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The tacit cooperation among human teams benefits from the fact that consensus can be reached on a task
through common belief. Similar to human social groups, agents in distributed learning systems can also
rely on common belief to achieve cooperation under the condition of limited communication. In this
paper, we show the role of common belief among agents in completing cooperative tasks, by proposing
the Common Belief Multi-Agent (CBMA) reinforcement learning method. CBMA is a novel value-based
method that infers the belief between agents with a variational model and models the environment with
a variational recurrent neural network. We validate CBMA on two grid-world games as well as the
StarCraft II micromanagement benchmark. Experimental results show that the learned common belief
by CBMA can improve performance in both discrete and continuous state settings.

� 2022 Elsevier B.V. All rights reserved.
1. Introduction

As a key method to solve many practical decision-making prob-
lems, cooperative multi-agent reinforcement learning (MARL) has
recently made huge progress in a number of domains, such as
autonomous vehicle teams [1], network packet delivery [2,3], and
distributed logistics [4]. In these real-world domains, each
decision-making agent is usually constrained by its local observa-
tion and communication constraints, which makes it a challenging
issue to achieve efficient cooperation among the agents [5].

To cope with such problems, a series of centralised training and
decentralised execution (CTDE) methods have been proposed.
MADDPG [6] and COMA [7] learned the centralised critic and
decentralised actors within the actor-critic framework. QMIX [8]
used a mixing network to factorize the value functions. Other
prominent progress includes but is not limited to studies such as
[9–14]. However, all these methods only use centralised critic to
coordinate during training, and lack a coordination mechanism
among agents during execution.

Therefore, a large number of studies resorted to communication
mechanisms [15–20] to enable coordination among agents during
the execution process. These works are normally built upon the
assumption that agents can share some kind of private information
using explicit communication protocols or emergent symbols. In
the emergence of human cooperation, however, individuals are
usually able to perceive their situations in a consistent way even
without communication, which is a kind of natural consciousness
[21]. Inspired by this, some studies have introduced the concept
of cognitive recognition or common knowledge into multi-agent
systems [22,23], exhibiting promising performance in facilitating
cooperation among the agents. However, due to agents’ local
observations of the environment, it is difficult for the agents to
form consistent beliefs that can be shared among them for the
achievement of cooperation.

In this paper, we propose the Common Belief Multi-Agent
(CBMA) method, which is a novel value-based RL method that
infers the common beliefs among the agents under the constraints
of local observations. CBMA enables agents to infer their latent
beliefs through local observations and make consistent latent
beliefs using a KL-divergence metric. In order to deal with the his-
torical data while at the same time inferring consistent latent
beliefs, our approach is based on a variational recurrent neural net-
work framework that combines a recurrent neural network (RNN)
within the variational model [24,25]. In the training phase, all the
observations are available to obtain a common belief for each
agent, while only local observation and the latent variable inferred
by itself can be accessed by each agent’s controller in the execution
phase. Therefore, CBMA is still under the CTDE regime, but is
communication-free and fully distributed in the sense that no
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explicit information should be exchanged among the agents and
only local information is required during the execution process.

We evaluate our methods on the grid world with discrete states
and the StarCraft II Micromanagement with continuous states.
Experimental results demonstrate that CBMA can achieve state-
of-the-art performance compared to the existing MARL methods.
2. Related work

2.1. MARL

As a critical way to solve the cooperative decision-making prob-
lem, MARL has a long history of research [26,27]. Recently, a widely
adopted MARL solution is to use the CTDE framework [6,28] to
realize coordinated learning among the agents. MADDPG [6] learns
a critic for each agent based on the global information, but only
uses local information when executing. This form of critic-
networks lead to a sharp increase in critic input dimensions. MAAC
[29] uses the attention mechanism in the critic network to solve
the problem of instability in the environment. COMA [7] also
applies a centralised critic to keep each agent informed about the
relative contribution to the whole system with counterfactual
reward. Another type of CTDE methods decompose the global
value function into some factored local value functions. VDN [30]
directly sums the independent functions, and QMIX [8] ensures a
monotonic mixing of each agent’s utilities depending on the global
state. To solve the constraints of Individual-Global-Max (IGM) [9]
under joint action-value functions, QTRAN [9] transforms the orig-
inal joint action-value function into individual action-value func-
tions. In addition, the attention mechanism is introduced in
Weighted QMIX [31] and AI-Qmix [32] to achieve better perfor-
mance in complex problems, and MAVEN [10] adds a mutual infor-
mation loss to encourage the diversity of trajectories with a shared
latent space, which solves the problem of e-greedy exploration in
the QMIX algorithm. Although all these methods use centralised
critics to realize the cooperation among the agents, they do not
consider any coordination mechanisms during execution.
2.2. Variational recurrent models

Variational recurrent models are another line of work that are
used to infer the ground truth and help to make decisions, mainly
including variational autoencoder (VAE), recurrent neural network
(RNN) and so on. The VAE [33,34] can learn a generative model of
the non-sequential data, and then performs inference. The VAE
trains the two parts (the encoder and decoder) in a joint way, in
which we can obtain the belief z to effectively aggregate the avail-
able information. However, VAE is usually limited to relatively
simple state transition structures. Since most of the data in the real
world is serialized, such as natural speech and behavior trajectory,
learning the sequence model is the critical technology to solve the
long-standing machine learning challenge [25]. The simplest way
to fully mine the important information in local observations in
the sequence model is to use RNN [8,35] to process sequences of
inputs. Nevertheless, in the face of data with strong and complex
correlations between output variables at different time steps, the
correlation of these variables cannot be adequately modeled in
the standard RNN. Therefore, Chung et al. proposed a stochastic
sequential model based on VAE to avoid the above problem by
learning effective belief representations [25]. Researchers like
Krishnan et al., Archer et al., Karl et al., Fraccaro et al. and Doerr
et al. also explored different methods to learn effective state beliefs
[36–40].
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2.3. Belief state in RL

Natural sequential data exists widely in RL [41], so there are
many works on single-agent reinforcement learning to solve par-
tially observable problems by unifying RL and stochastic sequential
models [42,43,24,44,45,22]. In partially observable Markov deci-
sion process (POMDP), we can use the sequence attributing of his-
torical data x ¼ ðx1; . . . ; xTÞ to establish sequential variational
model for inferring the filtering distributions pðzt jx1; . . . ; xtÞ, the
belief state in RL. These methods use VAE models to obtain latent
variables as inputs to their controllers. They are different from each
other in the factorization of the generation and inference models.
Benefited from this advantage of the variational RNN framework
and the belief state z, it is feasible to handle dynamic local obser-
vations in MARL. Inspired by the consistent belief in human soci-
ety, MACKRL [23] proposed a hierarchical structure of common
knowledge learning algorithm for agents. Owing to the existence
of a large number of possible trajectories, computing the
common-knowledge beliefs in MACKRL can be computationally
expensive. NCC-MARL [22] proposed the neighborhood cognition
consistency. In contrast, our method only needs to calculate one
latent belief per agent, which greatly reduces the amount of
computation.

3. Preliminaries

The problem of multi-agent cooperation can be formulated as a
decentralised partially observable Markov decision process (Dec-
POMDP) [46] denoted by a tuple T ¼ hS;O;A;R; P; Z; c;Ni. Within
T; oi 2 O contains partial information from the global state, s 2 S,
and ai 2 A is the action of agent i. We assume that each agent
i 2 N :¼ f1; . . . ;Ng holds a partially observable state, oi, which is
obtained through an observation function, Zðs; iÞ : S�N ! O. The

joint action for the N agents is represented by a :¼ aið Þi2N 2 AN .

The state transition is P s0js; a1; . . . ; aNð Þ : S� AN � S ! ½0;1�. At each
transition, the environment provides a reward according to the
reward function Rðs; aÞ : S� AN ! R. The agents aim to learn a joint
policy p ¼ Q

ipiðaijoiÞ that optimizes the shared utility G ¼ P
tctrt ,

where G is an expected discounted future reward and c is the dis-
count factor. A joint action-value function Qp

totðs; aÞ ¼ E½GjS ¼ s;p�
is derived by the joint policy p.

3.1. Q-learning

The Q-learning algorithm is a popular value-based RL method
which can be written as a bootstrapping formula
Qðs; aÞ ¼ Eðs;a;r;s0 Þ½rðs; aÞ þ cmax

a0
Q s0; a0ð Þ�. In deep Q-networks

(DQNs) [47], the action-value function is parameterised by a neural
network, h, which is updated to minimize the Temporal-Difference
(TD) error:

LðhÞ ¼ Eðs;a;r;s0Þ y0 � Qðs; a; hÞð Þ ð1Þ
where the target value y0 can be calculated through the target net-
work, y0 ¼ r þ cmax

a0
Qðs0; a0; �hÞwith the target network parameter �h

updated by copying from h. When this method is used in multi-
agent systems, a direct learning method is to learn the decentralised
action-value function Qi [48,49] independently. The drawback of
this method is that it does not consider the environmental instabil-
ity caused by the simultaneous actions of other agents.

3.2. Individual-global-max (IGM) condition

In the CTDE [50] framework, the centralised training algorithm
can acquire global state s and observation-action trajectories of all
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agents. Some studies [8,9] applied the factorization of global Q-
function based on the concept of IGM condition [9]. In multi-
agent Q-learning, a fundamental requirement of IGM is that the
optimal joint action induced from the optimal centralised action
value function is equivalent to the collection of individual optimal
actions of agents [51]. Therefore, IGM can be formalized as follows:

argmax
a

Q tot ¼

argmax
a1

Q1

..

.

argmax
an

Qn

0
BBB@

1
CCCA ð2Þ

where Q tot is a function with joint action value, and Qi satisfys IGM
for Q tot. In other words, Qi is a factor of Q tot. The most popular
methods are the factorized VDN method with an additivity opera-
tion and the QMIX algorithm with a monotonicity restriction.
Algorithm1 CBMA
1: Initialize RL networks (controller MLP network hQ ;
mixing network hm)
2: Initialize variational model (RNN network; encoder
and decoder networks)
3: Initialize exploration e ¼ 1; Total steps t ¼ 0; Replay
buffer B ¼ fg
4: Initialize common belief variation networks training
frequency d; First stage training times trepeat times
5: Initialize Train first stage flag ¼ True; Number of
execution episode Enough episode num
6: for each episodic iteration do

7: Initialize an episode

8: for step not terminated do

9: Calculate the value of Qi function of all agents,

get e-greedy actions

10: e is annealed from 1.0 to 0.05

11: end for

12: Record ðo; s; rÞ in replay buffer B

13: t ¼ t þ episode steps

14: for each gradient step do

15: if mini-batch can be sample from buffer then

16: Train RL controller

17: Sample mini-batch from replay buffer B

18: Update controller MLP and mixing network

(Eqution (15)): h i

19: LQmix

ðnÞ ¼ Ebatch ytot � Q totðo;d; a; s; nÞð Þ2
20: if t > Enough episode num and
Train first stage flag ¼ True then
21: repeat

22: Sample mini-batch from B
23: Train first stage common belief

variational network (Eqution (16)): L1VR

24: until t > Enough episode numþ trepeat times
25: Train first stage flag ¼ False

26: end if

27: if randomð0;1Þ < d then

28: Sample mini-batch from B
Fig. 1. The graphical model of CBMA, where squares are deterministic variables,
and circles represent stochastic variables. The white circles are observed variables,
while the gray ones are latent variables. (a) is the generative model, where we can
29: Train second stage common belief

variational network (Eqution (16)): L2VR

get a latent variable zi;t from each generative model and calculate the common
30: end if

belief loss between them. Within generative model phðzi;t jdi;t�1Þph ; ðxi;t jzi;t�1Þ, the
31: end if

variable zi;t generates from the conditional prior distribution phðzi;t jdi;t�1Þ and the
32: end for

variable xi;t from the conditional distribution phðxi;t jzi;t�1Þ. (b) is the inference model
33: end for

of each agent i. Note, di;t is the hidden layer vector of recurrent neural network.
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4. Method

In this section, we introduce our MARL algorithm CBMA in
detail. The key idea is to infer a latent variable zi for each agent
during the execution phase using an RNN-based variational model.
Similar to human common beliefs, these variables are kept consis-
tent in the process of execution in order to ensure coordination
among the agents.

4.1. The variational model in dec-POMDP

In VAE, the generative model is trained with the form
pðx; zÞ ¼ pðzÞpðxjzÞ, where pðzÞ is the prior distribution of the latent
variable z and pðxjzÞ is the likelihood function which generates data
x given the latent variable z. To solve the intractable true posterior
pðzjxÞ, the distribution pðzjxÞ is approximated by the tractable dis-
tribution qðzjxÞ. The VAE is trained by maximizing the evidence
lower bound (ELBO) of log-likelihood.

logpðxÞ ¼ DKLðqðzjxÞjjpðzjxÞÞ þ ELBO ð3Þ

ELBO ¼ �DKLðqðzjxÞjjpðzÞÞ þ EqðlogpðxjzÞÞ ð4Þ
where DKLðqðzjxÞjjpðzjxÞÞ is always positive, and it is only necessary
to maximize ELBO to get qðzjxÞ to approximate the true posterior
distribution pðzjxÞ. Maximizing the ELBO is equivalent to minimiz-

ing the loss function, Lelbo ¼ �ELBO. The loss function about ELBO
is shown as below.

Lelbo ¼ � Eqðlog pðxjzÞÞ � DKLðqðzjxÞjjpðzÞÞ
� � ð5Þ

VRNN [25] is an extension of VAE and can be used to process
sequential data. We generalize VRNN to multiagent sequential
decision making settings. Consider Dec-POMDP, where there are
N agents. For each agent, the local state-transition (i.e., an agent
performing a local action ai;t under local observation oi;t transfers
to the next moment of local observation oi;tþ1) can be modeled
approximately by a graphical model. The reward r is combined
with the partial observation oi of the agent i as an entire
xi ¼ ðoi; rÞ for convenience. Fig. 1 gives the overall graphical model
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of the multiagent VAE model, CBMA, where each agent i has
observable variables xi and corresponding latent variables zi. More-
over, CBMA has the following components:

� The initial distribution and the transition of prior distribution
are phðzi;1Þ and phðzi;t jzi;t�1; xi;t�1; ai;1:t�1Þ, respectively. For conve-
nience, the transition distribution for agent i at time step t is

marked as p
hprior
i;t .

� In the generative model, the future observation is predicted by
its internal state, ph xi;t jzi;1:t ; xi;1:t�1

� �
, where the generative model

is marked as phdec
i;t .

� The latent variable zi;t is approximated by the inference model,

q/ðzi;t jzi;1:t�1; xi;1:t ; ai;1:t�1Þ, which is denoted as q/enc
i;t .

Based on Eq. (5) and the notations defined above, the loss func-
tion of ELBO for agent i can be rewritten follow.

Lelboi ¼ �Eðoi ;aiÞ Eq/ logphdec
i;t

� �
� DKL q/enc

i;t jjphprior
i;t

� �h i
ð6Þ

Similar to the notations in VAE [33], we also name q/enc
i;t the

encoder and phdec
i;t the decoder, respectively. Note that, Eðoi ;aiÞ repre-

sents a mini-batch version of the loss function.
The variational model is combined with a gated recurrent unit

(GRU) [52] network in order to form a highly flexible function
approximator. Each agent’s hidden layer variable can be updated
by the following iterative equation:

di;t ¼ GRUðdi;t�1; zi;t ; xi;tÞ ð7Þ
where di;t is the hidden layer variable.

4.2. Reparameterizable approximation

The Generative Model. The variational model is conditioned on
the hidden layer variable di;t of the GRU. We can obtain a prior dis-

tribution based on historical information, zi;t � Nðlh
i;t; rh

i;t

� �2
IÞ,

with a diagonal covariance structure I. We use the Gaussian distri-
butions as the outputs. The parameterized diagonal Gaussian dis-
tribution is as follows:

lh
i;t; rh

i;t

� �2
� 	

¼ hprior di;t�1; ai;t�1
� � ð8Þ

where lh
i;t and ðrh

i;tÞ
2 are the prior distribution of parameterization,

and hpriorð�Þ is the neural network parameter of a prior distribution.
The future observations can be predicted by the generative model

given the internal states, xi;t jzi;t � Nðlx
i;t; rx

i;t

� �2
IÞ:

lx
i;t; rx

i;t

� �2
� 	

¼ hp zi;t; di;t�1
� � ð9Þ

where lx
i;t and ðrx

i;tÞ2 are the predicted observations distribution of

parameterization, and hpð�Þ is the neural network parameters.
The Inference Model. The common belief zi;t of agent i can be

parameterized as a Gaussian distribution zi;t jxi;t � Nðl/
i;t ; ðr/

i;tÞ
2
IÞ,

given the variable xi;t:

l/
i;t ; ðr/

i;tÞ
2

h i
¼ /qðxi;t; di;t�1; ai;t�1Þ ð10Þ

where l/
i;t and ðr/

i;tÞ
2
represent the parameterized Gaussian poste-

rior distributions, and /qð�Þ is the neural network parameter of pos-
terior distributions.

Given the above models, the two items in Eq. 6 can be calcu-
lated. The first item is the generative model, Eq/ ðlog phdec

i;t Þ, which
344
is a negative reconstruction error in autoencoder parlance. In other
words, Eq/ ðlog phdec

i;t Þ is equivalent to the negative of the distance
between the reconstructed variable and the original variable. For
each agent i, we have the following formula:

Eq/ðlogphdec
i;t Þ ’ � ~xi;t � xi;t



 

 ð11Þ
where xi;t is the raw state and reward sampled from the replay buf-
fer [47], and ~xi;t is reconstructed variable based on the historical
information and latent variable, ~xi;t ¼ hp zi;t ;di;t�1

� �
. Based on Eq.

(9), we assume that ~xi;t belongs to a parameterized Gaussian distri-

bution, with the mean lx
i;t and variance ðrx

i;tÞ2. We can obtain the
parameterized ~xi;t ¼ lx

i;t þ rx
i;t�, where � is an auxiliary noise vari-

able � � Nð0; IÞ.
The second item is the KL-divergence. Similarly, q/enc

i;t and p
hprior
i;t

can be parameterized as Gaussian distributions, and the KL-
divergence between these two distributions is given as follows:

DKL q/enc
i;t jjphprior

i;t

� �

¼ log
rh
i;t

r/
i;t

þ
r/
i;t

� �2

2 rh
i;t

� �2 þ
l/
i;t
�lh

i;t

� �2

2 rh
i;t

� �2 � 1
2

ð12Þ

Our generative model and inference model are trained jointly to
maximize the ELBO with respect to their parameters. The detailed
training algorithm is shown in the Algorithm1.

Common Belief. In the previous subsections, we use a variational
distribution to approximate the prior distribution for each agent.
This allows each agent to infer a meaningful latent variable. How-
ever, for multiple agents, simply inferring their latent variables
alone might not benefit the establishment of cooperation. One pos-
sible solution is that each agent infers a latent variable about the
global state s. Given a prior distribution pðzt jstÞ, we can use
DKLðq/enc

i;t jjpðzt jstÞÞ to infer the common beliefs. However, the global
state is often inaccessible to agents due to partial observations. To
circumvent this problem, we let the variational distributions
between agents approximate each other, in order to realize the
belief consistency among the agents:

LCB ¼ Eðoi ;aiÞ
XN
i¼1

XN
j¼1

DKL q/enc
i;t jjq/enc

j;t

� �

¼ Eðoi ;aiÞ
XN
i¼1

XN
j¼1

log
r/
j;t

r/
i;t

þ
r/
i;t

� �2

þ l/
i;t
�l/

j;t

� �2

2 r/
j;t

� �2

0
B@

1
CA

2
64

3
75

ð13Þ

The above loss LCB will keep agent i’ belief q/enc
i;t as close as to

agent j’ belief q/enc
j;t , which means that agent i and j will achieve

common belief as expected.

4.3. The training and execution process

The training of CBMA is based on the QMIX family of algo-
rithms, by minimizing the TD loss and variational model loss in
parallel. Pseudocode is given in Algorithm1. The overall architec-
ture of our algorithm is shown in Fig. 5.

The TD Loss. In our model, the CBMA uses a monotonic approx-
imation mixing network, which is originated from QMIX. QMIX
guarantees that the global argmax executed on Q tot produces the
same result as a set of individual argmax operations executed on
each Qa, formalized as Eq. (2). The QMIX algorithm enforces mono-
tonicity through a constraint on the relationship between Q tot and
each Qa, and this monotonic function is sufficient but not neces-
sary to satisfy Eq. (2). Monotonicity is shown as follow.
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@Q tot

@Qa
P 0;8a 2 A ð14Þ

As shown in Fig. 2(a), the mixing network processes the input
from the agents and outputs the Q tot. To enforce the monotonicity
of Eq. (14) the weights of the hypernetworks (excluding bias) are
restricted to be non-negative. The non-negative weights allow
the hypernetworks to approximate any monotonic function arbi-
trarily close [53]. The weights of layers of the mixing network
are generated by using the state s as an input to the hypernet-
works. The hypernetworks consists of a linear layer and an abso-
lute activation function, which ensures that the generated
hypernetworks weights are non-negative.

We update each agent’s Q-network hQ and mixing network hm
using the gradient of TD loss. As shown in Fig. 2(a), the input is
ðoi;t ; ri;t�1; ai;t�1; zi;t�1Þ for every agent’s Q-network Qi, and then each
individual utility is fed into the mixing network, which is used to
compute the global action-value Q tot ¼ hmðQ1; . . . ;QN; sÞ. We also
describe the computational process of Qi in detail in Fig. 5. The
variable di contains information of the latent variable zi, which
potentially allows the agents to have convergent behavioral strate-
gies. To allow the agents to choose specific policy, we encode the
local observations oi of the agents directly concatenating with di

as the input to Qi. For convenience, we write the equation for cal-

culating Q tot as Q totðo;d; a; s; nÞ. Here, o ¼ foigNi¼1 contains partially

observable information of each agent, and d ¼ fdigNi¼1 are the inter-
nal states calculated by the variational model. The networks are
updated by the following equation:

LQmix
ðnÞ ¼ Ebatch ytot � Q totðo;d;a; s; nÞ

� �2h i
ð15Þ

where ytot ¼ r þ cmaxa0Q tot o0;d0
;a0; s0; n�

� �
, agent’s Q network and

the mixing network parameters are denoted as n ¼ ðhQ ; hmÞ and n�

is the parameters of target networks.
The Common Belief Variational Model Loss. The combination of

the variational formula (Eq. (6)) and the common belief loss (Eq.
(13)) is as follow:

LVR ¼ �
XN
i¼1

Lelboi þ aLCB ð16Þ

where LVR is the loss for training the common belief variational net-
work. The hyperparameter a is used for balancing the weight of LCB.
Fig. 2. Computation graph of CBMA. (a) is the QMIX architecture. (b) is the execution p
centralised action-value function; s: the global state; di: the hidden layer state of agent i;
variable and the belief of agent i; LCB: the loss function for the forming of common belie
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As shown in Fig. 2(b), in the execution phase, our model first
computes the hidden layer state di;t in the RNN network. Then,
the latent variable of the common beliefs zi;t is calculated. After-
wards, the controller selects an action by
ai ¼ argmaxaiQ iðoi; di; aiÞ. Fig. 2(c) is the training phase. We sample
a mini-batch to train our variational model and RL model. When
training the variational model, the generative model and inference
model combined with the RNN network are trained to optimize the
loss in Eq. (13). When training RL, only the multilayer perceptron
(MLP) network of the controller and the mixing network are
trained using the loss function in Eq. (15).

The variational network is unstable in the early training stage
due to the fact that the agents’ policies in the initial stage are more
exploratory and most of the trajectories are random. We design
two variational networks for solving this problem. The first net-
work, after collecting enough data, conducts enough rounds of
training, and then is fixed without further training. The second net-
work is trained with RL until the end of training. The Q-network
receives the raw observations and the state variables from both
variational networks. In the ablation study section, we show that
using two networks can lead to better results compared to using
a single variational network. The training algorithm for CBMA is
provided in Algorithm1 and Fig. 5.
5. Experiment

In this section, we examine CBMA on grid world games and the
StarCraft II micromanagement (SMAC) tasks [54]. We compare the
proposed method with the state-of-the-art MARL algorithms: IQL
[49], VDN [30], QMIX [8], QTRAN [9], COMA [7], and Q-DPP [55].
In our algorithm (CBMA) we use the parameter settings as shown
in Table 1 and Table 2. In the StarCraft environment, the parame-
ters of our algorithm CBMA are consistent with those in the origi-
nal QMIX, except for the RNN dimension. Since our model involves
the concatenation of multiple variables, we reduced the RNN
dimension from 64 to 32. In the Grid experiment, we first optimize
the baseline algorithms and find the best parameters. Then the
parameters belonging to the common belief module are adjusted
based on the parameters of the baseline algorithms. All experi-
ments are conducted based on control variables.
hase for agent i. (c) is the training phase. Qi: Q-value function of agent i;Q tot: the
xi: the variable contains partial observation oi and reward r; xi ¼ ðoi; rÞ; zi: the latent
f.



Table 1
The hyperparameters used in games.

Hyperparameters Grid StarCraft

Learning rate of LR (Controller MLP network and
Mixing network)

0.0005 0.0005

Learning rate of common belief variation networks 0.0008 0.0005
RNN Hidden dimension 64 32
Activation function Relu/

Tanh
Relu/
Tanh

Buffer size 5000 5000
Batch size 32 32
Epsilon init 1.0 1.0
Epsilon end 0.05 0.05
Discount factor c 0.99 0.99
Common belief a 0.01 0.01

Table 2
The hyperparameters in Algorithm1 for different games.

Game Name Training
frequency d

First stage training times
trepeat times

Grid Blocker 7�4 0.3 5000
Navigate 6�6 0.3 5000
Navigate 8�8 0.3 5000

StarCraft StarCraft 3
m_vs_3m

0.3 5000

StarCraft 5
m_vs_6m

0.12 1000

StarCraft 8
m_vs_9m

0.3 5000

Fig. 4. Grid games.
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5.1. Discrete state-space games

Blocker Games. In the blocker task [56,57], agents must learn to
reach the bottom of the playing field. Meanwhile the blockers aim
to stop themwith certain strategies. Three agents and two blockers
are placed in a 7� 4 board, as shown in Fig. 4(a). Blocker 1 and
blocker 2 are responsible for column 1� 4 and 4� 7, respectively.
The state space consists of the location of each agent and blocker.
The action space of each agent includes going up, down, left and
right, or staying in place, while the blocker moves left or right in
a certain strategy to stop these agents. Each episode has a maxi-
mum of 20 steps until one of the agents reaches the ultimate zone.
Before reaching the ultimate zone, the team’s reward is �1 for each
step. When one of the agents succeeds, the episode ends. The max-
imum cumulative reward for this game is �3.

Coordinated Navigation Games. In the navigation games, four
agents aim to learn a collaborative strategy to reach four corre-
sponding landmarks. This type of tasks has the same discrete
action settings as the blocker. We set up two tasks with different
sizes, i.e., 6� 6 and 8� 8. For these two tasks, a reward of �1 is
Fig. 3. Performance over time
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given per step before all agents arrive at their terminals. As shown
in Fig. 4(b), the agent and flag are identified by a number (i.e., 1–4).
The game ends only when all agents reach the corresponding flags.
The maximum reward of 6� 6 and 8� 8 tasks are �4 and �6,
respectively.

Results in Discrete Games. The results are shown in Fig. 3. In the
blocker game, some agents need to learn to cheat the blockers, so
that the other agents can take this opportunity to reach the bottom
smoothly. This requires common belief among agents to achieve
such a tacit agreement. We can see from Fig. 3(a) that our algo-
rithm can learn a more stable policy compared to the baselines.
CBMA can converge to the highest reward �3 at a relatively fast
speed. The results of navigation games can be found in Fig. 3(b)
and 3(c). CBMA can achieve satisfactory results in the two environ-
ments. As the size of the game increases from 6� 6 to 8� 8, CBMA
performs significantly better than the baseline algorithms. In the
small-scale 6� 6 game, it is surprising that IQL achieves the same
result as CBMA. This might be due to the little exploration space in
such small-scale games, where learning without coordination can
also quickly achieve the optimal strategies through random explo-
ration. Furthermore, although the state-of-the-art algorithm Q-DPP
can quickly reach the highest point in the early stages of training, a
stable strategy cannot be obtained in subsequent training and the
reward becomes lower later.

5.2. Continuous state-space games

The SMAC tasks. To prove that CBMA can solve more complex
collaborative tasks, we conduct experiments in the challenging
SMAC tasks [54]. Each agent has its own discrete actions including
move[direction], attack[enemy_id], stop, and noop. The test war-
riors are the Marines, which are ranged-attack units. Here, we
report the result for three maps 3 m_vs_3m, 5 m_vs_6m and 8
m_vs_9m. The 3 m_vs_3m is a symmetrical game, where both
the Ally and the Enemy groups include 3 Marines. The other two
on different grid games.



Fig. 5. The overall CBMA architecture. The figure shows that the process of inferring the latent variables zi and zj for agent i and j, respectively, which is also applicable in the
case of more than two agents. During the training process, the inference network is trained by setting the KL-divergence between zi and zj as a loss function so that the
distributions between them approximate each other. During the execution process, we do not calculate the KL-divergence between agents, and the algorithm just uses the
inference network to get the respective latent variable zi. Our algorithm guarantees the decentralized execution property.
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are asymmetrical games verifying the effect of our algorithm in
more complex modes, including: 5 Marines for user versus 6 Mari-
nes for enemy (5 m_vs_6m), and 8 Marines for user versus 9 Mari-
nes for enemy (8 m_vs_9m).

Results in SMAC. From Fig. 6, we can see that CBMA and other
state-of-the-art algorithms can achieve similar optimal perfor-
mance in easy map (i.e., 3 m_vs_3m), but their performance gap
becomes wider in more challenging maps. Importantly, CBMA out-
performs QMIX under the same training parameters, which fully
verifies the benefits of inferring common beliefs in CBMA.
5.3. Ablation studies

We test several ablation models on the 5 m_vs_6m map to
demonstrate the effectiveness of our contributions. We first con-
sider the influence of common belief on the final performance.
We remove the loss function LCB that forms common beliefs among
the agents, namely ‘‘Without Common Belief”, which means that
the variational model is only used for state representation. More-
Fig. 6. Comparison of our method agains
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over, we also evaluate the performance using only one variational
network (denoted as ‘‘One Stage”). Finally, we test a method to pre-
dict the global state s by the decoder model (denoted as ‘‘Common
State”), where the common belief loss function becomes

LVR ¼ �PN
i¼1L

elbo
i , and the generative model in ELBO is rewritten

as follows:

Eq/ logph st jzi;1:t; xi;1:t�1
� �� � ’ XN

i¼1

fx xið Þ � sð Þ2 ð17Þ

where fx is the MLP network.
As can be seen from Fig. 8, agents with common belief can

achieve significantly better performance than those without com-
mon beliefs, and the performance of a single variational network is
much lower than the two-variational network CBMA method,
showing that the double network design can overcome the insta-
bility of the variational model. Moreover, predicting the global
state by the decoder model would hinder the establishment of
common beliefs among the agents, leading to inferior performance
against the original CBMA method.
t baseline algorithms on the SMAC.



Fig. 8. Ablation reward in 5 m_vs_6m.

Fig. 9. IQL with CB modul in 5 m_vs_6m.

Fig. 10. VDN with CB model in 5 m_vs_6m.

Fig. 7. Agents’ beliefs fzigNi¼1 in 5 m_vs_6m. These values are obtained by sampling the Gaussian distribution.
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At last, to further prove the effectiveness of common belief (CB),
we combine CB module with classic algorithms VDN and IQL. As
shown in Fig. 9 and Fig. 10, the convergence speed of the ‘‘VDN
with CB” and ‘‘IQL with CB” algorithms with CB module is faster
348
than that of the classic MARL algorithm VDN and IQL. The perfor-
mance of the algorithm with CB module is also higher than that
of the classic MARL algorithm.

5.4. Further analysis of common belief

To further understand the influence of common belief, we ana-
lyze the differences between the beliefs obtained by ‘‘Without
Common Belief” and CBMA. In Fig. 7, we plot the belief zi of each
agent during the 5 m_vs_6m training process. As shown in the fig-
ure, the beliefs of CBMA tend to be more stable with the progress of
training, compared with ‘‘Without Common Belief”. We can see
that in the initial stage of 0–500 K, the belief curves between CBMA
agents have quickly converged. In contrast, ‘‘Without Common
Belief” has no consistency tendency in the whole training process.
Compared with CBMA’s, beliefs are obviously unstable in ‘‘Without
Common Belief”. Meanwhile, in the ablation experiment in Fig. 8,
we also find that the CBMA’s reward is significantly higher than
‘‘Without Common Belief”, which proves that common belief can
promote the cooperation between agents.

6. Conclusion

In this paper, we propose the CBMA, a novel deep MARL method
with decentralised policies and centralised training setting to solve
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the belief inference problem for multi-agents systems. Although
CBMA is a fully decentralised policy algorithm, agents can still
use local observation to obtain consistent beliefs with the help of
RNN-based variational model. Benefiting from the variational
model, CBMA can handle the dynamic input of the raw sequence
observations. In two grid games and the challenging StarCraft II
micromanagement, CBMA outperformed the baselines and
achieved state-of-the-art utility utilizing common belief. Our
experimental analysis demonstrates the flexibility of our frame-
work and the ability to form consistent belief among agents.

In future work, we will consider the dynamic agents to generate
local common belief (rather than all agents with a unified belief).
We are also interested in exploring how agents can reach consen-
sus through language in the context of communication in order to
reduce communication costs in the current communication-based
methods.
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