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Figure 1: Learning Gentle Humanoid Locomotion and End-Effector Stabilization Control with
SoFTA: (A) Carrying bottles of drink during a 1m/s large-step walk. (B) Liquid surface when the
robot is tapping in place. (C) Long-exposure photo of the robot holding a glow stick walks forward.
(D) SoFTA keeps the drink from spilling, even when subjected to a fierce push. See the website for
more video: https://lecar-lab.github.io/SoFTA/

Abstract: Can your humanoid walk up and hand you a full cup of beer—without
spilling a drop? While humanoids are increasingly featured in flashy de-
mos—dancing, delivering packages, traversing rough terrain—fine-grained con-
trol during locomotion remains a significant challenge. In particular, stabilizing
a filled end-effector (EE) while walking is far from solved, due to a fundamental
mismatch in task dynamics: locomotion demands slow-timescale, robust control,
whereas EE stabilization requires rapid, high-precision corrections. To address
this, we propose SoFTA, a Slow-Fast Two-Agent framework that decouples upper-
body and lower-body control into separate agents operating at different frequen-
cies and with distinct rewards. This temporal and objective separation mitigates
policy interference and enables coordinated whole-body behavior. SoFTA exe-
cutes upper-body actions at 100 Hz for precise EE control and lower-body actions
at 50 Hz for robust gait. It reduces EE acceleration by 2-5× to baselines and
performs much closer to human-level stability, enabling delicate tasks such as car-
rying nearly full cups, capturing steady video during locomotion, and disturbance
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rejection with EE stability. We validate SoFTA on both Unitree G1 and Booster
T1, showing strong cross-platform generalizatin.
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1 Introduction
Humanoid robots are designed to operate in human-centric environments, with general-purpose
structures that make them well-suited for diverse tasks. Recent advances in locomotion [1–11]
and manipulation [12–16] have pushed humanoid performance toward human-level ability [17].
However, one critical capability remains underexplored: fine-grained end-effector (EE) stabilization
during locomotion. This capability is essential for safe and precise physical interaction with ob-
jects—such as handing over a cup of water or recording stable video—yet current humanoids fall
short. For instance, the default Unitree G1 controller yields average EE accelerations around 5m/s2

—over 10× higher than human levels—leading to excessive shaking and making delicate tasks in-
feasible.

We identified a fundamental performance gap stemming from the disparities in task characteristics
between EE stabilization and locomotion, both in terms of objectives and dynamics. At the objective
level, locomotion requires traversability, which naturally introduces non-quasi-static dynamics. In
contrast, EE stabilization requires a base with minimal motion to maintain precision. At the dynam-
ics level, lower body locomotion operates with “slow” dynamics meaning it can only be controlled
through discrete long time-scale contacts. The nature of ground contacts makes it more suscepti-
ble to the sim-to-real gap, demanding greater robustness against noise and disturbances. On the
other hand, EE control involves “fast” dynamics, with fully actuated and more controllable arms to
produce continuous torques, allowing for fast and precise corrections.

To bridge the gap, we propose SoFTA—a Slow-Fast Two-Agent reinforcement learning (RL)
framework that decouples the action and value spaces of the upper and lower body. This design
enables different execution frequencies and reward structures: the upper-body agent acts at high
frequency for precise EE control with compensate behavior, while the lower-body agent prioritizes
robust locomotion at a slower frequency. SoFTA facilitates stable training and whole-body coor-
dination by this decoupling, resulting in fast and accurate EE control alongside robust locomotion.
Like shown in Figure 1, our system achieves a 50–80% reduction in EE acceleration over base-
lines. SoFTA can achieve EE acceleration less than 2m/s2 in diverse locomotion, which is much
closer to human-level stability, enabling tasks like serving coffee or stable video recording. Our key
contributions are:

• We introduce SoFTA, a novel slow-fast two-agent RL framework that decouples control for lo-
comotion and EE stabilization in both time and objective space, enabling robust locomotion and
precise, stable EE control through frequency separation and task-specific reward design.

• We demonstrate real-world deployment of SoFTA on a Unitree G1 humanoid, enabling tasks such
as walking while carrying liquids or recording stable first-person videos.

• Extensive experiments are conduct in both simulation and real-world with in-depth analysis across
control frequencies, showing that SoFTA can effectively stabilizes the end-effector during loco-
motion through its frequency design.

2 Related Work
Learning-based Humanoid Control Recent advances in learning-based whole-body control have
enabled humanoid robots to acquire a wide range of skills in simulation. Efforts such as domain
randomization and system identification to better align simulation with real-world dynamics [18–
21] have proven to be effective for sim-to-real transfer of humanoid policies. These capabilities
span robust locomotion [22–24, 1–11, 25], advanced manipulation [12–16] and integrated loco-
manipulation behaviors [26–32, 17]. Despite these promising developments, relatively little atten-
tion has been paid to achieving precise and stable EE control, which is essential for fine-grained
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humanoid loco-manipulation. In this work, we focus on enabling humanoid robots maintain end-
effector stability during locomotion.

End-Effector Control for Mobile Manipulators Stabilizing EE during motion is crucial for mo-
bile manipulation. Prior work predominantly focuses on wheeled robots, where model-based ap-
proaches unify base and arm control through optimization [33–40], but they rely on accurate dy-
namics models and predefined contact schedules, limiting their scalability to complex humanoid
systems. Hybrid approaches [41–43] combine learned locomotion with planned arms but often
freeze the base, reducing coordination. Joint learning [44, 45] improves tracking, mostly on non-
humanoids. In contrast, we present the first method to achieve fine-grained end-effector stabilization
during dynamic humanoid locomotion.

Humanoid Policy Architecture To enable effective humanoid policy learning, researchers have
explored various architectural designs. Single-agent whole-body policies [21, 46] offer flexibility for
complex tasks but are challenged by high-dimensional state-action spaces. Inspired by MARL [47],
recent work decoupling policies to simplify training. Multi-critic methods [48, 49] handle value
conflicts, while decentralized control [50] assigns body parts to separate controllers. Others [32,
51] split locomotion and manipulation, enabling diverse behaviors. Still, few leverage structural
decoupling fully. Our method extends this idea by separating reward design and update timing,
achieving stable EE control and robust locomotion.

3 SoFTA for Learning Stable End-effector Control and Robust Locomotion

3.1 Problem Statement

Observations and Actions. We aim to control a humanoid robot to stabilize its end-effector at
target positions while also following locomotion commands. We formulate the problem as a goal-
conditioned RL task, where the policy π(sprop

t , sgoal
t ) is trained to output an action at ∈ R27, rep-

resenting target joint positions. The proprioceptive input sprop
t includes a 5-step history of joint

positions qt ∈ R27, joint velocities q̇t ∈ R27, root angular velocities ωroot
t ∈ R3, projected gravity

vectors gt ∈ R3, and past actions at ∈ R27. The goal state sgoal
t contains target root linear velocity

vgoal
t ∈ R2, target yaw angular velocity ωgoal

t ∈ R, desired base heading hgoal
t ∈ R, cgoal

t ∈ R2

(with a binary stand/walk command and a gait frequency), and cEE
t ∈ R5×n encodes the EE com-

mand. Here, n denotes the number of potential end-effectors, each with a 5-dimensional command
specifying whether it is activated for stabilization, the x- and y-coordinates in the local frame, the
z-coordinate in the global frame, and the tracking tolerance σ.

Objective Formulation for Stable EE control We use PPO [52] to maximize the cumula-
tive discounted reward E

[∑T
t=1 γ

t−1rt

]
. Several rewards rt are defined to achieve stable end-

effector control: 1) penalizing high linear/angular acceleration, racc = −∥p̈EE∥22, rang-acc =
−∥ω̇EE∥22; 2) encouraging near-zero linear/angular acceleration, rzero-acc = exp

(
−λacc∥p̈EE∥22

)
,

rzero-ang-acc = exp
(
−λang-acc∥ω̇EE∥22

)
; 3) penalizing gravity tilt in the end-effector frame, rgrav-xy =

−
∥∥Pxy(R

T
EEg)

∥∥2
2
. p̈EE ∈ R3 is the linear acceleration, ω̇EE ∈ R3 is the angular acceleration,

λacc, λang−acc > 0 are exponential reward scale factors, REE ∈ SO(3) is the rotation matrix, g is
the gravity vector, and Pxy(·) : R3 → R2 projects onto the xy-plane.

Task Characteristics. Stable End-Effector Control and Robust Locomotion are fundamentally
different tasks in both their objectives and dynamics.

At the objective level, end-effector control demands extreme stability, requiring the base to remain
as static as possible, while locomotion must accommodate varying gaits and momentum changes.
Precise end-effector control benefit from sharp, fine-grained, continuous rewards, whereas locomo-
tion favors long-horizon, robustness-focused rewards. Given these differences, using a single critic
to aggregate all reward signals may not be the most effective way.
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Figure 2: Overview of the SoFTA framework: The framework employs two distinct agents that
share the same observation but act within separate action spaces at different rates, targeting two
fundamentally different task: stable end-effector control and robust locomotion. Stable end-effector
control requires a sharp reward landscape and rapid upper-body actions for precise manipulation,
whereas robust locomotion focuses on maintaining robustness under gait rewards.

At the dynamics level, locomotion is governed by discrete ground contact forces and exhibits
“slower” dynamics due to its long time-scales. In contrast, the upper body has a “faster” dynamics,
and is often more controllable by fully actuated arms, affording more aggressive and faster control
strategies. Given that higher control frequencies tend to increase sensitivity and exacerbate the sim-
to-real gap [53–55, 19], while lower frequencies are less precise but more deployable and robust, it
is advantageous to modulate control rates accordingly.

3.2 SoFTA: Slow-Fast Two-Agent Framework.

Slow-Fast Two-Agent Framework Design. Given these distinct task characteristics, we propose
SoFTA, a two-agent framework in which each agent independently controls a disjoint subset of the
robot’s degrees of freedom at different control frequencies (Figure 2). Both agents in SoFTA share
the full-body observation to facilitate coordinated behavior while allowing each agent to specialize.
Specifically, the upper-body agent operates at a high frequency to control 14 arm joints, enabling
precise and rapid adjustments for end-effector stability while the lower-body agent runs at a lower
frequency, managing the legs and waist to ensure stable locomotion and balance. This asymmetric
control frequency matches the longer characteristic timescale of gait cycles compared to the fast,
precision motion required for stabilization tasks.

Training SoFTA with Separate Reward Groups. Due to the differing control dynamics and
timescales of upper-body and lower-body tasks, their reward signals are inherently heterogeneous,
which can lead to interference and suboptimal learning. To improve credit assignments [56–59],
we decompose the overall reward into two semantically aligned components, each tailored to the
respective PPO agent. This decomposition provides more targeted feedback, preventing overloading
of any agent and promoting fair cooperation. To further encourage collaborative behavior and sus-
tained task execution, we include the termination reward in both reward streams. While both agents
share the same observation space, they operate with separate actor and critic networks and do not
share parameters. More details are summarized in Appendix A.1.

4 Experimental Results

In this section, we evaluate the performance of SoFTA in both simulation and real-world environ-
ments. Our experiments aim to answer the following key questions:
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Simulation Results (Isaac Gym) Acc (m/s2) ↓↓↓ AngAcc (rad/s2) ↓↓↓ Acc-Z (m/s2) ↓↓↓ Grav-XY (m/s2) ↓↓↓
Task Method mean max mean max mean max mean max

Tapping
Lower-body RL + IK 1.83±0.05 4.92±0.18 10.3±0.4 37.8±0.8 0.77±0.02 3.46±0.08 0.15±0.01 0.53±0.02

Whole-body RL 1.29±0.03 4.24±0.14 9.76±0.25 31.7±0.7 0.58±0.01 1.71±0.05 0.09±0.01 0.46±0.02

SoFTA 1.08±0.03 3.45±0.11 8.10±0.20 32.1±0.7 0.44±0.01 0.87±0.04 0.11±0.01 0.44±0.01

RandCommand
Lower-body RL + IK 3.17±0.07 6.51±0.21 15.5±0.6 53.4±1.2 1.53±0.04 3.33±0.10 0.19±0.01 0.52±0.02

Whole-body RL 2.47±0.05 5.19±0.19 11.0±0.3 44.2±1.0 1.66±0.03 2.98±0.09 0.10±0.01 0.36±0.01

SoFTA 1.48±0.06 4.78±0.15 11.4±0.4 42.3±1.0 0.33±0.02 1.97±0.06 0.14±0.01 0.39±0.01

Push
Lower-body RL + IK 3.88±0.16 25.0±1.2 26.9±1.4 65.1±4.2 2.12±0.10 4.18±0.16 0.45±0.06 0.82±0.07

Whole-body RL 4.62±0.17 29.6±1.80 20.1±1.4 70.3±5.1 2.38±0.11 6.20±0.20 0.91±0.09 1.83±0.31

SoFTA 2.98±0.10 18.8±0.65 14.6±0.9 66.8±3.6 0.54±0.05 2.35±0.12 0.31±0.05 0.67±0.06

Table 1: Simulation Results: EE stability is evaluated in Isaac Gym across various tasks. SoFTA
consistently outperforms the baselines in most metrics, demonstrating superior EE stability.

• Q1 (Section 4.1): Can the Two-Agent design of SoFTA perform better in simulation?

• Q2 (Section 4.2): What capabilities does SoFTA enable in real world?

• Q3 (Section 4.3): How important is the Slow-Fast frequency design for SoFTA performance?

Baselines. We compare SoFTA with the following baselines. 1) Robot Default Controller1 [60]:
Utilizes the default Unitree locomotion, providing stable and low-impact locomotion. It serves as
a naive baseline for EE stabilization. 2) Lower-body RL + IK [30]: Employs a learned lower body
policy for locomotion followed by inverse kinematics to stabilize the EE. 3) Whole-body RL: A
single RL agent is trained to jointly control the whole body for both locomotion and EE control.

Ablations of SoFTA. We evaluate variants of SoFTA using different upper-body and lower-body
frequency pairings of 33.3 Hz, 50 Hz, and 100 Hz.

Experiment Setup. We train our policy in Isaac Gym at 200 Hz simulation frequency. Dur-
ing training, reward functions, termination conditions, and curriculum design are consistent and
frequency-agnostic across all comparisons. For real-world evaluation, we deploy SoFTA on the
Unitree G1 robot, following the sim-to-real pipeline of HumanoidVerse [61].

Metrics. We evaluated EE stability using the following metrics: linear acceleration norm (Acc),
angular acceleration norm (AngAcc), and projected gravity in the XY plane of EE frame (Grav-XY).
Specifically, during locomotion, the z-direction may experience sudden velocity changes due to
contact, so we additionally report the z-acceleration (Acc-Z) for a more comprehensive evaluation.
These metrics are reported as both the mean and maximum absolute values. Each metric is evaluated
over 3 runs with mean and standard reported. For real-world acceleration, we collect pose data at
200 Hz using a mocap system for evaluation. The data is first interpolated, with abnormal points
removed, and then double differentiation and filtering are applied to compute the acceleration.

4.1 Simulation Results

To answer Q1 (Can the Two-Agent design of SoFTA perform better in simulation?), we assess EE
stability across three locomotion scenarios: (1) Tapping: the robot steps in place to test stability
under consistent, predictable contact events; (2) RandCommand: where random commands are is-
sued every 10 seconds to evaluate robustness across diverse motions; and (3) Push: where the base
is perturbed with a 0.5m/s velocity in a random direction every second to simulate unpredictable
external disturbances. The results are summarized in Table 1.

We observe that Lower-body RL + IK performs the worst due to lack of dynamics awareness, while
Whole-body RL improves but struggles to stabilize the EE in demanding scenarios like Push, where
external disturbances amplify the instability. In contrast, SoFTA achieves the best overall perfor-
mance, significantly reducing EE accelerations, especially in the vertical direction, highlighting the
advantage of our decoupled design with frequency scheduling.

1This baseline is applicable only in the real world due to the accessibility of the built-in controller.
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Real-World Results Acc (m/s2) ↓↓↓ AngAcc (rad/s2) ↓↓↓ Acc-Z (m/s2) ↓↓↓ Grav-XY (m/s2) ↓↓↓
Task Method mean max mean max mean max mean max

Tapping
Robot Default Controller 4.67±0.41 9.71±0.88 17.3±2.0 60.4±6.8 1.25±0.08 4.01±0.42 0.41±0.05 1.07±0.10

Whole-body RL 1.86±0.21 6.11±0.43 16.1±1.5 47.9±5.3 1.34±0.10 5.10±0.44 0.17±0.02 0.97±0.11

SoFTA 1.35±0.12 4.96±0.38 11.2±1.1 41.2±5.5 0.52±0.06 2.33±0.36 0.43±0.02 0.75±0.08

TrajTrack
Robot Default Controller 4.88±0.33 11.6±0.9 18.2±4.1 47.8±5.0 1.41±0.09 5.53±0.35 0.86±0.06 1.72±0.15

Whole-body RL 2.95±0.48 12.2±1.2 13.4±1.4 60.5±8.7 2.02±0.21 9.51±0.82 0.54±0.04 1.72±0.11

SoFTA 1.51±0.08 6.25±0.47 10.7±0.7 42.4±3.3 0.62±0.03 3.17±0.21 0.48±0.03 1.18±0.09

Turning
Robot Default Controller 5.55±0.28 14.0±0.4 23.2±3.7 62.1±8.6 1.80±0.09 7.33±0.37 0.90±0.05 1.83±0.09

Whole-body RL 4.21±0.21 8.93±0.45 16.2±1.1 57.9±7.4 1.84±0.11 5.97±0.30 0.31±0.02 0.87±0.04

SoFTA 1.61±0.08 4.01±0.20 9.41±0.81 62.8±8.8 0.72±0.04 3.94±0.20 0.36±0.02 0.71±0.04

Table 2: Real-World Results: EE stability evaluated in Real World across diverse task settings.
SoFTA consistently outperforms baselines, especially in Acc-Z metric.

Jointly Learn Locomotion 
and EE Stability

Prioritize
EE Stability

Prioritize 
Locomotion 

Jointly Learn Locomotion 
and EE Stability

Figure 3: Reward Curves of EE-
term and locomotion-term during
Training.

Benefit from Two-Agent Reward Group Separa-
tion. Figure 3 shows the reward conflict between
EE-AngAcc-Penalty for EE stabilization and
Angular-Vel-Tracking-Reward for locomotion.
For Whole-Body RL, optimizing both is difficult: prioritizing
locomotion increases EE penalties, while a dominant EE
penalty will make the RL to not keep standing all the time,
sacrificing locomotion quality (see the last half of the blue
line). In contrast, SoFTA resolves this by decoupling the
objectives into two separate agents. Even with a significant
EE penalty, the lower body keeps improving locomotion,
then coordinates, enabling more stable learning and better
performance.

Emergent Compensation Behavior. Figure 4(a) shows the
acceleration curves of the base and EE. Our policy reduces
sharp base accelerations caused by ground contacts, indicating
stability through effective compensation, not just reduced base motion. To illustrate this, we visual-
ize arm DoF target positions and contact force patterns. As seen in Figure 4(b), DoF activations align
with locomotion rhythm and contact events, with compensation peaking during external pushes and
ground impacts, highlighting the upper body’s role in stabilizing the EE.

Contact force(400N) Wrist roll dof target pos (rad)

Time(s)50 10 15

Forward Backward Push Push Push Push

Base x-velocity (m/s) Command (m/s)

0

-1

-1

0
-1

-1

-2

(a) Acc curves of Base and EE during locomotion. (b) Compensate behaviors of wrist roll dof.   

Figure 4: Emergent Compensation Behavior.

4.2 Real-World Results

To answer Q2 (What capabilities does SoFTA enable in real world?), we assess EE stability in three
real-world locomotion scenarios: (1) Tapping; (2)TrajTrack to move periodically along a straight
line trajectory, and (3) Turning to do in-place rotation. Note that the IK-based method relies heavily
on motion capture system. Even with perfect state information in simulation, it fails to produce
strong results, so we do not include it in the real-world experiments.

The results in Table 2 show that the Robot Default Controller exhibits the highest acceleration across
nearly all metrics, highlighting that even carefully designed locomotion controllers with gentle step-
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w/o our Stabilization Controlwith our Stabilization Control

Figure 5: Top: Humanoid carring bottle of water without spillage during tepping. Bottom: Hu-
manoid disturbance rejection with EE stability.

ping are insufficient for tasks requiring precise EE stability. While Whole-body RL offers moderate
improvements, it struggles under motions with large movement like TrajTrack. In contrast, SoFTA
maintains consistent and robust performance even during diverse locomotion. Compared to simula-
tion results, real-world tests reveal that despite using the same domain randomization, observation
noise, and reward functions, SoFTA demonstrates stronger sim-to-real transferability. Whole-body
RL, by comparison, shows noticeably sluggish and hesitant steps, with shifts during foot tapping,
likely due to excessive upper-body influence.

With the EE stability plus robust locmotion, SoFTA enables the robot to perform the following
precise and stable upper-body tasks during locomotion.

Case 1: Humanoid Carrying Bottle without Spillage. Figure 5 shows the humanoid carrying a
water bottle during locomotion. Even in tapping, without stabilization (YELLOW), contact impacts
cause the liquid to slosh noticeably. In contrast, SoFTA (RED) greatly suppresses liquid motion,
allowing the robot to carry an almost full cup of water smoothly while walking. Beyond periodic
locomotion, our policy also demonstrates strong disturbance rejection capabilities. As shown in the
Figure 5, when subjected to sudden and forceful pushes, the robust locomotion of the robot quickly
adapts to avoid falling, while the upper body actively compensates to keep the end effector as steady
as possible, effectively preventing the liquid from spilling.

Ours

w/o Ours

Figure 6: Humanoid as Camera Stabilizer to record videos.

Case 2: Humanoid as Camera Stabilizer. Figure 6 shows video footage recorded by the robot
during continuous turning, comparing with and without stabilization. SoFTA ensures smooth and
consistent camera motion, avoiding visible jitter with off-gantry-level robust locomotion. This al-
lows the robot to record long, uninterrupted videos.
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IsaacGym Sim2Sim Sim2Real

Acc (m/s2) ↓↓↓ mean max mean max mean max

w/o Tracking 0.82 2.06 2.29 7.83 2.91 8.15
with Tracking 1.08 3.45 1.14 4.05 1.35 4.96

Table 3: EE Tracking Improve Transferability

Benefits of Random EE Position Command
for Sim2Real. While both the whole-body
RL and SoFTA incorporate EE tracking, we
found that tracking, specifically by forcing the
EE to remain stable at a given position, plays a crucial role in generalization. Fixing the EE posi-
tion during training often led to overfitted behaviors tied to specific poses and simulator dynamics,
resulting in poor transferability. In contrast, training with random EE position commands promotes
more reactive and adaptable motions, fostering compensation patterns that transfer more effectively
(Table 3).

4.3 In-Depth Analysis on Frequency Design

To answer Q3 (How important is the Slow-Fast frequency design for SoFTA performance?), we
compare peak EE acceleration under various frequency settings in both simulation and real-world
environments, using two scenarios: Tapping (predictable contacts) and Stop (sudden switch from
walking to standing). As shown in Figure 7, our slow-fast design, 50 Hz for the lower body and 100
Hz for the upper, consistently achieves lower acceleration across tasks and domains.
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Figure 7: Max Acc under Different Control Frequencies in Simulation and Real World: Higher
values reflect reduced stability. N/A indicates unstable or failed trials in the real-world testing.

We observe that in simulation, a 50 Hz lower-body policy is sufficient for maintaining stable lo-
comotion, even under unpredictable conditions. In contrast, a higher-frequency upper-body policy
proves beneficial for rapid recovery during sudden stops. From a sim-to-real perspective, the results
indicate that deploying a high-frequency lower-body policy may introduce stricter deployment con-
straints. In our real-Stop trials, a 100 Hz lower-body policy caused more oscillations and degraded
EE performance, with some instances resulting in failure. This degradation may be due to increased
sensitivity to observation noise and control delays. On the other hand, running the upper-body agent
at 100 Hz did not exhibit such issues and consistently enhanced overall performance. Considering
that 50 Hz locomotion is a widely adopted standard and that inference-time constraints (0.01 s) are
in place, our Slow-Fast Frequency configuration appears to be near-optimal. The further analysis of
high-frequency upper body behaviors can be shown in Appendix A.2.

4.4 Cross Embodiment Validation

OursBaseline (Default Controller)

Figure 8: Real-world Results on Booster T1.

To evaluate the generalizability of our train-
ing method and control design, we apply it to
a different robot, Booster T1 [62], which has
distinct joint configurations and body propor-
tions. Using the same framework, the T1 policy
outperforms its default controller(Figure 8) in
stability and precision, especially during sud-
den stops and fine end-effector control. This
demonstrates that our approach captures trans-
ferable structural priors, enabling robust be-
havior across diverse humanoid embodiments
without additional tuning.
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5 Conclusion
In this paper, we present SoFTA, a Slow-False Two-Agent reinforcement learning framework that
enables robust locomotion and precise, stable EE control through frequency separation and task-
specific reward design. Extensive experiments show up SoFTA can have a 50-80% reduction in
EE acceleration, achieving 2-3× near-human-level stability. This allows successful deployment of
tasks like walking while carrying liquids or recording stable video on the Unitree G1 humanoid and
enabling humanoid robots to perform complex tasks with precision and reliability.

6 Limitation
Despite its strong performance, SoFTA still faces several limitations. First, while it significantly
reduces EE acceleration, the achieved stability still falls short of human-level performance. Carry-
ing a cup of water while walking is a task that humans can perform effortlessly with minimal spill.
SoFTA yet match the subtlety and adaptability of human control. Second, the decoupling of loco-
motion and end-effector control creates a fixed task boundary. While this separation is effective for
many loco-manipulation tasks, it becomes suboptimal when the two modules must closely coordi-
nate, such as during dynamic reaching or complex interactions. Third, while SoFTA offers a flexible
framework for many scenarios and introduces valuable insights on frequency assignment, its perfor-
mance may vary depending on the specific task or robot configuration. Aspects like task complexity,
robot morphology, or the need for more nuanced coordination may require further adjustments to
the design.

Future work could focus on improving the adaptability of SoFTA to more diverse tasks and robot
configurations, with particular attention to dynamic coordination and complex interactions. Addi-
tionally, addressing the human-level stability gap will be crucial, particularly in tasks requiring high
precision and fine motor control. Exploring more advanced learning strategies and architecture,
such as attention mechanism, could help achieve better generalization across various platforms and
tasks.
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A Appendix

A.1 Training Details

Observation We adopt an asymmetric observation structure to enable efficient policy learning
in simulation while ensuring robust real-world deployment under partial observability. The ac-
tor relies solely on onboard-accessible inputs—proprioception, command signals, and recent ac-
tions—excluding global position data, thus removing dependence on odometry or external tracking.
Observations are stacked over five timesteps to provide short-term temporal context.

Type Observation Actor Critic Scale Noise Scale

Privileged
base lin vel ✗ ✓ 2.0 0.0
end effector relative pos ✗ ✓ 1.0 0.0
end effector gravity ✗ ✓ 1.0 0.0

Proprioception

base ang vel ✓ ✓ 0.25 0.1
projected gravity ✓ ✓ 1.0 0.0
dof pos ✓ ✓ 1.0 0.01
dof vel ✓ ✓ 0.05 0.1
actions ✓ ✓ 1.0 0.0
sin phase / cos phase ✓ ✓ 1.0 0.0

Command

command lin vel ✓ ✓ 1.0 0.0
command ang vel ✓ ✓ 1.0 0.0
command EE ✓ ✓ 1.0 0.0
command gait ✓ ✓ 1.0 0.0

Table 4: Comparison of actor and critic observations with scaling factors. Privileged observations
used only by the critic are shaded and marked in red.

During training, the critic is granted privileged access to additional information, including
base lin vel, end effector relative pos, and end effector gravity, which
help robot to understand its current state and task success more accurately. To improve robustness,
noise is injected into selected observations. Observation scales and noise scales are summarized in
Table 4.

This setup improves value estimation and training stability while ensuring deployable policies
grounded in realistic sensor inputs, supporting robust sim-to-real transfer for locomotion and end-
effector tasks.

Task Definition We define our task as a combination of robust locomotion and end-effector (EE)
stabilization under general body configurations. The EE stabilization command, denoted as cEE ∈
R5, encodes task-specific requirements. The first dimension is a binary flag indicating whether EE
stabilization is enabled. If this value is zero, all stabilization-related rewards are disabled for that EE.
The next two values specify the desired EE position (x, y) in the local frame of the body. The fourth
value defines the target EE height along the global z-axis, given as an offset relative to the desired
base z-position. The final element of cEE is a tolerance parameter σEE that controls the precision
of EE tracking. A higher tolerance leads to smoother motion with lower accelerations, which is
beneficial for tasks such as bottle carrying where precise EE positioning is not critical. Conversely,
a lower tolerance prioritizes accurate tracking, which is essential for tasks like camera stabilization
where EE pose must be tightly maintained.

For locomotion, the control command includes both target base velocity and gait information. The
velocity command comprises desired linear velocities (vx, vy) and angular velocity ω, all defined
in the base frame. The system is expected to track these velocities within specified tolerances
σx, σy, σω . Gait control is represented by a two-dimensional vector. The first value is a binary
indicator of whether the desired gait is a double-stance (both feet in contact). If not (i.e., in dynamic
gait mode), the second value specifies the desired gait period. From this gait period, we compute
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the gait phase using sinusoidal signals (sin(ϕ), cos(ϕ)), where ϕ denotes the phase. This allows the
derivation of target contact timings for each foot Ĉ. A phase-based reward is then introduced to
guide the agent to follow the desired contact sequence Ĉ.

We list all command ranges in Table 5, with σx = 0.5m/s, σy = 0.5m/s, σω = 0.5rad/s respectively.

Component Range / Value

command lin vel x: U (-1, 1) m/s
y: U (-1, 1) m/s

command ang vel U (-1, 1) rad/s

command gait mode: 0/1
period: U (0.5, 1.3) m/s

command EE

activation: 0/1
x: U (-0.1, 0.1) m
y: U (-0.1, 0.1) m
z: U (-0.1, 0.1) m

tolerance: U (0.1, 0.2) m

Table 5: Command ranges used during training.

Domain Randomization To enhance the robustness and generalization of SoFTA, we apply do-
main randomization techniques, as detailed in Table 6. We first train SoFTA with all domain random-
ization strategies listed, excluding push perturbations. After obtaining a stable policy, we introduce
push disturbances to further improve robustness under external disturbance.

Component Range / Value
P Gain U (0.95, 1.05) × default

D Gain U (0.95, 1.05) × default

Friction Coefficient U (-0.5, 1.25)

Base Mass U (-1.0, 3.0) kg

Control Delay U (20, 40) ms

Push Perturbations Interval: U (5, 16) s
Max velocity: 0.5 m/s

External Force on EE

Position std: 0.03 m
X force: U (-0.5, 0.5) N
Y force: U (-0.5, 0.5) N
Z force: U (-7, 2) N

Table 6: Domain randomization parameters used during training.

Rewards Design We show the grouped SoFTA task reward components in Table 7. Notice that
the termination is a shared reward component Also, we introduce several penalties and energy regu-
larization in order to achieve robust sim-to-real performance like dof limit, stand symmetry, contact
force, feet height on the air, action rate and so on. Follow [21], We adjust the scaling factor st,i in
the cumulative discounted reward formula to handle small rewards differently based on their sign:
E
[∑T

t=1 γ
t−1

∑
i st,irt,i

]
, where st,i = scurrent if rt,i < 0, and 1 if rt,i ≥ 0. The factor scurrent

starts at 0.5 and is adjusted dynamically—multiplied by 0.9999 when episode length is under 0.4s,
and by 1.0001 when it exceeds 2.1s, with an upper bound of 1. This allows our policy to first focus
on task terms and them regular the behavior to be smooth and reasonable for sim-to-real.
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Group Term Weight Expression

Lower Body

tracking lin vel x 1.5 exp(− 1
σ2
x
∥vx − v̂x∥2)

tracking lin vel y 1.0 exp(− 1
σ2
y
∥vy − v̂y∥2)

tracking ang vel 2.0 exp(− 1
σ2
ω
∥ωz − ω̂z∥2)

tracking base height 0.5 exp(− 1
σh

∥h− ĥ∥)
tracking gait contact 0.5

∑
(1(C = Ĉ)− 1(C ̸= Ĉ))

termination -500.0 1terminate

Upper Body

tracking end effector pos 1.0 exp
(
− 1

σ2
EE

∥pEE − p̂EE∥2
)

tracking zero end effector acc 10 exp
(
−λacc∥p̈EE∥2

)
tracking zero end effector ang acc 1.5 exp

(
−λang-acc∥ω̇EE∥2

)
penalty end effector acc -0.1 −∥p̈EE∥2
penalty end effector ang acc -0.01 −∥ω̇EE∥2

penalty end effector tilt -5.0 −
∥∥Pxy(R

T
EEg)

∥∥2

termination -100.0 1terminate

Table 7: Reward terms categorized by body group, including task rewards and penalties with corre-
sponding expressions and weights. C means the contact sequence. Hat over variables represents the
desired value. In implementation, we set λacc = 0.25, λacc = 0.0044.

Training Hyperparameter We summarize the main hyperparameters used in our PPO multi-
actor-critic training setup in Table 8. These include general PPO settings, action std for different
body modules, and the network architecture shared across policy and value networks.

Parameter Value
General PPO Settings

Clip Parameter 0.2
Gamma (γ) 0.99
GAE Lambda (λ) 0.95
Value Loss Coef 1.0
Entropy Coef 0.01
Actor Learning Rate 1× 10−3

Critic Learning Rate 1× 10−3

Max Grad Norm 1.0
Use Clipped Value Loss True
Desired KL 0.01
Num Steps per Env 48

Noise Settings
Init Noise Std lower body: 0.8, upper body: 0.6
Std Threshold lower body: 0.15, upper body: 0.10

Network Architecture
Hidden Layers [512, 256, 128]
Activation Function ELU

Table 8: PPO Multi-Actor-Critic Training Configuration

A.2 More Analysis on Frequency Ablation

Methods Response Time (s) ↓↓↓ Max Acc (m/s2) ↓↓↓ Max Vel (m/s) ↓↓↓
Ours (L50-U33) 0.598 43.5 1.90
Ours (L50-U50) 0.338 40.5 1.48
Ours (L50-U100) 0.167 37.8 1.17

Table 9: Response time and maximum error magnitudes under different upper-body frequencies.
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Across both simulation and real-world environments, our experiments show that a 50 Hz lower-body
control frequency consistently achieves stable locomotion, regardless of the upper-body control fre-
quency, whereas other lower-body frequencies may lead to degraded performance under certain
upper-body control frequencies. We further investigated how higher upper-body frequencies en-
hance EE stability in challenging scenarios, such as sudden external pushes. As shown in Figure 9
(top), higher-frequency policies (100 Hz) react faster to base motion changes and recover balance
quicker. In Figure 9 (bottom), we observe that higher frequencies lead to faster EE velocity re-
covery. Table 9 presents the quantitative results. We observe that increasing the upper-body con-
trol frequency reduces recovery time (defined as the time when the error first falls below 1

e of its
maximum), as well as peak acceleration and velocity errors. This indicates enhanced disturbance
compensation and faster recovery dynamics.
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Figure 9: Effect of upper-body control frequency on EE stabilization. top: EE velocity (m/s) recov-
ery with different upper-body frequencies. bottom: Response comparison at 100 Hz vs. 50 Hz.
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