384±0.018 0.409±0.010

Table 13: Results of the ablation study. (Disease Progression Identification Task)
Precision Recall F1 AUPRC AUROC ACC

DiPro 0.484±0.008 0.471±0.024 0.466±0.018 0.478±0.018 0.664±0.013 0.565±0.013
w/o MMF 0.481±0.009 0.460±0.013 0.460±0.014 0.472±0.008 0.654±0.017 0.580±0.010
w/o PAE 0.443±0.024 0.446±0.023 0.433±0.017 0.461±0.015 0.646±0.018 0.552±0.024
w/o STD 0.372±0.014 0.371±0.015 0.362±0.016 0.377±0.007 0.556±0.006 0.491±0.027
w/o (PAE+MMF) 0.455±0.017 0.452±0.015 0.439±0.007 0.461±0.008 0.647±0.003 0.536±0.016

Table 14: Results of the ablation study. (Length of Stay Classification)
kappa Precision Recall F1 AUPRC AUROC ACC

DiPro 0.248±0.008 0.431±0.037 0.433±0.005 0.384±0.018 0.409±0.010 0.688±0.005 0.440±0.007
w/o MMF 0.214±0.038 0.396±0.053 0.408±0.031 0.362±0.015 0.388±0.009 0.673±0.008 0.416±0.027
w/o PAE 0.235±0.022 0.405±0.021 0.423±0.016 0.386±0.007 0.408±0.018 0.688±0.005 0.432±0.018
w/o STD 0.225±0.043 0.375±0.082 0.415±0.031 0.372±0.044 0.380±0.025 0.667±0.025 0.425±0.031
w/o (PAE+MMF) 0.194±0.014 0.367±0.013 0.390±0.010 0.357±0.009 0.380±0.009 0.663±0.006 0.404±0.014

Table 15: Ablation study of loss components by setting individual loss weights to zero. ’-’ indicates
that disease progression prediction could not be computed due to Ltemp requiring at least three CXRs.

Components Disease Progression Mortality Length of stay

ID λorth λPAE λtemp F1 AUPRC ACC

DiPro ✓ ✓ ✓ 0.466 ± 0.018 0.742 ± 0.003 0.440 ± 0.007
B1 ✗ ✓ ✓ 0.448 ± 0.004 0.749 ± 0.028 0.415 ± 0.008
B2 ✓ ✗ ✓ 0.441 ± 0.013 0.708 ± 0.038 0.432 ± 0.005
B3 ✓ ✓ ✗ - 0.737 ± 0.008 0.415 ± 0.025
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Table 16: Final selected penalty weights for each prediction task.
Prediction Task λpred λorth λtemp λPAE

In-hospital Mortality 6 0.1 1 0.1
Length of Stay 10 0.001 0.1 0.1
Disease Progression 2 1 – 2

Table 17: Performance Comparison on Disease Progression Identification Task between VLMs and
DiPro.

Model Precision (P) Recall (R) F1 Score Throughput (samples/s)

DiPro (Uni-CXR) (Ours) 0.475 0.452 0.453 43.38
Gemma3 [66] 0.329 0.328 0.279 0.088
QWen2.5VL [67] 0.304 0.330 0.251 0.097
Med-Flamingo [68] 0.355 0.345 0.301 0.234

all established baselines across all missing-data scenarios, demonstrating strong robustness in handling
incomplete multimodal inputs (see Tables 18 and 19).

Table 18: Length of Stay Classification (Accuracy) under different EHR missing rates.
Method 75% Missing 50% Missing 25% Missing 0% Missing

DiPro (Ours) 0.399 ± 0.011 0.391 ± 0.021 0.415 ± 0.005 0.440 ± 0.007
UMSE [20] 0.339 ± 0.029 0.376 ± 0.005 0.396 ± 0.009 0.410 ± 0.013
UTDE [19] 0.377 ± 0.015 0.386 ± 0.012 0.384 ± 0.034 0.400 ± 0.021
DrFuse [18] 0.340 ± 0.009 0.360 ± 0.010 0.363 ± 0.011 0.360 ± 0.011
MedFuse [17] 0.332 ± 0.039 0.360 ± 0.033 0.360 ± 0.025 0.412 ± 0.027

Table 19: Mortality Prediction (AUPRC) under different EHR missing rates.
Method 75% Missing 50% Missing 25% Missing 0% Missing

DiPro (Ours) 0.696 ± 0.011 0.718 ± 0.012 0.751 ± 0.006 0.742 ± 0.003
UMSE [20] 0.648 ± 0.009 0.685 ± 0.010 0.686 ± 0.051 0.712 ± 0.028
UTDE [19] 0.603 ± 0.052 0.673 ± 0.020 0.697 ± 0.021 0.710 ± 0.019
DrFuse [18] 0.602 ± 0.024 0.663 ± 0.024 0.674 ± 0.077 0.684 ± 0.008
MedFuse [17] 0.609 ± 0.057 0.641 ± 0.026 0.705 ± 0.016 0.716 ± 0.018
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