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Abstract

We consider the problem of learning a density function from observations of an unknown underlying model
in a distributed setting, where the observations are partitioned into different sites. Applying commonly used
density estimation methods such as Gaussian Mixture Model (GMM) or Kernel Density Estimation (KDE) to
distributed data leads to an extensive amount of communication. A familiar approach to address this issue is to
sample a small subset of data and collect them into a central node to run the density estimation algorithms on
them. In this paper, we follow an alternative to the sub-sampling approach by proposing the nested Log-Poly

model. This model provides an accurate density estimation from a small sized statistic of the entire data. In
distributed settings, it transfers the small sized statistics from the client nodes to a central node. The estimation
process is then run in the central node. The proposed model can be used in different learning tasks such as
classification in supervised learning and clustering in unsupervised learning. However, the properties of nested
Log-Poly make it a suitable model for one-dimensional density estimations in the distributed settings. This
makes Log-Poly a good choice for naive Bayes classifier, where one-dimensional density estimation is required
for every feature conditioned on the class label. We provide a theoretical analysis of the efficiency of our
model in estimating a wide range of probability density functions. Our experiments show that nested Log-Poly
outperforms the state of the art density estimators on several synthetic datasets. We compare the accuracy and
the communication load of naive Bayes classifier using nested Log-Poly and other related density estimators
on several real datasets. The experimental outcomes depict that nested Log-Poly has less communication
load, while maintaining a competitive classification accuracy compared to similar methods that use the entire
data. Moreover, we present a comprehensive comparison between nested Log-Poly and validated KDE with
sub-sampling, in terms of number of communicated variables and the number of bytes transferred between the
clients and the central node. Nested Log-Poly provides comparable accuracy with the validated KDE with
sub-sampling, while communicating fewer variables. However, our method needs to compute and transmit the
variables with a high precision in order to accurately capture the details of the underlying distributions.

Keywords: Distributed learning, density estimation, probabilistic models, naive Bayes classifier

1. Introduction

The importance of large-scale learning and infer-
ence is growing with continuing advances in big data.
Traditional machine learning algorithms have been
largely concerned with developing techniques for small
or modestly-sized datasets. These algorithms fail to
effectively scale up in the presence of large-scale data.
This issue is becoming increasingly common in big
data era[1]. In the wide range of scalable algorithms,
the distributed inference is becoming a key tool, as
large data often require to be kept in different sites.
In the distributed settings, data repositories might be
stored at different locations with low communication
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speed between them. An efficient distributed infer-
ence algorithm should be capable of performing the
statistical inference with minimal interaction between
these sites (nodes) [2].

Among the problems of interest in distributed in-
ference is density estimation. In this problem, the
observations of an (unknown) underlying probability
distribution are stored in different sites and the goal
is to accurately estimate the underlying probability
distribution of the observed data with minimum re-
quired communication. Density estimation is used in
a variety of learning problems such as clustering and
classification. In this paper, we focus on distributed
one-dimensional density estimation. As a real-world
application, the distributed one-dimensional density
estimation can be used for naive Bayes classification
in the Internet of Things (IoT) systems. In IoT sys-
tems, the observations are gathered by distributed
sensors, where the sensor nodes are usually assumed
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to be power efficient. In such systems, low power de-
sign is a well-studied challenge [3, 4, 5]. Particularly
in some cases where the sensor nodes communicate
over a Wi-Fi network, they need to restrict their com-
munication since communicating over Wi-Fi networks
is a power-consuming process.

Kernel Density Estimation (KDE) is a popular
non-parametric method that can accurately estimate
low dimensional density functions. However, in dis-
tributed naive Bayes classification, KDE needs to gather
all the attributes of the data (or a sufficient number of
samples for each attribute) into one site. This causes
a considerable communication load, especially in high
dimensional data.

Gaussian Mixture Model (GMM) is another widely
used density estimator that estimates the underlying
probability distribution with a finite set of parame-
ters. The common method to obtain the parameters
of a GMM is the iterative Expectation-Maximization
(EM) method. In the case that the samples are not
congregated in a single node, each node needs to com-
municate with other nodes in each EM iteration. This
leads to a large amount of communication for an ac-
curate estimation of the parameters.

We propose a family of density functions that en-
able us to accurately estimate the underlying proba-
bility distribution of distributed data while only com-
municating a small number of variables. Using the
exponential families, the proposed method transfers
a small-sized sufficient statistic from each client to a
central node to provide an accurate estimation of the
density function. We call this set of density functions
the Log-Poly family. Although Log-Poly can be gen-
erally extended to multidimensional data, its proper-
ties make it an excellent choice for one-dimensional
density estimation in distributed settings. Addition-
ally, to compensate for the shortcomings of paramet-
ric models, we consider a nested hierarchy of Log-Poly
sub-models of different degrees (nested Log-Poly) and
use a sub-model selection among them. Favorably,
the communication needed by this nested hierarchy is
equal to the communication needed by its largest sub-
model. We mathematically show that nested Log-Poly
can properly estimate a wide range of density func-
tions. By performing experiments, we show that our
method can statistically compete with the state of the
art density estimators, with a small communication
load.

The rest of this paper is organized as follows: Sec-
tion 2 introduces the background and some notations.
The proposed method is presented in Section 3. While
presenting the method, we mention some advantages
and challenges of it as well. Section 4 states some
important properties of the proposed method and
presents the theoretical analysis. Section 5 discusses
the related works. Empirical results and experimental
analyses are presented in Section 6 and finally, conclu-
sions and future directions will be discussed in Sec-
tion 7.

2. Preliminaries

In this section, we give a brief overview of the back-
ground of the classic and distributed naive Bayes clas-
sifiers.

2.1. Density Estimation

Density estimation is a basic statistical problem
which is widely used in machine learning applications.
Considering the observations as a setD = {x(1), . . . , x(n)}
of n i.i.d. samples from an unknown distribution P ,
the goal of density estimation is to estimate a model
P̂ with minimum distance to P . Maximum Likelihood
Estimation (MLE) is a common method for learning
parametric models.

2.2. Naive Bayes Classifier

Suppose there are m possible classes C = {C1, . . . ,
Cm} and let x = 〈x1, . . . , xT 〉 be an instance to be
classified, where x1, . . . , xT represent the T attributes
of the given instance. The Bayes optimal classifier
assigns instance x = 〈x1, . . . , xT 〉 to class Ck with the
following probability:

P (Ck|x1, x2, ..., xT ) =
P (x1, x2, ..., xT |Ck)P (Ck)

P (x1, x2, ..., xT )
(1)

Let us assume that each feature is independent of
the other features given the class label (naive indepen-
dence assumption). Noting that P (x1, x2, . . . , xT ) is
constant for an instance (and is equal for all classes),
the conditional probability in naive Bayes classifier
can be expressed as:

P (Ck|x1, x2, ..., xT ) ∝
T
∏

i=1

P (xi|Ck)P (Ck) (2)

where P (xi|Ck) is the distribution of the ith attribute
for a given class Ck. For training this classifier, the es-
timation of each P (xi|Ck) distribution (for each value
of i and k) is needed. Therefore, naive Bayes classifier
needs to solve a set of one-dimensional density esti-
mations. A common assumption is that within each
class, the values of each attribute come from a normal
distribution. One can represent such a distribution in
terms of its mean and standard deviation and can effi-
ciently estimate its mean and standard deviation using
the Maximum Likelihood Estimation (MLE) method.
This model parameterization is computationally effi-
cient and also can be easily used in distributed cases.
Nevertheless, the assumption that the attributes obey
a Gaussian distribution may not hold for some do-
mains. In [6], it is shown that using more flexible
density estimators can improve naive Bayes classifiers
in real applications. However, the estimator proposed
in [6], the Kernel Density Estimator, suffers from a
large communication load in the distributed settings.
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2.3. Geographically Distributed Data

In distributed settings, data are kept in separate
sites where usually the communication cost between
them is expensive. These settings have received much
interest in recent years since large-scale datasets and
distributed computation platforms are becoming in-
creasingly more common [7]. In this paper, we assume
that data are horizontally partitioned which means
each site has all attributes of a subset of data. To be
more formal, we assume that there exists a set D of n
T -dimensional observations stored in S sites (we call
them S client nodes). All the T attributes of each ob-
servation are stored in the same node. Also, there is a
central node (a computational unit) that is connected
to all the clients. Each client just communicates with
the central node and the central node is responsible to
estimate the density function. The ith client, si, has ni

data samples denoted by Di (|Di| = ni,
∑

i ni = n).

2.4. Distributed Naive Bayes

For training a naive Bayes classifier, we need to
estimate P (xi|Ck) for each feature xi and class Ck,
based on the data with labels Ck that are located in
all different sites. In other words, the goal is to effi-
ciently estimate T×m unknown one-dimensional den-
sity functions from observations located in S different
sites. By ”efficiently”, here, we mean to use mini-
mum communication and to be statistically accurate
enough. According to Equation (2), we also need the
prior probability of each class (P (Ck)). This can be
easily obtained if we ask each client node to send the
total number of samples from each class it stores to
the Central node. This process will generate a very
small communication load.

3. Proposed Model

We will now introduce the proposed method for de-
signing the distributed naive Bayes which relies on es-
timating the one-dimensional distributions when data
are placed in different sites. From this point onward,
we only focus on finding the distribution P (xi|Ck),
which we denote by f(x) for simplicity.

Our proposed model for density estimation is a set
of parametric sub-models. We select the best sub-
model for estimating the true density function using
a validation set. The main contribution of this work
is the functional form of the sub-models that we have
utilized. These sub-models are indexed by natural
numbers (d ∈ {1, 2, 3, . . . , dM}), where the dth sub-
model has the following form:

fd(x; θ) =

{

1
Z(θ)e

(θ1x+θ2x
2+...+θdx

d) if x ∈ [L,R]

0 otherwise.

(3)
This is a special form of Exponential Families. We

call it Log-Poly because its logarithm is a polynomial
function of x. In Equation (3), θ is the parameter set

of the sub-model and Z is a normalizing factor which
depends only on θ. In more details, Z(θ) equals to:

Z(θ) =

∫ R

L

e(θ1x+θ2x
2+...+θdx

d)dx. (4)

where L and R are some pre-known lower and upper
bounds for x. In the absence of prior knowledge about
L and R, they can be set to two numbers less than
minx∈D(x) and larger than maxx∈D(x), respectively.
Here, D is the set of all (n) samples. All the existing
observations lie in the interval [L,R]. Thus, in cases
where n (the number of samples) is large enough, we
can infer that with a high probability, the integral of
the real density function outside the range [L,R] is
small enough and can be considered as zero. Hence,
restricting our sub-models to the set of distributions
that are equal to zero outside the range [L,R] will not
cause any issues. The dth sub-model has d parameters
which indicates its degree of complexity. Since the
(d− 1)th sub-model is a subset of the dth sub-model,
we call our model the Nested Log-Poly model.

The Log-Poly form of the sub-models has several
benefits that enable us to achieve a promising accu-
racy in estimating densities with low communication
overhead in comparison with existing methods. First,
we express the procedure of density estimation using
just the dth sub-model (using maximum likelihood es-
timation) in Sections 3.1 and 3.2. This procedure
needs at most a single communication round (it needs
no communication if a more complex sub-model has
been run before), and the amount of communication
in that one round (if required) is independent of the
sample size (n); it depends only on d. Then, in Sec-
tion 3.3, we will discuss the procedure of sub-model
selection and its challenges.

3.1. Density Estimation Using a Single Sub-model

Each single sub-model given in Equation (3) is an
exponential family. In general, an exponential family
of distributions is a set of density functions of the
following form:

f(x; θ) =
1

Z(θ)
g(x) exp(θTφ(x)) ∀θ ∈ Ω (5)

where

Z(θ) =

∫ ∞

−∞

g(x) exp(θTφ(x))dx. (6)

Z(θ) is called the partition function and Ω is the
set of all feasible values of θ. It is clear that fd (the
Log-Poly of degree d) is an exponential family for
which

φ(x) = [x, x2, ., xd], (7)

g(x) is an indicator function

g(x) = I(L ≤ x ≤ R) (8)

and Ω = R
d. Many of the most common distribu-

tions including normal, exponential, and gamma dis-
tributions are some instances of exponential families.
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When fitting the dth sub-model to the data, our goal
is to find the best θ which maximizes the likelihood of
the dth sub-model; fd(D; θ). The likelihood function
has the following form:

Ld(θ|D) = fd(D; θ)

=
1

Z(θ)n
Πx∈Dg(x) exp(θT

∑

x∈D

φ(x)). (9)

According to Equation (9), the likelihood is a func-
tion of

∑

x∈D φ(x) (the sufficient statistic). For a

computational agent to find θ̂ = argmaxθ Ld(θ|D),
it is adequate to know this sufficient statistic from
the data which is equal to the summation of the suf-
ficient statistics of all the clients, since

∑

x∈D φ(x) =
∑

i

∑

x∈Di
φ(x). Thus, each node computes the suffi-

cient statistic of its local data (
∑

x∈Di
φ(x)) and sends

them to the central node. The central node computes
the sufficient statistic of the whole data (which is just
the summation of all clients’ sufficient statistics) and
finds the point that maximizes the likelihood function.
This optimization problem can be solved using New-
ton’s method. We will describe the optimization pro-
cedure in detail in Section 3.2. In addition, in order
to assign proper values to L and R, the central node
also needs to know the minimum and the maximum
values of the data. Since minx∈D x = mini minx∈Di

x
and maxx∈D x = maxi maxx∈Di

x, each node is also
required to send the minimum and maximum values
of its local data, adding a communication load of only
two numbers. So, the whole process will be a pro-
cedure with just one round of communication where
each client should send just d+2 numbers to the cen-
ter.

Discussion: A useful property of the Log-Poly
form of the sub-models is that if d2 > d1, then the
sufficient statistic needed by the d2

th sub-model con-
tains the whole sufficient statistic needed by the d1

th

sub-model. Therefore, if we have run the procedure
of maximum likelihood estimation for the d2

th sub-
model beforehand, we need no communication to run
the procedure for the d1

th sub-model. On the other
hand, if we run the procedure for the d1

th sub-model
priorly, running the procedure for the d2

th sub-model
requires each client to send only d2 − d1 numbers to
the central node.

Another useful property of the exponential fam-
ily is the concavity of its log-likelihood as a function
of θ. Also, the gradient and the Hessian of the log-
likelihood function can be computed for each value
of θ by calculating moments of the density function (
more details will be explained in Section 3.2). So, nu-
merical optimization methods such as gradient ascent
and Newton’s method are commonly used for maxi-
mum likelihood estimation in exponential families. In
contrary to several other models such as GMM, there
is no risk of being trapped in local optimum points
in the procedure of maximum likelihood estimation.
However, the lack of precision in computational op-
erations is a challenge of numerical methods. The
precision of numerical approximations becomes more

challenging as d grows.

3.2. Details of the Optimization Algorithm

We first show that the logarithm of the density
function of an exponential family (Equation (9)) is a
concave function of θ. For a likelihood function of the
form presented in Equation (9), we have

∂ logLd(θ|D)

∂θ
= −n∂ logZ(θ)

∂θ
+

∑

x∈D

φ(x). (10)

The term
∑

x∈D φ(x) does not depend on θ and is a
constant value. The derivative of the logarithm of the
partition function is as follows:

∂ logZ(θ)

∂θ
=

∂

∂θ
log

∫

g(x) exp (θTφ(x))dx

=
1

∫

g(x) exp (θTφ(x))dx

∫

g(x) exp (θTφ(x))φ(x)dx

=

∫

1

Z(θ)
g(x) exp (θTφ(x))φ(x)dx

=

∫

f(x; θ)φ(x)dx = E[φ(x)]. (11)

With similar computations it can be shown that

∂2 logZ(θ)

∂θ2
= cov[φ(x)]

=E[φ(x)φ(x)T ]− E[φ(x)]E[φ(x)]T . (12)

Expectations in Equations (11) and (12) are taken
with respect to x ∼ f(x; θ). Since every covariance
matrix is a positive semi-definite matrix, Equation (12)
proves that logZ(θ) is a convex function of θ, and con-
sequently the log-likelihood function of an exponential
family is a concave function of θ.

According to concavity of log-likelihood of the ex-
ponential families, the general way for obtaining the
maximum likelihood in an exponential family is through
running steepest ascent methods on the log-likelihood
function. Here, we use Newton’s method with back-
tracking line search [8] for determining the step size.
According to Equation (7), for the form of our sub-
models, derivatives of the partition function are equal
to:

∂ logZ(θ)

∂θ
= E[(x, x2, . . . , xd)T ] (13)

and

∂2 logZ(θ)

∂θ2
= A− E[(x, . . . , xd)T ]E[(x, . . . , xd)],

(14)
where A is a d×d matrix with elements aij = E[xi+j ].
According to Equations (13) and (14), for running
Newton’s optimization method we need to compute
E[xi] for all 1 ≤ i ≤ 2d in each step, with respect to
the value of θ in that step:

E[xi] =

∫ R

L

xi

Z(θ)
exp





d
∑

j=1

θjx
j



 dx. (15)
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In Equation (15), if we know the value of Z(θ),
expectations can be approximated by Riemann sums.
Thus, the remaining problem is computing Z(θ). We
approximate Z(θ) using a Riemann sum as well. But
the challenge in approximating

Z(θ) =

∫ R

L

f̄d(x; θ)dx =

∫ R

L

exp





d
∑

j=1

θjx
j



 dx

(16)
is that the value of f̄d(x; θ) may be too large or too
small for some values of x. Therefore, it might over-
flow or underflow the computer variables. To address
this issue, we do calculations in the logarithmic space
to compute logZ(θ). In addition, to avoid numerical
overflows and underflows and to increase the accuracy
of Riemann sums, we use the following computational
technique:

log
(

exp(a) + exp(b)
)

= max(a, b)+ (17)

log

(

exp
(

a−max(a, b)
)

+exp
(

b−max(a, b)
)

)

.

When the order of magnitude of one of a and b
is much greater than the other one, then the lack of
precision caused by the possible underflow will be neg-
ligible; Otherwise, our computation will be precise.

Also, to avoid large numbers in our computations,
by a simple shift and scaling, we map the data to the
interval of [0.05, 0.95]. We consequently set L = 0 and
R = 1 in our experiments. Finally, it is worth men-
tioning that we used mpmath python package with a
decimal precision of 50 digits to perform high preci-
sion calculations in our implementation.

3.3. Sub-model Selection

In Sections 3.1 and 3.2, we demonstrated how to
perform maximum likelihood estimation for different
sub-models. Now, we explain how we select the right
sub-model. As we have mentioned, nested Log-Poly is
comprised of a set of sub-models of parametric fami-
lies. To choose which sub-model provides the closest
distribution to the true distribution from which the
data are sampled, we need to compare the true distri-
bution with each sub-model and choose the best one.
For this cause, we use a validation set. To evaluate
each sub-model, we first estimate its parameters using
the training data. Then, we compute the likelihood of
the validation data by that sub-model using the tuned
parameters. According to the law of large numbers, it
is clear that in the case of a large validation set drawn
from the true distribution, the likelihood of this set
by a sub-model is a measure of the Kulback-Leibler
(KL) divergence between the distribution represented
by that sub-model and the true distribution. Thus,
we select the sub-model with the highest likelihood of
the validation set as the best sub-model.

In practice, we consider a value dM as the max-
imum allowed value for d, and select the best sub-
model among the sub-models with degrees in {1, 2, . . . ,
dM}.

However, in theory, we can assume a hierarchy of
infinite sub-models with degrees {1, 2, . . .} (in prac-
tice, this assumption needs computations with a pre-
cision of infinite digits). For model selection, in this
case, we can use a look-ahead window of size w. We
can start from d = 1 and repeatedly increase d by one
until we reach the d∗th sub-model that has the high-
est likelihood value on the validation set among all
the sub-models of degrees d∗, . . . , d∗ + w. It is worth
noting that by increasing d, the sub-models get more
powerful and consequently, the likelihood of the train-
ing data increases. By increasing the value of d, the
likelihood of the validation data will also increase un-
til the sub-models start to overfit to the training data.
At this point, the likelihood of the validation set will
start to decrease.

4. Properties of the Nested Log-Poly Model

In this section, we first restate all the benefits and
contributions of the proposed method which we dis-
cussed sporadically in previous sections. Then, in Sec-
tion 4.1, we present a theoretical analysis of the capa-
bility of the proposed model for approximating density
functions. Using the Log-Poly form of sub-models has
several benefits that make it efficient for distributed
density estimation.

Low communication cost: For each sub-model,
we need a single communication round and the amount
of communication in that one round is independent
of the sample size (n) and it depends only on the
degree of the polynomial (d). We can compare this
communication cost with a KDE and a GMM with k
components. We have used Log-Poly’s with degrees
of at most 20 in our experiments reported in Sec-
tion 6 (except for one of the real datasets for which we
also used Log-Poly of degree 100). Hence, the nested
Log-Poly models need communication of 20 numbers
from each client to the central node to estimate a den-
sity function. KDE needs to transfer all the training
data (or at least several thousands of samples) to the
central node. Thus, it needs much more communica-
tion than the Log-Poly method. On the other hand,
the common method to fit the parameters of GMM is
Expectation-Maximization (EM) in which the update
formulations of the mean (µk), variance (Σk), and the
prior probability of each component in each EM iter-
ation are as follows [9]:

µk ←
1

n(k)

n
∑

i=1

γ(zik)x
(i) (18)

Σk ←
1

n(k)

n
∑

i=1

γ(zik)(x
(i) − µk)

2 (19)

πk ←
n(k)

n
(20)

where

n(k) =

n
∑

i=1

γ(zik) (21)
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and γ(zik) is the probability that x(i) comes from the
kth Gaussian component. It is clear that in the dis-
tributed setting, each client node should compute the
following three values for all instances residing in that
client;

∑

i γ(zik),
∑

i γ(zik)xi, and
∑

i γ(zik)x
2
i , for

each component k, and then send them to the central
node in each EM iteration. Also, the central node
should compute the new values of µk, Σk, and πk

for each component k and send them back to all the
clients. Therefore, each client node should send 3k
numbers and receive 3k numbers in each EM itera-
tion. Hence, running the EM algorithm for I itera-
tions needs a total communication of I × 6k numbers
between the central node and each client node. Ta-
ble 1 shows the required number of communication
rounds and the communication load of each round for
different density estimators.

Nested hierarchy: Since the Log-Poly sub-models
are nested and the sufficient statistics of them are sub-
sets of each other, if d2 > d1, the sufficient statistic of
data for fd2

will contain the whole sufficient statistic
of data for fd1

.
Concavity: Another useful property of the ex-

ponential family is the concavity of its log-likelihood
as a function of θ. Also, the gradient and Hessian of
its log-likelihood function can be computed for each
value of θ by calculating moments of the density func-
tion. Thus, numerical optimization methods such as
gradient ascent and Newton’s method can be used for
maximum likelihood estimation in these models (how-
ever, they need high precision computations). In con-
trary to several other models such as GMM, there is
no risk of being trapped in local optimum points in
the procedure of maximum likelihood estimation.

Finally, it can be theoretically shown that if d
grows large enough, Log-Poly is capable to fit a wide
range of density functions. In the following subsec-
tion, we prove a theorem that shows how Log-Poly
can fit different density functions. However, the up-
per bound we find for the KL divergence of Log-Poly
and the true distribution in this analysis is not neces-
sarily a tight one.

Table 1: Number of communication rounds and communica-
tion size of the client sj with nj samples for different density
estimation methods, in the distributed setting where a central
node is responsible to estimate the density function.

Method
number of Communication

communication rounds size per round

KDE 1 nj

GMM with k components 2× number of EM iterations 3k

Log-Poly of degree d 1 d

4.1. Theoretical Analysis

In this section, we study how accurate a density
function under specific conditions can be estimated
using a Log-Poly model. For this purpose, we first
prove a lemma about estimating the logarithm of con-
tinuous functions using polynomials.

Lemma 1. Let f be a continuous function defined on

[0, 1], such that maxx∈[0,1] | log f(x)| ≤ M . Let also

h : [0, 1] 7→ R be defined as

h(τ) = max
x,y∈[0,1]
|x−y|≤τ

(| log f(y)− log f(x)|). (22)

Then for all d ∈ N, for all x ∈ [0, 1], and for all t > 0,
there exists a polynomial P of degree d such that

|P (x)− log f(x)| < h

(

t

4d

)

+
2M

t2
. (23)

Proof. The proof is directly induced from a construc-
tive proof of the Stone-Weierstrass theorem using Bern-
stein polynomials [10]. Suppose a random variable K
as the sum of d Bernoulli trials with parameter x (x
can be any ordinary value in [0, 1]). The mean and
the variance of K/d are equal to x and x(1 − x)/d,
respectively. Thus, noting that x(1− x)/d ≤ 1/4d,
using Chebyshev’s inequality, we conclude that

Pr

(∣

∣

∣

∣

K

d
− x

∣

∣

∣

∣

≥ t

4d

)

≤ 1

t2
. (24)

This implies that

Pr

(∣

∣

∣

∣

log f

(

K

d

)

− log f(x)

∣

∣

∣

∣

≥ h

(

t

4d

))

≤ 1

t2
. (25)

Using inequalities (25) and maxx∈[0,1] | log f(x)| ≤M ,
we obtain (note that K is a random variable, but x
and d are constant numbers):

E

[∣

∣

∣

∣

log f

(

K

d

)

− log f(x)

∣

∣

∣

∣

]

=
∑

k

| log f(k
d
)− log f(x)|Pr(K = k)

≤
∑

k: |log f( k

d
)−log f(x)|<h( t

4d
)

h(t/4d)Pr(K = k)

+
∑

k: |log f( k

d
)−log f(x)|≥h( t

4d
)

2MPr(K = k)

≤ h(t/4d) +
2M

t2
. (26)

According to the inequality |E[a]−E[b]| ≤ E[|a− b|],
we infer that

E[log f(K
d
)]− log f(x) = E[log f(K

d
)]− E[log f(x)]

≤ E[| log f(K
d
)− log f(x)|] ≤ h(t/4d) + 2M

t2
. (27)

Finally we should notice that

E[log f(
K

d
)] =

d
∑

k=0

log f(
k

d
)
(

c(d, k)xk(1− x)(d−k)
)

is a polynomial of degree d with the desired property.

Using Lemma 1, now we can prove a theorem about
estimating density functions using Log-Poly sub-models.
The following theorem shows that the Log-Poly can
approximate any continuous probability density func-
tion.
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Theorem 1. For any continuous probability density

function f defined on [0, 1] with properties declared

in Lemma 1, and for any d ∈ N, and any t > 0,
there exists a Log-Poly probability density function q
of degree d that satisfies

KL(f ||q) ≤ 2

(

h

(

t

4d

)

+
2M

t2

)

. (28)

Proof. For simplicity, set ǫ = h( t
4d ) +

2M
t2

. Due to
Lemma 1, there exists a polynomial P of degree d
such that ∀x ∈ [0, 1], we have

|P (x)− log f(x)| < ǫ (29)

or equivalently

e−ǫ < eP (x)−log f(x) < eǫ, (30)

which means

f(x)e−ǫ < eP (x) < f(x)eǫ. (31)

This implies that

e−ǫ ≤
∫ 1

0

exp {P (x)}dx ≤ eǫ. (32)

Therefore, since e−ǫ < 1 < eǫ, there exists a δ ∈ [−ǫ, ǫ]
such that

∫ 1

0

exp {P (x) + δ}dx = 1. (33)

It is clear that q(x) = I(x ∈ [0, 1]) exp {P (x) + δ} is
the desired probability density function.

Finally, we should note that if g is a continuous
density function defined on [0, 1] and it is equal to
zero at certain points in [0, 1], then log g tends to −∞
at those points. For such density functions, if we first

consider a density function f(x) = g(x)+σ

1+σ
(for some

desired value of σ) then we can find an estimation
error for f by Log-Poly density functions, using The-
orem 1.

5. Related Works

The idea of using exponential families with poly-
nomial exponents for density estimation was originally
studied in [11]. This idea was also used to estimate
density function in constrained memory devices [12].
Broderick et. al have proposed the use of exponential
families in distributed learning for problems such as
posterior estimation [13]. To the best of our knowl-
edge, our proposed method is the first effort in us-
ing exponential families for distributed density esti-
mation.

In the remainder of this section, we review related
density estimators for one-dimensional data and how
they are applied in distributed settings. We study
different estimators under two categories of paramet-
ric and non-parametric density estimators. In sum-
mary, non-parametric estimators can model any com-
plex density function with sufficient number of sam-
ples. However, they are not suitable for distributed

density estimation since their parameter set is very
large. On the other hand, parametric models have a
fixed and small number of parameters. However, these
models are either simple and statistically inefficient,
or complicated with iterative training processes that
have high communication load in distributed settings.

5.1. Non-Parametric Models

In non-parametric models, the number of param-
eters is allowed to grow with the size of the available
data. This property enables the non-parametric mod-
els to accurately estimate complex density functions
in presence of large samples.

Among non-parametric methods, kernel density es-
timators are convenient and widely used. However,
to estimate a density function in distributed settings,
KDE requires all training data to be collected in one
site, causing an extremely high communication load
when the number of data is large. In fact, the parame-
ter set of KDE is the whole dataset. Some studies have
been done on how to apply KDE in a distributed envi-
ronment [14, 15]. These methods approximate KDE,
using iterative message passing and sub-sampling.

Some parametric models (such as GMM) can fit
any complex distribution if we let the number of their
parameters (number of components for GMM) grow
enough. In fact, if we consider a model as a hier-
archy of infinite GMM sub-models (each sub-model
with a specific number of components), this model
will be a non-parametric one. However, it also re-
quires a method for selecting the best sub-model ac-
cording to the observed samples. This hierarchy of
infinite GMM’s has been proposed in [16, 17], where
the Dirichlet process has been used as a prior for the
number of components and their probabilities. How-
ever, inference in this model is performed through
Gibbs sampling which is an iterative algorithm that
needs many rounds of communication in distributed
settings.

Our proposed method in this paper is also a hier-
archy of parametric sub-models with different degrees
of complexity. Although an infinite hierarchy of sub-
models can be considered theoretically, in practice, we
use a finite set of sub-models by determining a maxi-
mum degree of complexity for the sub-models.

5.2. Parametric Models

In parametric density estimators, a model with
a finite set of parameters is assumed as the density
function. The parameters of the specified model are
usually estimated using Maximum Likelihood Estima-
tion (MLE) on the whole data. Due to the small
size of parameters, one might guess that parametric
models are proper for distributed density estimation.
Nevertheless, that is not correct because MLE does
not have a closed-form formulation according to the
model parameters, except for very simple parametric
models such as a simple Gaussian or Gamma distri-
bution. More complicated parametric models, such
as mixture models, require distributed optimization
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algorithms [18] which need iterative communications
between separated nodes. This can significantly de-
celerate the algorithm regardless of the amount of in-
formation communicated at each iteration [19]. Al-
though some researches, such as [20], have proposed
methods with lower communication loads for some dis-
tributed optimization problems, they often have sac-
rificed accuracy for speed.

To get rid of the communication load of iterative
optimization, some prior works have proposed run-
ning MLE on local data in each client node and com-
bining their estimated parameters in a central node
to get an approximation of the global MLE. Merugu
and Ghosh [21, 22] proposed this method, where the
central node finds a distribution which has the mini-
mum distance from the average distribution of the lo-
cally estimated distributions. Although this method
is communicationally efficient, it does not guarantee
to provide good estimations for all underlying distri-
butions. A theoretical analysis of the statistical per-
formance of this method has been provided in [19]. It
shows that the efficiency of the global estimation de-
pends on the proximity of the underlying distribution
families to full exponential families.

6. Experimental Analysis

In this section, we will study the empirical per-
formance of nested Log-Poly on both synthetic and
real datasets1. First, in Section 6.1 we briefly de-
scribe some examples that show how Log-Poly pro-
vides a closer estimate to several density functions in
comparison with GMM and KDE. The goal, however,
is not to claim that nested Log-Poly statistically out-
performs other density estimators in all cases; Rather,
it is to show that there exist some density functions
where Log-Poly sub-models provide better estimates
than GMM or KDE. In Section 6.2, we illustrate the
effect of sub-model selection in nested Log-Poly by
comparing the average likelihood of sub-models with
different degrees on the train, validation, and test
data. In Section 6.3, we compare the accuracy of
naive Bayes classifier when nested Log-Poly and three
other distributed density estimators are used on real
data with high dimensional input space. Finally, in
Section 6.4, we compare the communication load of
nested Log-Poly against related distributed density es-
timation methods.
Dataset: We used synthetic data to exhibit the sta-
tistical superiority of Log-Poly against KDE and GMM
in some cases. For experiments on sub-model selection
(Section 6.2), naive Bayes classifiers (Section 6.3), and
communication load evaluation (Section 6.4), we used
detection of IoT botnet attacks N BaIoT dataset2 [23]
(we will refer to this dataset by ”the IoT dataset”).
This dataset is a collection of traffic observations on

1The source codes of our experiments are available at http:
//github.com/ahmadkhajehnejad/logpoly naiveBayes.

2http://archive.ics.uci.edu/ml/datasets/detection of IoT
botnet attacks N BaIoT

nine different IoT devices. Each observation in this
dataset either belongs to the benign traffic or one of
10 network attacks. We also used MAGIC Gamma

Telescope dataset3 [24] with 2 classes (we will refer to
this dataset as ”the MAGIC datasaet”) and Gas sen-

sors for home activity monitoring dataset4 [25] with
3 classes (we will refer to this dataset as ”the Gas-

Sensors dataset”). From the Gas-Sensors dataset, we
only used observations from the time interval [0.5, 1].
Data preparation: All the synthetic data and all di-
mensions of the real data were scaled to the [0.05, 0.95]
before applying any density estimation method on them.
In fact, we assumed that the valid range of each di-
mension is given in prior. For distributed experiments
given in Section 6.4, we partitioned the data horizon-
tally among the processes that were representing the
client nodes. For density estimators that need valida-
tion set (such as nested Log-Poly for determining the
degree of the polynomial), we separated 1

10 of data as
the validation set.
Measurement criteria: For measuring the statisti-
cal performance of a method to estimate the underly-
ing 1-dimensional density of a set of observations (in
Section 6.1), we use the Kullback-Leibler divergence
(KL divergence) between the true distribution and the
estimated distribution using that method. The KL di-
vergence of an estimated density function Q from the
true density function P is defined as follows

DKL(P ||Q) =

∫ +∞

−∞

P (x) log

(

P (x)

Q(x)

)

dx. (34)

In practice, given a sample set D of n observations
drawn independently from P , Equation (34) can be
approximated by:

DKL(P ||Q) ≈ 1

n

∑

x∈D

P (x) log

(

P (x)

Q(x)

)

. (35)

We use Equation (35) to evaluate how close the out-
put of a density estimator (Q) is to the true distri-
bution (P ). For evaluating naive Bayes classifiers (in
Section 6.3), we use the accuracy measure. Further-
more, in the distributed experiments (in Section 6.4),
we report the communication load of each method by
counting both the number of variables and the num-
ber of bytes transferred between the center node and
the client nodes.

6.1. Log-Poly’s Performance in Density Estimation

The advantage of nested Log-Poly, in comparison
to other density estimators, is its low communication
cost in a distributed setting. However, in what follows,
we will show some cases that Log-Poly sub-models
provide statistically closer estimates to the true dis-
tribution in comparison with GMM and KDE. These

3https://archive.ics.uci.edu/ml/datasets/magic+gamma+
telescope

4https://archive.ics.uci.edu/ml/datasets/Gas+sensors+for
+home+activity+monitoring
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Figure 1: The results of estimating a triangular density function by Log-Poly and GMM. Figure 1a shows the true density function,
a GMM with 6 components and a Log-Poly of degree 17 fit to 105 samples generated from the true distribution. Figure 1b shows
how the KL divergence between the true distribution and the estimated distribution changes with different numbers of parameters
for GMM and Log-Poly.

examples, however, don’t mean that Log-Poly outper-
forms other density estimators in all cases. In the
following subsections, we will use Equation (35) to
approximate the KL divergence.

6.1.1. Log-Poly vs GMM

We compare Log-Poly with GMM in two different
situations. First, we compare them when there is no
limit on the number of EM iterations. Second, we
compare them in a more realistic situation where there
is a limit on the number of EM updates. We will
clarify this limitation later in this section.
Unlimited EM iterations: The first comparison is
on estimating a triangular density function shown in
Figure 1a (the green curve). For a fair comparison,
it is necessary to choose models with the same com-
plexity (free parameters). Therefore, a GMM with k
components must be compared to a Log-Poly of de-
gree 3k − 1. This is because a one-dimensional GMM
with k components has 3k−1 free parameters: k mean
points, k variances, and k components’ probabilities
where one of them can be computed knowing the oth-
ers. For an illustrative comparison, we train a GMM
with 6 components on 105 samples generated from the
true distribution until convergence. Then, we simi-
larly fit a Log-Poly of degree 17 on the same samples
and compare the estimated distributions and the true
distribution. Figure 1a shows the true distribution
and the estimated distributions. This figure shows
that Log-Poly captures the underlying true distribu-
tion of the generated samples more accurately.

For a quantitative comparison on different choices
of model complexity, we train GMM and Log-Poly
with different complexities and compare the KL di-
vergences of their estimated distributions and the true
distribution (Figure 1b). It can be seen that Log-Poly
performs better for different choices of model complex-

ity.
Limited EM iterations: Consider a distribution
that can be represented as a mixture of k compo-
nents. Having enough samples from this distribution,
a GMM with k components can accurately fit this
distribution. However, it needs a sufficient number
of EM iterations to converge to the true distribution.
On the other hand, each client node in each EM it-
eration needs two rounds of communication to send
3k numbers to the central node and receive 3k num-
bers from it (as explained in Section 4). Therefore,
communication constraints in the distributed appli-
cations limit the allowed number of EM iterations.
Figure 2 shows the true distribution; a mixture of six
Gaussians with parameters π = [ 9

26 ,
2
26 ,

3
26 ,

4
26 ,

1
26 ,

7
26 ],

µ = [1, 20, 50, 85, 130, 160] and σ = [1, 2, 3, 1, 2, 3].
This figure also shows the result of training a GMM
with six components for 200 EM iterations on 105

samples from the true distribution. According to the
discussions in Section 4, in a distributed application,
it takes 2 × 200 rounds of communication and a to-
tal communication of 7200 = 200× 6× 6 numbers for
each client. However, as Figure 2 shows, GMM has
not been able to capture all the six components of
the true distribution in 200 iterations. On the other
hand, Figure 2 shows that a Log-Poly with d = 17
(which needs a communication of only 17 numbers in
just one communication round for each client) can ap-
proximately fit the true distribution and capture all
the six components.

6.1.2. Log-Poly vs KDE

Although kernel density estimation is a non-parametric
method that converges to the true distribution as the
number of observations tends to infinity under mild
conditions [26], nested Log-Poly outperforms KDE in
some cases. Figure 3a shows a gamma distribution
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Figure 2: GMM with k = 6 components has failed to completely
fit the true distribution (a mixture of 6 Gaussians), in 200 EM
iterations. However, Log-Poly with d = 17 has worked nice.

with parameters k = 2 and θ = 0.5. Nested Log-
Poly provides better estimations than KDE on this
distribution. Figure 3b shows the results of the two
methods using 2000, 3000, and 4000 observations. In
this experiment, we used 100 observations as valida-
tion data to set the kernel width of the KDE method
and to select the best Log-Poly sub-model.

6.2. Sub-model Selection

In this section, we investigate the effect of sub-
model selection using a validation set on our den-
sity estimation method. We used the first feature of
the samples gathered from the device Danmini Door-

bell and labeled as gafgyt-combo attack in the IoT
dataset. We used a validation set and a test set, each
of size 500. Then we trained Log-Poly sub-models
with d ∈ {1, 2, . . . , 20} using two different training
sets: a training set of size 500 and a training set
of size 3000. Figures 4a and 4b represent how the
log-likelihoods of the training, validation and test sets
change as d grows. According to Figure 4a, the sub-
model with degree d = 7 is the best one (i.e. the
model with the maximum accuracy on the validation
set) in that case. Figure 4b shows that when the train-
ing size increases to 3000, it is preferred to choose a
more complex sub-model (d >= 15). Also, it confirms
that having a large training set prevents the model
from overfitting to the training data. This is due to
the fact that the log-likelihoods on the validation set
and the test set do not decrease significantly when we
increase the model complexity up to d = 20.

6.3. Naive Bayes with Different Density Estimators

In this section, we study the experimental results
of the naive Bayes classifier on the IoT dataset us-
ing different density estimators including nested Log-
Poly. We have used the traffic observations collected
from five devices as five different experiments. Each
observation is a vector of 115 real-valued features and
there exist more than 800000 observations for each

device. Table 2 shows the number of available obser-
vations from each device. The data from each device
is divided to 11 classes : benign traffic and 10 differ-
ent network attacks. Table 2 also shows the results
on the MAGIC 2-classes dataset and the Gas-Sensors

3-classes dataset which both have 10 real-valued fea-
tures. In each experiment, we used a 5-fold evaluation
to approximate the mean and the standard deviation
of the classification accuracy. We used naive Bayes
classifiers with nested Log-Poly, a single Gaussian,
GMM, KDE, and validated KDE (a KDE in which
the kernel width has been tuned using a validation set)
density estimators. We used one-tenth of the training
data as the validation set in nested Log-Poly, GMM,
and validated KDE. For nested Log-Poly model, we
used sub-models of degrees d ∈ {5, 10, 15, 20}. For
GMM, we considered a hierarchical model of GMM’s
with k ∈ {2, 5, 10, 20} components as its sub-models
and selected the best sub-model using the validation
set. For each sub-model, we first initialized the pa-
rameters using a k-means with at most 100 iterations
and then we ran the EM algorithm for 100 iterations.
For KDE we used Gaussian kernels. Following [6], we
set the kernel width of the Gaussian KDE equal to
1/
√
ntrain. However, to achieve a fairer comparison,

we also tested validated KDE (VKDE). We used the
validation set to select the best kernel width. Table
2 shows the accuracy of KDE, VKDE, GMM, single
Gaussian, and nested Log-Poly for 5 different datasets.
As can be seen in this table, the classification perfor-
mance of naive Bayes using nested Log-Poly as its un-
derlying distributed density estimator is highly com-
petitive compared to other density estimators. How-
ever, for a better comparison, we should take into
account the amount of communication each method
needs to achieve this accuracy. In the next section,
we measure the exact amount of communication for
each method to obtain the corresponding accuracy.

From the large diversity in the accuracy of different
methods on the Gas-Sensors dataset given in Table
2, we infer two facts: there are some challenging one
dimensional distributions in this dataset, and naive
Bayes classifier needs precise estimations of these dis-
tributions to provide more accurate results. In order
to measure the ability of Log-Poly to estimate these
more challenging density functions, we also tested naive
Bayes classification with Log-Poly functions of degree
100 (we also needed to increase our computational pre-
cision from 50 to 200). As anticipated, it provided a
better result than nested Log-Poly of degree 20. It
achieved an accuracy of 85.26% (std=0.31). Figure
5 shows the results of Log-Poly with degrees 20 and
100 on the 6-th dimension of the three different classes
of the Gas-Sensors dataset. It depicts how Log-Poly
of degree 100 can capture more details of the density
functions than Log-Poly of degree 20.

6.4. Communication Load

In this section, we compare the communication
load of different mentioned density estimators (KDE,
GMM, and nested Log-Poly) to train a naive Bayes
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Figure 3: Log-Poly density estimation vs Gaussian kernel density estimation using 2000 samples from a gamma(k = 2, θ = 0.5)
distribution.
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Figure 4: Average log-likelihood of the training, validation and test data, for the estimated Log-Poly sub-models of different degrees.

Table 2: Mean and std of the accuracy of the naive Bayes classifier using different density estimation methods.

Device Name Data Size KDE VKDE GMM nested Log-Poly Gaussian

Danmini Doorbell 1018297 88.39 (0.42) 87.97 (0.75) 88.93 (0.28) 87.89 (0.18) 86.75 (30)
Ecobee Thermostat 835875 85.49 (0.34) 84.94 (1.32) 86.45 (0.45) 85.53 (0.21) 71.32 (0.62)
Phil. B120N10 Baby Mon. 1098676 86.57 (0.19) 89.18 (0.42) 89.25 (0.26) 88.81 (0.8) 84.64 (3.71)
Prov. PT 737E Sec. Cam. 828259 83.98 (0.30) 85.49 (0.55) 84.93 (0.25) 85.00 (0.24) 62.29 (0.65)
Prov. PT 838 Sec. Cam. 836890 86.30 (0.22) 86.36 (0.75) 86.47 (0.97) 85.38 (0.50) 62.90 (0.63)
MAGIC 19020 75.74% (0.74) 77.39% (0.67) 77.80% (0.69) 76.31% (0.71) 72.69% (0.75)
Gas-Sensors 169153 84.52% (0.27) 91.99% (0.30) 87.14% (0.36) 79.33% (0.29) 71.23% (0.41)

classifier. For such comparison, we implemented a
parallel python code to simulate the distributed set-
ting. The central node is represented by a python
process where the only way for it to access the data
is through several independent python processes that
represent the client nodes. The data is partitioned
horizontally and randomly divided among the client
processes. The central process communicates with
the client nodes by transferring messages through the

network. We implemented the message passings by
socket programming and we will report both the num-
ber of variables and the number of bytes transferred
in each experiment. For the number of variables, we
simply report the number of variables that the pro-
cesses send to each other, whether they are integer
or real numbers. For monitoring how many bytes are
exchanged between the processes, we use tcpdump to
capture the packets and compute sum of their lengths.
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Figure 5: Estimation of the 6th dimension of the three classes of the Gas-Sensors dataset using Log-Poly’s of degrees 20 (a) and
100 (b)

In all experiments, we run distributed naive Bayes
classification on the samples gathered from Danmini

Doorbell device in the IoT dataset. We study the ef-
fect of the training size and the number of the client
nodes on the communication load for different density
estimators. In our experiments, we select the degree
of Log-Poly by sub-model selection among sub-models
of degrees 5, 10, 15 and 20 (note that the sufficient
statistics of all the sub-models can be fetched from
the clients in one round of communication). For eval-
uating each sub-model, we consider a portion of data
in each client as the validation data. The central node
just needs to have the sufficient statistic of the valida-
tion set to compute the likelihood of each sub-model
on the validation set. Similarly, for GMM, we select
the number of components among mixtures of 2, 5, 10

and 20 components. After training each GMM sub-
model, the central node sends the trained parameters
of the sub-model to each client and receives back the
likelihood of the validation set stored in that client.
In addition, all GMM models are trained through 100
EM iterations in the experiments of this section.

Figure 6a shows the number of communicated vari-
ables of each method for different training sizes in log-
arithmic scale. We used 2 client nodes for this exper-
iment. As figure 6a shows, the amount of commu-
nication needed by nested Log-Poly and GMM does
not depend on the size of the training data while the
amount of communication that KDE needs is propor-
tional to the number of training samples. We can see
in this figure that nested Log-Poly communicates a
significantly fewer number of variables in comparison
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Figure 6: Communication load of training a naive Bayes classifier using different density estimators on different number of training
samples from the Danmini Doorbell data. Data is partitioned among 3 client nodes.
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Figure 8: Accuracy of naive Bayes classifier with VKDE us-
ing different number of training samples from the Gas-Sensors

dataset, and accuracy of naive Bayes using Log-Poly of degrees
20 and 100 on the whole samples.

with GMM for any size of training data. Note that al-
though GMM does not need to collect all the data, it

still needs to communicate a large number of variables
due to its iterative manner. We see that nested Log-
Poly also communicates a fewer number of variables
than KDE, especially for large training sizes.

Comparing the results from Table 2 with Figure
6a, it can be inferred that nested Log-Poly proves to
be highly competitive compared to other distributed
methods in terms of the classification accuracy, while
the communication load needed in nested Log-Poly is
significantly lower than other methods. This makes
nested Log-Poly an appealing choice for distributed
classification tasks that use naive Bayes classifiers.

Figure 6b shows the number of bytes transmitted
by each method. As anticipated, it can be seen that
the communication load of each method in bytes is
proportional to the number of variables transmitted
by that method (Figure 6a). However, the scaling
factors for different methods are not equal. By com-
paring Figures 6a and 6b, we can estimate how many
bytes have been used for transmitting each variable
on average. That number is approximately 10 bytes
for KDE, 30 bytes for GMM and 70 bytes for nested
Log-Poly. The reason that nested Log-Poly trans-
mits more bytes for each variable compared to the
other methods is its need for high precision compu-
tation. We have used mpmath python package in the
implementation of Log-Poly which stores each vari-
able as a type called mpf. This data type uses more
bytes than python float variables which are used in
implementing KDE and GMM. Also, note that GMM
uses more bytes per variable in comparison with KDE.
The reason is that GMM runs lots of communication
rounds and each round causes some extra communica-
tion overhead, while in KDE the central node collects
all its required data in one round of communication.

As described beforehand, Figures 6a and 6b show
that nested Log-Poly uses less communication than
KDE and VKDE on large datasets. The reason is
that the communication load of KDE and VKDE de-
pends on the number of samples. For a fair compari-

13

Jo
u
rn

al
P

re
-p

ro
of

Journal Pre-proof



103 1260 104

103

104

105

Training size

N
u
m
b
er

o
f
ex
ch
a
n
g
ed

va
ri
a
b
le
s

VKDE

Log-Poly-100

Log-Poly-20

(a) Number of transmitted variables

103 104
104

105

106

Training size

N
u
m
b
er

o
f
tr
a
n
sm

it
te
d
b
y
te
s

VKDE

Log-Poly-100

Log-Poly-20

(b) Number of transmitted bytes

Figure 9: Communication load of training a naive Bayes classifier using different density estimators on different number of training
samples from the Gas-Sensors dataset. Data is partitioned among 3 client nodes.
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Figure 10: Variance of the accuracy of the naive Bayes classifier
using VKDE with different sample sizes from the Gas-Sensors

dataset, versus the variance of the accuracy of naive Bayes clas-
sifier using a single Log-Poly of degree 100 on the whole dataset.

son, we also need to check how accurate these methods
perform on a subset of samples. Figure 7 shows the
classification accuracy using KDE and VKDE on data
from Danmini Doorbell device using different sample
sizes. Notice that these two methods use exactly the
same communications and their difference is just in
their kernel widths. Figure 7 depicts that the accu-
racy of naive Bayes classification with KDE drastically
reduces by sub-sampling the training data. However,
by using VKDE, it can obtain the same accuracy by
using a small subset of the training data. Therefore, in
fact, on this dataset, VKDE can achieve the same ac-
curacy with less communication than nested Log-Poly.
It shows that the density functions of different classes
of this dataset are either simple enough that can be
estimated from a small set of samples, or separated
from each other such that naive Bayes can perform
well with a rough estimation of them from a small set

of samples. To investigate a more challenging case, we
used Gas-Sensors dataset. As we discussed in Section
6.3, the results in Table 2 demonstrate that estimat-
ing the density functions precisely is a challenge in
this dataset. Figure 8 shows the accuracy of VKDE
using different sample sizes on this dataset. Also, Fig-
ure 9 shows the communication load of VKDE, nested
Log-Poly of degree 20 (while computing the sufficient
statistics up to 50 decimal digits) and nested Log-Poly
of degree 100 (while computing the sufficient statis-
tics up to 200 decimal digits) using different number
of samples from the Gas-Sensors dataset (when par-
titioned into two client nodes). Noting Figure 8 and
Figure 9a simultaneously indicates that if we consider
the number of transferred variables as the measure
of communication load, some scenarios can be con-
sidered in which Log-Poly of degree 100 outperforms
VKDE. For example, if both models are restricted to
transmit at most 15000 variables, VKDE can use at
most 1500 samples which results in a low accuracy
than Log-Poly-100, while transmitting more variables
than it. But Figure 9b shows that when the number
of transferred bytes is considered as the measure of
communication load, VKDE with sub-sampling out-
performs Log-Poly in accuracy, while it uses less com-
munication than Log-Poly. In fact, Log-Poly suffers
from its need to high precision communication.

Moreover, it is worth mentioning that running VKDE
on a small sample of the data may increase the vari-
ance of classification accuracy, in comparison with us-
ing Log-Poly or VKDE on the entire data. Figure
10a demonstrates the effect of the sample size used by
VKDE on the naive Bayes classification accuracy on
the Gas-Sensors dataset.

Although the communication loads of GMM and
nested Log-Poly do not depend on the number of train-
ing samples, they are directly related to the number of
clients that the data is partitioned over. This depen-
dency is due to the fact that both methods need to get
certain statistics from the data stored in each client.
Moreover, GMM also needs to send the current value
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Figure 11: The effect of the number of client nodes on the communication load of training a naive Bayes classifier (on the Danmini

Doorbell data), using different density estimators.

of its parameters in each iteration to all the clients.
Figure 11a shows the number of variables transmit-
ted by nested Log-Poly, GMM, and KDE for different
number of client nodes on a semi-logarithmic scale.
In this experiment, we used 106 training samples. As
anticipated, the figure shows that the number of ex-
changed variables does not depend on the number of
client nodes in KDE, but has a direct relation with
the number of clients in GMM and nested Log-Poly.
Figure 11b shows the same diagram for the number
of bytes transmitted by each method. This property
of KDE that the communication load is independent
of the number of clients, could be beneficial when the
number of clients is large. However, this experiment
shows that for smaller ratios of training size to the
number of clients, nested Log-Poly can perform better
than KDE and GMM in both number of transmitted
bytes and number of exchanged variables.

7. Conclusion and future directions

We have proposed nested Log-Poly, a communica-
tionally efficient model for distributed density estima-
tion in naive Bayes classification. The properties of
its Log-Poly sub-models make it a suitable model for
one-dimensional density estimations in a distributed
setting. We have provided a theoretical analysis of the
capability of Log-Poly to fit a wide range of probabil-
ity density functions. We have also showed experimen-
tally that nested Log-Poly competes with the state of
the art estimators such as GMM and KDE in accu-
racy, while it needs to transfer relatively fewer vari-
ables between the client nodes and the central node.
This is made possible through the use of high pre-
cision to compute, store, and transfer the statistics,
which causes an extra communication load. Moreover,
VKDE with sub-sampling is an alternative which pro-
vides competitive results to Log-Poly with a smaller
byte transmission. A useful extension to this work
would be to reduce the transmission cost of high pre-
cision communication. An efficient extension of Log-

Poly to multi-dimensional density functions would be
another worthy direction for the future studies.
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