
TinyM2Net-V3: Memory-Aware Compressed Multimodal Deep Neural Networks
for Sustainable Edge Deployment

Anonymous submission

Abstract

The advancement of sophisticated artificial intelligence (AI)
algorithms has led to a notable increase in energy usage
and carbon dioxide emissions, intensifying concerns about
climate change. This growing problem has brought the en-
vironmental sustainability of AI technologies to the fore-
front, especially as they expand across various sectors. In
response to these challenges, there is an urgent need for
the development of sustainable AI solutions. These solutions
must focus on energy-efficient embedded systems that are ca-
pable of handling diverse data types even in environments
with limited resources, thereby ensuring both technological
progress and environmental responsibility. Integrating com-
plementary multimodal data into tiny machine learning mod-
els for edge devices is challenging due to increased complex-
ity, latency, and power consumption. This work introduces
TinyM2Net-V3, a system that processes different modalities
of complementary data, designs deep neural network (DNN)
models, and employs model compression techniques includ-
ing knowledge distillation and low bit-width quantization
with memory-aware considerations to fit models within lower
memory hierarchy levels, reducing latency and enhancing
power efficiency on resource-constrained devices. We evalu-
ated TinyM2Net-V3 in two multimodal case studies: COVID-
19 detection using cough, speech, and breathing audios, and
pose classification from depth and thermal images. With tiny
inference models (6 KB and 58 KB), we achieved 92.95%
and 90.7% accuracies, respectively. Our tiny machine learn-
ing models, deployed on resource limited hardware, demon-
strated low latencies within milliseconds and very high power
efficiency.

Introduction
As artificial intelligence (AI) continues to advance, energy-
intensive AI algorithms are increasingly gaining traction.
The quest for greater accuracy in solving complex, large-
scale issues has prompted the use of deeper and more com-
plex AI models. These models, while effective, come with a
significant environmental cost. They require extensive com-
putational power, leading to increased energy use and, con-
sequently, higher carbon dioxide emissions, which are a ma-
jor contributing factor to climate change. To put this into
perspective, a study highlighted that training a single ad-
vanced natural language processing (NLP) model using deep
learning techniques can produce as much as 626,000 pounds
of carbon dioxide (Kraus et al. 2023). This figure under-

scores the environmental impact of these advanced AI tech-
nologies, emphasizing the need for more sustainable ap-
proaches in the field of artificial intelligence. The growing
concern over increasing carbon emissions and global waste
has heightened the urgency for sustainable AI solutions.

Moreover, the United Nations has established the 2030
Agenda for Sustainable Development, a comprehensive
framework focused on fostering peace and prosperity, which
is anchored by 17 Sustainable Development Goals (SDGs)
(United Nations 2021). These goals serve as a universal call
to action for all countries to strive for a future that balances
environmental, economic, and social sustainability. In re-
sponse to this, Edge Machine Learning (EdgeML) and Tiny
Machine Learning (TinyML) have risen as sustainable al-
ternatives, enabling the execution of machine learning mod-
els on smaller, lower-powered devices like mobile phones,
wearables, and Internet of Things (IoT) devices (Prakash
et al. 2023). EdgeML and TinyML can significantly con-
tribute to achieving various SDGs, especially those related
to environmental sustainability.

However, designing accurate and efficient models for
these devices is challenging due to their limited comput-
ing and memory resources. Model compression techniques,
including pruning, quantization, and knowledge distillation,
have been widely used to address these challenges by re-
ducing the size and computational complexity of the mod-
els. Moreover, most of these model compression techniques
target unimodal models to be compressed for sustainable
edge hardware deployment. Potentials of multimodal deep
neural networks (M-DNN), processing multiple modalities
of complementary data are thus ignored for tiny device de-
ployment. M-DNNs, which combine information from mul-
tiple sources such as text, image, and audio, have shown
great potential in various applications such as speech recog-
nition, natural language processing, and autonomous driv-
ing. However, Implementing M-DNN models in resource-
limited edgeML and tinyML applications is challenging due
to the growing number of model parameters and computa-
tions. These challenges further complicate the task of imple-
menting efficient and sustainable M-DNN inference while
maintaining low peak memory consumption.

In this paper, we tackle the challenge of implementing
M-DNN models on various resource-constrained hardware.
To achieve energy-efficient M-DNN models on tiny pro-



Figure 1: The high-level overview of the proposed TinyM2Net-
V3. TinyM2Net-V3 is capable of handling any number of data
modalities, designing ML models for specific tasks, compressing
the models using state-of-the-art compression techniques knowl-
edge distillation and low bit-width quantization, and subsequently
deploying them on resource-constrained tiny hardware.

cessing hardware, we leverage the advantages of state-of-
the-art compression techniques including knowledge distil-
lation and low bit-width quantization. We propose a hard-
ware aware, to be specific memory aware knowledge distil-
lation and quantization technique that reduces the model size
significantly while maintaining the model accuracy based
on application needs. The high-level overview of the pro-
posed TinyM2Net-V3 is illustrated in Figure 1. We assess
TinyM2Net-V3 in two multimodal case studies: COVID-19
detection with multimodal audios and pose classification us-
ing multimodal images. TinyM2Net-V3 is subsequently im-
plemented onto GAPuino and Raspberry Pi 4B to evaluate
real-time performance on diverse resource-constrained hard-
ware. The primary contributions of this paper are as follows:

• We propose TinyM2Net-V3, an end-to-end hardware
aware algorithms for multimodal neural networks suit-
able for sustainable edge deployment. TinyM2Net-V3 in-
troduces multimodal data (images and audios) to be
adapted in sustainable ML models to improve the ap-
plication specific accuracies while maintaining required
performance metrics for sustainable edge deployment.

• We compress the M-DNN models with hardware aware
knowledge distillation and uniform 8-bit quantization to
reduce memory consumption and computational com-
plexity for sustainable edge deployment.

• We evaluate the proposed TinyM2Net-V3 for two differ-
ent case-studies. Case-study 1 includes COVID-19 de-
tection from multimodal audio recordings. Case-study 2
includes pose classification from multimodal depth and
thermal images.

• We implemented our models on two resource-contrained
hardware, GAPuino and Raspberry Pi 4B boards and ex-

Figure 2: The flow diagram of proposed TinyM2Net-V3 system.
We consider pre-processed multimodal inputs for our proposed
TinyM2Net-V3. Proposed TinyM2Net-V3 is the sequential com-
bination of the steps shown in the diagram.

plored their power efficiency with our multimodal mod-
els.

Proposed TinyM2Net-V3 System
Multimodal DNN Model Architecture Design
Figure 2 (a) illustrates the process of constructing Multi-
modal Deep Neural Network (M-DNN) models by incorpo-
rating various data modalities from the physical world and
pre-processing them to suit the neural network formulation.
The rationale behind utilizing multimodal data is to harness
complementary information from each modality for a given
learning task, ultimately leading to a more robust represen-
tation and superior results compared to employing a single
modality. We formulated a multimodal learning problem in
which multiple data modalities are exploited for classifica-
tion tasks. In this work, we adopted the Intermediate fusion
technique to fuse multiple modalities, owing to its demon-
strated superiority over other fusion methods (Stahlschmidt,
Ulfenborg, and Synnergren 2022).

In designing the multimodal model, we have designed
unimodal models with each modalities. The hyperparame-
ters (filter size, number of filters) for each unimodal network
can be ascertained using neural architecture search (NAS)
algorithms or can be assigned empirically. We chose the
unimodal networks demonstrating the highest accuracies for
each modality to concatenate. Upon obtaining features from
each unimodal network, they are fused and forwarded to the
fusion network. Ultimately, the classification output is rep-
resented as a probability distribution of the final fully con-
nected layer using the Softmax activation function.



Memory-Aware Model Compression
Memory-aware model compression refers to a set of tech-
niques that focus on reducing the memory footprint of
deep learning models while maintaining their performance.
This is particularly important when deploying models on
resource-constrained devices, such as embedded systems,
IoT devices, or tiny machine learning platforms, which often
have limited memory capacity. Memory-aware model com-
pression aims to optimize models to fit within the available
memory resources of the target hardware platform while
minimizing the impact on accuracy. We propose a memory-
aware compression technique for M-DNNs including off-
the-shelf knowledge distillation and quantization, that fo-
cuses on reducing the memory footprint of a M-DNN model
while maintaining its accuracy. In this approach, a smaller
student M-DNN model is trained to mimic the behavior of a
larger, more complex and accurate teacher M-DNN model,
with the primary goal of minimizing the memory require-
ments of the student model. Our goal is to reduce the student
model down to the point where we can fit most of the model
onto the on-chip memories (L1 and L2 memories) of the tiny
processors. To this extent, we considered several factors in
memory-aware model compression:

• Memory Hierarchy of the Deployment Hardware:
Memory-aware model compression in TinyM2Net-V3
takes into account the memory hierarchy of the tar-
get hardware platform, such as on-chip SRAM, off-chip
DRAM, or Flash memory, to ensure that the compressed
model can be effectively stored and executed within the
available lower level of memory hierarchies for faster and
more efficient deployment.

• Model Compression Techniques: To compress the large
multimodal neural network models, TinyM2Net-V3 used
off-the-shelf model compression such as: Knowledge
Distillation, Uniform 8-bit Quantization and Compact
Network architecture design for inference.

Knowledge Distillation involves training a smaller stu-
dent model to mimic the behavior of a larger, more accu-
rate teacher model. The student model should have a smaller
size than the teacher model, with fewer layers, parameters,
or connections, to reduce memory requirements and enable
deployment on memory-constrained devices. Different dis-
tillation techniques can be utilized to transfer knowledge
from the teacher to the student model, such as soft targets,
attention transfer, or feature map matching. We selected
soft targets to transfer the teacher knowledge into student.
This is achieved by using the soft targets generated by the
larger model as training labels for the smaller model. The
soft targets are obtained by applying a temperature scaling
factor, T , to the output probabilities of the larger model,
which smooths out the peaks and makes the distribution
more spread out. More formally, let us denote the output
probabilities of the larger model as pi and the soft targets
as qi. The soft targets are defined as follows:

qi =
exp(zi/T )∑
j exp(zj/T )

(1)

Figure 3: (a) Hardware Architecture for GAP8 microprocessor.
(b) Memory Hierarchy of GAP8. GAP 8 microprocessor has L1
Memory of 100 KB (80 KB shared in compute engine + 20 KB for
low power MCU.), l2 memory of 512 KB and 8MB of DRAM (c)
Hardware Architecture for Arm Cortex-A72 microprocessor used
in Raspberry Pi 4B. (d) Memory Hierarchy of ARM Cortex-A72
CPU, which has L1 Memory of 80 KB (48 KB Instruction Cache
+ 32 KB Data Cache), L2 memory of 1 MB, DRAM of 4 GB and
external flash was 32 GB

where zi is the logit (unnormalized log-probability) out-
put of the larger model for class i. The temperature scaling
factor, T , controls the ”softness” of the targets, with higher
values of T resulting in softer targets. The smaller model
is then trained to minimize the Kullback-Leibler (KL) di-
vergence between its output probabilities, p′i, and the soft
targets, qi:

L =
∑
i

qi log
qi
p′i

(2)

where p′i is the output probability of the smaller model for
class i. The KL divergence measures the difference between
two probability distributions, and the loss function encour-
ages the smaller model to learn a similar distribution to that
of the larger model.

Designing compact and efficient network architectures
can help create models with smaller memory footprints
without sacrificing accuracy. We have used depthwise sepa-
rable convolution layers in stead of regular convolution lay-
ers to further compress the student model without significant
loss of accuracy.

Reducing the bit-width of the model parameters and acti-
vations can significantly reduce the memory footprint of the
model. Hardware-agnostic quantization might employ tech-
niques such as uniform or mixed-precision quantization to
minimize the memory footprint and computational complex-
ity of the model. However, without considering the target
hardware’s specific capabilities and constraints, the quan-
tized model may not be optimized for efficient execution
on the target device, which could lead to suboptimal perfor-



MobileNet-V2

VGG16

C
on

ca
te

na
tio

nMobileNet-V2MobileNet-V2MobileNet-V2

VGG16VGG16VGG16VGG16

D
en

se
 (4

)

Predictions

Soft
Labels

Large Teacher Model

Sitting

C
on

ca
te

na
tio

n

Case-Study 2: Pose Classification

FC(64)
Conv2D
(32, 3x3)

Standing

Lying

Empty
Room

SeparableConv2D
(64, 3x3)

SeparableConv2D
(128, 3x3)

Conv2D
(32, 3x3)

SeparableConv2D
(64, 3x3)

SeparableConv2D
(128, 3x3) FC(64)

FC
(64)

FC
(128)

Output
(4)

Hard
Labels

Tiny Student Model

Distilled
Knowledge

Input 1: Depth Image

Input 2: Thermal Image

C
on

ca
te

na
tio

n

Cough Audio

Speech Audio

Breathing Audio

Case-Study 1: COVID-19 Detection

Time (s)

Time (s)

Time (s)

M
FC

C
 

M
FC

C
 

M
FC

C
 

(a)

FC(16)
Conv2D
(8, 3x3)

SeparableConv2D
(16, 3x3)

SeparableConv2D
(16, 3x3)

Conv2D
(8, 3x3)

SeparableConv2D
(16, 3x3)

SeparableConv2D
(16, 3x3) FC(16)

FC(16)
Conv2D
(8, 3x3)

SeparableConv2D
(16, 3x3)

SeparableConv2D
(16, 3x3)

Healthy

COVID
Positive

FC
(32)

FC
(64)

Output
(2)

Hard
Labels

Tiny Student Model

MobileNet-V2MobileNet-V2MobileNet-V2TinyM2Net-V2
[9]

Predictions

Soft
Labels

Large Teacher Model

Distilled
Knowledge

(b)

Figure 4: The model architecture of the proposed TinyM2Net-V3 for (a) Case-study 1 and (b) Case-study 2. Here, Conv2D = 2 dimensional
CNN, SeparableConv2D = 2 dimensional depthwise-separable CNN and FC = Fully Connected Layer.

mance or incompatibilities. Hardware-aware quantization,
on the other hand, can leverage ths knowledge to select the
most suitable bit-width for the model’s parameters and ac-
tivations, ensuring better performance on the target device
without sacrificing accuracy. Therefore, we adopted hard-
ware aware quantization where we quantized our model to
uniform 8-bits as both of our targeted hardware choices,
Gap8 processor and Arm Cortex-A72 supports int8 data
types for efficient computations. We quantized our mod-
els with Tensorflow Lite (tf-lite) post-training quantization
adopting full integer quantization. This method quantizes
both the weights and activations to 8-bit integers, resulting
in a model that performs only integer arithmetic.

Deployment on Resource-Constrained Hardware
GAPuino development board was used in this work as main
targeted sustainable edge deployment hardware, which is a
nona-core 32-bit RISC-V ultra-low-power microprocessor
for edge computing and IoT applications.

The GAP8 comprises autonomous peripherals, an ultra-
low-power micro-controller, and a compute engine. The
GAP8 features a dedicated L1 cache for the MCU core,
which includes 16 KB of data cache and 4 KB of instruction
cache. Furthermore, the compute engine consists of eight
additional cores sharing the same 64 KB data and 16 KB
instruction caches, operating on separate voltage and fre-
quency domains to optimize power consumption. In addition
to these caches, the entire chip shares a 512 KB L2 cache,
which is divided into four 128 KB cache banks. GAP8 hard-
ware architecture and its memory hierarchy are shown in
the figure 3 (a) and (b). GAP8 offers software libraries op-
timized for deep learning, image processing, data analysis,
and encryption. With a real-time clock (RTC) for low-power
standby modes, GAP8 is well-suited for energy-efficient,
battery-powered edgeML and tinyML applications.

Figure 2(c) highlights the use of the GAPFlow toolchain

in this work, consisting of NNTOOL and AutoTiler.
NNTOOL adapts the DNN architecture, ensuring compati-
bility with AutoTiler and transforming weights for GAP8.
AutoTiler algorithmically optimizes memory layout and
generates GAP8-compatible C code. Despite automation,
manual adjustments are occasionally needed for specific
DNNs, such as modifying maximum stack sizes or adjust-
ing heap space. By default, AutoTiler allocates the entire
L1 and L2 memory, potentially causing heap overflows, data
corruption, and stack issues. The GAP8’s Real-Time Oper-
ating System (RTOS) further complicates matters by allocat-
ing heap memory before DNN initialization, reducing avail-
able space.

In this work, the Raspberry Pi 4B, featuring an Arm
Cortex-A72 microprocessor, serves as a secondary sus-
tainable edge deployment platform to compare the perfor-
mance of the TinyM2Net-V3 system on an edge device. The
ARMv8-A architecture-based 64-bit Arm Cortex-A72 mi-
croprocessor supports scalable multicore configurations and
has a memory hierarchy consisting of separate L1 caches
for each core and a shared L2 cache, enhancing perfor-
mance and power efficiency. Figure 3 (c) and (d) illustrate
the Cortex-A72 hardware architecture and memory hierar-
chy.

TinyM2Net-V3 Evaluation Results and
Analysis

Evaluation Case-Study 1: COVID-19 Detection
from Multimodal Audios
For this case-study, we utilized the second DiCOVA chal-
lenge dataset (Sharma et al. 2021), a Coswara dataset
subset (Sharma et al. 2020), comprising 929 participants
with cough, breathing, and speech audio samples, includ-
ing 172 COVID-positive cases. We classified COVID-19
test results as positive (‘P’) or negative (‘N’) and generated
6000 balanced, two-second MFCC spectrogram samples for



26 x Reduction in Model Size

1.1% Reduction in Model Accuracy

Case-Study 1: COVID-19 Detection

(b)

Memory Aware Knowledge Distillation

(a)

85%

250KB

81%

170KB
209KB

84%

627KB

95%
157KB94% 93%

6KB

Case-Study 2: Pose Classification

1.4% Reduction in Model Accuracy

Memory Aware Knowledge Distillation

(d)(c)

296 x Reduction in Model Size

89%

10MB

86%

59MB 69MB

93%
92%

91%

17MB

58KB

Figure 5: (a) TinyM2Net-V3 classification results for Case-Study 1 in terms of both unimodal and multimodal settings. The multimodal
setting improved 7% accuracy compared to unimodal (speech) classification setting. Model compression techniques reduce 1.6% accuracy
of the multimodal setting. (b) Experiments for memory-aware knowledge distillation. (a) TinyM2Net-V3 classification results for Case-
Study 2 in terms of both unimodal and multimodal settings. The multimodal setting improved 6% accuracy compared to unimodal (thermal)
classification setting. Model compression techniques reduce 1.4% accuracy of the multimodal setting. (d) Experiments for memory-aware
knowledge distillation.

TinyM2Net-V3 input. We adopted a 22.5 KHz sampling fre-
quency, allocating 70% data for training, 10% for valida-
tion, and 20% for evaluation. TinyM2Net-V3 processed three
modalities using parallel CNN layers, extracting and fus-
ing features for binary classification. We based the teacher
model on TinyM2Net-V2 (Rashid et al. 2023) and designed
the student model from scratch, as shown in figure 4(a). We
trained the model for 200 epochs using categorical cross-
entropy loss and the Adam optimizer, assessing performance
with accuracy metrics.

Figure 5(a) presents Case-Study 1 evaluation results. Sin-
gle modality data yielded lower binary classification accu-
racies compared to the uncompressed multimodal model.
Incorporating multimodal audio data increased model ac-
curacy to 94.7%, with the 8-bit quantized model achieving
94.1% accuracy. We aimed to design a student model com-
pressible to a few KB, fitting L1 and L2 caches of our de-
ployment hardware. We experimented with filter sizes, dense
layer neuron numbers, and replacing 2nd and 3rd CNN lay-
ers with depthwise separable counterparts. Student Model 5
reached 93% accuracy with a 6 KB model size, as shown in
figure 5(b). We selected this final student model for infer-
ence, achieving a 26× reduction in model size compared to
its teacher model.

Evaluation Case-Study 2: Pose Classification from
Multimodal Depth Images and Thermal Images
The authors in (Pramerdorfer, Strohmayer, and Kampel
2020) introduced the synthetic multi-modal ”Sdt” dataset for
pose classification tasks, which serves as a benchmark for
evaluating algorithms using depth and thermal image modal-
ities. The dataset comprises 40,000 images per modality, de-
picting individuals in standing, sitting, and lying poses, as
well as empty rooms. Images are resized to 64x64 to re-
duce hardware memory demands, and the data is split into
70% for training, 10% for validation, and 20% for test-
ing. TinyM2Net-V3 utilizes parallel CNN layers to process
depth and thermal modalities, employing MobileNet-V2 and
VGG16, respectively, to extract and fuse features for multi-
class classification. The teacher model, illustrated in figure
4 (b), adopts pre-trained ImageNet weights and is trained

Table 1: Resource utilization data of TinyM2Net-V3 implemented
on GAP8 Processor

Resources L1 Memory L2 Memory DRAM
Available for Use

(KB) 52.7 400 8000

Case-Study 1
Utilization (KB) 52.4 (99%) 40 (10%) 0

Case-Study 2
Utilization (KB) 47.5 (90%) 178 (44%) 0

for 200 epochs using categorical cross-entropy loss and the
Adam optimizer. The teacher model achieves 92.6% accu-
racy in pose classification.

Figure 5(c) presents TinyM2Net-V3 evaluation results for
Case-Study 2. Single modality data yields lower pose clas-
sification accuracies compared to the uncompressed mul-
timodal model. Incorporating multimodal image data im-
proves accuracy to 92.3%, while the 8-bit quantized mul-
timodal model achieves 91.7% accuracy. We then experi-
mented to design the student model from scratch incorpo-
rating memory aware knowledge distillation. Our target was
to compress the student model down to some KB so that we
could fit the model on the L1 and L2 caches of the hard-
ware we used for deployment. To this end we experimented
with different filter sizes, number of neurons in dense lay-
ers and also replacing the 2nd and 3rd CNN layers to their
depthwise separable counterparts so that we could achieve
ultimate compression for the student model. Student Model
5 achieves around 90.9% of accuracy with only 58 KB of
model size. The experimental results are shown in the figure
5(d). We selected this as our final student model for infer-
ence which achieves 296× reduction in model size from its
teacher model at the cost of 1.4% reduction in model accu-
racy.

TinyM2Net-V3 Hardware Implementation
Results and Analysis

To evaluate the TinyM2Net-V3 approach, we deployed the
trained models on the GAP8 processor. Table 1 reports re-
source utilization of TinyM2Net-V3 for 2 case-studies im-



Table 2: Implementation Results of the proposed TinyM2Net-V3 and Comparisons with Previous Works.

Architectures This Work (Rashid et al. 2022) (Rashid et al. 2023)

Application COVID-19
Detection

Pose
Classification

COVID-19
Detection

Object
Classification

Vehicle
Clasifications

COVID-19
Detection

Modality Used Audio+Audio
+Audio Image+Image Audio+Audio Image+Audio Image+Audio Audio+Audio

+Audio
Operations (GOP) 0.55 2.38 - - 0.42 0.01

Edge Devices Raspberry Pi
4B GAPuino Raspberry Pi

4B GAPuino Raspberry Pi
4B

Raspberry Pi
4B

Frequency (MHz) 1500 175 1500 175 1500 1500
Latency (ms) 2.75 4.47 9.95 49.20 1200 798 1240 980
Power (mW) 620 215.7 787 307.6 1700 959 1567 994
Energy (mJ) 1.70 0.95 7.83 15.13 2040 765.28 1800 974.12

Performance (GOP/s) 200 124.43 239.20 48.37 - - 0.33 0.01
Power-Efficiency (GOP/s/W) 322.5 576.8 303.93 157.26 - - 0.22 0.01

INA 219

Raspberry Pi 4B

USB Power Meter

GAPuino

Arduino

(b)(a)

Figure 6: (a) GAPuino board power measurement setup. INA219
and Arduino measure the GAP8 power consumption. (b) Raspberry
Pi 4B power measurement setup. USB power measurement device
was used for raspberry Pi 4B.

plemented separately on GAP8 processor. Case-Study 1 uses
52.4 KB of L1 memory and 40 KB of L2 memory which is
only 10% of the available L2 memory. The inference model
does not require off-chip DRAM to store its weights and
activations which ensures the minimum latency. Similarly,
Case-Study 2 uses 47.5 KB of L1 memory and 178 KB of
L2 memory which is 44% of the available L2 memory. This
inference model as well does not require off-chip DRAM to
store its weights and activations which ensures the minimum
latency.

Figure 6 (a) displays the power measurement setup used
in this work for GAPuino board, using INA 219 sensor and
Arduino board and the figure 6 (b) shows Raspberry Pi 4B
power measurement setup where USB power measurement
device was used.

Table 2 reports latency and power consumption of the
TinyM2Net-V3 implemented on GAPuino and Raspberry Pi
4B Boards. Raspberry PI 4B ran on 1500 MHz clock fre-
quency while GAP8 clock frequency was 175 MHZ. For
both the case-studies, GAP8 implementations were running
slower but consumed less power compared to Raspberry Pi
4B. Our Raspberry Pi implementation has power efficiency
of 322.5 GOP/s/W and 303.93 GOP/s/W respectively for
case-study 1 and 2. Our GAPuino implementation has power
efficiency of 576.8 GOP/s/W and 157.26 GOP/s/W respec-
tively for case-study 1 and 2. The Raspberry Pi might exhibit
better power efficiency for case-study 2 as it has larger size
of activation memory which caused delays in inference la-
tency on GAP8 processor. The overall power-efficiency de-

pends on the combination of hardware, software, and the
model’s characteristics. We have also compared our both
the implementations with previous multimodal models de-
ployed on resource-constrained hardware devices. As our
work targets hardware-aware model compression, both of
our case-studies outperforms previous implementations with
hardware-agnostic compressed models.

Conclusion
While advanced AI algorithms are technologically ad-
vanced, they often fall short in sustainability, primarily due
to their high energy consumption and the need for exten-
sive computational resources. In an effort to address these
concerns, this paper introduces TinyM2Net-V3, a novel sys-
tem designed to process diverse modalities of complemen-
tary data. TinyM2Net-V3 focuses on designing deep neural
network (DNN) models that are more efficient in terms of
size and power consumption. By employing model compres-
sion techniques such as knowledge distillation and low bit-
width quantization, and integrating hardware-aware design
principles, the system efficiently compresses these models.
This approach allows the models to fit within the lower lev-
els of the memory hierarchy, significantly reducing latency
and enhancing power efficiency. This makes TinyM2Net-V3
particularly suitable for deployment on resource-constrained
tiny devices, offering a sustainable alternative to traditional,
resource-intensive AI models. To assess the effectiveness of
TinyM2Net-V3, we evaluated with two case studies involv-
ing multimodal analysis: detecting COVID-19 from mul-
timodal cough, speech and breathing audios and detecting
poses from multimodal depth and thermal images. Our re-
sults showed that, despite the utilization of tiny inference
models, we were able to attain an accuracy of 92.95% for the
COVID-19 detection task using an inference model size of
merely 6 KB and 90.7% accuracy for the pose detection task
using an inference model size of only 58 KB. Our tinyML
models were deployed on two sustainable edge hardware
platforms, namely Raspberry Pi and GAPuino development
boards, attaining latencies within the range of a few millisec-
onds and power consumption in the milliwatt range.

References
Kraus, M.; Bingler, J. A.; Leippold, M.; Schimanski, T.;
Senni, C. C.; Stammbach, D.; Vaghefi, S. A.; and We-



bersinke, N. 2023. Enhancing Large Language Models with
Climate Resources. arXiv preprint arXiv:2304.00116.
Prakash, S.; Stewart, M.; Banbury, C.; Mazumder, M.;
Warden, P.; Plancher, B.; and Reddi, V. J. 2023. Is
TinyML Sustainable? Assessing the Environmental Impacts
of Machine Learning on Microcontrollers. arXiv preprint
arXiv:2301.11899.
Pramerdorfer, C.; Strohmayer, J.; and Kampel, M. 2020.
Sdt: A Synthetic Multi-Modal Dataset For Person Detection
And Pose Classification. In 2020 IEEE International Con-
ference on Image Processing (ICIP), 1611–1615.
Rashid, H.-A.; Ovi, P. R.; Busart, A., Carl Gangopadhyay;
and Mohsenin, T. 2022. TinyM2Net: A Flexible System Al-
gorithm Co-designed Multimodal Learning Framework for
Tiny Devices. ArXiv.
Rashid, H.-A.; et al. 2023. TinyM2Net-V2: A Compact
Low Power Software Hardware Architecture for Multimodal
Deep Neural Networks. ACM Transactions on Embedded
Computing Systems.
Sharma, N.; et al. 2020. Coswara–A Database of Breathing,
Cough, and Voice Sounds for COVID-19 Diagnosis.
Sharma, N. K.; Chetupalli, S. R.; Bhattacharya, D.; Dutta,
D.; Mote, P.; and Ganapathy, S. 2021. The Second DiCOVA
Challenge: Dataset and performance analysis for COVID-19
diagnosis using acoustics. arXiv preprint arXiv:2110.01177.
Stahlschmidt, S. R.; Ulfenborg, B.; and Synnergren, J. 2022.
Multimodal deep learning for biomedical data fusion: a re-
view. Briefings in Bioinformatics, 23(2): bbab569.
United Nations. 2021. The Sustainable Development Goals
Report. https://sdgs.un.org/goals. Accessed: 2023-11-23.


